xref: /third_party/zlib/trees.c (revision 275793ea)
1/* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2024 Jean-loup Gailly
3 * detect_data_type() function provided freely by Cosmin Truta, 2006
4 * For conditions of distribution and use, see copyright notice in zlib.h
5 */
6
7/*
8 *  ALGORITHM
9 *
10 *      The "deflation" process uses several Huffman trees. The more
11 *      common source values are represented by shorter bit sequences.
12 *
13 *      Each code tree is stored in a compressed form which is itself
14 * a Huffman encoding of the lengths of all the code strings (in
15 * ascending order by source values).  The actual code strings are
16 * reconstructed from the lengths in the inflate process, as described
17 * in the deflate specification.
18 *
19 *  REFERENCES
20 *
21 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23 *
24 *      Storer, James A.
25 *          Data Compression:  Methods and Theory, pp. 49-50.
26 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27 *
28 *      Sedgewick, R.
29 *          Algorithms, p290.
30 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31 */
32
33/* @(#) $Id$ */
34
35/* #define GEN_TREES_H */
36
37#include "deflate.h"
38
39#ifdef ZLIB_DEBUG
40#  include <ctype.h>
41#endif
42
43/* ===========================================================================
44 * Constants
45 */
46
47#define MAX_BL_BITS 7
48/* Bit length codes must not exceed MAX_BL_BITS bits */
49
50#define END_BLOCK 256
51/* end of block literal code */
52
53#define REP_3_6      16
54/* repeat previous bit length 3-6 times (2 bits of repeat count) */
55
56#define REPZ_3_10    17
57/* repeat a zero length 3-10 times  (3 bits of repeat count) */
58
59#define REPZ_11_138  18
60/* repeat a zero length 11-138 times  (7 bits of repeat count) */
61
62local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64
65local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67
68local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70
71local const uch bl_order[BL_CODES]
72   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73/* The lengths of the bit length codes are sent in order of decreasing
74 * probability, to avoid transmitting the lengths for unused bit length codes.
75 */
76
77/* ===========================================================================
78 * Local data. These are initialized only once.
79 */
80
81#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
82
83#if defined(GEN_TREES_H) || !defined(STDC)
84/* non ANSI compilers may not accept trees.h */
85
86local ct_data static_ltree[L_CODES+2];
87/* The static literal tree. Since the bit lengths are imposed, there is no
88 * need for the L_CODES extra codes used during heap construction. However
89 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90 * below).
91 */
92
93local ct_data static_dtree[D_CODES];
94/* The static distance tree. (Actually a trivial tree since all codes use
95 * 5 bits.)
96 */
97
98uch _dist_code[DIST_CODE_LEN];
99/* Distance codes. The first 256 values correspond to the distances
100 * 3 .. 258, the last 256 values correspond to the top 8 bits of
101 * the 15 bit distances.
102 */
103
104uch _length_code[MAX_MATCH-MIN_MATCH+1];
105/* length code for each normalized match length (0 == MIN_MATCH) */
106
107local int base_length[LENGTH_CODES];
108/* First normalized length for each code (0 = MIN_MATCH) */
109
110local int base_dist[D_CODES];
111/* First normalized distance for each code (0 = distance of 1) */
112
113#else
114#  include "trees.h"
115#endif /* GEN_TREES_H */
116
117struct static_tree_desc_s {
118    const ct_data *static_tree;  /* static tree or NULL */
119    const intf *extra_bits;      /* extra bits for each code or NULL */
120    int     extra_base;          /* base index for extra_bits */
121    int     elems;               /* max number of elements in the tree */
122    int     max_length;          /* max bit length for the codes */
123};
124
125#ifdef NO_INIT_GLOBAL_POINTERS
126#  define TCONST
127#else
128#  define TCONST const
129#endif
130
131local TCONST static_tree_desc static_l_desc =
132{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
133
134local TCONST static_tree_desc static_d_desc =
135{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
136
137local TCONST static_tree_desc static_bl_desc =
138{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
139
140/* ===========================================================================
141 * Output a short LSB first on the stream.
142 * IN assertion: there is enough room in pendingBuf.
143 */
144#define put_short(s, w) { \
145    put_byte(s, (uch)((w) & 0xff)); \
146    put_byte(s, (uch)((ush)(w) >> 8)); \
147}
148
149#define INDEX_2 2
150#define INDEX_7 7
151#define INDEX_8 8
152#define INDEX_9 9
153#define INDEX_13 13
154#define INDEX_16 16
155#define INDEX_31 31
156#define INDEX_32 32
157
158/* ===========================================================================
159 * Reverse the first len bits of a code, using straightforward code (a faster
160 * method would use a table)
161 * IN assertion: 1 <= len <= 15
162 */
163local unsigned bi_reverse(unsigned code, int len)
164{
165    register unsigned res = 0;
166    do {
167        res |= code & 1;
168        code >>= 1, res <<= 1;
169    } while (--len > 0);
170    return res >> 1;
171}
172
173/* ===========================================================================
174 * Flush the bit buffer, keeping at most 7 bits in it.
175 */
176local void bi_flush(deflate_state *s)
177{
178    if (s->bi_valid == INDEX_16) {
179        put_short(s, s->bi_buf);
180        s->bi_buf = 0;
181        s->bi_valid = 0;
182    } else if (s->bi_valid >= INDEX_8) {
183        put_byte(s, (Byte)s->bi_buf);
184        s->bi_buf >>= INDEX_8;
185        s->bi_valid -= INDEX_8;
186    }
187}
188
189/* ===========================================================================
190 * Flush the bit buffer and align the output on a byte boundary
191 */
192local void bi_windup(deflate_state *s)
193{
194    if (s->bi_valid > INDEX_8) {
195        put_short(s, s->bi_buf);
196    } else if (s->bi_valid > 0) {
197        put_byte(s, (Byte)s->bi_buf);
198    }
199    s->bi_buf = 0;
200    s->bi_valid = 0;
201#ifdef ZLIB_DEBUG
202    s->bits_sent = (s->bits_sent + INDEX_7) & ~INDEX_7;
203#endif
204}
205
206/* ===========================================================================
207 * Generate the codes for a given tree and bit counts (which need not be
208 * optimal).
209 * IN assertion: the array bl_count contains the bit length statistics for
210 * the given tree and the field len is set for all tree elements.
211 * OUT assertion: the field code is set for all tree elements of non
212 *     zero code length.
213 */
214local void gen_codes(ct_data *tree, int max_code, ushf *bl_count)
215{
216    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
217    unsigned code = 0;         /* running code value */
218    int bits;                  /* bit index */
219    int n;                     /* code index */
220
221    /* The distribution counts are first used to generate the code values
222     * without bit reversal.
223     */
224    for (bits = 1; bits <= MAX_BITS; bits++) {
225        code = (code + bl_count[bits - 1]) << 1;
226        next_code[bits] = (ush)code;
227    }
228    /* Check that the bit counts in bl_count are consistent. The last code
229     * must be all ones.
230     */
231    Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
232            "inconsistent bit counts");
233    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
234
235    for (n = 0;  n <= max_code; n++) {
236        int len = tree[n].Len;
237        if (len == 0) continue;
238        /* Now reverse the bits */
239        tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
240
241        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
242            n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
243    }
244}
245
246#ifdef GEN_TREES_H
247local void gen_trees_header(void);
248#endif
249
250#ifndef ZLIB_DEBUG
251#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
252   /* Send a code of the given tree. c and tree must not have side effects */
253
254#else /* !ZLIB_DEBUG */
255#  define send_code(s, c, tree) \
256     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
257       send_bits(s, tree[c].Code, tree[c].Len); }
258#endif
259
260/* ===========================================================================
261 * Send a value on a given number of bits.
262 * IN assertion: length <= 16 and value fits in length bits.
263 */
264#ifdef ZLIB_DEBUG
265local void send_bits(deflate_state *s, int value, int length)
266{
267    Tracevv((stderr," l %2d v %4x ", length, value));
268    Assert(length > 0 && length <= 15, "invalid length");
269    s->bits_sent += (ulg)length;
270
271    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
272     * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
273     * unused bits in value.
274     */
275    if (s->bi_valid > (int)Buf_size - length) {
276        s->bi_buf |= (ush)value << s->bi_valid;
277        put_short(s, s->bi_buf);
278        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
279        s->bi_valid += length - Buf_size;
280    } else {
281        s->bi_buf |= (ush)value << s->bi_valid;
282        s->bi_valid += length;
283    }
284}
285#else /* !ZLIB_DEBUG */
286
287#define send_bits(s, value, length) \
288{ int len = length;\
289  if (s->bi_valid > (int)Buf_size - len) {\
290    int val = (int)value;\
291    s->bi_buf |= (ush)val << s->bi_valid;\
292    put_short(s, s->bi_buf);\
293    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
294    s->bi_valid += len - Buf_size;\
295  } else {\
296    s->bi_buf |= (ush)(value) << s->bi_valid;\
297    s->bi_valid += len;\
298  }\
299}
300#endif /* ZLIB_DEBUG */
301
302
303/* the arguments must not have side effects */
304
305/* ===========================================================================
306 * Initialize the various 'constant' tables.
307 */
308local void tr_static_init(void)
309{
310#if defined(GEN_TREES_H) || !defined(STDC)
311    static int static_init_done = 0;
312    int n;        /* iterates over tree elements */
313    int bits;     /* bit counter */
314    int length;   /* length value */
315    int code;     /* code value */
316    int dist;     /* distance index */
317    ush bl_count[MAX_BITS+1];
318    /* number of codes at each bit length for an optimal tree */
319
320    if (static_init_done) return;
321
322    /* For some embedded targets, global variables are not initialized: */
323#ifdef NO_INIT_GLOBAL_POINTERS
324    static_l_desc.static_tree = static_ltree;
325    static_l_desc.extra_bits = extra_lbits;
326    static_d_desc.static_tree = static_dtree;
327    static_d_desc.extra_bits = extra_dbits;
328    static_bl_desc.extra_bits = extra_blbits;
329#endif
330
331    /* Initialize the mapping length (0..255) -> length code (0..28) */
332    length = 0;
333    for (code = 0; code < LENGTH_CODES-1; code++) {
334        base_length[code] = length;
335        for (n = 0; n < (1 << extra_lbits[code]); n++) {
336            _length_code[length++] = (uch)code;
337        }
338    }
339    Assert (length == 256, "tr_static_init: length != 256");
340    /* Note that the length 255 (match length 258) can be represented
341     * in two different ways: code 284 + 5 bits or code 285, so we
342     * overwrite length_code[255] to use the best encoding:
343     */
344    _length_code[length - 1] = (uch)code;
345
346    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
347    dist = 0;
348    for (code = 0 ; code < 16; code++) {
349        base_dist[code] = dist;
350        for (n = 0; n < (1 << extra_dbits[code]); n++) {
351            _dist_code[dist++] = (uch)code;
352        }
353    }
354    Assert (dist == 256, "tr_static_init: dist != 256");
355    dist >>= 7; /* from now on, all distances are divided by 128 */
356    for ( ; code < D_CODES; code++) {
357        base_dist[code] = dist << 7;
358        for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
359            _dist_code[256 + dist++] = (uch)code;
360        }
361    }
362    Assert (dist == 256, "tr_static_init: 256 + dist != 512");
363
364    /* Construct the codes of the static literal tree */
365    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
366    n = 0;
367    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
368    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
369    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
370    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
371    /* Codes 286 and 287 do not exist, but we must include them in the
372     * tree construction to get a canonical Huffman tree (longest code
373     * all ones)
374     */
375    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
376
377    /* The static distance tree is trivial: */
378    for (n = 0; n < D_CODES; n++) {
379        static_dtree[n].Len = 5;
380        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
381    }
382    static_init_done = 1;
383
384#  ifdef GEN_TREES_H
385    gen_trees_header();
386#  endif
387#endif /* defined(GEN_TREES_H) || !defined(STDC) */
388}
389
390/* ===========================================================================
391 * Generate the file trees.h describing the static trees.
392 */
393#ifdef GEN_TREES_H
394#  ifndef ZLIB_DEBUG
395#    include <stdio.h>
396#  endif
397
398#  define SEPARATOR(i, last, width) \
399      ((i) == (last)? "\n};\n\n" :    \
400       ((i) % (width) == (width) - 1 ? ",\n" : ", "))
401
402void gen_trees_header(void)
403{
404    FILE *header = fopen("trees.h", "w");
405    int i;
406
407    Assert (header != NULL, "Can't open trees.h");
408    fprintf(header,
409            "/* header created automatically with -DGEN_TREES_H */\n\n");
410
411    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
412    for (i = 0; i < L_CODES+2; i++) {
413        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
414                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
415    }
416
417    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
418    for (i = 0; i < D_CODES; i++) {
419        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
420                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
421    }
422
423    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
424    for (i = 0; i < DIST_CODE_LEN; i++) {
425        fprintf(header, "%2u%s", _dist_code[i],
426                SEPARATOR(i, DIST_CODE_LEN-1, 20));
427    }
428
429    fprintf(header,
430        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
431    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
432        fprintf(header, "%2u%s", _length_code[i],
433                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
434    }
435
436    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
437    for (i = 0; i < LENGTH_CODES; i++) {
438        fprintf(header, "%1u%s", base_length[i],
439                SEPARATOR(i, LENGTH_CODES-1, 20));
440    }
441
442    fprintf(header, "local const int base_dist[D_CODES] = {\n");
443    for (i = 0; i < D_CODES; i++) {
444        fprintf(header, "%5u%s", base_dist[i],
445                SEPARATOR(i, D_CODES-1, 10));
446    }
447
448    fclose(header);
449}
450#endif /* GEN_TREES_H */
451
452/* ===========================================================================
453 * Initialize a new block.
454 */
455local void init_block(deflate_state *s)
456{
457    int n; /* iterates over tree elements */
458
459    /* Initialize the trees. */
460    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
461    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
462    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
463
464    s->dyn_ltree[END_BLOCK].Freq = 1;
465    s->opt_len = s->static_len = 0L;
466    s->sym_next = s->matches = 0;
467}
468
469/* ===========================================================================
470 * Initialize the tree data structures for a new zlib stream.
471 */
472void ZLIB_INTERNAL _tr_init(deflate_state *s) {
473    tr_static_init();
474
475    s->l_desc.dyn_tree = s->dyn_ltree;
476    s->l_desc.stat_desc = &static_l_desc;
477
478    s->d_desc.dyn_tree = s->dyn_dtree;
479    s->d_desc.stat_desc = &static_d_desc;
480
481    s->bl_desc.dyn_tree = s->bl_tree;
482    s->bl_desc.stat_desc = &static_bl_desc;
483
484    s->bi_buf = 0;
485    s->bi_valid = 0;
486#ifdef ZLIB_DEBUG
487    s->compressed_len = 0L;
488    s->bits_sent = 0L;
489#endif
490
491    /* Initialize the first block of the first file: */
492    init_block(s);
493}
494
495#define SMALLEST 1
496/* Index within the heap array of least frequent node in the Huffman tree */
497
498
499/* ===========================================================================
500 * Remove the smallest element from the heap and recreate the heap with
501 * one less element. Updates heap and heap_len.
502 */
503#define pqremove(s, tree, top) \
504{\
505    top = s->heap[SMALLEST]; \
506    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
507    pqdownheap(s, tree, SMALLEST); \
508}
509
510/* ===========================================================================
511 * Compares to subtrees, using the tree depth as tie breaker when
512 * the subtrees have equal frequency. This minimizes the worst case length.
513 */
514#define smaller(tree, n, m, depth) \
515   (tree[n].Freq < tree[m].Freq || \
516   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
517
518/* ===========================================================================
519 * Restore the heap property by moving down the tree starting at node k,
520 * exchanging a node with the smallest of its two sons if necessary, stopping
521 * when the heap property is re-established (each father smaller than its
522 * two sons).
523 */
524local void pqdownheap(deflate_state *s, ct_data *tree, int k)
525{
526    int v = s->heap[k];
527    int j = k << 1;  /* left son of k */
528    while (j <= s->heap_len) {
529        /* Set j to the smallest of the two sons: */
530        if (j < s->heap_len &&
531            smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
532            j++;
533        }
534        /* Exit if v is smaller than both sons */
535        if (smaller(tree, v, s->heap[j], s->depth)) break;
536
537        /* Exchange v with the smallest son */
538        s->heap[k] = s->heap[j];  k = j;
539
540        /* And continue down the tree, setting j to the left son of k */
541        j <<= 1;
542    }
543    s->heap[k] = v;
544}
545
546/* ===========================================================================
547 * Compute the optimal bit lengths for a tree and update the total bit length
548 * for the current block.
549 * IN assertion: the fields freq and dad are set, heap[heap_max] and
550 *    above are the tree nodes sorted by increasing frequency.
551 * OUT assertions: the field len is set to the optimal bit length, the
552 *     array bl_count contains the frequencies for each bit length.
553 *     The length opt_len is updated; static_len is also updated if stree is
554 *     not null.
555 */
556local void gen_bitlen(deflate_state *s, tree_desc *desc)
557{
558    ct_data *tree        = desc->dyn_tree;
559    int max_code         = desc->max_code;
560    const ct_data *stree = desc->stat_desc->static_tree;
561    const intf *extra    = desc->stat_desc->extra_bits;
562    int base             = desc->stat_desc->extra_base;
563    int max_length       = desc->stat_desc->max_length;
564    int h;              /* heap index */
565    int n, m;           /* iterate over the tree elements */
566    int bits;           /* bit length */
567    int xbits;          /* extra bits */
568    ush f;              /* frequency */
569    int overflow = 0;   /* number of elements with bit length too large */
570
571    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
572
573    /* In a first pass, compute the optimal bit lengths (which may
574     * overflow in the case of the bit length tree).
575     */
576    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
577
578    for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
579        n = s->heap[h];
580        bits = tree[tree[n].Dad].Len + 1;
581        if (bits > max_length) bits = max_length, overflow++;
582        tree[n].Len = (ush)bits;
583        /* We overwrite tree[n].Dad which is no longer needed */
584
585        if (n > max_code) continue; /* not a leaf node */
586
587        s->bl_count[bits]++;
588        xbits = 0;
589        if (n >= base) xbits = extra[n - base];
590        f = tree[n].Freq;
591        s->opt_len += (ulg)f * (unsigned)(bits + xbits);
592        if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
593    }
594    if (overflow == 0) return;
595
596    Tracev((stderr,"\nbit length overflow\n"));
597    /* This happens for example on obj2 and pic of the Calgary corpus */
598
599    /* Find the first bit length which could increase: */
600    do {
601        bits = max_length - 1;
602        while (s->bl_count[bits] == 0) bits--;
603        s->bl_count[bits]--;        /* move one leaf down the tree */
604        s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
605        s->bl_count[max_length]--;
606        /* The brother of the overflow item also moves one step up,
607         * but this does not affect bl_count[max_length]
608         */
609        overflow -= 2;
610    } while (overflow > 0);
611
612    /* Now recompute all bit lengths, scanning in increasing frequency.
613     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
614     * lengths instead of fixing only the wrong ones. This idea is taken
615     * from 'ar' written by Haruhiko Okumura.)
616     */
617    for (bits = max_length; bits != 0; bits--) {
618        n = s->bl_count[bits];
619        while (n != 0) {
620            m = s->heap[--h];
621            if (m > max_code) continue;
622            if ((unsigned) tree[m].Len != (unsigned) bits) {
623                Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
624                s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
625                tree[m].Len = (ush)bits;
626            }
627            n--;
628        }
629    }
630}
631
632#ifdef DUMP_BL_TREE
633#  include <stdio.h>
634#endif
635
636/* ===========================================================================
637 * Construct one Huffman tree and assigns the code bit strings and lengths.
638 * Update the total bit length for the current block.
639 * IN assertion: the field freq is set for all tree elements.
640 * OUT assertions: the fields len and code are set to the optimal bit length
641 *     and corresponding code. The length opt_len is updated; static_len is
642 *     also updated if stree is not null. The field max_code is set.
643 */
644local void build_tree(deflate_state *s, tree_desc *desc)
645{
646    ct_data *tree         = desc->dyn_tree;
647    const ct_data *stree  = desc->stat_desc->static_tree;
648    int elems             = desc->stat_desc->elems;
649    int n, m;          /* iterate over heap elements */
650    int max_code = -1; /* largest code with non zero frequency */
651    int node;          /* new node being created */
652
653    /* Construct the initial heap, with least frequent element in
654     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
655     * heap[0] is not used.
656     */
657    s->heap_len = 0, s->heap_max = HEAP_SIZE;
658
659    for (n = 0; n < elems; n++) {
660        if (tree[n].Freq != 0) {
661            s->heap[++(s->heap_len)] = max_code = n;
662            s->depth[n] = 0;
663        } else {
664            tree[n].Len = 0;
665        }
666    }
667
668    /* The pkzip format requires that at least one distance code exists,
669     * and that at least one bit should be sent even if there is only one
670     * possible code. So to avoid special checks later on we force at least
671     * two codes of non zero frequency.
672     */
673    while (s->heap_len < 2) {
674        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
675        tree[node].Freq = 1;
676        s->depth[node] = 0;
677        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
678        /* node is 0 or 1 so it does not have extra bits */
679    }
680    desc->max_code = max_code;
681
682    /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
683     * establish sub-heaps of increasing lengths:
684     */
685    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
686
687    /* Construct the Huffman tree by repeatedly combining the least two
688     * frequent nodes.
689     */
690    node = elems;              /* next internal node of the tree */
691    do {
692        pqremove(s, tree, n);  /* n = node of least frequency */
693        m = s->heap[SMALLEST]; /* m = node of next least frequency */
694
695        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
696        s->heap[--(s->heap_max)] = m;
697
698        /* Create a new node father of n and m */
699        tree[node].Freq = tree[n].Freq + tree[m].Freq;
700        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
701                                s->depth[n] : s->depth[m]) + 1);
702        tree[n].Dad = tree[m].Dad = (ush)node;
703#ifdef DUMP_BL_TREE
704        if (tree == s->bl_tree) {
705            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
706                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
707        }
708#endif
709        /* and insert the new node in the heap */
710        s->heap[SMALLEST] = node++;
711        pqdownheap(s, tree, SMALLEST);
712
713    } while (s->heap_len >= 2);
714
715    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
716
717    /* At this point, the fields freq and dad are set. We can now
718     * generate the bit lengths.
719     */
720    gen_bitlen(s, (tree_desc *)desc);
721
722    /* The field len is now set, we can generate the bit codes */
723    gen_codes ((ct_data *)tree, max_code, s->bl_count);
724}
725
726/* ===========================================================================
727 * Scan a literal or distance tree to determine the frequencies of the codes
728 * in the bit length tree.
729 */
730local void scan_tree(deflate_state *s, ct_data *tree, int max_code)
731{
732    int n;                     /* iterates over all tree elements */
733    int prevlen = -1;          /* last emitted length */
734    int curlen;                /* length of current code */
735    int nextlen = tree[0].Len; /* length of next code */
736    int count = 0;             /* repeat count of the current code */
737    int max_count = 7;         /* max repeat count */
738    int min_count = 4;         /* min repeat count */
739
740    if (nextlen == 0) max_count = 138, min_count = 3;
741    tree[max_code + 1].Len = (ush)0xffff; /* guard */
742
743    for (n = 0; n <= max_code; n++) {
744        curlen = nextlen; nextlen = tree[n + 1].Len;
745        if (++count < max_count && curlen == nextlen) {
746            continue;
747        } else if (count < min_count) {
748            s->bl_tree[curlen].Freq += count;
749        } else if (curlen != 0) {
750            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
751            s->bl_tree[REP_3_6].Freq++;
752        } else if (count <= 10) {
753            s->bl_tree[REPZ_3_10].Freq++;
754        } else {
755            s->bl_tree[REPZ_11_138].Freq++;
756        }
757        count = 0; prevlen = curlen;
758        if (nextlen == 0) {
759            max_count = 138, min_count = 3;
760        } else if (curlen == nextlen) {
761            max_count = 6, min_count = 3;
762        } else {
763            max_count = 7, min_count = 4;
764        }
765    }
766}
767
768/* ===========================================================================
769 * Send a literal or distance tree in compressed form, using the codes in
770 * bl_tree.
771 */
772local void send_tree(deflate_state *s, ct_data *tree, int max_code)
773{
774    int n;                     /* iterates over all tree elements */
775    int prevlen = -1;          /* last emitted length */
776    int curlen;                /* length of current code */
777    int nextlen = tree[0].Len; /* length of next code */
778    int count = 0;             /* repeat count of the current code */
779    int max_count = 7;         /* max repeat count */
780    int min_count = 4;         /* min repeat count */
781
782    /* tree[max_code + 1].Len = -1; */  /* guard already set */
783    if (nextlen == 0) max_count = 138, min_count = 3;
784
785    for (n = 0; n <= max_code; n++) {
786        curlen = nextlen; nextlen = tree[n + 1].Len;
787        if (++count < max_count && curlen == nextlen) {
788            continue;
789        } else if (count < min_count) {
790            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
791
792        } else if (curlen != 0) {
793            if (curlen != prevlen) {
794                send_code(s, curlen, s->bl_tree); count--;
795            }
796            Assert(count >= 3 && count <= 6, " 3_6?");
797            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
798
799        } else if (count <= 10) {
800            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
801
802        } else {
803            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
804        }
805        count = 0; prevlen = curlen;
806        if (nextlen == 0) {
807            max_count = 138, min_count = 3;
808        } else if (curlen == nextlen) {
809            max_count = 6, min_count = 3;
810        } else {
811            max_count = 7, min_count = 4;
812        }
813    }
814}
815
816/* ===========================================================================
817 * Construct the Huffman tree for the bit lengths and return the index in
818 * bl_order of the last bit length code to send.
819 */
820local int build_bl_tree(deflate_state *s)
821{
822    int max_blindex;  /* index of last bit length code of non zero freq */
823
824    /* Determine the bit length frequencies for literal and distance trees */
825    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
826    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
827
828    /* Build the bit length tree: */
829    build_tree(s, (tree_desc *)(&(s->bl_desc)));
830    /* opt_len now includes the length of the tree representations, except the
831     * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
832     */
833
834    /* Determine the number of bit length codes to send. The pkzip format
835     * requires that at least 4 bit length codes be sent. (appnote.txt says
836     * 3 but the actual value used is 4.)
837     */
838    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
839        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
840    }
841    /* Update opt_len to include the bit length tree and counts */
842    s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
843    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
844            s->opt_len, s->static_len));
845
846    return max_blindex;
847}
848
849/* ===========================================================================
850 * Send the header for a block using dynamic Huffman trees: the counts, the
851 * lengths of the bit length codes, the literal tree and the distance tree.
852 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
853 */
854local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
855                          int blcodes)
856{
857    int rank;                    /* index in bl_order */
858
859    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
860    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
861            "too many codes");
862    Tracev((stderr, "\nbl counts: "));
863    send_bits(s, lcodes - 257, 5);  /* not +255 as stated in appnote.txt */
864    send_bits(s, dcodes - 1,   5);
865    send_bits(s, blcodes - 4,  4);  /* not -3 as stated in appnote.txt */
866    for (rank = 0; rank < blcodes; rank++) {
867        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
868        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
869    }
870    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
871
872    send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1);  /* literal tree */
873    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
874
875    send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1);  /* distance tree */
876    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
877}
878
879/* ===========================================================================
880 * Send a stored block
881 */
882void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
883                                    ulg stored_len, int last) {
884    send_bits(s, (STORED_BLOCK<<1) + last, 3);  /* send block type */
885    bi_windup(s);        /* align on byte boundary */
886    put_short(s, (ush)stored_len);
887    put_short(s, (ush)~stored_len);
888    if (stored_len)
889        zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
890    s->pending += stored_len;
891#ifdef ZLIB_DEBUG
892    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
893    s->compressed_len += (stored_len + 4) << 3;
894    s->bits_sent += 2*16;
895    s->bits_sent += stored_len << 3;
896#endif
897}
898
899/* ===========================================================================
900 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
901 */
902void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
903    bi_flush(s);
904}
905
906/* ===========================================================================
907 * Send one empty static block to give enough lookahead for inflate.
908 * This takes 10 bits, of which 7 may remain in the bit buffer.
909 */
910void ZLIB_INTERNAL _tr_align(deflate_state *s) {
911    send_bits(s, STATIC_TREES<<1, 3);
912    send_code(s, END_BLOCK, static_ltree);
913#ifdef ZLIB_DEBUG
914    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
915#endif
916    bi_flush(s);
917}
918
919/* ===========================================================================
920 * Send the block data compressed using the given Huffman trees
921 */
922local void compress_block(deflate_state *s, const ct_data *ltree,
923                          const ct_data *dtree)
924{
925    unsigned dist;      /* distance of matched string */
926    int lc;             /* match length or unmatched char (if dist == 0) */
927    unsigned sx = 0;    /* running index in symbol buffers */
928    unsigned code;      /* the code to send */
929    int extra;          /* number of extra bits to send */
930
931    if (s->sym_next != 0) do {
932#ifdef LIT_MEM
933        dist = s->d_buf[sx];
934        lc = s->l_buf[sx++];
935#else
936        dist = s->sym_buf[sx++] & 0xff;
937        dist += (unsigned)(s->sym_buf[sx++] & 0xff) << INDEX_8;
938        lc = s->sym_buf[sx++];
939#endif
940        if (dist == 0) {
941            send_code(s, lc, ltree); /* send a literal byte */
942            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
943        } else {
944            /* Here, lc is the match length - MIN_MATCH */
945            code = _length_code[lc];
946            send_code(s, code + LITERALS + 1, ltree);   /* send length code */
947            extra = extra_lbits[code];
948            if (extra != 0) {
949                lc -= base_length[code];
950                send_bits(s, lc, extra);       /* send the extra length bits */
951            }
952            dist--; /* dist is now the match distance - 1 */
953            code = d_code(dist);
954            Assert (code < D_CODES, "bad d_code");
955
956            send_code(s, code, dtree);       /* send the distance code */
957            extra = extra_dbits[code];
958            if (extra != 0) {
959                dist -= (unsigned)base_dist[code];
960                send_bits(s, dist, extra);   /* send the extra distance bits */
961            }
962        } /* literal or match pair ? */
963
964        /* Check for no overlay of pending_buf on needed symbols */
965#ifdef LIT_MEM
966        Assert(s->pending < INDEX_2 * (s->lit_bufsize + sx), "pendingBuf overflow");
967#else
968        Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
969#endif
970
971    } while (sx < s->sym_next);
972
973    send_code(s, END_BLOCK, ltree);
974}
975
976/* ===========================================================================
977 * Check if the data type is TEXT or BINARY, using the following algorithm:
978 * - TEXT if the two conditions below are satisfied:
979 *    a) There are no non-portable control characters belonging to the
980 *       "block list" (0..6, 14..25, 28..31).
981 *    b) There is at least one printable character belonging to the
982 *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
983 * - BINARY otherwise.
984 * - The following partially-portable control characters form a
985 *   "gray list" that is ignored in this detection algorithm:
986 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
987 * IN assertion: the fields Freq of dyn_ltree are set.
988 */
989local int detect_data_type(deflate_state *s)
990{
991    /* block_mask is the bit mask of block-listed bytes
992     * set bits 0..6, 14..25, and 28..31
993     * 0xf3ffc07f = binary 11110011111111111100000001111111
994     */
995    unsigned long block_mask = 0xf3ffc07fUL;
996    int n;
997
998    /* Check for non-textual ("block-listed") bytes. */
999    for (n = 0; n <= INDEX_31; n++, block_mask >>= 1)
1000        if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1001            return Z_BINARY;
1002
1003    /* Check for textual ("allow-listed") bytes. */
1004    if (s->dyn_ltree[INDEX_9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1005            || s->dyn_ltree[INDEX_13].Freq != 0)
1006        return Z_TEXT;
1007    for (n = INDEX_32; n < LITERALS; n++)
1008        if (s->dyn_ltree[n].Freq != 0)
1009            return Z_TEXT;
1010
1011    /* There are no "block-listed" or "allow-listed" bytes:
1012     * this stream either is empty or has tolerated ("gray-listed") bytes only.
1013     */
1014    return Z_BINARY;
1015}
1016
1017/* ===========================================================================
1018 * Determine the best encoding for the current block: dynamic trees, static
1019 * trees or store, and write out the encoded block.
1020 */
1021void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
1022                                   ulg stored_len, int last) {
1023    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1024    int max_blindex = 0;  /* index of last bit length code of non zero freq */
1025
1026    /* Build the Huffman trees unless a stored block is forced */
1027    if (s->level > 0) {
1028
1029        /* Check if the file is binary or text */
1030        if (s->strm->data_type == Z_UNKNOWN)
1031            s->strm->data_type = detect_data_type(s);
1032
1033        /* Construct the literal and distance trees */
1034        build_tree(s, (tree_desc *)(&(s->l_desc)));
1035        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1036                s->static_len));
1037
1038        build_tree(s, (tree_desc *)(&(s->d_desc)));
1039        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1040                s->static_len));
1041        /* At this point, opt_len and static_len are the total bit lengths of
1042         * the compressed block data, excluding the tree representations.
1043         */
1044
1045        /* Build the bit length tree for the above two trees, and get the index
1046         * in bl_order of the last bit length code to send.
1047         */
1048        max_blindex = build_bl_tree(s);
1049
1050        /* Determine the best encoding. Compute the block lengths in bytes. */
1051        opt_lenb = (s->opt_len + 3 + 7) >> 3;
1052        static_lenb = (s->static_len + 3 + 7) >> 3;
1053
1054        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1055                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1056                s->sym_next / 3));
1057
1058#ifndef FORCE_STATIC
1059        if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
1060#endif
1061            opt_lenb = static_lenb;
1062
1063    } else {
1064        Assert(buf != (char*)0, "lost buf");
1065        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1066    }
1067
1068#ifdef FORCE_STORED
1069    if (buf != (char*)0) { /* force stored block */
1070#else
1071    if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
1072                       /* 4: two words for the lengths */
1073#endif
1074        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1075         * Otherwise we can't have processed more than WSIZE input bytes since
1076         * the last block flush, because compression would have been
1077         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1078         * transform a block into a stored block.
1079         */
1080        _tr_stored_block(s, buf, stored_len, last);
1081
1082    } else if (static_lenb == opt_lenb) {
1083        send_bits(s, (STATIC_TREES<<1) + last, 3);
1084        compress_block(s, (const ct_data *)static_ltree,
1085                       (const ct_data *)static_dtree);
1086#ifdef ZLIB_DEBUG
1087        s->compressed_len += 3 + s->static_len;
1088#endif
1089    } else {
1090        send_bits(s, (DYN_TREES<<1) + last, 3);
1091        send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
1092                       max_blindex + 1);
1093        compress_block(s, (const ct_data *)s->dyn_ltree,
1094                       (const ct_data *)s->dyn_dtree);
1095#ifdef ZLIB_DEBUG
1096        s->compressed_len += 3 + s->opt_len;
1097#endif
1098    }
1099    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1100    /* The above check is made mod 2^32, for files larger than 512 MB
1101     * and uLong implemented on 32 bits.
1102     */
1103    init_block(s);
1104
1105    if (last) {
1106        bi_windup(s);
1107#ifdef ZLIB_DEBUG
1108        s->compressed_len += 7;  /* align on byte boundary */
1109#endif
1110    }
1111    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1112           s->compressed_len - 7*last));
1113}
1114
1115/* ===========================================================================
1116 * Save the match info and tally the frequency counts. Return true if
1117 * the current block must be flushed.
1118 */
1119int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
1120#ifdef LIT_MEM
1121    s->d_buf[s->sym_next] = (ush)dist;
1122    s->l_buf[s->sym_next++] = (uch)lc;
1123#else
1124    s->sym_buf[s->sym_next++] = (uch)dist;
1125    s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1126    s->sym_buf[s->sym_next++] = (uch)lc;
1127#endif
1128    if (dist == 0) {
1129        /* lc is the unmatched char */
1130        s->dyn_ltree[lc].Freq++;
1131    } else {
1132        s->matches++;
1133        /* Here, lc is the match length - MIN_MATCH */
1134        dist--;             /* dist = match distance - 1 */
1135        Assert((ush)dist < (ush)MAX_DIST(s) &&
1136               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1137               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1138
1139        s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1140        s->dyn_dtree[d_code(dist)].Freq++;
1141    }
1142    return (s->sym_next == s->sym_end);
1143}
1144