1 /* trees.c -- output deflated data using Huffman coding
2  * Copyright (C) 1995-2024 Jean-loup Gailly
3  * detect_data_type() function provided freely by Cosmin Truta, 2006
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 /*
8  *  ALGORITHM
9  *
10  *      The "deflation" process uses several Huffman trees. The more
11  *      common source values are represented by shorter bit sequences.
12  *
13  *      Each code tree is stored in a compressed form which is itself
14  * a Huffman encoding of the lengths of all the code strings (in
15  * ascending order by source values).  The actual code strings are
16  * reconstructed from the lengths in the inflate process, as described
17  * in the deflate specification.
18  *
19  *  REFERENCES
20  *
21  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23  *
24  *      Storer, James A.
25  *          Data Compression:  Methods and Theory, pp. 49-50.
26  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27  *
28  *      Sedgewick, R.
29  *          Algorithms, p290.
30  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31  */
32 
33 /* @(#) $Id$ */
34 
35 /* #define GEN_TREES_H */
36 
37 #include "deflate.h"
38 
39 #ifdef ZLIB_DEBUG
40 #  include <ctype.h>
41 #endif
42 
43 /* ===========================================================================
44  * Constants
45  */
46 
47 #define MAX_BL_BITS 7
48 /* Bit length codes must not exceed MAX_BL_BITS bits */
49 
50 #define END_BLOCK 256
51 /* end of block literal code */
52 
53 #define REP_3_6      16
54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
55 
56 #define REPZ_3_10    17
57 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
58 
59 #define REPZ_11_138  18
60 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
61 
62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64 
65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67 
68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70 
71 local const uch bl_order[BL_CODES]
72    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73 /* The lengths of the bit length codes are sent in order of decreasing
74  * probability, to avoid transmitting the lengths for unused bit length codes.
75  */
76 
77 /* ===========================================================================
78  * Local data. These are initialized only once.
79  */
80 
81 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
82 
83 #if defined(GEN_TREES_H) || !defined(STDC)
84 /* non ANSI compilers may not accept trees.h */
85 
86 local ct_data static_ltree[L_CODES+2];
87 /* The static literal tree. Since the bit lengths are imposed, there is no
88  * need for the L_CODES extra codes used during heap construction. However
89  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90  * below).
91  */
92 
93 local ct_data static_dtree[D_CODES];
94 /* The static distance tree. (Actually a trivial tree since all codes use
95  * 5 bits.)
96  */
97 
98 uch _dist_code[DIST_CODE_LEN];
99 /* Distance codes. The first 256 values correspond to the distances
100  * 3 .. 258, the last 256 values correspond to the top 8 bits of
101  * the 15 bit distances.
102  */
103 
104 uch _length_code[MAX_MATCH-MIN_MATCH+1];
105 /* length code for each normalized match length (0 == MIN_MATCH) */
106 
107 local int base_length[LENGTH_CODES];
108 /* First normalized length for each code (0 = MIN_MATCH) */
109 
110 local int base_dist[D_CODES];
111 /* First normalized distance for each code (0 = distance of 1) */
112 
113 #else
114 #  include "trees.h"
115 #endif /* GEN_TREES_H */
116 
117 struct static_tree_desc_s {
118     const ct_data *static_tree;  /* static tree or NULL */
119     const intf *extra_bits;      /* extra bits for each code or NULL */
120     int     extra_base;          /* base index for extra_bits */
121     int     elems;               /* max number of elements in the tree */
122     int     max_length;          /* max bit length for the codes */
123 };
124 
125 #ifdef NO_INIT_GLOBAL_POINTERS
126 #  define TCONST
127 #else
128 #  define TCONST const
129 #endif
130 
131 local TCONST static_tree_desc static_l_desc =
132 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
133 
134 local TCONST static_tree_desc static_d_desc =
135 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
136 
137 local TCONST static_tree_desc static_bl_desc =
138 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
139 
140 /* ===========================================================================
141  * Output a short LSB first on the stream.
142  * IN assertion: there is enough room in pendingBuf.
143  */
144 #define put_short(s, w) { \
145     put_byte(s, (uch)((w) & 0xff)); \
146     put_byte(s, (uch)((ush)(w) >> 8)); \
147 }
148 
149 #define INDEX_2 2
150 #define INDEX_7 7
151 #define INDEX_8 8
152 #define INDEX_9 9
153 #define INDEX_13 13
154 #define INDEX_16 16
155 #define INDEX_31 31
156 #define INDEX_32 32
157 
158 /* ===========================================================================
159  * Reverse the first len bits of a code, using straightforward code (a faster
160  * method would use a table)
161  * IN assertion: 1 <= len <= 15
162  */
bi_reverse(unsigned code, int len)163 local unsigned bi_reverse(unsigned code, int len)
164 {
165     register unsigned res = 0;
166     do {
167         res |= code & 1;
168         code >>= 1, res <<= 1;
169     } while (--len > 0);
170     return res >> 1;
171 }
172 
173 /* ===========================================================================
174  * Flush the bit buffer, keeping at most 7 bits in it.
175  */
bi_flush(deflate_state *s)176 local void bi_flush(deflate_state *s)
177 {
178     if (s->bi_valid == INDEX_16) {
179         put_short(s, s->bi_buf);
180         s->bi_buf = 0;
181         s->bi_valid = 0;
182     } else if (s->bi_valid >= INDEX_8) {
183         put_byte(s, (Byte)s->bi_buf);
184         s->bi_buf >>= INDEX_8;
185         s->bi_valid -= INDEX_8;
186     }
187 }
188 
189 /* ===========================================================================
190  * Flush the bit buffer and align the output on a byte boundary
191  */
bi_windup(deflate_state *s)192 local void bi_windup(deflate_state *s)
193 {
194     if (s->bi_valid > INDEX_8) {
195         put_short(s, s->bi_buf);
196     } else if (s->bi_valid > 0) {
197         put_byte(s, (Byte)s->bi_buf);
198     }
199     s->bi_buf = 0;
200     s->bi_valid = 0;
201 #ifdef ZLIB_DEBUG
202     s->bits_sent = (s->bits_sent + INDEX_7) & ~INDEX_7;
203 #endif
204 }
205 
206 /* ===========================================================================
207  * Generate the codes for a given tree and bit counts (which need not be
208  * optimal).
209  * IN assertion: the array bl_count contains the bit length statistics for
210  * the given tree and the field len is set for all tree elements.
211  * OUT assertion: the field code is set for all tree elements of non
212  *     zero code length.
213  */
gen_codes(ct_data *tree, int max_code, ushf *bl_count)214 local void gen_codes(ct_data *tree, int max_code, ushf *bl_count)
215 {
216     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
217     unsigned code = 0;         /* running code value */
218     int bits;                  /* bit index */
219     int n;                     /* code index */
220 
221     /* The distribution counts are first used to generate the code values
222      * without bit reversal.
223      */
224     for (bits = 1; bits <= MAX_BITS; bits++) {
225         code = (code + bl_count[bits - 1]) << 1;
226         next_code[bits] = (ush)code;
227     }
228     /* Check that the bit counts in bl_count are consistent. The last code
229      * must be all ones.
230      */
231     Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
232             "inconsistent bit counts");
233     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
234 
235     for (n = 0;  n <= max_code; n++) {
236         int len = tree[n].Len;
237         if (len == 0) continue;
238         /* Now reverse the bits */
239         tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
240 
241         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
242             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
243     }
244 }
245 
246 #ifdef GEN_TREES_H
247 local void gen_trees_header(void);
248 #endif
249 
250 #ifndef ZLIB_DEBUG
251 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
252    /* Send a code of the given tree. c and tree must not have side effects */
253 
254 #else /* !ZLIB_DEBUG */
255 #  define send_code(s, c, tree) \
256      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
257        send_bits(s, tree[c].Code, tree[c].Len); }
258 #endif
259 
260 /* ===========================================================================
261  * Send a value on a given number of bits.
262  * IN assertion: length <= 16 and value fits in length bits.
263  */
264 #ifdef ZLIB_DEBUG
send_bits(deflate_state *s, int value, int length)265 local void send_bits(deflate_state *s, int value, int length)
266 {
267     Tracevv((stderr," l %2d v %4x ", length, value));
268     Assert(length > 0 && length <= 15, "invalid length");
269     s->bits_sent += (ulg)length;
270 
271     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
272      * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
273      * unused bits in value.
274      */
275     if (s->bi_valid > (int)Buf_size - length) {
276         s->bi_buf |= (ush)value << s->bi_valid;
277         put_short(s, s->bi_buf);
278         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
279         s->bi_valid += length - Buf_size;
280     } else {
281         s->bi_buf |= (ush)value << s->bi_valid;
282         s->bi_valid += length;
283     }
284 }
285 #else /* !ZLIB_DEBUG */
286 
287 #define send_bits(s, value, length) \
288 { int len = length;\
289   if (s->bi_valid > (int)Buf_size - len) {\
290     int val = (int)value;\
291     s->bi_buf |= (ush)val << s->bi_valid;\
292     put_short(s, s->bi_buf);\
293     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
294     s->bi_valid += len - Buf_size;\
295   } else {\
296     s->bi_buf |= (ush)(value) << s->bi_valid;\
297     s->bi_valid += len;\
298   }\
299 }
300 #endif /* ZLIB_DEBUG */
301 
302 
303 /* the arguments must not have side effects */
304 
305 /* ===========================================================================
306  * Initialize the various 'constant' tables.
307  */
tr_static_init(void)308 local void tr_static_init(void)
309 {
310 #if defined(GEN_TREES_H) || !defined(STDC)
311     static int static_init_done = 0;
312     int n;        /* iterates over tree elements */
313     int bits;     /* bit counter */
314     int length;   /* length value */
315     int code;     /* code value */
316     int dist;     /* distance index */
317     ush bl_count[MAX_BITS+1];
318     /* number of codes at each bit length for an optimal tree */
319 
320     if (static_init_done) return;
321 
322     /* For some embedded targets, global variables are not initialized: */
323 #ifdef NO_INIT_GLOBAL_POINTERS
324     static_l_desc.static_tree = static_ltree;
325     static_l_desc.extra_bits = extra_lbits;
326     static_d_desc.static_tree = static_dtree;
327     static_d_desc.extra_bits = extra_dbits;
328     static_bl_desc.extra_bits = extra_blbits;
329 #endif
330 
331     /* Initialize the mapping length (0..255) -> length code (0..28) */
332     length = 0;
333     for (code = 0; code < LENGTH_CODES-1; code++) {
334         base_length[code] = length;
335         for (n = 0; n < (1 << extra_lbits[code]); n++) {
336             _length_code[length++] = (uch)code;
337         }
338     }
339     Assert (length == 256, "tr_static_init: length != 256");
340     /* Note that the length 255 (match length 258) can be represented
341      * in two different ways: code 284 + 5 bits or code 285, so we
342      * overwrite length_code[255] to use the best encoding:
343      */
344     _length_code[length - 1] = (uch)code;
345 
346     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
347     dist = 0;
348     for (code = 0 ; code < 16; code++) {
349         base_dist[code] = dist;
350         for (n = 0; n < (1 << extra_dbits[code]); n++) {
351             _dist_code[dist++] = (uch)code;
352         }
353     }
354     Assert (dist == 256, "tr_static_init: dist != 256");
355     dist >>= 7; /* from now on, all distances are divided by 128 */
356     for ( ; code < D_CODES; code++) {
357         base_dist[code] = dist << 7;
358         for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
359             _dist_code[256 + dist++] = (uch)code;
360         }
361     }
362     Assert (dist == 256, "tr_static_init: 256 + dist != 512");
363 
364     /* Construct the codes of the static literal tree */
365     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
366     n = 0;
367     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
368     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
369     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
370     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
371     /* Codes 286 and 287 do not exist, but we must include them in the
372      * tree construction to get a canonical Huffman tree (longest code
373      * all ones)
374      */
375     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
376 
377     /* The static distance tree is trivial: */
378     for (n = 0; n < D_CODES; n++) {
379         static_dtree[n].Len = 5;
380         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
381     }
382     static_init_done = 1;
383 
384 #  ifdef GEN_TREES_H
385     gen_trees_header();
386 #  endif
387 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
388 }
389 
390 /* ===========================================================================
391  * Generate the file trees.h describing the static trees.
392  */
393 #ifdef GEN_TREES_H
394 #  ifndef ZLIB_DEBUG
395 #    include <stdio.h>
396 #  endif
397 
398 #  define SEPARATOR(i, last, width) \
399       ((i) == (last)? "\n};\n\n" :    \
400        ((i) % (width) == (width) - 1 ? ",\n" : ", "))
401 
gen_trees_header(void)402 void gen_trees_header(void)
403 {
404     FILE *header = fopen("trees.h", "w");
405     int i;
406 
407     Assert (header != NULL, "Can't open trees.h");
408     fprintf(header,
409             "/* header created automatically with -DGEN_TREES_H */\n\n");
410 
411     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
412     for (i = 0; i < L_CODES+2; i++) {
413         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
414                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
415     }
416 
417     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
418     for (i = 0; i < D_CODES; i++) {
419         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
420                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
421     }
422 
423     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
424     for (i = 0; i < DIST_CODE_LEN; i++) {
425         fprintf(header, "%2u%s", _dist_code[i],
426                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
427     }
428 
429     fprintf(header,
430         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
431     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
432         fprintf(header, "%2u%s", _length_code[i],
433                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
434     }
435 
436     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
437     for (i = 0; i < LENGTH_CODES; i++) {
438         fprintf(header, "%1u%s", base_length[i],
439                 SEPARATOR(i, LENGTH_CODES-1, 20));
440     }
441 
442     fprintf(header, "local const int base_dist[D_CODES] = {\n");
443     for (i = 0; i < D_CODES; i++) {
444         fprintf(header, "%5u%s", base_dist[i],
445                 SEPARATOR(i, D_CODES-1, 10));
446     }
447 
448     fclose(header);
449 }
450 #endif /* GEN_TREES_H */
451 
452 /* ===========================================================================
453  * Initialize a new block.
454  */
init_block(deflate_state *s)455 local void init_block(deflate_state *s)
456 {
457     int n; /* iterates over tree elements */
458 
459     /* Initialize the trees. */
460     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
461     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
462     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
463 
464     s->dyn_ltree[END_BLOCK].Freq = 1;
465     s->opt_len = s->static_len = 0L;
466     s->sym_next = s->matches = 0;
467 }
468 
469 /* ===========================================================================
470  * Initialize the tree data structures for a new zlib stream.
471  */
_tr_init(deflate_state *s)472 void ZLIB_INTERNAL _tr_init(deflate_state *s) {
473     tr_static_init();
474 
475     s->l_desc.dyn_tree = s->dyn_ltree;
476     s->l_desc.stat_desc = &static_l_desc;
477 
478     s->d_desc.dyn_tree = s->dyn_dtree;
479     s->d_desc.stat_desc = &static_d_desc;
480 
481     s->bl_desc.dyn_tree = s->bl_tree;
482     s->bl_desc.stat_desc = &static_bl_desc;
483 
484     s->bi_buf = 0;
485     s->bi_valid = 0;
486 #ifdef ZLIB_DEBUG
487     s->compressed_len = 0L;
488     s->bits_sent = 0L;
489 #endif
490 
491     /* Initialize the first block of the first file: */
492     init_block(s);
493 }
494 
495 #define SMALLEST 1
496 /* Index within the heap array of least frequent node in the Huffman tree */
497 
498 
499 /* ===========================================================================
500  * Remove the smallest element from the heap and recreate the heap with
501  * one less element. Updates heap and heap_len.
502  */
503 #define pqremove(s, tree, top) \
504 {\
505     top = s->heap[SMALLEST]; \
506     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
507     pqdownheap(s, tree, SMALLEST); \
508 }
509 
510 /* ===========================================================================
511  * Compares to subtrees, using the tree depth as tie breaker when
512  * the subtrees have equal frequency. This minimizes the worst case length.
513  */
514 #define smaller(tree, n, m, depth) \
515    (tree[n].Freq < tree[m].Freq || \
516    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
517 
518 /* ===========================================================================
519  * Restore the heap property by moving down the tree starting at node k,
520  * exchanging a node with the smallest of its two sons if necessary, stopping
521  * when the heap property is re-established (each father smaller than its
522  * two sons).
523  */
pqdownheap(deflate_state *s, ct_data *tree, int k)524 local void pqdownheap(deflate_state *s, ct_data *tree, int k)
525 {
526     int v = s->heap[k];
527     int j = k << 1;  /* left son of k */
528     while (j <= s->heap_len) {
529         /* Set j to the smallest of the two sons: */
530         if (j < s->heap_len &&
531             smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
532             j++;
533         }
534         /* Exit if v is smaller than both sons */
535         if (smaller(tree, v, s->heap[j], s->depth)) break;
536 
537         /* Exchange v with the smallest son */
538         s->heap[k] = s->heap[j];  k = j;
539 
540         /* And continue down the tree, setting j to the left son of k */
541         j <<= 1;
542     }
543     s->heap[k] = v;
544 }
545 
546 /* ===========================================================================
547  * Compute the optimal bit lengths for a tree and update the total bit length
548  * for the current block.
549  * IN assertion: the fields freq and dad are set, heap[heap_max] and
550  *    above are the tree nodes sorted by increasing frequency.
551  * OUT assertions: the field len is set to the optimal bit length, the
552  *     array bl_count contains the frequencies for each bit length.
553  *     The length opt_len is updated; static_len is also updated if stree is
554  *     not null.
555  */
gen_bitlen(deflate_state *s, tree_desc *desc)556 local void gen_bitlen(deflate_state *s, tree_desc *desc)
557 {
558     ct_data *tree        = desc->dyn_tree;
559     int max_code         = desc->max_code;
560     const ct_data *stree = desc->stat_desc->static_tree;
561     const intf *extra    = desc->stat_desc->extra_bits;
562     int base             = desc->stat_desc->extra_base;
563     int max_length       = desc->stat_desc->max_length;
564     int h;              /* heap index */
565     int n, m;           /* iterate over the tree elements */
566     int bits;           /* bit length */
567     int xbits;          /* extra bits */
568     ush f;              /* frequency */
569     int overflow = 0;   /* number of elements with bit length too large */
570 
571     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
572 
573     /* In a first pass, compute the optimal bit lengths (which may
574      * overflow in the case of the bit length tree).
575      */
576     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
577 
578     for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
579         n = s->heap[h];
580         bits = tree[tree[n].Dad].Len + 1;
581         if (bits > max_length) bits = max_length, overflow++;
582         tree[n].Len = (ush)bits;
583         /* We overwrite tree[n].Dad which is no longer needed */
584 
585         if (n > max_code) continue; /* not a leaf node */
586 
587         s->bl_count[bits]++;
588         xbits = 0;
589         if (n >= base) xbits = extra[n - base];
590         f = tree[n].Freq;
591         s->opt_len += (ulg)f * (unsigned)(bits + xbits);
592         if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
593     }
594     if (overflow == 0) return;
595 
596     Tracev((stderr,"\nbit length overflow\n"));
597     /* This happens for example on obj2 and pic of the Calgary corpus */
598 
599     /* Find the first bit length which could increase: */
600     do {
601         bits = max_length - 1;
602         while (s->bl_count[bits] == 0) bits--;
603         s->bl_count[bits]--;        /* move one leaf down the tree */
604         s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
605         s->bl_count[max_length]--;
606         /* The brother of the overflow item also moves one step up,
607          * but this does not affect bl_count[max_length]
608          */
609         overflow -= 2;
610     } while (overflow > 0);
611 
612     /* Now recompute all bit lengths, scanning in increasing frequency.
613      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
614      * lengths instead of fixing only the wrong ones. This idea is taken
615      * from 'ar' written by Haruhiko Okumura.)
616      */
617     for (bits = max_length; bits != 0; bits--) {
618         n = s->bl_count[bits];
619         while (n != 0) {
620             m = s->heap[--h];
621             if (m > max_code) continue;
622             if ((unsigned) tree[m].Len != (unsigned) bits) {
623                 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
624                 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
625                 tree[m].Len = (ush)bits;
626             }
627             n--;
628         }
629     }
630 }
631 
632 #ifdef DUMP_BL_TREE
633 #  include <stdio.h>
634 #endif
635 
636 /* ===========================================================================
637  * Construct one Huffman tree and assigns the code bit strings and lengths.
638  * Update the total bit length for the current block.
639  * IN assertion: the field freq is set for all tree elements.
640  * OUT assertions: the fields len and code are set to the optimal bit length
641  *     and corresponding code. The length opt_len is updated; static_len is
642  *     also updated if stree is not null. The field max_code is set.
643  */
build_tree(deflate_state *s, tree_desc *desc)644 local void build_tree(deflate_state *s, tree_desc *desc)
645 {
646     ct_data *tree         = desc->dyn_tree;
647     const ct_data *stree  = desc->stat_desc->static_tree;
648     int elems             = desc->stat_desc->elems;
649     int n, m;          /* iterate over heap elements */
650     int max_code = -1; /* largest code with non zero frequency */
651     int node;          /* new node being created */
652 
653     /* Construct the initial heap, with least frequent element in
654      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
655      * heap[0] is not used.
656      */
657     s->heap_len = 0, s->heap_max = HEAP_SIZE;
658 
659     for (n = 0; n < elems; n++) {
660         if (tree[n].Freq != 0) {
661             s->heap[++(s->heap_len)] = max_code = n;
662             s->depth[n] = 0;
663         } else {
664             tree[n].Len = 0;
665         }
666     }
667 
668     /* The pkzip format requires that at least one distance code exists,
669      * and that at least one bit should be sent even if there is only one
670      * possible code. So to avoid special checks later on we force at least
671      * two codes of non zero frequency.
672      */
673     while (s->heap_len < 2) {
674         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
675         tree[node].Freq = 1;
676         s->depth[node] = 0;
677         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
678         /* node is 0 or 1 so it does not have extra bits */
679     }
680     desc->max_code = max_code;
681 
682     /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
683      * establish sub-heaps of increasing lengths:
684      */
685     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
686 
687     /* Construct the Huffman tree by repeatedly combining the least two
688      * frequent nodes.
689      */
690     node = elems;              /* next internal node of the tree */
691     do {
692         pqremove(s, tree, n);  /* n = node of least frequency */
693         m = s->heap[SMALLEST]; /* m = node of next least frequency */
694 
695         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
696         s->heap[--(s->heap_max)] = m;
697 
698         /* Create a new node father of n and m */
699         tree[node].Freq = tree[n].Freq + tree[m].Freq;
700         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
701                                 s->depth[n] : s->depth[m]) + 1);
702         tree[n].Dad = tree[m].Dad = (ush)node;
703 #ifdef DUMP_BL_TREE
704         if (tree == s->bl_tree) {
705             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
706                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
707         }
708 #endif
709         /* and insert the new node in the heap */
710         s->heap[SMALLEST] = node++;
711         pqdownheap(s, tree, SMALLEST);
712 
713     } while (s->heap_len >= 2);
714 
715     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
716 
717     /* At this point, the fields freq and dad are set. We can now
718      * generate the bit lengths.
719      */
720     gen_bitlen(s, (tree_desc *)desc);
721 
722     /* The field len is now set, we can generate the bit codes */
723     gen_codes ((ct_data *)tree, max_code, s->bl_count);
724 }
725 
726 /* ===========================================================================
727  * Scan a literal or distance tree to determine the frequencies of the codes
728  * in the bit length tree.
729  */
scan_tree(deflate_state *s, ct_data *tree, int max_code)730 local void scan_tree(deflate_state *s, ct_data *tree, int max_code)
731 {
732     int n;                     /* iterates over all tree elements */
733     int prevlen = -1;          /* last emitted length */
734     int curlen;                /* length of current code */
735     int nextlen = tree[0].Len; /* length of next code */
736     int count = 0;             /* repeat count of the current code */
737     int max_count = 7;         /* max repeat count */
738     int min_count = 4;         /* min repeat count */
739 
740     if (nextlen == 0) max_count = 138, min_count = 3;
741     tree[max_code + 1].Len = (ush)0xffff; /* guard */
742 
743     for (n = 0; n <= max_code; n++) {
744         curlen = nextlen; nextlen = tree[n + 1].Len;
745         if (++count < max_count && curlen == nextlen) {
746             continue;
747         } else if (count < min_count) {
748             s->bl_tree[curlen].Freq += count;
749         } else if (curlen != 0) {
750             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
751             s->bl_tree[REP_3_6].Freq++;
752         } else if (count <= 10) {
753             s->bl_tree[REPZ_3_10].Freq++;
754         } else {
755             s->bl_tree[REPZ_11_138].Freq++;
756         }
757         count = 0; prevlen = curlen;
758         if (nextlen == 0) {
759             max_count = 138, min_count = 3;
760         } else if (curlen == nextlen) {
761             max_count = 6, min_count = 3;
762         } else {
763             max_count = 7, min_count = 4;
764         }
765     }
766 }
767 
768 /* ===========================================================================
769  * Send a literal or distance tree in compressed form, using the codes in
770  * bl_tree.
771  */
send_tree(deflate_state *s, ct_data *tree, int max_code)772 local void send_tree(deflate_state *s, ct_data *tree, int max_code)
773 {
774     int n;                     /* iterates over all tree elements */
775     int prevlen = -1;          /* last emitted length */
776     int curlen;                /* length of current code */
777     int nextlen = tree[0].Len; /* length of next code */
778     int count = 0;             /* repeat count of the current code */
779     int max_count = 7;         /* max repeat count */
780     int min_count = 4;         /* min repeat count */
781 
782     /* tree[max_code + 1].Len = -1; */  /* guard already set */
783     if (nextlen == 0) max_count = 138, min_count = 3;
784 
785     for (n = 0; n <= max_code; n++) {
786         curlen = nextlen; nextlen = tree[n + 1].Len;
787         if (++count < max_count && curlen == nextlen) {
788             continue;
789         } else if (count < min_count) {
790             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
791 
792         } else if (curlen != 0) {
793             if (curlen != prevlen) {
794                 send_code(s, curlen, s->bl_tree); count--;
795             }
796             Assert(count >= 3 && count <= 6, " 3_6?");
797             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
798 
799         } else if (count <= 10) {
800             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
801 
802         } else {
803             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
804         }
805         count = 0; prevlen = curlen;
806         if (nextlen == 0) {
807             max_count = 138, min_count = 3;
808         } else if (curlen == nextlen) {
809             max_count = 6, min_count = 3;
810         } else {
811             max_count = 7, min_count = 4;
812         }
813     }
814 }
815 
816 /* ===========================================================================
817  * Construct the Huffman tree for the bit lengths and return the index in
818  * bl_order of the last bit length code to send.
819  */
build_bl_tree(deflate_state *s)820 local int build_bl_tree(deflate_state *s)
821 {
822     int max_blindex;  /* index of last bit length code of non zero freq */
823 
824     /* Determine the bit length frequencies for literal and distance trees */
825     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
826     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
827 
828     /* Build the bit length tree: */
829     build_tree(s, (tree_desc *)(&(s->bl_desc)));
830     /* opt_len now includes the length of the tree representations, except the
831      * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
832      */
833 
834     /* Determine the number of bit length codes to send. The pkzip format
835      * requires that at least 4 bit length codes be sent. (appnote.txt says
836      * 3 but the actual value used is 4.)
837      */
838     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
839         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
840     }
841     /* Update opt_len to include the bit length tree and counts */
842     s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
843     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
844             s->opt_len, s->static_len));
845 
846     return max_blindex;
847 }
848 
849 /* ===========================================================================
850  * Send the header for a block using dynamic Huffman trees: the counts, the
851  * lengths of the bit length codes, the literal tree and the distance tree.
852  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
853  */
send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)854 local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
855                           int blcodes)
856 {
857     int rank;                    /* index in bl_order */
858 
859     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
860     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
861             "too many codes");
862     Tracev((stderr, "\nbl counts: "));
863     send_bits(s, lcodes - 257, 5);  /* not +255 as stated in appnote.txt */
864     send_bits(s, dcodes - 1,   5);
865     send_bits(s, blcodes - 4,  4);  /* not -3 as stated in appnote.txt */
866     for (rank = 0; rank < blcodes; rank++) {
867         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
868         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
869     }
870     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
871 
872     send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1);  /* literal tree */
873     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
874 
875     send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1);  /* distance tree */
876     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
877 }
878 
879 /* ===========================================================================
880  * Send a stored block
881  */
_tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int last)882 void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
883                                     ulg stored_len, int last) {
884     send_bits(s, (STORED_BLOCK<<1) + last, 3);  /* send block type */
885     bi_windup(s);        /* align on byte boundary */
886     put_short(s, (ush)stored_len);
887     put_short(s, (ush)~stored_len);
888     if (stored_len)
889         zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
890     s->pending += stored_len;
891 #ifdef ZLIB_DEBUG
892     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
893     s->compressed_len += (stored_len + 4) << 3;
894     s->bits_sent += 2*16;
895     s->bits_sent += stored_len << 3;
896 #endif
897 }
898 
899 /* ===========================================================================
900  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
901  */
_tr_flush_bits(deflate_state *s)902 void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
903     bi_flush(s);
904 }
905 
906 /* ===========================================================================
907  * Send one empty static block to give enough lookahead for inflate.
908  * This takes 10 bits, of which 7 may remain in the bit buffer.
909  */
_tr_align(deflate_state *s)910 void ZLIB_INTERNAL _tr_align(deflate_state *s) {
911     send_bits(s, STATIC_TREES<<1, 3);
912     send_code(s, END_BLOCK, static_ltree);
913 #ifdef ZLIB_DEBUG
914     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
915 #endif
916     bi_flush(s);
917 }
918 
919 /* ===========================================================================
920  * Send the block data compressed using the given Huffman trees
921  */
compress_block(deflate_state *s, const ct_data *ltree, const ct_data *dtree)922 local void compress_block(deflate_state *s, const ct_data *ltree,
923                           const ct_data *dtree)
924 {
925     unsigned dist;      /* distance of matched string */
926     int lc;             /* match length or unmatched char (if dist == 0) */
927     unsigned sx = 0;    /* running index in symbol buffers */
928     unsigned code;      /* the code to send */
929     int extra;          /* number of extra bits to send */
930 
931     if (s->sym_next != 0) do {
932 #ifdef LIT_MEM
933         dist = s->d_buf[sx];
934         lc = s->l_buf[sx++];
935 #else
936         dist = s->sym_buf[sx++] & 0xff;
937         dist += (unsigned)(s->sym_buf[sx++] & 0xff) << INDEX_8;
938         lc = s->sym_buf[sx++];
939 #endif
940         if (dist == 0) {
941             send_code(s, lc, ltree); /* send a literal byte */
942             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
943         } else {
944             /* Here, lc is the match length - MIN_MATCH */
945             code = _length_code[lc];
946             send_code(s, code + LITERALS + 1, ltree);   /* send length code */
947             extra = extra_lbits[code];
948             if (extra != 0) {
949                 lc -= base_length[code];
950                 send_bits(s, lc, extra);       /* send the extra length bits */
951             }
952             dist--; /* dist is now the match distance - 1 */
953             code = d_code(dist);
954             Assert (code < D_CODES, "bad d_code");
955 
956             send_code(s, code, dtree);       /* send the distance code */
957             extra = extra_dbits[code];
958             if (extra != 0) {
959                 dist -= (unsigned)base_dist[code];
960                 send_bits(s, dist, extra);   /* send the extra distance bits */
961             }
962         } /* literal or match pair ? */
963 
964         /* Check for no overlay of pending_buf on needed symbols */
965 #ifdef LIT_MEM
966         Assert(s->pending < INDEX_2 * (s->lit_bufsize + sx), "pendingBuf overflow");
967 #else
968         Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
969 #endif
970 
971     } while (sx < s->sym_next);
972 
973     send_code(s, END_BLOCK, ltree);
974 }
975 
976 /* ===========================================================================
977  * Check if the data type is TEXT or BINARY, using the following algorithm:
978  * - TEXT if the two conditions below are satisfied:
979  *    a) There are no non-portable control characters belonging to the
980  *       "block list" (0..6, 14..25, 28..31).
981  *    b) There is at least one printable character belonging to the
982  *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
983  * - BINARY otherwise.
984  * - The following partially-portable control characters form a
985  *   "gray list" that is ignored in this detection algorithm:
986  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
987  * IN assertion: the fields Freq of dyn_ltree are set.
988  */
detect_data_type(deflate_state *s)989 local int detect_data_type(deflate_state *s)
990 {
991     /* block_mask is the bit mask of block-listed bytes
992      * set bits 0..6, 14..25, and 28..31
993      * 0xf3ffc07f = binary 11110011111111111100000001111111
994      */
995     unsigned long block_mask = 0xf3ffc07fUL;
996     int n;
997 
998     /* Check for non-textual ("block-listed") bytes. */
999     for (n = 0; n <= INDEX_31; n++, block_mask >>= 1)
1000         if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1001             return Z_BINARY;
1002 
1003     /* Check for textual ("allow-listed") bytes. */
1004     if (s->dyn_ltree[INDEX_9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1005             || s->dyn_ltree[INDEX_13].Freq != 0)
1006         return Z_TEXT;
1007     for (n = INDEX_32; n < LITERALS; n++)
1008         if (s->dyn_ltree[n].Freq != 0)
1009             return Z_TEXT;
1010 
1011     /* There are no "block-listed" or "allow-listed" bytes:
1012      * this stream either is empty or has tolerated ("gray-listed") bytes only.
1013      */
1014     return Z_BINARY;
1015 }
1016 
1017 /* ===========================================================================
1018  * Determine the best encoding for the current block: dynamic trees, static
1019  * trees or store, and write out the encoded block.
1020  */
_tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int last)1021 void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
1022                                    ulg stored_len, int last) {
1023     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1024     int max_blindex = 0;  /* index of last bit length code of non zero freq */
1025 
1026     /* Build the Huffman trees unless a stored block is forced */
1027     if (s->level > 0) {
1028 
1029         /* Check if the file is binary or text */
1030         if (s->strm->data_type == Z_UNKNOWN)
1031             s->strm->data_type = detect_data_type(s);
1032 
1033         /* Construct the literal and distance trees */
1034         build_tree(s, (tree_desc *)(&(s->l_desc)));
1035         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1036                 s->static_len));
1037 
1038         build_tree(s, (tree_desc *)(&(s->d_desc)));
1039         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1040                 s->static_len));
1041         /* At this point, opt_len and static_len are the total bit lengths of
1042          * the compressed block data, excluding the tree representations.
1043          */
1044 
1045         /* Build the bit length tree for the above two trees, and get the index
1046          * in bl_order of the last bit length code to send.
1047          */
1048         max_blindex = build_bl_tree(s);
1049 
1050         /* Determine the best encoding. Compute the block lengths in bytes. */
1051         opt_lenb = (s->opt_len + 3 + 7) >> 3;
1052         static_lenb = (s->static_len + 3 + 7) >> 3;
1053 
1054         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1055                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1056                 s->sym_next / 3));
1057 
1058 #ifndef FORCE_STATIC
1059         if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
1060 #endif
1061             opt_lenb = static_lenb;
1062 
1063     } else {
1064         Assert(buf != (char*)0, "lost buf");
1065         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1066     }
1067 
1068 #ifdef FORCE_STORED
1069     if (buf != (char*)0) { /* force stored block */
1070 #else
1071     if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
1072                        /* 4: two words for the lengths */
1073 #endif
1074         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1075          * Otherwise we can't have processed more than WSIZE input bytes since
1076          * the last block flush, because compression would have been
1077          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1078          * transform a block into a stored block.
1079          */
1080         _tr_stored_block(s, buf, stored_len, last);
1081 
1082     } else if (static_lenb == opt_lenb) {
1083         send_bits(s, (STATIC_TREES<<1) + last, 3);
1084         compress_block(s, (const ct_data *)static_ltree,
1085                        (const ct_data *)static_dtree);
1086 #ifdef ZLIB_DEBUG
1087         s->compressed_len += 3 + s->static_len;
1088 #endif
1089     } else {
1090         send_bits(s, (DYN_TREES<<1) + last, 3);
1091         send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
1092                        max_blindex + 1);
1093         compress_block(s, (const ct_data *)s->dyn_ltree,
1094                        (const ct_data *)s->dyn_dtree);
1095 #ifdef ZLIB_DEBUG
1096         s->compressed_len += 3 + s->opt_len;
1097 #endif
1098     }
1099     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1100     /* The above check is made mod 2^32, for files larger than 512 MB
1101      * and uLong implemented on 32 bits.
1102      */
1103     init_block(s);
1104 
1105     if (last) {
1106         bi_windup(s);
1107 #ifdef ZLIB_DEBUG
1108         s->compressed_len += 7;  /* align on byte boundary */
1109 #endif
1110     }
1111     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1112            s->compressed_len - 7*last));
1113 }
1114 
1115 /* ===========================================================================
1116  * Save the match info and tally the frequency counts. Return true if
1117  * the current block must be flushed.
1118  */
1119 int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
1120 #ifdef LIT_MEM
1121     s->d_buf[s->sym_next] = (ush)dist;
1122     s->l_buf[s->sym_next++] = (uch)lc;
1123 #else
1124     s->sym_buf[s->sym_next++] = (uch)dist;
1125     s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1126     s->sym_buf[s->sym_next++] = (uch)lc;
1127 #endif
1128     if (dist == 0) {
1129         /* lc is the unmatched char */
1130         s->dyn_ltree[lc].Freq++;
1131     } else {
1132         s->matches++;
1133         /* Here, lc is the match length - MIN_MATCH */
1134         dist--;             /* dist = match distance - 1 */
1135         Assert((ush)dist < (ush)MAX_DIST(s) &&
1136                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1137                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1138 
1139         s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1140         s->dyn_dtree[d_code(dist)].Freq++;
1141     }
1142     return (s->sym_next == s->sym_end);
1143 }
1144