1// Copyright 2021-2024 The Khronos Group Inc. 2// 3// SPDX-License-Identifier: CC-BY-4.0 4 5= VK_KHR_video_encode_h264 6:toc: left 7:refpage: https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/ 8:sectnums: 9 10This document outlines a proposal to enable performing H.264/AVC video encode operations in Vulkan. 11 12== Problem Statement 13 14The `VK_KHR_video_queue` extension introduces support for video coding operations and the `VK_KHR_video_encode_queue` extension further extends this with APIs specific to video encoding. 15 16The goal of this proposal is to build upon this infrastructure to introduce support for encoding elementary video stream sequences compliant with the H.264/AVC video compression standard. 17 18 19== Solution Space 20 21As the `VK_KHR_video_queue` and `VK_KHR_video_encode_queue` extensions already laid down the architecture for how codec-specific video encode extensions need to be designed, this extension only needs to define the APIs to provide the necessary codec-specific parameters at various points during the use of the codec-independent APIs. In particular: 22 23 * APIs allowing to specify H.264 sequence and picture parameter sets (SPS, PPS) to be stored in video session parameters objects 24 * APIs allowing to specify H.264 information specific to the encoded picture, including references to previously stored SPS and PPS entries 25 * APIs allowing to specify H.264 reference picture information specific to the active reference pictures and optional reconstructed picture used in video encode operations 26 27Codec-specific encoding parameters are specified by the application through custom definitions provided by a video std header dedicated to H.264 video encoding. 28 29This proposal uses the common H.264 definitions first utilized by the `VK_KHR_video_decode_h264` extension and augments it with another video std header specific to H.264 encoding. Thus this extension uses the following video std headers: 30 31 * `vulkan_video_codec_h264std` - containing common definitions for all H.264 video coding operations 32 * `vulkan_video_codec_h264std_encode` - containing definitions specific to H.264 video encoding operations 33 34These headers can be included as follows: 35 36[source,c] 37---- 38#include <vk_video/vulkan_video_codec_h264std.h> 39#include <vk_video/vulkan_video_codec_h264std_encode.h> 40---- 41 42 43== Proposal 44 45=== Video Std Headers 46 47This extension uses the new `vulkan_video_codec_h264std_encode` video std header. Implementations must always support at least version 1.0.0 of this video std header. 48 49 50=== H.264 Encode Profiles 51 52This extension introduces the new video codec operation `VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR`. This flag can be used to check whether a particular queue family supports encoding H.264/AVC content, as returned in `VkQueueFamilyVideoPropertiesKHR`. 53 54An H.264 encode profile can be defined through a `VkVideoProfileInfoKHR` structure using this new video codec operation and by including the following new codec-specific profile information structure in the `pNext` chain: 55 56[source,c] 57---- 58typedef struct VkVideoEncodeH264ProfileInfoKHR { 59 VkStructureType sType; 60 const void* pNext; 61 StdVideoH264ProfileIdc stdProfileIdc; 62} VkVideoEncodeH264ProfileInfoKHR; 63---- 64 65`stdProfileIdc` specifies the H.264 profile indicator. 66 67 68=== H.264 Encode Capabilities 69 70Applications need to include the following new structure in the `pNext` chain of `VkVideoCapabilitiesKHR` when calling the `vkGetPhysicalDeviceVideoCapabilitiesKHR` command to retrieve the capabilities specific to H.264 video encoding: 71 72[source,c] 73---- 74typedef struct VkVideoEncodeH264CapabilitiesKHR { 75 VkStructureType sType; 76 void* pNext; 77 VkVideoEncodeH264CapabilityFlagsKHR flags; 78 StdVideoH264LevelIdc maxLevelIdc; 79 uint32_t maxSliceCount; 80 uint32_t maxPPictureL0ReferenceCount; 81 uint32_t maxBPictureL0ReferenceCount; 82 uint32_t maxL1ReferenceCount; 83 uint32_t maxTemporalLayerCount; 84 VkBool32 expectDyadicTemporalLayerPattern; 85 int32_t minQp; 86 int32_t maxQp; 87 VkBool32 prefersGopRemainingFrames; 88 VkBool32 requiresGopRemainingFrames; 89 VkVideoEncodeH264StdFlagsKHR stdSyntaxFlags; 90} VkVideoEncodeH264CapabilitiesKHR; 91---- 92 93`flags` indicates support for various H.264 encoding capabilities: 94 95 * `VK_VIDEO_ENCODE_H264_CAPABILITY_HRD_COMPLIANCE_BIT_KHR` - support for generating HRD compliant bitstreams when the related HRD parameters are present 96 * `VK_VIDEO_ENCODE_H264_CAPABILITY_PREDICTION_WEIGHT_TABLE_GENERATED_BIT_KHR` - support for generating the weight tables used by the encoding process, when necessary, instead of the application having to provide them 97 * `VK_VIDEO_ENCODE_H264_CAPABILITY_ROW_UNALIGNED_SLICE_BIT_KHR` - support for slices that do not start/finish at macroblock row boundaries 98 * `VK_VIDEO_ENCODE_H264_CAPABILITY_DIFFERENT_SLICE_TYPE_BIT_KHR` - support for different slice types within a frame 99 * `VK_VIDEO_ENCODE_H264_CAPABILITY_B_FRAME_IN_L0_LIST_BIT_KHR` - support for including B pictures in the L0 reference list 100 * `VK_VIDEO_ENCODE_H264_CAPABILITY_B_FRAME_IN_L1_LIST_BIT_KHR` - support for including B pictures in the L1 reference list 101 * `VK_VIDEO_ENCODE_H264_CAPABILITY_PER_PICTURE_TYPE_MIN_MAX_QP_BIT_KHR` - support for using different min/max QP values for each picture type when rate control is enabled 102 * `VK_VIDEO_ENCODE_H264_CAPABILITY_PER_SLICE_CONSTANT_QP_BIT_KHR` - support for using different constant QP values for each slice of a frame when rate control is disabled 103 * `VK_VIDEO_ENCODE_H264_CAPABILITY_GENERATE_PREFIX_NALU_BIT_KHR` - support for generating prefix NAL units 104 105`maxLevelIdc` indicates the maximum supported H.264 level indicator. 106 107`maxSliceCount` indicates the implementation's upper bound on the number of H.264 slices that an encoded frame can contain, although the actual maximum may be smaller for a given frame depending on its dimensions and some of the capability flags described earlier. 108 109`maxPPictureL0ReferenceCount`, `maxBPictureL0ReferenceCount`, and `maxL1ReferenceCount` indicate the maximum number of reference frames that the encoded frames can refer to through the L0 and L1 reference lists depending on the type of the picture (P or B), respectively. These capabilities do not restrict the number of references the application can include in the L0 and L1 reference lists as, in practice, implementations may restrict the effective number of used references based on the encoded content and/or the capabilities of the encoder implementation. However, they do indirectly indicate whether encoding P or B pictures are supported. In particular: 110 111 * If `maxPPictureL0ReferenceCount` is zero, then encoding P pictures is not supported by the implementation 112 * If both `maxBPictureL0ReferenceCount` and `maxL1ReferenceCount` are zero, then encoding B pictures is not supported by the implementation 113 114`maxTemporalLayerCount` indicates the number of supported H.264 temporal layers, while `expectDyadicTemporalLayerPattern` indicates whether the multi-layer rate control algorithm of the implementation (if support is indicated by `VkVideoEncodeCapabilitiesKHR::maxRateControlLayers` being greater than one for the given H.264 encode profile) expects the application to use a dyadic temporal layer pattern for accurate operation. 115 116`minQp` and `maxQp` indicate the supported range of QP values that can be used in the rate control configurations or as the constant QP to be used when rate control is disabled. 117 118`prefersGopRemainingFrames` and `requiresGopRemainingFrames` indicate whether the implementation prefers or requires, respectively, that the application track the remaining number of frames (for each type) in the current GOP (group of pictures), as some implementations may need this information for the accurate operation of their rate control algorithm. 119 120`stdSyntaxFlags` contains a set of flags that provide information to the application about which video std parameters or parameter values are supported to be used directly as specified by the application. These flags do not restrict what video std parameter values the application can specify, rather, they provide guarantees about respecting those. 121 122 123=== H.264 Encode Parameter Sets 124 125The use of video session parameters objects is mandatory when encoding H.264 video streams. Applications need to include the following new structure in the `pNext` chain of `VkVideoSessionParametersCreateInfoKHR` when creating video session parameters objects for H.264 encode use, to specify the parameter set capacity of the created objects: 126 127[source,c] 128---- 129typedef struct VkVideoEncodeH264SessionParametersCreateInfoKHR { 130 VkStructureType sType; 131 const void* pNext; 132 uint32_t maxStdSPSCount; 133 uint32_t maxStdPPSCount; 134 const VkVideoEncodeH264SessionParametersAddInfoKHR* pParametersAddInfo; 135} VkVideoEncodeH264SessionParametersCreateInfoKHR; 136---- 137 138The optional `pParametersAddInfo` member also allows specifying an initial set of parameter sets to add to the created object: 139 140[source,c] 141---- 142typedef struct VkVideoEncodeH264SessionParametersAddInfoKHR { 143 VkStructureType sType; 144 const void* pNext; 145 uint32_t stdSPSCount; 146 const StdVideoH264SequenceParameterSet* pStdSPSs; 147 uint32_t stdPPSCount; 148 const StdVideoH264PictureParameterSet* pStdPPSs; 149} VkVideoEncodeH264SessionParametersAddInfoKHR; 150---- 151 152This structure can also be included in the `pNext` chain of `VkVideoSessionParametersUpdateInfoKHR` used in video session parameters update operations to add further parameter sets to an object after its creation. 153 154Individual parameter sets are stored using parameter set IDs as their keys, specifically: 155 156 * H.264 SPS entries are identified using a `seq_parameter_set_id` value 157 * H.264 PPS entries are identified using a pair of `seq_parameter_set_id` and `pic_parameter_set_id` values 158 159The H.264/AVC video compression standard always requires an SPS and PPS, hence the application has to add an instance of each parameter set to the used parameters object before being able to record video encode operations. 160 161Furthermore, the H.264/AVC video compression standard also allows modifying existing parameter sets, but as parameters already stored in video session parameters objects cannot be changed in Vulkan, the application has to create new parameters objects in such cases, as described in the proposal for `VK_KHR_video_queue`. 162 163As implementations can override parameters in the SPS and PPS entries stored in video session parameters objects, as described in the proposal for `VK_KHR_video_encode_queue`, this proposal introduces additional structures specific to H.264 encode to be used with the `vkGetEncodedVideoSessionParametersKHR` command. 164 165First, the following new structure has to be included in the `pNext` chain of `VkVideoEncodeSessionParametersGetInfoKHR` to identify the H.264 parameter sets that the command is expected to return feedback information or encoded parameter set data for: 166 167[source,c] 168---- 169typedef struct VkVideoEncodeH264SessionParametersGetInfoKHR { 170 VkStructureType sType; 171 const void* pNext; 172 VkBool32 writeStdSPS; 173 VkBool32 writeStdPPS; 174 uint32_t stdSPSId; 175 uint32_t stdPPSId; 176} VkVideoEncodeH264SessionParametersGetInfoKHR; 177---- 178 179`writeStdSPS` and `writeStdPPS` specify whether SPS or PPS feedback/bitstream data is requested. Both can be requested, if needed. 180 181`stdSPSId` and `stdPPSId` are used to identify the SPS and/or PPS to request data for, the latter being relevant only for PPS queries. 182 183When requesting feedback using the `vkGetEncodedVideoSessionParametersKHR` command, the following new structure can be included in the `pNext` chain of `VkVideoEncodeSessionParametersFeedbackInfoKHR`: 184 185[source,c] 186---- 187typedef struct VkVideoEncodeH264SessionParametersFeedbackInfoKHR { 188 VkStructureType sType; 189 void* pNext; 190 VkBool32 hasStdSPSOverrides; 191 VkBool32 hasStdPPSOverrides; 192} VkVideoEncodeH264SessionParametersFeedbackInfoKHR; 193---- 194 195The resulting values of `hasStdSPSOverrides` and `hasStdPPSOverrides` indicate whether overrides were applied to the SPS and/or PPS, respectively, if the corresponding `writeStd` field was set in the input parameters. 196 197When requesting encoded bitstream data using the `vkGetEncodedVideoSessionParametersKHR` command, the output host data buffer will be filled with the encoded bitstream of the requested H.264 parameter sets. 198 199As described in great detail in the proposal for the `VK_KHR_video_encode_queue` extension, the application may have the option to encode the parameters otherwise stored in video session parameters object on its own. However, this may not result in a compliant bitstream if the implementation applied overrides to SPS or PPS parameters, thus it is generally recommended for applications to use the encoded parameter set data retrieved using the `vkGetEncodedVideoSessionParametersKHR` command. 200 201 202=== H.264 Encoding Parameters 203 204Encode parameters specific to H.264 need to be provided by the application through the `pNext` chain of `VkVideoEncodeInfoKHR`, using the following new structure: 205 206[source,c] 207---- 208typedef struct VkVideoEncodeH264PictureInfoKHR { 209 VkStructureType sType; 210 const void* pNext; 211 uint32_t naluSliceEntryCount; 212 const VkVideoEncodeH264NaluSliceInfoKHR* pNaluSliceEntries; 213 const StdVideoEncodeH264PictureInfo* pStdPictureInfo; 214 VkBool32 generatePrefixNalu; 215} VkVideoEncodeH264PictureInfoKHR; 216---- 217 218`naluSliceEntryCount` specifies the number of slices to encode for the frame and the elements of the `pNaluSliceEntries` array provide additional information for each slice, as described later. 219 220`pStdPictureInfo` points to the codec-specific encode parameters defined in the `vulkan_video_codec_h264std_encode` video std header. 221 222The active SPS and PPS (sourced from the bound video session parameters object) are identified by the `seq_parameter_set_id` and `pic_parameter_set_id` parameters. 223 224The structure pointed to by `pStdPictureInfo->pRefLists` specifies the codec-specific parameters related to the reference lists. In particular, it specifies the DPB slots corresponding to the elements of the L0 and L1 reference lists, as well as the reference picture marking and reference list modification operations. 225 226If the `VK_VIDEO_ENCODE_H264_CAPABILITY_GENERATE_PREFIX_NALU_BIT_KHR` capability flag is supported, `generatePrefixNalu` can be set to `VK_TRUE` to request the generation of prefix NAL units before each encoded slice. 227 228The parameters of individual slices are provided through instances of the following new structure: 229 230[source,c] 231---- 232typedef struct VkVideoEncodeH264NaluSliceInfoKHR { 233 VkStructureType sType; 234 const void* pNext; 235 int32_t constantQp; 236 const StdVideoEncodeH264SliceHeader* pStdSliceHeader; 237} VkVideoEncodeH264NaluSliceInfoKHR; 238---- 239 240`constantQp` specifies the constant QP value to use for the slice when rate control is disabled. 241 242`pStdSliceHeader` points to the codec-specific encode parameters to use in the slice header. 243 244Picture information specific to H.264 for the active reference pictures and the optional reconstructed picture need to be provided by the application through the `pNext` chain of corresponding elements of `VkVideoEncodeInfoKHR::pReferenceSlots` and the `pNext` chain of `VkVideoEncodeInfoKHR::pSetupReferenceSlot`, respectively, using the following new structure: 245 246[source,c] 247---- 248typedef struct VkVideoEncodeH264DpbSlotInfoKHR { 249 VkStructureType sType; 250 const void* pNext; 251 const StdVideoEncodeH264ReferenceInfo* pStdReferenceInfo; 252} VkVideoEncodeH264DpbSlotInfoKHR; 253---- 254 255`pStdReferenceInfo` points to the codec-specific reference picture parameters defined in the `vulkan_video_codec_h264std_encode` video std header. 256 257It is the application's responsibility to specify codec-specific parameters that are compliant to the rules defined by the H.264/AVC video compression standard. While it is not illegal, from the API usage's point of view, to specify non-compliant inputs, they may cause the video encode operation to complete unsuccessfully and will cause the output bitstream and the reconstructed picture, if one is specified, to have undefined contents after the execution of the operation. 258 259Implementations may override some of these parameters in order to conform to any restrictions of the encoder implementation, but that will not affect the overall operation of the encoding. The application has the option to also opt-in for additional optimizing overrides that can result in better performance or efficiency tailored to the usage scenario by creating the video session with the new `VK_VIDEO_SESSION_CREATE_ALLOW_ENCODE_PARAMETER_OPTIMIZATIONS_BIT_KHR` flag. 260 261For more information about individual H.264 bitstream syntax elements, derived values, and, in general, how to interpret these parameters, please refer to the corresponding sections of the https://www.itu.int/rec/T-REC-H.264-202108-I/[ITU-T H.264 Specification]. 262 263 264=== H.264 Reference Lists 265 266In order to populate the L0 and L1 reference lists used to encode predictive pictures, the application has to set the corresponding elements of the `RefPicList0` and `RefPicList1` array members of the structure pointed to by `VkVideoEncodeH264PictureInfoKHR::pStdPictureInfo->pRefLists` to the DPB slot indices of the reference pictures, while all unused elements of `RefPicList0` and `RefPicList1` have to be set to `STD_VIDEO_H264_NO_REFERENCE_PICTURE`. As usual, the reference picture resources are specified by including them in the list of active reference pictures according to the codec-independent semantics defined by the `VK_KHR_video_encode_queue` extension. 267 268In all cases the set of DPB slot indices referenced by the L0 and L1 reference lists and the list of active reference pictures specified in `VkVideoEncodeInfoKHR::pReferenceSlots` must match, but the order in which the active reference pictures are included in the `pReferenceSlots` array does not matter. 269 270 271=== H.264 Rate Control 272 273This proposal adds a set of optional rate control parameters specific to H.264 encoding that provide additional guidance to the implementation's rate control algorithm. 274 275When rate control is not disabled and not set to implementation-default behavior, the application can include the following new structure in the `pNext` chain of `VkVideoEncodeRateControlInfoKHR`: 276 277[source,c] 278---- 279typedef struct VkVideoEncodeH264RateControlInfoKHR { 280 VkStructureType sType; 281 const void* pNext; 282 VkVideoEncodeH264RateControlFlagsKHR flags; 283 uint32_t gopFrameCount; 284 uint32_t idrPeriod; 285 uint32_t consecutiveBFrameCount; 286 uint32_t temporalLayerCount; 287} VkVideoEncodeH264RateControlInfoKHR; 288---- 289 290`flags` can include one or more of the following flags: 291 292 * `VK_VIDEO_ENCODE_H264_RATE_CONTROL_ATTEMPT_HRD_COMPLIANCE_BIT_KHR` can be used to indicate that the application would like the implementation's rate control algorithm to attempt to produce an HRD compliant bitstream when possible 293 * `VK_VIDEO_ENCODE_H264_RATE_CONTROL_REGULAR_GOP_BIT_KHR` can be used to indicate that the application intends to use a regular GOP structure according to the parameters specified in `gopFrameCount`, `idrPeriod`, and `consecutiveBFrameCount` 294 * `VK_VIDEO_ENCODE_H264_RATE_CONTROL_REFERENCE_PATTERN_FLAT_BIT_KHR` can be used to indicate that the application intends to follow a flat reference pattern in the GOP where each P frame uses the last non-B frame as reference, and each B frame uses the last and next non-B frame as forward and backward references, respectively 295 * `VK_VIDEO_ENCODE_H264_RATE_CONTROL_REFERENCE_PATTERN_DYADIC_BIT_KHR` can be used to indicate that the application intends to follow a dyadic reference pattern 296 * `VK_VIDEO_ENCODE_H264_RATE_CONTROL_TEMPORAL_LAYER_PATTERN_DYADIC_BIT_KHR` can be used to indicate that the application intends to follow a dyadic temporal layer pattern when using multiple temporal layers 297 298`gopFrameCount`, `idrPeriod`, and `consecutiveBFrameCount` specify the GOP size, IDR period, and the number of consecutive B frames between non-B frames, respectively, that define the typical structure of the GOP the implementation's rate control algorithm should expect. If `VK_VIDEO_ENCODE_H264_RATE_CONTROL_REGULAR_GOP_BIT_KHR` is also specified in `flags`, the implementation will expect all GOPs to follow this structure, while otherwise it may assume that the application will diverge from these values from time to time. If any of these values are zero, then the implementation's rate control algorithm will not make any assumptions about the corresponding parameter of the GOP structure. 299 300`temporalLayerCount` indicates the number of H.264 temporal layers that the application intends to use and it is expected to match the number of rate control layers when multi-layer rate control is used. 301 302The following new structure can be included in the `pNext` chain of `VkVideoEncodeRateControlLayerInfoKHR` to specify additional per-rate-control-layer guidance parameters specific to H.264 encode: 303 304[source,c] 305---- 306typedef struct VkVideoEncodeH264RateControlLayerInfoKHR { 307 VkStructureType sType; 308 const void* pNext; 309 VkBool32 useMinQp; 310 VkVideoEncodeH264QpKHR minQp; 311 VkBool32 useMaxQp; 312 VkVideoEncodeH264QpKHR maxQp; 313 VkBool32 useMaxFrameSize; 314 VkVideoEncodeH264FrameSizeKHR maxFrameSize; 315} VkVideoEncodeH264RateControlLayerInfoKHR; 316---- 317 318When `useMinQp` is set to `VK_TRUE`, `minQp` specifies the lower bound on the QP values, for each picture type, that the implementation's rate control algorithm should use. Similarly, when `useMaxQp` is set to `VK_TRUE`, `maxQp` specifies the upper bound on the QP values. 319 320When `useMaxFrameSize` is set to `VK_TRUE`, `maxFrameSize` specifies the maximum frame size in bytes, for each picture type, that the implementation's rate control algorithm should target. 321 322Some implementations may benefit from or require additional guidance on the remaining number of frames in the currently encoded GOP, as indicated by the `prefersGopRemainingFrames` and `requiresGopRemainingFrames` capabilities, respectively. This may be the case either due to the implementation not being able to track the current position of the encoded stream within the GOP, or because the implementation may be able to use this information to better react to dynamic changes to the GOP structure. This proposal solves this by introducing the following new structure that can be included in the `pNext` chain of `VkVideoBeginCodingInfoKHR`: 323 324[source,c] 325---- 326typedef struct VkVideoEncodeH264GopRemainingFrameInfoKHR { 327 VkStructureType sType; 328 const void* pNext; 329 VkBool32 useGopRemainingFrames; 330 uint32_t gopRemainingI; 331 uint32_t gopRemainingP; 332 uint32_t gopRemainingB; 333} VkVideoEncodeH264GopRemainingFrameInfoKHR; 334---- 335 336When `useGopRemainingFrames` is set to `VK_TRUE`, the implementation's rate control algorithm may use the values specified in `gopRemainingI`, `gopRemainingP`, and `gopRemainingB` as a guidance on the number of remaining frames of the corresponding type in the currently encoded GOP. 337 338 339== Examples 340 341=== Select queue family with H.264 encode support 342 343[source,c] 344---- 345uint32_t queueFamilyIndex; 346uint32_t queueFamilyCount; 347 348vkGetPhysicalDeviceQueueFamilyProperties2(physicalDevice, &queueFamilyCount, NULL); 349 350VkQueueFamilyProperties2* props = calloc(queueFamilyCount, 351 sizeof(VkQueueFamilyProperties2)); 352VkQueueFamilyVideoPropertiesKHR* videoProps = calloc(queueFamilyCount, 353 sizeof(VkQueueFamilyVideoPropertiesKHR)); 354 355for (queueFamilyIndex = 0; queueFamilyIndex < queueFamilyCount; ++queueFamilyIndex) { 356 props[queueFamilyIndex].sType = VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2; 357 props[queueFamilyIndex].pNext = &videoProps[queueFamilyIndex]; 358 359 videoProps[queueFamilyIndex].sType = VK_STRUCTURE_TYPE_QUEUE_FAMILY_VIDEO_PROPERTIES_KHR; 360} 361 362vkGetPhysicalDeviceQueueFamilyProperties2(physicalDevice, &queueFamilyCount, props); 363 364for (queueFamilyIndex = 0; queueFamilyIndex < queueFamilyCount; ++queueFamilyIndex) { 365 if ((props[queueFamilyIndex].queueFamilyProperties.queueFlags & VK_QUEUE_VIDEO_ENCODE_BIT_KHR) != 0 && 366 (videoProps[queueFamilyIndex].videoCodecOperations & VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR) != 0) { 367 break; 368 } 369} 370 371if (queueFamilyIndex < queueFamilyCount) { 372 // Found appropriate queue family 373 ... 374} else { 375 // Did not find a queue family with the needed capabilities 376 ... 377} 378---- 379 380 381=== Check support and query the capabilities for an H.264 encode profile 382 383[source,c] 384---- 385VkResult result; 386 387VkVideoEncodeH264ProfileInfoKHR encodeH264ProfileInfo = { 388 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_PROFILE_INFO_KHR, 389 .pNext = NULL, 390 .stdProfileIdc = STD_VIDEO_H264_PROFILE_IDC_BASELINE 391}; 392 393VkVideoProfileInfoKHR profileInfo = { 394 .sType = VK_STRUCTURE_TYPE_VIDEO_PROFILE_INFO_KHR, 395 .pNext = &encodeH264ProfileInfo, 396 .videoCodecOperation = VK_VIDEO_CODEC_OPERATION_ENCODE_H264_BIT_KHR, 397 .chromaSubsampling = VK_VIDEO_CHROMA_SUBSAMPLING_420_BIT_KHR, 398 .lumaBitDepth = VK_VIDEO_COMPONENT_BIT_DEPTH_8_BIT_KHR, 399 .chromaBitDepth = VK_VIDEO_COMPONENT_BIT_DEPTH_8_BIT_KHR 400}; 401 402VkVideoEncodeH264CapabilitiesKHR encodeH264Capabilities = { 403 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_CAPABILITIES_KHR, 404 .pNext = NULL, 405}; 406 407VkVideoEncodeCapabilitiesKHR encodeCapabilities = { 408 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_CAPABILITIES_KHR, 409 .pNext = &encodeH264Capabilities 410} 411 412VkVideoCapabilitiesKHR capabilities = { 413 .sType = VK_STRUCTURE_TYPE_VIDEO_CAPABILITIES_KHR, 414 .pNext = &encodeCapabilities 415}; 416 417result = vkGetPhysicalDeviceVideoCapabilitiesKHR(physicalDevice, &profileInfo, &capabilities); 418 419if (result == VK_SUCCESS) { 420 // Profile is supported, check additional capabilities 421 ... 422} else { 423 // Profile is not supported, result provides additional information about why 424 ... 425} 426---- 427 428=== Create and update H.264 video session parameters objects 429 430[source,c] 431---- 432VkVideoSessionParametersKHR videoSessionParams = VK_NULL_HANDLE; 433 434VkVideoEncodeH264SessionParametersCreateInfoKHR encodeH264CreateInfo = { 435 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_PARAMETERS_CREATE_INFO_KHR, 436 .pNext = NULL, 437 .maxStdSPSCount = ... // SPS capacity 438 .maxStdPPSCount = ... // PPS capacity 439 .pParametersAddInfo = ... // parameters to add at creation time or NULL 440}; 441 442VkVideoSessionParametersCreateInfoKHR createInfo = { 443 .sType = VK_STRUCTURE_TYPE_VIDEO_SESSION_PARAMETERS_CREATE_INFO_KHR, 444 .pNext = &encodeH264CreateInfo, 445 .flags = 0, 446 .videoSessionParametersTemplate = ... // template to use or VK_NULL_HANDLE 447 .videoSession = videoSession 448}; 449 450vkCreateVideoSessionParametersKHR(device, &createInfo, NULL, &videoSessionParams); 451 452... 453 454StdVideoH264SequenceParameterSet sps = {}; 455// parse and populate SPS parameters 456... 457 458StdVideoH264PictureParameterSet pps = {}; 459// parse and populate PPS parameters 460... 461 462VkVideoEncodeH264SessionParametersAddInfoKHR encodeH264AddInfo = { 463 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_SESSION_PARAMETERS_ADD_INFO_KHR, 464 .pNext = NULL, 465 .stdSPSCount = 1, 466 .pStdSPSs = &sps, 467 .stdPPSCount = 1, 468 .pStdPPSs = &pps 469}; 470 471VkVideoSessionParametersUpdateInfoKHR updateInfo = { 472 .sType = VK_STRUCTURE_TYPE_VIDEO_SESSION_PARAMETERS_UPDATE_INFO_KHR, 473 .pNext = &encodeH264AddInfo, 474 .updateSequenceCount = 1 // incremented for each subsequent update 475}; 476 477vkUpdateVideoSessionParametersKHR(device, &videoSessionParams, &updateInfo); 478---- 479 480 481=== Record H.264 encode operation producing an I frame that is also set up as a reference 482 483[source,c] 484---- 485// Bound reference resource list provided has to include reconstructed picture resource 486vkCmdBeginVideoCodingKHR(commandBuffer, ...); 487 488StdVideoEncodeH264ReferenceInfo stdReferenceInfo = {}; 489// Populate H.264 reference picture info for the reconstructed picture 490stdReferenceInfo.primary_pic_type = STD_VIDEO_H264_PICTURE_TYPE_I; 491... 492 493VkVideoEncodeH264DpbSlotInfoKHR encodeH264DpbSlotInfo = { 494 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_DPB_SLOT_INFO_KHR, 495 .pNext = NULL, 496 .pStdReferenceInfo = &stdReferenceInfo 497}; 498 499VkVideoReferenceSlotInfoKHR setupSlotInfo = { 500 .sType = VK_STRUCTURE_TYPE_VIDEO_REFERENCE_SLOT_INFO_KHR, 501 .pNext = &encodeH264DpbSlotInfo 502 ... 503}; 504 505StdVideoEncodeH264ReferenceListsInfo stdRefListInfo = {}; 506// No references are used so just initialize the RefPicLists 507for (uint32_t i = 0; i < STD_VIDEO_H264_MAX_NUM_LIST_REF; ++i) { 508 stdRefListInfo.RefPicList0[i] = STD_VIDEO_H264_NO_REFERENCE_PICTURE; 509 stdRefListInfo.RefPicList1[i] = STD_VIDEO_H264_NO_REFERENCE_PICTURE; 510} 511// Populate H.264 reference list modification/marking ops and other parameters 512... 513 514StdVideoEncodeH264PictureInfo stdPictureInfo = {}; 515// Populate H.264 picture info for the encode input picture 516... 517// Make sure that the reconstructed picture is requested to be set up as reference 518stdPictureInfo.flags.is_reference = 1; 519... 520stdPictureInfo.primary_pic_type = STD_VIDEO_H264_PICTURE_TYPE_I; 521... 522stdPictureInfo.pRefLists = &stdRefListInfo; 523 524VkVideoEncodeH264PictureInfoKHR encodeH264PictureInfo = { 525 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_PICTURE_INFO_KHR, 526 .pNext = NULL, 527 .naluSliceEntryCount = ... // number of slices to encode 528 .pNaluSliceEntries = ... // pointer to the array of slice parameters 529 .pStdPictureInfo = &stdPictureInfo 530}; 531 532VkVideoEncodeInfoKHR encodeInfo = { 533 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_INFO_KHR, 534 .pNext = &encodeH264PictureInfo, 535 ... 536 .pSetupReferenceSlot = &setupSlotInfo, 537 ... 538}; 539 540vkCmdEncodeVideoKHR(commandBuffer, &encodeInfo); 541 542vkCmdEndVideoCodingKHR(commandBuffer, ...); 543---- 544 545 546=== Record H.264 encode operation producing a P frame with a single backward reference 547 548[source,c] 549---- 550// Bound reference resource list provided has to include the used reference picture resource 551vkCmdBeginVideoCodingKHR(commandBuffer, ...); 552 553StdVideoEncodeH264ReferenceInfo stdBackwardReferenceInfo = {}; 554// Populate H.264 reference picture info for the backward referenced picture 555... 556 557VkVideoEncodeH264DpbSlotInfoKHR encodeH264DpbSlotInfo = { 558 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_DPB_SLOT_INFO_KHR, 559 .pNext = NULL, 560 .pStdReferenceInfo = &stdBackwardReferenceInfo 561}; 562 563VkVideoReferenceSlotInfoKHR referenceSlotInfo = { 564 .sType = VK_STRUCTURE_TYPE_VIDEO_REFERENCE_SLOT_INFO_KHR, 565 .pNext = &encodeH264DpbSlotInfo, 566 .slotIndex = ... // DPB slot index of the backward reference picture 567 ... 568}; 569 570StdVideoEncodeH264ReferenceListsInfo stdRefListInfo = {}; 571// Initialize the RefPicLists and add the backward reference to the L0 list 572for (uint32_t i = 0; i < STD_VIDEO_H264_MAX_NUM_LIST_REF; ++i) { 573 stdRefListInfo.RefPicList0[i] = STD_VIDEO_H264_NO_REFERENCE_PICTURE; 574 stdRefListInfo.RefPicList1[i] = STD_VIDEO_H264_NO_REFERENCE_PICTURE; 575} 576stdRefListInfo.RefPicList0[0] = ... // DPB slot index of the backward reference picture 577// Populate H.264 reference list modification/marking ops and other parameters 578... 579 580StdVideoEncodeH264PictureInfo stdPictureInfo = {}; 581// Populate H.264 picture info for the encode input picture 582... 583stdPictureInfo.primary_pic_type = STD_VIDEO_H264_PICTURE_TYPE_P; 584... 585stdPictureInfo.pRefLists = &stdRefListInfo; 586 587VkVideoEncodeH264PictureInfoKHR encodeH264PictureInfo = { 588 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_PICTURE_INFO_KHR, 589 .pNext = NULL, 590 .naluSliceEntryCount = ... // number of slices to encode 591 .pNaluSliceEntries = ... // pointer to the array of slice parameters 592 .pStdPictureInfo = &stdPictureInfo 593}; 594 595VkVideoEncodeInfoKHR encodeInfo = { 596 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_INFO_KHR, 597 .pNext = &encodeH264PictureInfo, 598 ... 599 .referenceSlotCount = 1, 600 .pReferenceSlots = &referenceSlotInfo 601}; 602 603vkCmdEncodeVideoKHR(commandBuffer, &encodeInfo); 604 605vkCmdEndVideoCodingKHR(commandBuffer, ...); 606---- 607 608 609=== Record H.264 encode operation producing a B frame with a forward and a backward reference 610 611[source,c] 612---- 613// Bound reference resource list provided has to include the used reference picture resources 614vkCmdBeginVideoCodingKHR(commandBuffer, ...); 615 616StdVideoEncodeH264ReferenceInfo stdBackwardReferenceInfo = {}; 617// Populate H.264 reference picture info for the backward referenced picture 618... 619 620StdVideoEncodeH264ReferenceInfo stdForwardReferenceInfo = {}; 621// Populate H.264 reference picture info for the forward referenced picture 622... 623 624VkVideoEncodeH264DpbSlotInfoKHR encodeH264DpbSlotInfo[] = { 625 { 626 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_DPB_SLOT_INFO_KHR, 627 .pNext = NULL, 628 .pStdReferenceInfo = &stdBackwardReferenceInfo 629 }, 630 { 631 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_DPB_SLOT_INFO_KHR, 632 .pNext = NULL, 633 .pStdReferenceInfo = &stdForwardReferenceInfo 634 } 635}; 636 637VkVideoReferenceSlotInfoKHR referenceSlotInfo[] = { 638 { 639 .sType = VK_STRUCTURE_TYPE_VIDEO_REFERENCE_SLOT_INFO_KHR, 640 .pNext = &encodeH264DpbSlotInfo[0], 641 .slotIndex = ... // DPB slot index of the backward reference picture 642 ... 643 }, 644 { 645 .sType = VK_STRUCTURE_TYPE_VIDEO_REFERENCE_SLOT_INFO_KHR, 646 .pNext = &encodeH264DpbSlotInfo[1], 647 .slotIndex = ... // DPB slot index of the forward reference picture 648 ... 649 } 650}; 651 652StdVideoEncodeH264ReferenceListsInfo stdRefListInfo = {}; 653// Initialize the RefPicLists, add the backward reference to the L0 list, 654// and add the forward reference to the L1 list 655for (uint32_t i = 0; i < STD_VIDEO_H264_MAX_NUM_LIST_REF; ++i) { 656 stdRefListInfo.RefPicList0[i] = STD_VIDEO_H264_NO_REFERENCE_PICTURE; 657 stdRefListInfo.RefPicList1[i] = STD_VIDEO_H264_NO_REFERENCE_PICTURE; 658} 659stdRefListInfo.RefPicList0[0] = ... // DPB slot index of the backward reference picture 660stdRefListInfo.RefPicList1[0] = ... // DPB slot index of the forward reference picture 661// Populate H.264 reference list modification/marking ops and other parameters 662... 663 664StdVideoEncodeH264PictureInfo stdPictureInfo = {}; 665// Populate H.264 picture info for the encode input picture 666... 667stdPictureInfo.primary_pic_type = STD_VIDEO_H264_PICTURE_TYPE_B; 668... 669stdPictureInfo.pRefLists = &stdRefListInfo; 670 671VkVideoEncodeH264PictureInfoKHR encodeH264PictureInfo = { 672 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_PICTURE_INFO_KHR, 673 .pNext = NULL, 674 .naluSliceEntryCount = ... // number of slices to encode 675 .pNaluSliceEntries = ... // pointer to the array of slice parameters 676 .pStdPictureInfo = &stdPictureInfo 677}; 678 679VkVideoEncodeInfoKHR encodeInfo = { 680 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_INFO_KHR, 681 .pNext = &encodeH264PictureInfo, 682 ... 683 .referenceSlotCount = sizeof(referenceSlotInfo) / sizeof(referenceSlotInfo[0]), 684 .pReferenceSlots = &referenceSlotInfo[0] 685}; 686 687vkCmdEncodeVideoKHR(commandBuffer, &encodeInfo); 688 689vkCmdEndVideoCodingKHR(commandBuffer, ...); 690---- 691 692 693=== Change the rate control configuration of an H.264 encode session with optional H.264 controls 694 695[source,c] 696---- 697vkCmdBeginVideoCodingKHR(commandBuffer, ...); 698 699// Include the optional H.264 rate control layer information 700// In this example we restrict the QP range to be used by the implementation 701VkVideoEncodeH264RateControlLayerInfoKHR rateControlLayersH264[] = { 702 { 703 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_RATE_CONTROL_LAYER_INFO_KHR, 704 .pNext = NULL, 705 .useMinQp = VK_TRUE, 706 .minQp = { /* min I frame QP */, /* min P frame QP */, /* min B frame QP */ }, 707 .useMaxQp = VK_TRUE, 708 .minQp = { /* max I frame QP */, /* max P frame QP */, /* max B frame QP */ }, 709 .useMaxFrameSize = VK_FALSE, 710 .maxFrameSize = { 0, 0, 0 } 711 }, 712 ... 713}; 714 715VkVideoEncodeRateControlLayerInfoKHR rateControlLayers[] = { 716 { 717 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_RATE_CONTROL_LAYER_INFO_KHR, 718 .pNext = &rateControlLayersH264[0], 719 ... 720 }, 721 ... 722}; 723 724// Include the optional H.264 global rate control information 725VkVideoEncodeH264RateControlInfoKHR rateControlInfoH264 = { 726 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_H264_RATE_CONTROL_INFO_KHR, 727 .pNext = NULL, 728 .flags = VK_VIDEO_ENCODE_H264_RATE_CONTROL_REGULAR_GOP_BIT_KHR // Indicate the use of a regular GOP structure... 729 | VK_VIDEO_ENCODE_H264_RATE_CONTROL_TEMPORAL_LAYER_PATTERN_DYADIC_BIT_KHR, // ... and a dyadic temporal layer pattern 730 // Indicate a GOP structure of the form IBBBPBBBPBBBI with an IDR frame at the beginning of every 10th GOP 731 .gopFrameCount = 12, 732 .idrPeriod = 120, 733 .consecutiveBFrameCount = 3, 734 // This example uses multiple temporal layers with per layer rate control 735 .temporalLayerCount = sizeof(rateControlLayers) / sizeof(rateControlLayers[0]) 736}; 737 738VkVideoEncodeRateControlInfoKHR rateControlInfo = { 739 .sType = VK_STRUCTURE_TYPE_VIDEO_ENCODE_RATE_CONTROL_INFO_KHR, 740 .pNext = &rateControlInfoH264, 741 ... 742 .layerCount = sizeof(rateControlLayers) / sizeof(rateControlLayers[0]), 743 .pLayers = rateControlLayers, 744 ... 745}; 746 747// Change the rate control configuration for the video session 748VkVideoCodingControlInfoKHR controlInfo = { 749 .sType = VK_STRUCTURE_TYPE_VIDEO_CODING_CONTROL_INFO_KHR, 750 .pNext = &rateControlInfo, 751 .flags = VK_VIDEO_CODING_CONTROL_ENCODE_RATE_CONTROL_BIT_KHR 752}; 753 754vkCmdControlVideoCodingKHR(commandBuffer, &controlInfo); 755 756... 757 758vkCmdEndVideoCodingKHR(commandBuffer, ...); 759---- 760 761 762== Issues 763 764=== RESOLVED: In what form should codec-specific parameters be provided? 765 766In the form of structures defined by the `vulkan_video_codec_h264std_encode` and `vulkan_video_codec_h264std` video std headers. Applications are responsible to populate the structures defined by the video std headers. It is also the application's responsibility to maintain and manage these data structures, as needed, to be able to provide them as inputs to video encode operations where needed. 767 768 769=== RESOLVED: Why the `vulkan_video_codec_h264std` video std header does not have a version number? 770 771The `vulkan_video_codec_h264std` video std header was introduced to share common definitions used in both H.264/AVC video decoding and video encoding, as the two functionalities were designed in parallel. However, as no video coding extension uses this video std header directly, only as a dependency of the video std header specific to the particular video coding operation, no separate versioning scheme was deemed necessary. 772 773 774=== RESOLVED: What are the requirements for the codec-specific input parameters? 775 776It is legal from an API usage perspective for the application to provide any values for the codec-specific input parameters (parameter sets, picture information, etc.). However, if the input data does not conform to the requirements of the H.264/AVC video compression standard, then video encode operations may complete unsuccessfully and, in general, the outputs produced by the video encode operation will have undefined contents. 777 778In addition, certain commands may return the `VK_ERROR_INVALID_VIDEO_STD_PARAMETERS_KHR` error if any of the specified codec-specific parameters do not adhere to the syntactic or semantic requirements of the H.264/AVC video compression standard or if values derived from parameters according to the rules defined by the H.264/AVC video compression standard do not adhere to the capabilities of the H.264/AVC video compression standard or the implementation. In particular, in this extension the following commands may return this error code: 779 780 * `vkCreateVideoSessionParametersKHR` or `vkUpdateVideoSessionParametersKHR` - if the specified parameter sets are invalid according to these rules 781 * `vkEndCommandBuffer` - if the codec-specific picture information provided to video encode operations are invalid according to these rules 782 783Generating errors in the cases above, however, is not required so applications should not rely on receiving an error code for the purposes of verifying the correctness of the used codec-specific parameters. 784 785 786=== RESOLVED: Are interlaced frames supported? 787 788No. Encoding interlaced H.264 content does not seem like an important use case to support. 789 790 791=== RESOLVED: Do we want to allow the application to specify separate reference lists for each slice? 792 793Not in this extension. While the H.264/AVC video compression standard seems to support this, such flexibility is not exposed here for the sake of simplicity. If the need arises to support per slice reference lists operations, a layered extension can introduce the necessary APIs to enable it. 794 795 796=== RESOLVED: Are prefix NAL units generated by the implementation when multiple temporal layers are used? 797 798Only when the `VK_VIDEO_ENCODE_H264_CAPABILITY_GENERATE_PREFIX_NALU_BIT_KHR` capability flag is supported by the implementation and the application explicitly requests the generation of prefix NAL units using the `generatePrefixNalu` parameter. 799 800If an application intends to use multiple temporal layers on an implementation that does not support the generation of prefix NALU units, then the application is responsible for inserting those into the final bitstream. 801 802 803=== RESOLVED: What codec-specific parameters are guaranteed to not be overridden by implementations? 804 805This proposal only requires that implementations do not override the `primary_pic_type` and `slice_type` parameters, as the used picture and slice types are fundamental to the general operation of H.264 encoding. In addition, bits set in the `stdSyntaxFlags` capability provide additional guarantees about other Video Std parameters that the implementation will use without overriding them. No further restrictions are included in this extension regarding codec-specific parameter overrides, however, future extensions may include capability flags providing additional guarantees based on the needs of the users of the API. 806 807 808=== RESOLVED: How is reference picture setup requested for H.264 encode operations? 809 810As specifying a reconstructed picture DPB slot and resource is always required per the latest revision of the video extensions, additional codec syntax controls whether reference picture setup is requested and, in response, the DPB slot is activated with the reconstructed picture. 811 812For H.264 encode, reference picture setup is requested and the DPB slot specified for the reconstructed picture is activated with the picture if and only if the `StdVideoEncodeH264PictureInfo::flags.is_reference` flag is set. 813 814 815== Further Functionality 816 817Future extensions can further extend the capabilities provided here, e.g. exposing support for encode modes allowing per-slice input and/or output. 818