1 /* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2024 Jean-loup Gailly
3 * detect_data_type() function provided freely by Cosmin Truta, 2006
4 * For conditions of distribution and use, see copyright notice in zlib.h
5 */
6
7 /*
8 * ALGORITHM
9 *
10 * The "deflation" process uses several Huffman trees. The more
11 * common source values are represented by shorter bit sequences.
12 *
13 * Each code tree is stored in a compressed form which is itself
14 * a Huffman encoding of the lengths of all the code strings (in
15 * ascending order by source values). The actual code strings are
16 * reconstructed from the lengths in the inflate process, as described
17 * in the deflate specification.
18 *
19 * REFERENCES
20 *
21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23 *
24 * Storer, James A.
25 * Data Compression: Methods and Theory, pp. 49-50.
26 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
27 *
28 * Sedgewick, R.
29 * Algorithms, p290.
30 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
31 */
32
33 /* @(#) $Id$ */
34
35 /* #define GEN_TREES_H */
36
37 #include "deflate.h"
38
39 #ifdef ZLIB_DEBUG
40 # include <ctype.h>
41 #endif
42
43 /* ===========================================================================
44 * Constants
45 */
46
47 #define MAX_BL_BITS 7
48 /* Bit length codes must not exceed MAX_BL_BITS bits */
49
50 #define END_BLOCK 256
51 /* end of block literal code */
52
53 #define REP_3_6 16
54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
55
56 #define REPZ_3_10 17
57 /* repeat a zero length 3-10 times (3 bits of repeat count) */
58
59 #define REPZ_11_138 18
60 /* repeat a zero length 11-138 times (7 bits of repeat count) */
61
62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64
65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67
68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70
71 local const uch bl_order[BL_CODES]
72 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73 /* The lengths of the bit length codes are sent in order of decreasing
74 * probability, to avoid transmitting the lengths for unused bit length codes.
75 */
76
77 /* ===========================================================================
78 * Local data. These are initialized only once.
79 */
80
81 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
82
83 #if defined(GEN_TREES_H) || !defined(STDC)
84 /* non ANSI compilers may not accept trees.h */
85
86 local ct_data static_ltree[L_CODES+2];
87 /* The static literal tree. Since the bit lengths are imposed, there is no
88 * need for the L_CODES extra codes used during heap construction. However
89 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90 * below).
91 */
92
93 local ct_data static_dtree[D_CODES];
94 /* The static distance tree. (Actually a trivial tree since all codes use
95 * 5 bits.)
96 */
97
98 uch _dist_code[DIST_CODE_LEN];
99 /* Distance codes. The first 256 values correspond to the distances
100 * 3 .. 258, the last 256 values correspond to the top 8 bits of
101 * the 15 bit distances.
102 */
103
104 uch _length_code[MAX_MATCH-MIN_MATCH+1];
105 /* length code for each normalized match length (0 == MIN_MATCH) */
106
107 local int base_length[LENGTH_CODES];
108 /* First normalized length for each code (0 = MIN_MATCH) */
109
110 local int base_dist[D_CODES];
111 /* First normalized distance for each code (0 = distance of 1) */
112
113 #else
114 # include "trees.h"
115 #endif /* GEN_TREES_H */
116
117 struct static_tree_desc_s {
118 const ct_data *static_tree; /* static tree or NULL */
119 const intf *extra_bits; /* extra bits for each code or NULL */
120 int extra_base; /* base index for extra_bits */
121 int elems; /* max number of elements in the tree */
122 int max_length; /* max bit length for the codes */
123 };
124
125 #ifdef NO_INIT_GLOBAL_POINTERS
126 # define TCONST
127 #else
128 # define TCONST const
129 #endif
130
131 local TCONST static_tree_desc static_l_desc =
132 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
133
134 local TCONST static_tree_desc static_d_desc =
135 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
136
137 local TCONST static_tree_desc static_bl_desc =
138 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
139
140 /* ===========================================================================
141 * Output a short LSB first on the stream.
142 * IN assertion: there is enough room in pendingBuf.
143 */
144 #define put_short(s, w) { \
145 put_byte(s, (uch)((w) & 0xff)); \
146 put_byte(s, (uch)((ush)(w) >> 8)); \
147 }
148
149 #define INDEX_2 2
150 #define INDEX_7 7
151 #define INDEX_8 8
152 #define INDEX_9 9
153 #define INDEX_13 13
154 #define INDEX_16 16
155 #define INDEX_31 31
156 #define INDEX_32 32
157
158 /* ===========================================================================
159 * Reverse the first len bits of a code, using straightforward code (a faster
160 * method would use a table)
161 * IN assertion: 1 <= len <= 15
162 */
bi_reverse(unsigned code, int len)163 local unsigned bi_reverse(unsigned code, int len)
164 {
165 register unsigned res = 0;
166 do {
167 res |= code & 1;
168 code >>= 1, res <<= 1;
169 } while (--len > 0);
170 return res >> 1;
171 }
172
173 /* ===========================================================================
174 * Flush the bit buffer, keeping at most 7 bits in it.
175 */
bi_flush(deflate_state *s)176 local void bi_flush(deflate_state *s)
177 {
178 if (s->bi_valid == INDEX_16) {
179 put_short(s, s->bi_buf);
180 s->bi_buf = 0;
181 s->bi_valid = 0;
182 } else if (s->bi_valid >= INDEX_8) {
183 put_byte(s, (Byte)s->bi_buf);
184 s->bi_buf >>= INDEX_8;
185 s->bi_valid -= INDEX_8;
186 }
187 }
188
189 /* ===========================================================================
190 * Flush the bit buffer and align the output on a byte boundary
191 */
bi_windup(deflate_state *s)192 local void bi_windup(deflate_state *s)
193 {
194 if (s->bi_valid > INDEX_8) {
195 put_short(s, s->bi_buf);
196 } else if (s->bi_valid > 0) {
197 put_byte(s, (Byte)s->bi_buf);
198 }
199 s->bi_buf = 0;
200 s->bi_valid = 0;
201 #ifdef ZLIB_DEBUG
202 s->bits_sent = (s->bits_sent + INDEX_7) & ~INDEX_7;
203 #endif
204 }
205
206 /* ===========================================================================
207 * Generate the codes for a given tree and bit counts (which need not be
208 * optimal).
209 * IN assertion: the array bl_count contains the bit length statistics for
210 * the given tree and the field len is set for all tree elements.
211 * OUT assertion: the field code is set for all tree elements of non
212 * zero code length.
213 */
gen_codes(ct_data *tree, int max_code, ushf *bl_count)214 local void gen_codes(ct_data *tree, int max_code, ushf *bl_count)
215 {
216 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
217 unsigned code = 0; /* running code value */
218 int bits; /* bit index */
219 int n; /* code index */
220
221 /* The distribution counts are first used to generate the code values
222 * without bit reversal.
223 */
224 for (bits = 1; bits <= MAX_BITS; bits++) {
225 code = (code + bl_count[bits - 1]) << 1;
226 next_code[bits] = (ush)code;
227 }
228 /* Check that the bit counts in bl_count are consistent. The last code
229 * must be all ones.
230 */
231 Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
232 "inconsistent bit counts");
233 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
234
235 for (n = 0; n <= max_code; n++) {
236 int len = tree[n].Len;
237 if (len == 0) continue;
238 /* Now reverse the bits */
239 tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
240
241 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
242 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
243 }
244 }
245
246 #ifdef GEN_TREES_H
247 local void gen_trees_header(void);
248 #endif
249
250 #ifndef ZLIB_DEBUG
251 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
252 /* Send a code of the given tree. c and tree must not have side effects */
253
254 #else /* !ZLIB_DEBUG */
255 # define send_code(s, c, tree) \
256 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
257 send_bits(s, tree[c].Code, tree[c].Len); }
258 #endif
259
260 /* ===========================================================================
261 * Send a value on a given number of bits.
262 * IN assertion: length <= 16 and value fits in length bits.
263 */
264 #ifdef ZLIB_DEBUG
send_bits(deflate_state *s, int value, int length)265 local void send_bits(deflate_state *s, int value, int length)
266 {
267 Tracevv((stderr," l %2d v %4x ", length, value));
268 Assert(length > 0 && length <= 15, "invalid length");
269 s->bits_sent += (ulg)length;
270
271 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
272 * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
273 * unused bits in value.
274 */
275 if (s->bi_valid > (int)Buf_size - length) {
276 s->bi_buf |= (ush)value << s->bi_valid;
277 put_short(s, s->bi_buf);
278 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
279 s->bi_valid += length - Buf_size;
280 } else {
281 s->bi_buf |= (ush)value << s->bi_valid;
282 s->bi_valid += length;
283 }
284 }
285 #else /* !ZLIB_DEBUG */
286
287 #define send_bits(s, value, length) \
288 { int len = length;\
289 if (s->bi_valid > (int)Buf_size - len) {\
290 int val = (int)value;\
291 s->bi_buf |= (ush)val << s->bi_valid;\
292 put_short(s, s->bi_buf);\
293 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
294 s->bi_valid += len - Buf_size;\
295 } else {\
296 s->bi_buf |= (ush)(value) << s->bi_valid;\
297 s->bi_valid += len;\
298 }\
299 }
300 #endif /* ZLIB_DEBUG */
301
302
303 /* the arguments must not have side effects */
304
305 /* ===========================================================================
306 * Initialize the various 'constant' tables.
307 */
tr_static_init(void)308 local void tr_static_init(void)
309 {
310 #if defined(GEN_TREES_H) || !defined(STDC)
311 static int static_init_done = 0;
312 int n; /* iterates over tree elements */
313 int bits; /* bit counter */
314 int length; /* length value */
315 int code; /* code value */
316 int dist; /* distance index */
317 ush bl_count[MAX_BITS+1];
318 /* number of codes at each bit length for an optimal tree */
319
320 if (static_init_done) return;
321
322 /* For some embedded targets, global variables are not initialized: */
323 #ifdef NO_INIT_GLOBAL_POINTERS
324 static_l_desc.static_tree = static_ltree;
325 static_l_desc.extra_bits = extra_lbits;
326 static_d_desc.static_tree = static_dtree;
327 static_d_desc.extra_bits = extra_dbits;
328 static_bl_desc.extra_bits = extra_blbits;
329 #endif
330
331 /* Initialize the mapping length (0..255) -> length code (0..28) */
332 length = 0;
333 for (code = 0; code < LENGTH_CODES-1; code++) {
334 base_length[code] = length;
335 for (n = 0; n < (1 << extra_lbits[code]); n++) {
336 _length_code[length++] = (uch)code;
337 }
338 }
339 Assert (length == 256, "tr_static_init: length != 256");
340 /* Note that the length 255 (match length 258) can be represented
341 * in two different ways: code 284 + 5 bits or code 285, so we
342 * overwrite length_code[255] to use the best encoding:
343 */
344 _length_code[length - 1] = (uch)code;
345
346 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
347 dist = 0;
348 for (code = 0 ; code < 16; code++) {
349 base_dist[code] = dist;
350 for (n = 0; n < (1 << extra_dbits[code]); n++) {
351 _dist_code[dist++] = (uch)code;
352 }
353 }
354 Assert (dist == 256, "tr_static_init: dist != 256");
355 dist >>= 7; /* from now on, all distances are divided by 128 */
356 for ( ; code < D_CODES; code++) {
357 base_dist[code] = dist << 7;
358 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
359 _dist_code[256 + dist++] = (uch)code;
360 }
361 }
362 Assert (dist == 256, "tr_static_init: 256 + dist != 512");
363
364 /* Construct the codes of the static literal tree */
365 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
366 n = 0;
367 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
368 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
369 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
370 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
371 /* Codes 286 and 287 do not exist, but we must include them in the
372 * tree construction to get a canonical Huffman tree (longest code
373 * all ones)
374 */
375 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
376
377 /* The static distance tree is trivial: */
378 for (n = 0; n < D_CODES; n++) {
379 static_dtree[n].Len = 5;
380 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
381 }
382 static_init_done = 1;
383
384 # ifdef GEN_TREES_H
385 gen_trees_header();
386 # endif
387 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
388 }
389
390 /* ===========================================================================
391 * Generate the file trees.h describing the static trees.
392 */
393 #ifdef GEN_TREES_H
394 # ifndef ZLIB_DEBUG
395 # include <stdio.h>
396 # endif
397
398 # define SEPARATOR(i, last, width) \
399 ((i) == (last)? "\n};\n\n" : \
400 ((i) % (width) == (width) - 1 ? ",\n" : ", "))
401
gen_trees_header(void)402 void gen_trees_header(void)
403 {
404 FILE *header = fopen("trees.h", "w");
405 int i;
406
407 Assert (header != NULL, "Can't open trees.h");
408 fprintf(header,
409 "/* header created automatically with -DGEN_TREES_H */\n\n");
410
411 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
412 for (i = 0; i < L_CODES+2; i++) {
413 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
414 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
415 }
416
417 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
418 for (i = 0; i < D_CODES; i++) {
419 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
420 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
421 }
422
423 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
424 for (i = 0; i < DIST_CODE_LEN; i++) {
425 fprintf(header, "%2u%s", _dist_code[i],
426 SEPARATOR(i, DIST_CODE_LEN-1, 20));
427 }
428
429 fprintf(header,
430 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
431 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
432 fprintf(header, "%2u%s", _length_code[i],
433 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
434 }
435
436 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
437 for (i = 0; i < LENGTH_CODES; i++) {
438 fprintf(header, "%1u%s", base_length[i],
439 SEPARATOR(i, LENGTH_CODES-1, 20));
440 }
441
442 fprintf(header, "local const int base_dist[D_CODES] = {\n");
443 for (i = 0; i < D_CODES; i++) {
444 fprintf(header, "%5u%s", base_dist[i],
445 SEPARATOR(i, D_CODES-1, 10));
446 }
447
448 fclose(header);
449 }
450 #endif /* GEN_TREES_H */
451
452 /* ===========================================================================
453 * Initialize a new block.
454 */
init_block(deflate_state *s)455 local void init_block(deflate_state *s)
456 {
457 int n; /* iterates over tree elements */
458
459 /* Initialize the trees. */
460 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
461 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
462 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
463
464 s->dyn_ltree[END_BLOCK].Freq = 1;
465 s->opt_len = s->static_len = 0L;
466 s->sym_next = s->matches = 0;
467 }
468
469 /* ===========================================================================
470 * Initialize the tree data structures for a new zlib stream.
471 */
_tr_init(deflate_state *s)472 void ZLIB_INTERNAL _tr_init(deflate_state *s) {
473 tr_static_init();
474
475 s->l_desc.dyn_tree = s->dyn_ltree;
476 s->l_desc.stat_desc = &static_l_desc;
477
478 s->d_desc.dyn_tree = s->dyn_dtree;
479 s->d_desc.stat_desc = &static_d_desc;
480
481 s->bl_desc.dyn_tree = s->bl_tree;
482 s->bl_desc.stat_desc = &static_bl_desc;
483
484 s->bi_buf = 0;
485 s->bi_valid = 0;
486 #ifdef ZLIB_DEBUG
487 s->compressed_len = 0L;
488 s->bits_sent = 0L;
489 #endif
490
491 /* Initialize the first block of the first file: */
492 init_block(s);
493 }
494
495 #define SMALLEST 1
496 /* Index within the heap array of least frequent node in the Huffman tree */
497
498
499 /* ===========================================================================
500 * Remove the smallest element from the heap and recreate the heap with
501 * one less element. Updates heap and heap_len.
502 */
503 #define pqremove(s, tree, top) \
504 {\
505 top = s->heap[SMALLEST]; \
506 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
507 pqdownheap(s, tree, SMALLEST); \
508 }
509
510 /* ===========================================================================
511 * Compares to subtrees, using the tree depth as tie breaker when
512 * the subtrees have equal frequency. This minimizes the worst case length.
513 */
514 #define smaller(tree, n, m, depth) \
515 (tree[n].Freq < tree[m].Freq || \
516 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
517
518 /* ===========================================================================
519 * Restore the heap property by moving down the tree starting at node k,
520 * exchanging a node with the smallest of its two sons if necessary, stopping
521 * when the heap property is re-established (each father smaller than its
522 * two sons).
523 */
pqdownheap(deflate_state *s, ct_data *tree, int k)524 local void pqdownheap(deflate_state *s, ct_data *tree, int k)
525 {
526 int v = s->heap[k];
527 int j = k << 1; /* left son of k */
528 while (j <= s->heap_len) {
529 /* Set j to the smallest of the two sons: */
530 if (j < s->heap_len &&
531 smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
532 j++;
533 }
534 /* Exit if v is smaller than both sons */
535 if (smaller(tree, v, s->heap[j], s->depth)) break;
536
537 /* Exchange v with the smallest son */
538 s->heap[k] = s->heap[j]; k = j;
539
540 /* And continue down the tree, setting j to the left son of k */
541 j <<= 1;
542 }
543 s->heap[k] = v;
544 }
545
546 /* ===========================================================================
547 * Compute the optimal bit lengths for a tree and update the total bit length
548 * for the current block.
549 * IN assertion: the fields freq and dad are set, heap[heap_max] and
550 * above are the tree nodes sorted by increasing frequency.
551 * OUT assertions: the field len is set to the optimal bit length, the
552 * array bl_count contains the frequencies for each bit length.
553 * The length opt_len is updated; static_len is also updated if stree is
554 * not null.
555 */
gen_bitlen(deflate_state *s, tree_desc *desc)556 local void gen_bitlen(deflate_state *s, tree_desc *desc)
557 {
558 ct_data *tree = desc->dyn_tree;
559 int max_code = desc->max_code;
560 const ct_data *stree = desc->stat_desc->static_tree;
561 const intf *extra = desc->stat_desc->extra_bits;
562 int base = desc->stat_desc->extra_base;
563 int max_length = desc->stat_desc->max_length;
564 int h; /* heap index */
565 int n, m; /* iterate over the tree elements */
566 int bits; /* bit length */
567 int xbits; /* extra bits */
568 ush f; /* frequency */
569 int overflow = 0; /* number of elements with bit length too large */
570
571 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
572
573 /* In a first pass, compute the optimal bit lengths (which may
574 * overflow in the case of the bit length tree).
575 */
576 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
577
578 for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
579 n = s->heap[h];
580 bits = tree[tree[n].Dad].Len + 1;
581 if (bits > max_length) bits = max_length, overflow++;
582 tree[n].Len = (ush)bits;
583 /* We overwrite tree[n].Dad which is no longer needed */
584
585 if (n > max_code) continue; /* not a leaf node */
586
587 s->bl_count[bits]++;
588 xbits = 0;
589 if (n >= base) xbits = extra[n - base];
590 f = tree[n].Freq;
591 s->opt_len += (ulg)f * (unsigned)(bits + xbits);
592 if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
593 }
594 if (overflow == 0) return;
595
596 Tracev((stderr,"\nbit length overflow\n"));
597 /* This happens for example on obj2 and pic of the Calgary corpus */
598
599 /* Find the first bit length which could increase: */
600 do {
601 bits = max_length - 1;
602 while (s->bl_count[bits] == 0) bits--;
603 s->bl_count[bits]--; /* move one leaf down the tree */
604 s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
605 s->bl_count[max_length]--;
606 /* The brother of the overflow item also moves one step up,
607 * but this does not affect bl_count[max_length]
608 */
609 overflow -= 2;
610 } while (overflow > 0);
611
612 /* Now recompute all bit lengths, scanning in increasing frequency.
613 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
614 * lengths instead of fixing only the wrong ones. This idea is taken
615 * from 'ar' written by Haruhiko Okumura.)
616 */
617 for (bits = max_length; bits != 0; bits--) {
618 n = s->bl_count[bits];
619 while (n != 0) {
620 m = s->heap[--h];
621 if (m > max_code) continue;
622 if ((unsigned) tree[m].Len != (unsigned) bits) {
623 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
624 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
625 tree[m].Len = (ush)bits;
626 }
627 n--;
628 }
629 }
630 }
631
632 #ifdef DUMP_BL_TREE
633 # include <stdio.h>
634 #endif
635
636 /* ===========================================================================
637 * Construct one Huffman tree and assigns the code bit strings and lengths.
638 * Update the total bit length for the current block.
639 * IN assertion: the field freq is set for all tree elements.
640 * OUT assertions: the fields len and code are set to the optimal bit length
641 * and corresponding code. The length opt_len is updated; static_len is
642 * also updated if stree is not null. The field max_code is set.
643 */
build_tree(deflate_state *s, tree_desc *desc)644 local void build_tree(deflate_state *s, tree_desc *desc)
645 {
646 ct_data *tree = desc->dyn_tree;
647 const ct_data *stree = desc->stat_desc->static_tree;
648 int elems = desc->stat_desc->elems;
649 int n, m; /* iterate over heap elements */
650 int max_code = -1; /* largest code with non zero frequency */
651 int node; /* new node being created */
652
653 /* Construct the initial heap, with least frequent element in
654 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
655 * heap[0] is not used.
656 */
657 s->heap_len = 0, s->heap_max = HEAP_SIZE;
658
659 for (n = 0; n < elems; n++) {
660 if (tree[n].Freq != 0) {
661 s->heap[++(s->heap_len)] = max_code = n;
662 s->depth[n] = 0;
663 } else {
664 tree[n].Len = 0;
665 }
666 }
667
668 /* The pkzip format requires that at least one distance code exists,
669 * and that at least one bit should be sent even if there is only one
670 * possible code. So to avoid special checks later on we force at least
671 * two codes of non zero frequency.
672 */
673 while (s->heap_len < 2) {
674 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
675 tree[node].Freq = 1;
676 s->depth[node] = 0;
677 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
678 /* node is 0 or 1 so it does not have extra bits */
679 }
680 desc->max_code = max_code;
681
682 /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
683 * establish sub-heaps of increasing lengths:
684 */
685 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
686
687 /* Construct the Huffman tree by repeatedly combining the least two
688 * frequent nodes.
689 */
690 node = elems; /* next internal node of the tree */
691 do {
692 pqremove(s, tree, n); /* n = node of least frequency */
693 m = s->heap[SMALLEST]; /* m = node of next least frequency */
694
695 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
696 s->heap[--(s->heap_max)] = m;
697
698 /* Create a new node father of n and m */
699 tree[node].Freq = tree[n].Freq + tree[m].Freq;
700 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
701 s->depth[n] : s->depth[m]) + 1);
702 tree[n].Dad = tree[m].Dad = (ush)node;
703 #ifdef DUMP_BL_TREE
704 if (tree == s->bl_tree) {
705 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
706 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
707 }
708 #endif
709 /* and insert the new node in the heap */
710 s->heap[SMALLEST] = node++;
711 pqdownheap(s, tree, SMALLEST);
712
713 } while (s->heap_len >= 2);
714
715 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
716
717 /* At this point, the fields freq and dad are set. We can now
718 * generate the bit lengths.
719 */
720 gen_bitlen(s, (tree_desc *)desc);
721
722 /* The field len is now set, we can generate the bit codes */
723 gen_codes ((ct_data *)tree, max_code, s->bl_count);
724 }
725
726 /* ===========================================================================
727 * Scan a literal or distance tree to determine the frequencies of the codes
728 * in the bit length tree.
729 */
scan_tree(deflate_state *s, ct_data *tree, int max_code)730 local void scan_tree(deflate_state *s, ct_data *tree, int max_code)
731 {
732 int n; /* iterates over all tree elements */
733 int prevlen = -1; /* last emitted length */
734 int curlen; /* length of current code */
735 int nextlen = tree[0].Len; /* length of next code */
736 int count = 0; /* repeat count of the current code */
737 int max_count = 7; /* max repeat count */
738 int min_count = 4; /* min repeat count */
739
740 if (nextlen == 0) max_count = 138, min_count = 3;
741 tree[max_code + 1].Len = (ush)0xffff; /* guard */
742
743 for (n = 0; n <= max_code; n++) {
744 curlen = nextlen; nextlen = tree[n + 1].Len;
745 if (++count < max_count && curlen == nextlen) {
746 continue;
747 } else if (count < min_count) {
748 s->bl_tree[curlen].Freq += count;
749 } else if (curlen != 0) {
750 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
751 s->bl_tree[REP_3_6].Freq++;
752 } else if (count <= 10) {
753 s->bl_tree[REPZ_3_10].Freq++;
754 } else {
755 s->bl_tree[REPZ_11_138].Freq++;
756 }
757 count = 0; prevlen = curlen;
758 if (nextlen == 0) {
759 max_count = 138, min_count = 3;
760 } else if (curlen == nextlen) {
761 max_count = 6, min_count = 3;
762 } else {
763 max_count = 7, min_count = 4;
764 }
765 }
766 }
767
768 /* ===========================================================================
769 * Send a literal or distance tree in compressed form, using the codes in
770 * bl_tree.
771 */
send_tree(deflate_state *s, ct_data *tree, int max_code)772 local void send_tree(deflate_state *s, ct_data *tree, int max_code)
773 {
774 int n; /* iterates over all tree elements */
775 int prevlen = -1; /* last emitted length */
776 int curlen; /* length of current code */
777 int nextlen = tree[0].Len; /* length of next code */
778 int count = 0; /* repeat count of the current code */
779 int max_count = 7; /* max repeat count */
780 int min_count = 4; /* min repeat count */
781
782 /* tree[max_code + 1].Len = -1; */ /* guard already set */
783 if (nextlen == 0) max_count = 138, min_count = 3;
784
785 for (n = 0; n <= max_code; n++) {
786 curlen = nextlen; nextlen = tree[n + 1].Len;
787 if (++count < max_count && curlen == nextlen) {
788 continue;
789 } else if (count < min_count) {
790 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
791
792 } else if (curlen != 0) {
793 if (curlen != prevlen) {
794 send_code(s, curlen, s->bl_tree); count--;
795 }
796 Assert(count >= 3 && count <= 6, " 3_6?");
797 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
798
799 } else if (count <= 10) {
800 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
801
802 } else {
803 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
804 }
805 count = 0; prevlen = curlen;
806 if (nextlen == 0) {
807 max_count = 138, min_count = 3;
808 } else if (curlen == nextlen) {
809 max_count = 6, min_count = 3;
810 } else {
811 max_count = 7, min_count = 4;
812 }
813 }
814 }
815
816 /* ===========================================================================
817 * Construct the Huffman tree for the bit lengths and return the index in
818 * bl_order of the last bit length code to send.
819 */
build_bl_tree(deflate_state *s)820 local int build_bl_tree(deflate_state *s)
821 {
822 int max_blindex; /* index of last bit length code of non zero freq */
823
824 /* Determine the bit length frequencies for literal and distance trees */
825 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
826 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
827
828 /* Build the bit length tree: */
829 build_tree(s, (tree_desc *)(&(s->bl_desc)));
830 /* opt_len now includes the length of the tree representations, except the
831 * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
832 */
833
834 /* Determine the number of bit length codes to send. The pkzip format
835 * requires that at least 4 bit length codes be sent. (appnote.txt says
836 * 3 but the actual value used is 4.)
837 */
838 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
839 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
840 }
841 /* Update opt_len to include the bit length tree and counts */
842 s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
843 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
844 s->opt_len, s->static_len));
845
846 return max_blindex;
847 }
848
849 /* ===========================================================================
850 * Send the header for a block using dynamic Huffman trees: the counts, the
851 * lengths of the bit length codes, the literal tree and the distance tree.
852 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
853 */
send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)854 local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
855 int blcodes)
856 {
857 int rank; /* index in bl_order */
858
859 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
860 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
861 "too many codes");
862 Tracev((stderr, "\nbl counts: "));
863 send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
864 send_bits(s, dcodes - 1, 5);
865 send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
866 for (rank = 0; rank < blcodes; rank++) {
867 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
868 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
869 }
870 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
871
872 send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */
873 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
874
875 send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */
876 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
877 }
878
879 /* ===========================================================================
880 * Send a stored block
881 */
_tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int last)882 void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
883 ulg stored_len, int last) {
884 send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */
885 bi_windup(s); /* align on byte boundary */
886 put_short(s, (ush)stored_len);
887 put_short(s, (ush)~stored_len);
888 if (stored_len)
889 zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
890 s->pending += stored_len;
891 #ifdef ZLIB_DEBUG
892 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
893 s->compressed_len += (stored_len + 4) << 3;
894 s->bits_sent += 2*16;
895 s->bits_sent += stored_len << 3;
896 #endif
897 }
898
899 /* ===========================================================================
900 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
901 */
_tr_flush_bits(deflate_state *s)902 void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
903 bi_flush(s);
904 }
905
906 /* ===========================================================================
907 * Send one empty static block to give enough lookahead for inflate.
908 * This takes 10 bits, of which 7 may remain in the bit buffer.
909 */
_tr_align(deflate_state *s)910 void ZLIB_INTERNAL _tr_align(deflate_state *s) {
911 send_bits(s, STATIC_TREES<<1, 3);
912 send_code(s, END_BLOCK, static_ltree);
913 #ifdef ZLIB_DEBUG
914 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
915 #endif
916 bi_flush(s);
917 }
918
919 /* ===========================================================================
920 * Send the block data compressed using the given Huffman trees
921 */
compress_block(deflate_state *s, const ct_data *ltree, const ct_data *dtree)922 local void compress_block(deflate_state *s, const ct_data *ltree,
923 const ct_data *dtree)
924 {
925 unsigned dist; /* distance of matched string */
926 int lc; /* match length or unmatched char (if dist == 0) */
927 unsigned sx = 0; /* running index in symbol buffers */
928 unsigned code; /* the code to send */
929 int extra; /* number of extra bits to send */
930
931 if (s->sym_next != 0) do {
932 #ifdef LIT_MEM
933 dist = s->d_buf[sx];
934 lc = s->l_buf[sx++];
935 #else
936 dist = s->sym_buf[sx++] & 0xff;
937 dist += (unsigned)(s->sym_buf[sx++] & 0xff) << INDEX_8;
938 lc = s->sym_buf[sx++];
939 #endif
940 if (dist == 0) {
941 send_code(s, lc, ltree); /* send a literal byte */
942 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
943 } else {
944 /* Here, lc is the match length - MIN_MATCH */
945 code = _length_code[lc];
946 send_code(s, code + LITERALS + 1, ltree); /* send length code */
947 extra = extra_lbits[code];
948 if (extra != 0) {
949 lc -= base_length[code];
950 send_bits(s, lc, extra); /* send the extra length bits */
951 }
952 dist--; /* dist is now the match distance - 1 */
953 code = d_code(dist);
954 Assert (code < D_CODES, "bad d_code");
955
956 send_code(s, code, dtree); /* send the distance code */
957 extra = extra_dbits[code];
958 if (extra != 0) {
959 dist -= (unsigned)base_dist[code];
960 send_bits(s, dist, extra); /* send the extra distance bits */
961 }
962 } /* literal or match pair ? */
963
964 /* Check for no overlay of pending_buf on needed symbols */
965 #ifdef LIT_MEM
966 Assert(s->pending < INDEX_2 * (s->lit_bufsize + sx), "pendingBuf overflow");
967 #else
968 Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
969 #endif
970
971 } while (sx < s->sym_next);
972
973 send_code(s, END_BLOCK, ltree);
974 }
975
976 /* ===========================================================================
977 * Check if the data type is TEXT or BINARY, using the following algorithm:
978 * - TEXT if the two conditions below are satisfied:
979 * a) There are no non-portable control characters belonging to the
980 * "block list" (0..6, 14..25, 28..31).
981 * b) There is at least one printable character belonging to the
982 * "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
983 * - BINARY otherwise.
984 * - The following partially-portable control characters form a
985 * "gray list" that is ignored in this detection algorithm:
986 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
987 * IN assertion: the fields Freq of dyn_ltree are set.
988 */
detect_data_type(deflate_state *s)989 local int detect_data_type(deflate_state *s)
990 {
991 /* block_mask is the bit mask of block-listed bytes
992 * set bits 0..6, 14..25, and 28..31
993 * 0xf3ffc07f = binary 11110011111111111100000001111111
994 */
995 unsigned long block_mask = 0xf3ffc07fUL;
996 int n;
997
998 /* Check for non-textual ("block-listed") bytes. */
999 for (n = 0; n <= INDEX_31; n++, block_mask >>= 1)
1000 if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1001 return Z_BINARY;
1002
1003 /* Check for textual ("allow-listed") bytes. */
1004 if (s->dyn_ltree[INDEX_9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1005 || s->dyn_ltree[INDEX_13].Freq != 0)
1006 return Z_TEXT;
1007 for (n = INDEX_32; n < LITERALS; n++)
1008 if (s->dyn_ltree[n].Freq != 0)
1009 return Z_TEXT;
1010
1011 /* There are no "block-listed" or "allow-listed" bytes:
1012 * this stream either is empty or has tolerated ("gray-listed") bytes only.
1013 */
1014 return Z_BINARY;
1015 }
1016
1017 /* ===========================================================================
1018 * Determine the best encoding for the current block: dynamic trees, static
1019 * trees or store, and write out the encoded block.
1020 */
_tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int last)1021 void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
1022 ulg stored_len, int last) {
1023 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1024 int max_blindex = 0; /* index of last bit length code of non zero freq */
1025
1026 /* Build the Huffman trees unless a stored block is forced */
1027 if (s->level > 0) {
1028
1029 /* Check if the file is binary or text */
1030 if (s->strm->data_type == Z_UNKNOWN)
1031 s->strm->data_type = detect_data_type(s);
1032
1033 /* Construct the literal and distance trees */
1034 build_tree(s, (tree_desc *)(&(s->l_desc)));
1035 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1036 s->static_len));
1037
1038 build_tree(s, (tree_desc *)(&(s->d_desc)));
1039 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1040 s->static_len));
1041 /* At this point, opt_len and static_len are the total bit lengths of
1042 * the compressed block data, excluding the tree representations.
1043 */
1044
1045 /* Build the bit length tree for the above two trees, and get the index
1046 * in bl_order of the last bit length code to send.
1047 */
1048 max_blindex = build_bl_tree(s);
1049
1050 /* Determine the best encoding. Compute the block lengths in bytes. */
1051 opt_lenb = (s->opt_len + 3 + 7) >> 3;
1052 static_lenb = (s->static_len + 3 + 7) >> 3;
1053
1054 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1055 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1056 s->sym_next / 3));
1057
1058 #ifndef FORCE_STATIC
1059 if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
1060 #endif
1061 opt_lenb = static_lenb;
1062
1063 } else {
1064 Assert(buf != (char*)0, "lost buf");
1065 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1066 }
1067
1068 #ifdef FORCE_STORED
1069 if (buf != (char*)0) { /* force stored block */
1070 #else
1071 if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
1072 /* 4: two words for the lengths */
1073 #endif
1074 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1075 * Otherwise we can't have processed more than WSIZE input bytes since
1076 * the last block flush, because compression would have been
1077 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1078 * transform a block into a stored block.
1079 */
1080 _tr_stored_block(s, buf, stored_len, last);
1081
1082 } else if (static_lenb == opt_lenb) {
1083 send_bits(s, (STATIC_TREES<<1) + last, 3);
1084 compress_block(s, (const ct_data *)static_ltree,
1085 (const ct_data *)static_dtree);
1086 #ifdef ZLIB_DEBUG
1087 s->compressed_len += 3 + s->static_len;
1088 #endif
1089 } else {
1090 send_bits(s, (DYN_TREES<<1) + last, 3);
1091 send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
1092 max_blindex + 1);
1093 compress_block(s, (const ct_data *)s->dyn_ltree,
1094 (const ct_data *)s->dyn_dtree);
1095 #ifdef ZLIB_DEBUG
1096 s->compressed_len += 3 + s->opt_len;
1097 #endif
1098 }
1099 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1100 /* The above check is made mod 2^32, for files larger than 512 MB
1101 * and uLong implemented on 32 bits.
1102 */
1103 init_block(s);
1104
1105 if (last) {
1106 bi_windup(s);
1107 #ifdef ZLIB_DEBUG
1108 s->compressed_len += 7; /* align on byte boundary */
1109 #endif
1110 }
1111 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1112 s->compressed_len - 7*last));
1113 }
1114
1115 /* ===========================================================================
1116 * Save the match info and tally the frequency counts. Return true if
1117 * the current block must be flushed.
1118 */
1119 int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
1120 #ifdef LIT_MEM
1121 s->d_buf[s->sym_next] = (ush)dist;
1122 s->l_buf[s->sym_next++] = (uch)lc;
1123 #else
1124 s->sym_buf[s->sym_next++] = (uch)dist;
1125 s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1126 s->sym_buf[s->sym_next++] = (uch)lc;
1127 #endif
1128 if (dist == 0) {
1129 /* lc is the unmatched char */
1130 s->dyn_ltree[lc].Freq++;
1131 } else {
1132 s->matches++;
1133 /* Here, lc is the match length - MIN_MATCH */
1134 dist--; /* dist = match distance - 1 */
1135 Assert((ush)dist < (ush)MAX_DIST(s) &&
1136 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1137 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1138
1139 s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1140 s->dyn_dtree[d_code(dist)].Freq++;
1141 }
1142 return (s->sym_next == s->sym_end);
1143 }
1144