1 // Copyright 2014, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 // * Redistributions of source code must retain the above copyright notice,
8 // this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above copyright notice,
10 // this list of conditions and the following disclaimer in the documentation
11 // and/or other materials provided with the distribution.
12 // * Neither the name of ARM Limited nor the names of its contributors may be
13 // used to endorse or promote products derived from this software without
14 // specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 #include "test-utils-aarch64.h"
28
29 #include <cmath>
30 #include <queue>
31
32 #include "test-runner.h"
33
34 #include "../test/aarch64/test-simulator-inputs-aarch64.h"
35 #include "aarch64/cpu-aarch64.h"
36 #include "aarch64/disasm-aarch64.h"
37 #include "aarch64/macro-assembler-aarch64.h"
38 #include "aarch64/simulator-aarch64.h"
39
40 #define __ masm->
41
42 namespace vixl {
43 namespace aarch64 {
44
45
46 // This value is a signalling NaN as FP64, and also as FP32 or FP16 (taking the
47 // least-significant bits).
48 const double kFP64SignallingNaN = RawbitsToDouble(UINT64_C(0x7ff000007f807c01));
49 const float kFP32SignallingNaN = RawbitsToFloat(0x7f807c01);
50 const Float16 kFP16SignallingNaN = RawbitsToFloat16(0x7c01);
51
52 // A similar value, but as a quiet NaN.
53 const double kFP64QuietNaN = RawbitsToDouble(UINT64_C(0x7ff800007fc07e01));
54 const float kFP32QuietNaN = RawbitsToFloat(0x7fc07e01);
55 const Float16 kFP16QuietNaN = RawbitsToFloat16(0x7e01);
56
57
Equal32(uint32_t expected, const RegisterDump*, uint32_t result)58 bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) {
59 if (result != expected) {
60 printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
61 expected,
62 result);
63 }
64
65 return expected == result;
66 }
67
68
Equal64(uint64_t reference, const RegisterDump*, uint64_t result, ExpectedResult option)69 bool Equal64(uint64_t reference,
70 const RegisterDump*,
71 uint64_t result,
72 ExpectedResult option) {
73 switch (option) {
74 case kExpectEqual:
75 if (result != reference) {
76 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
77 reference,
78 result);
79 }
80 break;
81 case kExpectNotEqual:
82 if (result == reference) {
83 printf("Expected a result not equal to 0x%016" PRIx64 "\n", reference);
84 }
85 break;
86 }
87
88 return reference == result;
89 }
90
91
Equal128(QRegisterValue expected, const RegisterDump*, QRegisterValue result)92 bool Equal128(QRegisterValue expected,
93 const RegisterDump*,
94 QRegisterValue result) {
95 if (!expected.Equals(result)) {
96 printf("Expected 0x%016" PRIx64 "%016" PRIx64
97 "\t "
98 "Found 0x%016" PRIx64 "%016" PRIx64 "\n",
99 expected.GetLane<uint64_t>(1),
100 expected.GetLane<uint64_t>(0),
101 result.GetLane<uint64_t>(1),
102 result.GetLane<uint64_t>(0));
103 }
104
105 return expected.Equals(result);
106 }
107
108
EqualFP16(Float16 expected, const RegisterDump*, Float16 result)109 bool EqualFP16(Float16 expected, const RegisterDump*, Float16 result) {
110 uint16_t e_rawbits = Float16ToRawbits(expected);
111 uint16_t r_rawbits = Float16ToRawbits(result);
112 if (e_rawbits == r_rawbits) {
113 return true;
114 } else {
115 if (IsNaN(expected) || IsZero(expected)) {
116 printf("Expected 0x%04" PRIx16 "\t Found 0x%04" PRIx16 "\n",
117 e_rawbits,
118 r_rawbits);
119 } else {
120 printf("Expected %.6f (16 bit): (0x%04" PRIx16
121 ")\t "
122 "Found %.6f (0x%04" PRIx16 ")\n",
123 FPToFloat(expected, kIgnoreDefaultNaN),
124 e_rawbits,
125 FPToFloat(result, kIgnoreDefaultNaN),
126 r_rawbits);
127 }
128 return false;
129 }
130 }
131
132
EqualFP32(float expected, const RegisterDump*, float result)133 bool EqualFP32(float expected, const RegisterDump*, float result) {
134 if (FloatToRawbits(expected) == FloatToRawbits(result)) {
135 return true;
136 } else {
137 if (IsNaN(expected) || (expected == 0.0)) {
138 printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
139 FloatToRawbits(expected),
140 FloatToRawbits(result));
141 } else {
142 printf("Expected %.9f (0x%08" PRIx32
143 ")\t "
144 "Found %.9f (0x%08" PRIx32 ")\n",
145 expected,
146 FloatToRawbits(expected),
147 result,
148 FloatToRawbits(result));
149 }
150 return false;
151 }
152 }
153
154
EqualFP64(double expected, const RegisterDump*, double result)155 bool EqualFP64(double expected, const RegisterDump*, double result) {
156 if (DoubleToRawbits(expected) == DoubleToRawbits(result)) {
157 return true;
158 }
159
160 if (IsNaN(expected) || (expected == 0.0)) {
161 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
162 DoubleToRawbits(expected),
163 DoubleToRawbits(result));
164 } else {
165 printf("Expected %.17f (0x%016" PRIx64
166 ")\t "
167 "Found %.17f (0x%016" PRIx64 ")\n",
168 expected,
169 DoubleToRawbits(expected),
170 result,
171 DoubleToRawbits(result));
172 }
173 return false;
174 }
175
176
Equal32(uint32_t expected, const RegisterDump* core, const Register& reg)177 bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) {
178 VIXL_ASSERT(reg.Is32Bits());
179 // Retrieve the corresponding X register so we can check that the upper part
180 // was properly cleared.
181 int64_t result_x = core->xreg(reg.GetCode());
182 if ((result_x & 0xffffffff00000000) != 0) {
183 printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n",
184 expected,
185 result_x);
186 return false;
187 }
188 uint32_t result_w = core->wreg(reg.GetCode());
189 return Equal32(expected, core, result_w);
190 }
191
192
Equal64(uint64_t reference, const RegisterDump* core, const Register& reg, ExpectedResult option)193 bool Equal64(uint64_t reference,
194 const RegisterDump* core,
195 const Register& reg,
196 ExpectedResult option) {
197 VIXL_ASSERT(reg.Is64Bits());
198 uint64_t result = core->xreg(reg.GetCode());
199 return Equal64(reference, core, result, option);
200 }
201
202
NotEqual64(uint64_t reference, const RegisterDump* core, const Register& reg)203 bool NotEqual64(uint64_t reference,
204 const RegisterDump* core,
205 const Register& reg) {
206 VIXL_ASSERT(reg.Is64Bits());
207 uint64_t result = core->xreg(reg.GetCode());
208 return NotEqual64(reference, core, result);
209 }
210
211
Equal128(uint64_t expected_h, uint64_t expected_l, const RegisterDump* core, const VRegister& vreg)212 bool Equal128(uint64_t expected_h,
213 uint64_t expected_l,
214 const RegisterDump* core,
215 const VRegister& vreg) {
216 VIXL_ASSERT(vreg.Is128Bits());
217 QRegisterValue expected;
218 expected.SetLane(0, expected_l);
219 expected.SetLane(1, expected_h);
220 QRegisterValue result = core->qreg(vreg.GetCode());
221 return Equal128(expected, core, result);
222 }
223
224
EqualFP16(Float16 expected, const RegisterDump* core, const VRegister& fpreg)225 bool EqualFP16(Float16 expected,
226 const RegisterDump* core,
227 const VRegister& fpreg) {
228 VIXL_ASSERT(fpreg.Is16Bits());
229 // Retrieve the corresponding D register so we can check that the upper part
230 // was properly cleared.
231 uint64_t result_64 = core->dreg_bits(fpreg.GetCode());
232 if ((result_64 & 0xfffffffffff0000) != 0) {
233 printf("Expected 0x%04" PRIx16 " (%f)\t Found 0x%016" PRIx64 "\n",
234 Float16ToRawbits(expected),
235 FPToFloat(expected, kIgnoreDefaultNaN),
236 result_64);
237 return false;
238 }
239 return EqualFP16(expected, core, core->hreg(fpreg.GetCode()));
240 }
241
242
EqualFP32(float expected, const RegisterDump* core, const VRegister& fpreg)243 bool EqualFP32(float expected,
244 const RegisterDump* core,
245 const VRegister& fpreg) {
246 VIXL_ASSERT(fpreg.Is32Bits());
247 // Retrieve the corresponding D register so we can check that the upper part
248 // was properly cleared.
249 uint64_t result_64 = core->dreg_bits(fpreg.GetCode());
250 if ((result_64 & 0xffffffff00000000) != 0) {
251 printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n",
252 FloatToRawbits(expected),
253 expected,
254 result_64);
255 return false;
256 }
257
258 return EqualFP32(expected, core, core->sreg(fpreg.GetCode()));
259 }
260
261
EqualFP64(double expected, const RegisterDump* core, const VRegister& fpreg)262 bool EqualFP64(double expected,
263 const RegisterDump* core,
264 const VRegister& fpreg) {
265 VIXL_ASSERT(fpreg.Is64Bits());
266 return EqualFP64(expected, core, core->dreg(fpreg.GetCode()));
267 }
268
269
Equal64(const Register& reg0, const RegisterDump* core, const Register& reg1, ExpectedResult option)270 bool Equal64(const Register& reg0,
271 const RegisterDump* core,
272 const Register& reg1,
273 ExpectedResult option) {
274 VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits());
275 int64_t reference = core->xreg(reg0.GetCode());
276 int64_t result = core->xreg(reg1.GetCode());
277 return Equal64(reference, core, result, option);
278 }
279
280
NotEqual64(const Register& reg0, const RegisterDump* core, const Register& reg1)281 bool NotEqual64(const Register& reg0,
282 const RegisterDump* core,
283 const Register& reg1) {
284 VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits());
285 int64_t expected = core->xreg(reg0.GetCode());
286 int64_t result = core->xreg(reg1.GetCode());
287 return NotEqual64(expected, core, result);
288 }
289
290
Equal64(uint64_t expected, const RegisterDump* core, const VRegister& vreg)291 bool Equal64(uint64_t expected,
292 const RegisterDump* core,
293 const VRegister& vreg) {
294 VIXL_ASSERT(vreg.Is64Bits());
295 uint64_t result = core->dreg_bits(vreg.GetCode());
296 return Equal64(expected, core, result);
297 }
298
299
FlagN(uint32_t flags)300 static char FlagN(uint32_t flags) { return (flags & NFlag) ? 'N' : 'n'; }
301
302
FlagZ(uint32_t flags)303 static char FlagZ(uint32_t flags) { return (flags & ZFlag) ? 'Z' : 'z'; }
304
305
FlagC(uint32_t flags)306 static char FlagC(uint32_t flags) { return (flags & CFlag) ? 'C' : 'c'; }
307
308
FlagV(uint32_t flags)309 static char FlagV(uint32_t flags) { return (flags & VFlag) ? 'V' : 'v'; }
310
311
EqualNzcv(uint32_t expected, uint32_t result)312 bool EqualNzcv(uint32_t expected, uint32_t result) {
313 VIXL_ASSERT((expected & ~NZCVFlag) == 0);
314 VIXL_ASSERT((result & ~NZCVFlag) == 0);
315 if (result != expected) {
316 printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n",
317 FlagN(expected),
318 FlagZ(expected),
319 FlagC(expected),
320 FlagV(expected),
321 FlagN(result),
322 FlagZ(result),
323 FlagC(result),
324 FlagV(result));
325 return false;
326 }
327
328 return true;
329 }
330
331
EqualRegisters(const RegisterDump* a, const RegisterDump* b)332 bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) {
333 for (unsigned i = 0; i < kNumberOfRegisters; i++) {
334 if (a->xreg(i) != b->xreg(i)) {
335 printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
336 i,
337 a->xreg(i),
338 b->xreg(i));
339 return false;
340 }
341 }
342
343 for (unsigned i = 0; i < kNumberOfVRegisters; i++) {
344 uint64_t a_bits = a->dreg_bits(i);
345 uint64_t b_bits = b->dreg_bits(i);
346 if (a_bits != b_bits) {
347 printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
348 i,
349 a_bits,
350 b_bits);
351 return false;
352 }
353 }
354
355 return true;
356 }
357
EqualSVELane(uint64_t expected, const RegisterDump* core, const ZRegister& reg, int lane)358 bool EqualSVELane(uint64_t expected,
359 const RegisterDump* core,
360 const ZRegister& reg,
361 int lane) {
362 unsigned lane_size = reg.GetLaneSizeInBits();
363 // For convenience in the tests, we allow negative values to be passed into
364 // `expected`, but truncate them to an appropriately-sized unsigned value for
365 // the check. For example, in `EqualSVELane(-1, core, z0.VnB())`, the expected
366 // value is truncated from 0xffffffffffffffff to 0xff before the comparison.
367 VIXL_ASSERT(IsUintN(lane_size, expected) ||
368 IsIntN(lane_size, RawbitsToInt64(expected)));
369 expected &= GetUintMask(lane_size);
370
371 uint64_t result = core->zreg_lane(reg.GetCode(), lane_size, lane);
372 if (expected != result) {
373 unsigned lane_size_in_hex_chars = lane_size / 4;
374 std::string reg_name = reg.GetArchitecturalName();
375 printf("%s[%d]\t Expected 0x%0*" PRIx64 "\t Found 0x%0*" PRIx64 "\n",
376 reg_name.c_str(),
377 lane,
378 lane_size_in_hex_chars,
379 expected,
380 lane_size_in_hex_chars,
381 result);
382 return false;
383 }
384 return true;
385 }
386
EqualSVELane(uint64_t expected, const RegisterDump* core, const PRegister& reg, int lane)387 bool EqualSVELane(uint64_t expected,
388 const RegisterDump* core,
389 const PRegister& reg,
390 int lane) {
391 VIXL_ASSERT(reg.HasLaneSize());
392 VIXL_ASSERT((reg.GetLaneSizeInBits() % kZRegBitsPerPRegBit) == 0);
393 unsigned p_bits_per_lane = reg.GetLaneSizeInBits() / kZRegBitsPerPRegBit;
394 VIXL_ASSERT(IsUintN(p_bits_per_lane, expected));
395 expected &= GetUintMask(p_bits_per_lane);
396
397 uint64_t result = core->preg_lane(reg.GetCode(), p_bits_per_lane, lane);
398 if (expected != result) {
399 unsigned lane_size_in_hex_chars = (p_bits_per_lane + 3) / 4;
400 std::string reg_name = reg.GetArchitecturalName();
401 printf("%s[%d]\t Expected 0x%0*" PRIx64 "\t Found 0x%0*" PRIx64 "\n",
402 reg_name.c_str(),
403 lane,
404 lane_size_in_hex_chars,
405 expected,
406 lane_size_in_hex_chars,
407 result);
408 return false;
409 }
410 return true;
411 }
412
413 struct EqualMemoryChunk {
414 typedef uint64_t RawChunk;
415
416 uintptr_t address;
417 RawChunk expected;
418 RawChunk result;
419
IsEqualvixl::aarch64::EqualMemoryChunk420 bool IsEqual() const { return expected == result; }
421 };
422
EqualMemory(const void* expected, const void* result, size_t size_in_bytes, size_t zero_offset)423 bool EqualMemory(const void* expected,
424 const void* result,
425 size_t size_in_bytes,
426 size_t zero_offset) {
427 if (memcmp(expected, result, size_in_bytes) == 0) return true;
428
429 // Read 64-bit chunks, and print them side-by-side if they don't match.
430
431 // Remember the last few chunks, even if they matched, so we can print some
432 // context. We don't want to print the whole buffer, because it could be huge.
433 static const size_t kContextLines = 1;
434 std::queue<EqualMemoryChunk> context;
435 static const size_t kChunkSize = sizeof(EqualMemoryChunk::RawChunk);
436
437 // This assumption keeps the logic simple, and is acceptable for our tests.
438 VIXL_ASSERT((size_in_bytes % kChunkSize) == 0);
439
440 const char* expected_it = reinterpret_cast<const char*>(expected);
441 const char* result_it = reinterpret_cast<const char*>(result);
442
443 // This is the first error, so print a header row.
444 printf(" Address (of result) Expected Result\n");
445
446 // Always print some context at the start of the buffer.
447 uintptr_t print_context_to =
448 reinterpret_cast<uintptr_t>(result) + (kContextLines + 1) * kChunkSize;
449 for (size_t i = 0; i < size_in_bytes; i += kChunkSize) {
450 EqualMemoryChunk chunk;
451 chunk.address = reinterpret_cast<uintptr_t>(result_it);
452 memcpy(&chunk.expected, expected_it, kChunkSize);
453 memcpy(&chunk.result, result_it, kChunkSize);
454
455 while (context.size() > kContextLines) context.pop();
456 context.push(chunk);
457
458 // Print context after an error, and at the end of the buffer.
459 if (!chunk.IsEqual() || ((i + kChunkSize) >= size_in_bytes)) {
460 if (chunk.address > print_context_to) {
461 // We aren't currently printing context, so separate this context from
462 // the previous block.
463 printf("...\n");
464 }
465 print_context_to = chunk.address + (kContextLines + 1) * kChunkSize;
466 }
467
468 // Print context (including the current line).
469 while (!context.empty() && (context.front().address < print_context_to)) {
470 uintptr_t address = context.front().address;
471 uint64_t offset = address - reinterpret_cast<uintptr_t>(result);
472 bool is_negative = (offset < zero_offset);
473 printf("0x%016" PRIxPTR " (result %c %5" PRIu64 "): 0x%016" PRIx64
474 " 0x%016" PRIx64 "\n",
475 address,
476 (is_negative ? '-' : '+'),
477 (is_negative ? (zero_offset - offset) : (offset - zero_offset)),
478 context.front().expected,
479 context.front().result);
480 context.pop();
481 }
482
483 expected_it += kChunkSize;
484 result_it += kChunkSize;
485 }
486
487 return false;
488 }
PopulateRegisterArray(Register* w, Register* x, Register* r, int reg_size, int reg_count, RegList allowed)489 RegList PopulateRegisterArray(Register* w,
490 Register* x,
491 Register* r,
492 int reg_size,
493 int reg_count,
494 RegList allowed) {
495 RegList list = 0;
496 int i = 0;
497 for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) {
498 if (((UINT64_C(1) << n) & allowed) != 0) {
499 // Only assign allowed registers.
500 if (r) {
501 r[i] = Register(n, reg_size);
502 }
503 if (x) {
504 x[i] = Register(n, kXRegSize);
505 }
506 if (w) {
507 w[i] = Register(n, kWRegSize);
508 }
509 list |= (UINT64_C(1) << n);
510 i++;
511 }
512 }
513 // Check that we got enough registers.
514 VIXL_ASSERT(CountSetBits(list, kNumberOfRegisters) == reg_count);
515
516 return list;
517 }
518
519
PopulateVRegisterArray(VRegister* s, VRegister* d, VRegister* v, int reg_size, int reg_count, RegList allowed)520 RegList PopulateVRegisterArray(VRegister* s,
521 VRegister* d,
522 VRegister* v,
523 int reg_size,
524 int reg_count,
525 RegList allowed) {
526 RegList list = 0;
527 int i = 0;
528 for (unsigned n = 0; (n < kNumberOfVRegisters) && (i < reg_count); n++) {
529 if (((UINT64_C(1) << n) & allowed) != 0) {
530 // Only assigned allowed registers.
531 if (v) {
532 v[i] = VRegister(n, reg_size);
533 }
534 if (d) {
535 d[i] = VRegister(n, kDRegSize);
536 }
537 if (s) {
538 s[i] = VRegister(n, kSRegSize);
539 }
540 list |= (UINT64_C(1) << n);
541 i++;
542 }
543 }
544 // Check that we got enough registers.
545 VIXL_ASSERT(CountSetBits(list, kNumberOfVRegisters) == reg_count);
546
547 return list;
548 }
549
550
Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value)551 void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) {
552 Register first = NoReg;
553 for (unsigned i = 0; i < kNumberOfRegisters; i++) {
554 if (reg_list & (UINT64_C(1) << i)) {
555 Register xn(i, kXRegSize);
556 // We should never write into sp here.
557 VIXL_ASSERT(!xn.Is(sp));
558 if (!xn.IsZero()) {
559 if (!first.IsValid()) {
560 // This is the first register we've hit, so construct the literal.
561 __ Mov(xn, value);
562 first = xn;
563 } else {
564 // We've already loaded the literal, so re-use the value already
565 // loaded into the first register we hit.
566 __ Mov(xn, first);
567 }
568 }
569 }
570 }
571 }
572
573
ClobberFP(MacroAssembler* masm, RegList reg_list, double const value)574 void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) {
575 VRegister first = NoVReg;
576 for (unsigned i = 0; i < kNumberOfVRegisters; i++) {
577 if (reg_list & (UINT64_C(1) << i)) {
578 VRegister dn(i, kDRegSize);
579 if (!first.IsValid()) {
580 // This is the first register we've hit, so construct the literal.
581 __ Fmov(dn, value);
582 first = dn;
583 } else {
584 // We've already loaded the literal, so re-use the value already loaded
585 // into the first register we hit.
586 __ Fmov(dn, first);
587 }
588 }
589 }
590 }
591
592
Clobber(MacroAssembler* masm, CPURegList reg_list)593 void Clobber(MacroAssembler* masm, CPURegList reg_list) {
594 if (reg_list.GetType() == CPURegister::kRegister) {
595 // This will always clobber X registers.
596 Clobber(masm, reg_list.GetList());
597 } else if (reg_list.GetType() == CPURegister::kVRegister) {
598 // This will always clobber D registers.
599 ClobberFP(masm, reg_list.GetList());
600 } else {
601 VIXL_UNIMPLEMENTED();
602 }
603 }
604
605 // TODO: Once registers have sufficiently compatible interfaces, merge the two
606 // DumpRegisters templates.
607 template <typename T>
DumpRegisters(MacroAssembler* masm, Register dump_base, int offset)608 static void DumpRegisters(MacroAssembler* masm,
609 Register dump_base,
610 int offset) {
611 UseScratchRegisterScope temps(masm);
612 Register dump = temps.AcquireX();
613 __ Add(dump, dump_base, offset);
614 for (unsigned i = 0; i <= T::GetMaxCode(); i++) {
615 T reg(i);
616 __ Str(reg, SVEMemOperand(dump));
617 __ Add(dump, dump, reg.GetMaxSizeInBytes());
618 }
619 }
620
621 template <typename T>
DumpRegisters(MacroAssembler* masm, Register dump_base, int offset, int reg_size_in_bytes)622 static void DumpRegisters(MacroAssembler* masm,
623 Register dump_base,
624 int offset,
625 int reg_size_in_bytes) {
626 UseScratchRegisterScope temps(masm);
627 Register dump = temps.AcquireX();
628 __ Add(dump, dump_base, offset);
629 for (unsigned i = 0; i <= T::GetMaxCode(); i++) {
630 T reg(i, reg_size_in_bytes * kBitsPerByte);
631 __ Str(reg, MemOperand(dump));
632 __ Add(dump, dump, reg_size_in_bytes);
633 }
634 }
635
Dump(MacroAssembler* masm)636 void RegisterDump::Dump(MacroAssembler* masm) {
637 VIXL_ASSERT(__ StackPointer().Is(sp));
638
639 dump_cpu_features_ = *masm->GetCPUFeatures();
640
641 // We need some scratch registers, but we also need to dump them, so we have
642 // to control exactly which registers are used, and dump them separately.
643 CPURegList scratch_registers(x0, x1, x2, x3);
644
645 UseScratchRegisterScope temps(masm);
646 temps.ExcludeAll();
647 __ PushCPURegList(scratch_registers);
648 temps.Include(scratch_registers);
649
650 Register dump_base = temps.AcquireX();
651 Register tmp = temps.AcquireX();
652
653 // Offsets into the dump_ structure.
654 const int x_offset = offsetof(dump_t, x_);
655 const int w_offset = offsetof(dump_t, w_);
656 const int d_offset = offsetof(dump_t, d_);
657 const int s_offset = offsetof(dump_t, s_);
658 const int h_offset = offsetof(dump_t, h_);
659 const int q_offset = offsetof(dump_t, q_);
660 const int z_offset = offsetof(dump_t, z_);
661 const int p_offset = offsetof(dump_t, p_);
662 const int sp_offset = offsetof(dump_t, sp_);
663 const int wsp_offset = offsetof(dump_t, wsp_);
664 const int flags_offset = offsetof(dump_t, flags_);
665 const int vl_offset = offsetof(dump_t, vl_);
666
667 // Load the address where we will dump the state.
668 __ Mov(dump_base, reinterpret_cast<uintptr_t>(&dump_));
669
670 // Dump the stack pointer (sp and wsp).
671 // The stack pointer cannot be stored directly; it needs to be moved into
672 // another register first. Also, we pushed four X registers, so we need to
673 // compensate here.
674 __ Add(tmp, sp, 4 * kXRegSizeInBytes);
675 __ Str(tmp, MemOperand(dump_base, sp_offset));
676 __ Add(tmp.W(), wsp, 4 * kXRegSizeInBytes);
677 __ Str(tmp.W(), MemOperand(dump_base, wsp_offset));
678
679 // Dump core registers.
680 DumpRegisters<Register>(masm, dump_base, x_offset, kXRegSizeInBytes);
681 DumpRegisters<Register>(masm, dump_base, w_offset, kWRegSizeInBytes);
682
683 // Dump NEON and FP registers.
684 DumpRegisters<VRegister>(masm, dump_base, q_offset, kQRegSizeInBytes);
685 DumpRegisters<VRegister>(masm, dump_base, d_offset, kDRegSizeInBytes);
686 DumpRegisters<VRegister>(masm, dump_base, s_offset, kSRegSizeInBytes);
687 DumpRegisters<VRegister>(masm, dump_base, h_offset, kHRegSizeInBytes);
688
689 // Dump SVE registers.
690 if (CPUHas(CPUFeatures::kSVE)) {
691 DumpRegisters<ZRegister>(masm, dump_base, z_offset);
692 DumpRegisters<PRegister>(masm, dump_base, p_offset);
693
694 // Record the vector length.
695 __ Rdvl(tmp, kBitsPerByte);
696 __ Str(tmp, MemOperand(dump_base, vl_offset));
697 }
698
699 // Dump the flags.
700 __ Mrs(tmp, NZCV);
701 __ Str(tmp, MemOperand(dump_base, flags_offset));
702
703 // To dump the values we used as scratch registers, we need a new scratch
704 // register. We can use any of the already dumped registers since we can
705 // easily restore them.
706 Register dump2_base = x10;
707 VIXL_ASSERT(!scratch_registers.IncludesAliasOf(dump2_base));
708
709 VIXL_ASSERT(scratch_registers.IncludesAliasOf(dump_base));
710
711 // Ensure that we don't try to use the scratch registers again.
712 temps.ExcludeAll();
713
714 // Don't lose the dump_ address.
715 __ Mov(dump2_base, dump_base);
716
717 __ PopCPURegList(scratch_registers);
718
719 while (!scratch_registers.IsEmpty()) {
720 CPURegister reg = scratch_registers.PopLowestIndex();
721 Register x = reg.X();
722 Register w = reg.W();
723 unsigned code = reg.GetCode();
724 __ Str(x, MemOperand(dump2_base, x_offset + (code * kXRegSizeInBytes)));
725 __ Str(w, MemOperand(dump2_base, w_offset + (code * kWRegSizeInBytes)));
726 }
727
728 // Finally, restore dump2_base.
729 __ Ldr(dump2_base,
730 MemOperand(dump2_base,
731 x_offset + (dump2_base.GetCode() * kXRegSizeInBytes)));
732
733 completed_ = true;
734 }
735
GetSignallingNan(int size_in_bits)736 uint64_t GetSignallingNan(int size_in_bits) {
737 switch (size_in_bits) {
738 case kHRegSize:
739 return Float16ToRawbits(kFP16SignallingNaN);
740 case kSRegSize:
741 return FloatToRawbits(kFP32SignallingNaN);
742 case kDRegSize:
743 return DoubleToRawbits(kFP64SignallingNaN);
744 default:
745 VIXL_UNIMPLEMENTED();
746 return 0;
747 }
748 }
749
CanRun(const CPUFeatures& required, bool* queried_can_run)750 bool CanRun(const CPUFeatures& required, bool* queried_can_run) {
751 bool log_if_missing = true;
752 if (queried_can_run != NULL) {
753 log_if_missing = !*queried_can_run;
754 *queried_can_run = true;
755 }
756
757 #ifdef VIXL_INCLUDE_SIMULATOR_AARCH64
758 // The Simulator can run any test that VIXL can assemble.
759 USE(required);
760 USE(log_if_missing);
761 return true;
762 #else
763 CPUFeatures cpu = CPUFeatures::InferFromOS();
764 // If InferFromOS fails, assume that basic features are present.
765 if (cpu.HasNoFeatures()) cpu = CPUFeatures::AArch64LegacyBaseline();
766 VIXL_ASSERT(cpu.Has(kInfrastructureCPUFeatures));
767
768 if (cpu.Has(required)) return true;
769
770 if (log_if_missing) {
771 CPUFeatures missing = required.Without(cpu);
772 // Note: This message needs to match REGEXP_MISSING_FEATURES from
773 // tools/threaded_test.py.
774 std::cout << "SKIPPED: Missing features: { " << missing << " }\n";
775 std::cout << "This test requires the following features to run its "
776 "generated code on this CPU: "
777 << required << "\n";
778 }
779 return false;
780 #endif
781 }
782
783 // Note that the function assumes p0, p1, p2 and p3 are set to all true in b-,
784 // h-, s- and d-lane sizes respectively, and p4, p5 are clobbered as a temp
785 // predicate.
786 template <typename T, size_t N>
SetFpData(MacroAssembler* masm, int esize, const T (&values)[N], uint64_t lcg_mult)787 void SetFpData(MacroAssembler* masm,
788 int esize,
789 const T (&values)[N],
790 uint64_t lcg_mult) {
791 uint64_t a = 0;
792 uint64_t b = lcg_mult;
793 // Be used to populate the assigned element slots of register based on the
794 // type of floating point.
795 __ Pfalse(p5.VnB());
796 switch (esize) {
797 case kHRegSize:
798 a = Float16ToRawbits(Float16(1.5));
799 // Pick a convenient number within largest normal half-precision floating
800 // point.
801 b = Float16ToRawbits(Float16(lcg_mult % 1024));
802 // Step 1: Set fp16 numbers to the undefined registers.
803 // p4< 15:0>: 0b0101010101010101
804 // z{code}<127:0>: 0xHHHHHHHHHHHHHHHH
805 __ Zip1(p4.VnB(), p0.VnB(), p5.VnB());
806 break;
807 case kSRegSize:
808 a = FloatToRawbits(1.5);
809 b = FloatToRawbits(lcg_mult);
810 // Step 2: Set fp32 numbers to register on top of fp16 initialized.
811 // p4< 15:0>: 0b0000000100000001
812 // z{code}<127:0>: 0xHHHHSSSSHHHHSSSS
813 __ Zip1(p4.VnS(), p2.VnS(), p5.VnS());
814 break;
815 case kDRegSize:
816 a = DoubleToRawbits(1.5);
817 b = DoubleToRawbits(lcg_mult);
818 // Step 3: Set fp64 numbers to register on top of both fp16 and fp 32
819 // initialized.
820 // p4< 15:0>: 0b0000000000000001
821 // z{code}<127:0>: 0xHHHHSSSSDDDDDDDD
822 __ Zip1(p4.VnD(), p3.VnD(), p5.VnD());
823 break;
824 default:
825 VIXL_UNIMPLEMENTED();
826 break;
827 }
828
829 __ Dup(z30.WithLaneSize(esize), a);
830 __ Dup(z31.WithLaneSize(esize), b);
831
832 for (unsigned j = 0; j <= (kZRegMaxSize / (N * esize)); j++) {
833 // As floating point operations on random values have a tendency to
834 // converge on special-case numbers like NaNs, adopt normal floating point
835 // values be the seed instead.
836 InsrHelper(masm, z0.WithLaneSize(esize), values);
837 }
838
839 __ Fmla(z0.WithLaneSize(esize),
840 p4.Merging(),
841 z30.WithLaneSize(esize),
842 z0.WithLaneSize(esize),
843 z31.WithLaneSize(esize),
844 FastNaNPropagation);
845
846 for (unsigned i = 1; i < kNumberOfZRegisters - 1; i++) {
847 __ Fmla(ZRegister(i).WithLaneSize(esize),
848 p4.Merging(),
849 z30.WithLaneSize(esize),
850 ZRegister(i - 1).WithLaneSize(esize),
851 z31.WithLaneSize(esize),
852 FastNaNPropagation);
853 }
854
855 __ Fmul(z31.WithLaneSize(esize),
856 p4.Merging(),
857 z31.WithLaneSize(esize),
858 z30.WithLaneSize(esize),
859 FastNaNPropagation);
860 __ Fadd(z31.WithLaneSize(esize), p4.Merging(), z31.WithLaneSize(esize), 1);
861 }
862
863 // Set z0 - z31 to some normal floating point data.
InitialiseRegisterFp(MacroAssembler* masm, uint64_t lcg_mult)864 void InitialiseRegisterFp(MacroAssembler* masm, uint64_t lcg_mult) {
865 // Initialise each Z registers to a mixture of fp16/32/64 values as following
866 // pattern:
867 // z0.h[0-1] = fp16, z0.s[1] = fp32, z0.d[1] = fp64 repeatedly throughout the
868 // register.
869 //
870 // For example:
871 // z{code}<2047:1920>: 0x{< fp64 >< fp32 ><fp16><fp16>}
872 // ...
873 // z{code}< 127: 0>: 0x{< fp64 >< fp32 ><fp16><fp16>}
874 //
875 // In current manner, in order to make a desired mixture, each part of
876 // initialization have to be called in the following order.
877 SetFpData(masm, kHRegSize, kInputFloat16Basic, lcg_mult);
878 SetFpData(masm, kSRegSize, kInputFloatBasic, lcg_mult);
879 SetFpData(masm, kDRegSize, kInputDoubleBasic, lcg_mult);
880 }
881
SetInitialMachineState(MacroAssembler* masm, InputSet input_set)882 void SetInitialMachineState(MacroAssembler* masm, InputSet input_set) {
883 USE(input_set);
884 uint64_t lcg_mult = 6364136223846793005;
885
886 // Set x0 - x30 to pseudo-random data.
887 __ Mov(x29, 1); // LCG increment.
888 __ Mov(x30, lcg_mult);
889 __ Mov(x0, 42); // LCG seed.
890
891 __ Cmn(x0, 0); // Clear NZCV flags for later.
892
893 __ Madd(x0, x0, x30, x29); // First pseudo-random number.
894
895 // Registers 1 - 29.
896 for (unsigned i = 1; i < 30; i++) {
897 __ Madd(XRegister(i), XRegister(i - 1), x30, x29);
898 }
899 __ Mul(x30, x29, x30);
900 __ Add(x30, x30, 1);
901
902
903 // Set first four predicate registers to true for increasing lane sizes.
904 __ Ptrue(p0.VnB());
905 __ Ptrue(p1.VnH());
906 __ Ptrue(p2.VnS());
907 __ Ptrue(p3.VnD());
908
909 // Set z0 - z31 to pseudo-random data.
910 if (input_set == kIntInputSet) {
911 __ Dup(z30.VnD(), 1);
912 __ Dup(z31.VnD(), lcg_mult);
913 __ Index(z0.VnB(), -16, 13); // LCG seeds.
914
915 __ Mla(z0.VnD(), p0.Merging(), z30.VnD(), z0.VnD(), z31.VnD());
916 for (unsigned i = 1; i < kNumberOfZRegisters - 1; i++) {
917 __ Mla(ZRegister(i).VnD(),
918 p0.Merging(),
919 z30.VnD(),
920 ZRegister(i - 1).VnD(),
921 z31.VnD());
922 }
923 __ Mul(z31.VnD(), p0.Merging(), z31.VnD(), z30.VnD());
924 __ Add(z31.VnD(), z31.VnD(), 1);
925
926 } else {
927 VIXL_ASSERT(input_set == kFpInputSet);
928 InitialiseRegisterFp(masm, lcg_mult);
929 }
930
931 // Set remaining predicate registers based on earlier pseudo-random data.
932 for (unsigned i = 4; i < kNumberOfPRegisters; i++) {
933 __ Cmpge(PRegister(i).VnB(), p0.Zeroing(), ZRegister(i).VnB(), 0);
934 }
935 for (unsigned i = 4; i < kNumberOfPRegisters; i += 2) {
936 __ Zip1(p0.VnB(), PRegister(i).VnB(), PRegister(i + 1).VnB());
937 __ Zip2(PRegister(i + 1).VnB(), PRegister(i).VnB(), PRegister(i + 1).VnB());
938 __ Mov(PRegister(i), p0);
939 }
940 __ Ptrue(p0.VnB());
941
942 // At this point, only sp and a few status registers are undefined. These
943 // must be ignored when computing the state hash.
944 }
945
ComputeMachineStateHash(MacroAssembler* masm, uint32_t* dst)946 void ComputeMachineStateHash(MacroAssembler* masm, uint32_t* dst) {
947 // Use explicit registers, to avoid hash order varying if
948 // UseScratchRegisterScope changes.
949 UseScratchRegisterScope temps(masm);
950 temps.ExcludeAll();
951 Register t0 = w0;
952 Register t1 = x1;
953
954 // Compute hash of x0 - x30.
955 __ Push(t0.X(), t1);
956 __ Crc32x(t0, wzr, t0.X());
957 for (unsigned i = 0; i < kNumberOfRegisters; i++) {
958 if (i == xzr.GetCode()) continue; // Skip sp.
959 if (t0.Is(WRegister(i))) continue; // Skip t0, as it's already hashed.
960 __ Crc32x(t0, t0, XRegister(i));
961 }
962
963 // Hash the status flags.
964 __ Mrs(t1, NZCV);
965 __ Crc32x(t0, t0, t1);
966
967 // Acquire another temp, as integer registers have been hashed already.
968 __ Push(x30, xzr);
969 Register t2 = x30;
970
971 // Compute hash of all bits in z0 - z31. This implies different hashes are
972 // produced for machines of different vector length.
973 for (unsigned i = 0; i < kNumberOfZRegisters; i++) {
974 __ Rdvl(t2, 1);
975 __ Lsr(t2, t2, 4);
976 Label vl_loop;
977 __ Bind(&vl_loop);
978 __ Umov(t1, VRegister(i).V2D(), 0);
979 __ Crc32x(t0, t0, t1);
980 __ Umov(t1, VRegister(i).V2D(), 1);
981 __ Crc32x(t0, t0, t1);
982 __ Ext(ZRegister(i).VnB(), ZRegister(i).VnB(), ZRegister(i).VnB(), 16);
983 __ Sub(t2, t2, 1);
984 __ Cbnz(t2, &vl_loop);
985 }
986
987 // Hash predicate registers. For simplicity, this writes the predicate
988 // registers to a zero-initialised area of stack of the maximum size required
989 // for P registers. It then computes a hash of that entire stack area.
990 unsigned p_stack_space = kNumberOfPRegisters * kPRegMaxSizeInBytes;
991
992 // Zero claimed stack area.
993 for (unsigned i = 0; i < p_stack_space; i += kXRegSizeInBytes * 2) {
994 __ Push(xzr, xzr);
995 }
996
997 // Store all P registers to the stack.
998 __ Mov(t1, sp);
999 for (unsigned i = 0; i < kNumberOfPRegisters; i++) {
1000 __ Str(PRegister(i), SVEMemOperand(t1));
1001 __ Add(t1, t1, kPRegMaxSizeInBytes);
1002 }
1003
1004 // Hash the entire stack area.
1005 for (unsigned i = 0; i < p_stack_space; i += kXRegSizeInBytes * 2) {
1006 __ Pop(t1, t2);
1007 __ Crc32x(t0, t0, t1);
1008 __ Crc32x(t0, t0, t2);
1009 }
1010
1011 __ Mov(t1, reinterpret_cast<uint64_t>(dst));
1012 __ Str(t0, MemOperand(t1));
1013
1014 __ Pop(xzr, x30);
1015 __ Pop(t1, t0.X());
1016 }
1017
1018 } // namespace aarch64
1019 } // namespace vixl
1020