1 // Copyright 2019, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 // * Redistributions of source code must retain the above copyright notice,
8 // this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above copyright notice,
10 // this list of conditions and the following disclaimer in the documentation
11 // and/or other materials provided with the distribution.
12 // * Neither the name of ARM Limited nor the names of its contributors may be
13 // used to endorse or promote products derived from this software without
14 // specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 #include "decoder-aarch64.h"
28
29 #include <string>
30
31 #include "../globals-vixl.h"
32 #include "../utils-vixl.h"
33
34 #include "decoder-constants-aarch64.h"
35
36 namespace vixl {
37 namespace aarch64 {
38
Decode(const Instruction* instr)39 void Decoder::Decode(const Instruction* instr) {
40 #ifndef PANDA_BUILD
41 std::list<DecoderVisitor*>::iterator it;
42 #else
43 List<DecoderVisitor*>::iterator it;
44 #endif
45
46 for (it = visitors_.begin(); it != visitors_.end(); it++) {
47 VIXL_ASSERT((*it)->IsConstVisitor());
48 }
49 VIXL_ASSERT(compiled_decoder_root_ != NULL);
50 compiled_decoder_root_->Decode(instr);
51 }
52
Decode(Instruction* instr)53 void Decoder::Decode(Instruction* instr) {
54 compiled_decoder_root_->Decode(const_cast<const Instruction*>(instr));
55 }
56
AddDecodeNode(const DecodeNode& node)57 void Decoder::AddDecodeNode(const DecodeNode& node) {
58 if (decode_nodes_.count(node.GetName()) == 0) {
59 decode_nodes_.insert(std::make_pair(node.GetName(), node));
60 }
61 }
62
GetDecodeNode(const String& name)63 DecodeNode* Decoder::GetDecodeNode(const String& name) {
64 auto elem{decode_nodes_.find(name)};
65 if (elem == decode_nodes_.end()) {
66 auto msg = String("Can't find decode node ", GetAllocator().Adapter()) + name.data() + ".\n";
67 VIXL_ABORT_WITH_MSG(msg.c_str());
68 }
69 return &elem->second;
70 }
71
ConstructDecodeGraph()72 void Decoder::ConstructDecodeGraph() {
73 // Add all of the decoding nodes to the Decoder.
74 for (unsigned i = 0; i < ArrayLength(kDecodeMapping); i++) {
75 AddDecodeNode(DecodeNode(kDecodeMapping[i], this));
76
77 // Add a node for each instruction form named, identified by having no '_'
78 // prefix on the node name.
79 const DecodeMapping& map = kDecodeMapping[i];
80 for (unsigned j = 0; j < map.mapping.size(); j++) {
81 if ((map.mapping[j].handler != NULL) &&
82 (map.mapping[j].handler[0] != '_')) {
83 AddDecodeNode(DecodeNode(map.mapping[j].handler, this));
84 }
85 }
86 }
87
88 // Add an "unallocated" node, used when an instruction encoding is not
89 // recognised by the decoding graph.
90 AddDecodeNode(DecodeNode("unallocated", this));
91
92 // Compile the graph from the root.
93 auto root_node{String("Root", GetAllocator().Adapter())};
94 compiled_decoder_root_ = GetDecodeNode(root_node)->Compile(this);
95 }
96
AppendVisitor(DecoderVisitor* new_visitor)97 void Decoder::AppendVisitor(DecoderVisitor* new_visitor) {
98 visitors_.push_back(new_visitor);
99 }
100
101
PrependVisitor(DecoderVisitor* new_visitor)102 void Decoder::PrependVisitor(DecoderVisitor* new_visitor) {
103 visitors_.push_front(new_visitor);
104 }
105
106
InsertVisitorBefore(DecoderVisitor* new_visitor, DecoderVisitor* registered_visitor)107 void Decoder::InsertVisitorBefore(DecoderVisitor* new_visitor,
108 DecoderVisitor* registered_visitor) {
109 #ifndef PANDA_BUILD
110 std::list<DecoderVisitor*>::iterator it;
111 #else
112 List<DecoderVisitor*>::iterator it;
113 #endif
114 for (it = visitors_.begin(); it != visitors_.end(); it++) {
115 if (*it == registered_visitor) {
116 visitors_.insert(it, new_visitor);
117 return;
118 }
119 }
120 // We reached the end of the list. The last element must be
121 // registered_visitor.
122 VIXL_ASSERT(*it == registered_visitor);
123 visitors_.insert(it, new_visitor);
124 }
125
126
InsertVisitorAfter(DecoderVisitor* new_visitor, DecoderVisitor* registered_visitor)127 void Decoder::InsertVisitorAfter(DecoderVisitor* new_visitor,
128 DecoderVisitor* registered_visitor) {
129 #ifndef PANDA_BUILD
130 std::list<DecoderVisitor*>::iterator it;
131 #else
132 List<DecoderVisitor*>::iterator it;
133 #endif
134 for (it = visitors_.begin(); it != visitors_.end(); it++) {
135 if (*it == registered_visitor) {
136 it++;
137 visitors_.insert(it, new_visitor);
138 return;
139 }
140 }
141 // We reached the end of the list. The last element must be
142 // registered_visitor.
143 VIXL_ASSERT(*it == registered_visitor);
144 visitors_.push_back(new_visitor);
145 }
146
147
RemoveVisitor(DecoderVisitor* visitor)148 void Decoder::RemoveVisitor(DecoderVisitor* visitor) {
149 visitors_.remove(visitor);
150 }
151
VisitNamedInstruction(const Instruction* instr, const std::string_view name)152 void Decoder::VisitNamedInstruction(const Instruction* instr,
153 const std::string_view name) {
154 std::list<DecoderVisitor*>::iterator it;
155 Metadata m = {{"form", std::string(name)}};
156 for (it = visitors_.begin(); it != visitors_.end(); it++) {
157 (*it)->Visit(&m, instr);
158 }
159 }
160
161 // Initialise empty vectors for sampled bits and pattern table.
162 const std::vector<uint8_t> DecodeNode::kEmptySampledBits;
163 const std::vector<DecodePattern> DecodeNode::kEmptyPatternTable;
164
CompileNodeForBits(Decoder* decoder, const String& name, uint32_t bits)165 void DecodeNode::CompileNodeForBits(Decoder* decoder,
166 const String& name,
167 uint32_t bits) {
168 DecodeNode* n = decoder->GetDecodeNode(name);
169 VIXL_ASSERT(n != NULL);
170 if (!n->IsCompiled()) {
171 n->Compile(decoder);
172 }
173 VIXL_ASSERT(n->IsCompiled());
174 compiled_node_->SetNodeForBits(bits, n->GetCompiledNode());
175 }
176
177
178 #define INSTANTIATE_TEMPLATE_M(M) \
179 case 0x##M: \
180 bit_extract_fn = &Instruction::ExtractBits<0x##M>; \
181 break;
182 #define INSTANTIATE_TEMPLATE_MV(M, V) \
183 case 0x##M##V: \
184 bit_extract_fn = &Instruction::IsMaskedValue<0x##M, 0x##V>; \
185 break;
186
GetBitExtractFunctionHelper(uint32_t x, uint32_t y)187 BitExtractFn DecodeNode::GetBitExtractFunctionHelper(uint32_t x, uint32_t y) {
188 // Instantiate a templated bit extraction function for every pattern we
189 // might encounter. If the assertion in the default clause is reached, add a
190 // new instantiation below using the information in the failure message.
191 BitExtractFn bit_extract_fn = NULL;
192
193 // The arguments x and y represent the mask and value. If y is 0, x is the
194 // mask. Otherwise, y is the mask, and x is the value to compare against a
195 // masked result.
196 uint64_t signature = (static_cast<uint64_t>(y) << 32) | x;
197 switch (signature) {
198 INSTANTIATE_TEMPLATE_M(00000002);
199 INSTANTIATE_TEMPLATE_M(00000010);
200 INSTANTIATE_TEMPLATE_M(00000060);
201 INSTANTIATE_TEMPLATE_M(000000df);
202 INSTANTIATE_TEMPLATE_M(00000100);
203 INSTANTIATE_TEMPLATE_M(00000200);
204 INSTANTIATE_TEMPLATE_M(00000400);
205 INSTANTIATE_TEMPLATE_M(00000800);
206 INSTANTIATE_TEMPLATE_M(00000c00);
207 INSTANTIATE_TEMPLATE_M(00000c10);
208 INSTANTIATE_TEMPLATE_M(00000fc0);
209 INSTANTIATE_TEMPLATE_M(00001000);
210 INSTANTIATE_TEMPLATE_M(00001400);
211 INSTANTIATE_TEMPLATE_M(00001800);
212 INSTANTIATE_TEMPLATE_M(00001c00);
213 INSTANTIATE_TEMPLATE_M(00002000);
214 INSTANTIATE_TEMPLATE_M(00002010);
215 INSTANTIATE_TEMPLATE_M(00002400);
216 INSTANTIATE_TEMPLATE_M(00003000);
217 INSTANTIATE_TEMPLATE_M(00003020);
218 INSTANTIATE_TEMPLATE_M(00003400);
219 INSTANTIATE_TEMPLATE_M(00003800);
220 INSTANTIATE_TEMPLATE_M(00003c00);
221 INSTANTIATE_TEMPLATE_M(00013000);
222 INSTANTIATE_TEMPLATE_M(000203e0);
223 INSTANTIATE_TEMPLATE_M(000303e0);
224 INSTANTIATE_TEMPLATE_M(00040000);
225 INSTANTIATE_TEMPLATE_M(00040010);
226 INSTANTIATE_TEMPLATE_M(00060000);
227 INSTANTIATE_TEMPLATE_M(00061000);
228 INSTANTIATE_TEMPLATE_M(00070000);
229 INSTANTIATE_TEMPLATE_M(000703c0);
230 INSTANTIATE_TEMPLATE_M(00080000);
231 INSTANTIATE_TEMPLATE_M(00090000);
232 INSTANTIATE_TEMPLATE_M(000f0000);
233 INSTANTIATE_TEMPLATE_M(000f0010);
234 INSTANTIATE_TEMPLATE_M(00100000);
235 INSTANTIATE_TEMPLATE_M(00180000);
236 INSTANTIATE_TEMPLATE_M(001b1c00);
237 INSTANTIATE_TEMPLATE_M(001f0000);
238 INSTANTIATE_TEMPLATE_M(001f0018);
239 INSTANTIATE_TEMPLATE_M(001f2000);
240 INSTANTIATE_TEMPLATE_M(001f3000);
241 INSTANTIATE_TEMPLATE_M(00400000);
242 INSTANTIATE_TEMPLATE_M(00400018);
243 INSTANTIATE_TEMPLATE_M(00400800);
244 INSTANTIATE_TEMPLATE_M(00403000);
245 INSTANTIATE_TEMPLATE_M(00500000);
246 INSTANTIATE_TEMPLATE_M(00500800);
247 INSTANTIATE_TEMPLATE_M(00583000);
248 INSTANTIATE_TEMPLATE_M(005f0000);
249 INSTANTIATE_TEMPLATE_M(00800000);
250 INSTANTIATE_TEMPLATE_M(00800400);
251 INSTANTIATE_TEMPLATE_M(00800c1d);
252 INSTANTIATE_TEMPLATE_M(0080101f);
253 INSTANTIATE_TEMPLATE_M(00801c00);
254 INSTANTIATE_TEMPLATE_M(00803000);
255 INSTANTIATE_TEMPLATE_M(00803c00);
256 INSTANTIATE_TEMPLATE_M(009f0000);
257 INSTANTIATE_TEMPLATE_M(009f2000);
258 INSTANTIATE_TEMPLATE_M(00c00000);
259 INSTANTIATE_TEMPLATE_M(00c00010);
260 INSTANTIATE_TEMPLATE_M(00c0001f);
261 INSTANTIATE_TEMPLATE_M(00c00200);
262 INSTANTIATE_TEMPLATE_M(00c00400);
263 INSTANTIATE_TEMPLATE_M(00c00c00);
264 INSTANTIATE_TEMPLATE_M(00c00c19);
265 INSTANTIATE_TEMPLATE_M(00c01000);
266 INSTANTIATE_TEMPLATE_M(00c01400);
267 INSTANTIATE_TEMPLATE_M(00c01c00);
268 INSTANTIATE_TEMPLATE_M(00c02000);
269 INSTANTIATE_TEMPLATE_M(00c03000);
270 INSTANTIATE_TEMPLATE_M(00c03c00);
271 INSTANTIATE_TEMPLATE_M(00c70000);
272 INSTANTIATE_TEMPLATE_M(00c83000);
273 INSTANTIATE_TEMPLATE_M(00d00200);
274 INSTANTIATE_TEMPLATE_M(00d80800);
275 INSTANTIATE_TEMPLATE_M(00d81800);
276 INSTANTIATE_TEMPLATE_M(00d81c00);
277 INSTANTIATE_TEMPLATE_M(00d82800);
278 INSTANTIATE_TEMPLATE_M(00d82c00);
279 INSTANTIATE_TEMPLATE_M(00d92400);
280 INSTANTIATE_TEMPLATE_M(00d93000);
281 INSTANTIATE_TEMPLATE_M(00db0000);
282 INSTANTIATE_TEMPLATE_M(00db2000);
283 INSTANTIATE_TEMPLATE_M(00dc0000);
284 INSTANTIATE_TEMPLATE_M(00dc2000);
285 INSTANTIATE_TEMPLATE_M(00df0000);
286 INSTANTIATE_TEMPLATE_M(40000000);
287 INSTANTIATE_TEMPLATE_M(40000010);
288 INSTANTIATE_TEMPLATE_M(40000c00);
289 INSTANTIATE_TEMPLATE_M(40002000);
290 INSTANTIATE_TEMPLATE_M(40002010);
291 INSTANTIATE_TEMPLATE_M(40003000);
292 INSTANTIATE_TEMPLATE_M(40003c00);
293 INSTANTIATE_TEMPLATE_M(401f2000);
294 INSTANTIATE_TEMPLATE_M(40400800);
295 INSTANTIATE_TEMPLATE_M(40400c00);
296 INSTANTIATE_TEMPLATE_M(40403c00);
297 INSTANTIATE_TEMPLATE_M(405f0000);
298 INSTANTIATE_TEMPLATE_M(40800000);
299 INSTANTIATE_TEMPLATE_M(40800c00);
300 INSTANTIATE_TEMPLATE_M(40802000);
301 INSTANTIATE_TEMPLATE_M(40802010);
302 INSTANTIATE_TEMPLATE_M(40803400);
303 INSTANTIATE_TEMPLATE_M(40803c00);
304 INSTANTIATE_TEMPLATE_M(40c00000);
305 INSTANTIATE_TEMPLATE_M(40c00400);
306 INSTANTIATE_TEMPLATE_M(40c00800);
307 INSTANTIATE_TEMPLATE_M(40c00c00);
308 INSTANTIATE_TEMPLATE_M(40c00c10);
309 INSTANTIATE_TEMPLATE_M(40c02000);
310 INSTANTIATE_TEMPLATE_M(40c02010);
311 INSTANTIATE_TEMPLATE_M(40c02c00);
312 INSTANTIATE_TEMPLATE_M(40c03c00);
313 INSTANTIATE_TEMPLATE_M(40c80000);
314 INSTANTIATE_TEMPLATE_M(40c90000);
315 INSTANTIATE_TEMPLATE_M(40cf0000);
316 INSTANTIATE_TEMPLATE_M(40d02000);
317 INSTANTIATE_TEMPLATE_M(40d02010);
318 INSTANTIATE_TEMPLATE_M(40d80000);
319 INSTANTIATE_TEMPLATE_M(40d81800);
320 INSTANTIATE_TEMPLATE_M(40dc0000);
321 INSTANTIATE_TEMPLATE_M(bf20c000);
322 INSTANTIATE_TEMPLATE_MV(00000006, 00000000);
323 INSTANTIATE_TEMPLATE_MV(00000006, 00000006);
324 INSTANTIATE_TEMPLATE_MV(00000007, 00000000);
325 INSTANTIATE_TEMPLATE_MV(0000001f, 0000001f);
326 INSTANTIATE_TEMPLATE_MV(00000210, 00000000);
327 INSTANTIATE_TEMPLATE_MV(000003e0, 00000000);
328 INSTANTIATE_TEMPLATE_MV(000003e0, 000003e0);
329 INSTANTIATE_TEMPLATE_MV(000003e2, 000003e0);
330 INSTANTIATE_TEMPLATE_MV(000003e6, 000003e0);
331 INSTANTIATE_TEMPLATE_MV(000003e6, 000003e6);
332 INSTANTIATE_TEMPLATE_MV(00000c00, 00000000);
333 INSTANTIATE_TEMPLATE_MV(00000fc0, 00000000);
334 INSTANTIATE_TEMPLATE_MV(000013e0, 00001000);
335 INSTANTIATE_TEMPLATE_MV(00001c00, 00000000);
336 INSTANTIATE_TEMPLATE_MV(00002400, 00000000);
337 INSTANTIATE_TEMPLATE_MV(00003000, 00000000);
338 INSTANTIATE_TEMPLATE_MV(00003000, 00001000);
339 INSTANTIATE_TEMPLATE_MV(00003000, 00002000);
340 INSTANTIATE_TEMPLATE_MV(00003000, 00003000);
341 INSTANTIATE_TEMPLATE_MV(00003010, 00000000);
342 INSTANTIATE_TEMPLATE_MV(00003c00, 00003c00);
343 INSTANTIATE_TEMPLATE_MV(00040010, 00000000);
344 INSTANTIATE_TEMPLATE_MV(00060000, 00000000);
345 INSTANTIATE_TEMPLATE_MV(00061000, 00000000);
346 INSTANTIATE_TEMPLATE_MV(00070000, 00030000);
347 INSTANTIATE_TEMPLATE_MV(00073ee0, 00033060);
348 INSTANTIATE_TEMPLATE_MV(00073f9f, 0000001f);
349 INSTANTIATE_TEMPLATE_MV(000f0000, 00000000);
350 INSTANTIATE_TEMPLATE_MV(000f0010, 00000000);
351 INSTANTIATE_TEMPLATE_MV(00100200, 00000000);
352 INSTANTIATE_TEMPLATE_MV(00100210, 00000000);
353 INSTANTIATE_TEMPLATE_MV(00160000, 00000000);
354 INSTANTIATE_TEMPLATE_MV(00170000, 00000000);
355 INSTANTIATE_TEMPLATE_MV(001c0000, 00000000);
356 INSTANTIATE_TEMPLATE_MV(001d0000, 00000000);
357 INSTANTIATE_TEMPLATE_MV(001e0000, 00000000);
358 INSTANTIATE_TEMPLATE_MV(001f0000, 00000000);
359 INSTANTIATE_TEMPLATE_MV(001f0000, 00010000);
360 INSTANTIATE_TEMPLATE_MV(001f0000, 00100000);
361 INSTANTIATE_TEMPLATE_MV(001f0000, 001f0000);
362 INSTANTIATE_TEMPLATE_MV(001f3000, 00000000);
363 INSTANTIATE_TEMPLATE_MV(001f3000, 00001000);
364 INSTANTIATE_TEMPLATE_MV(001f3000, 001f0000);
365 INSTANTIATE_TEMPLATE_MV(001f300f, 0000000d);
366 INSTANTIATE_TEMPLATE_MV(001f301f, 0000000d);
367 INSTANTIATE_TEMPLATE_MV(001f33e0, 000103e0);
368 INSTANTIATE_TEMPLATE_MV(001f3800, 00000000);
369 INSTANTIATE_TEMPLATE_MV(00401000, 00400000);
370 INSTANTIATE_TEMPLATE_MV(005f3000, 001f0000);
371 INSTANTIATE_TEMPLATE_MV(005f3000, 001f1000);
372 INSTANTIATE_TEMPLATE_MV(00800010, 00000000);
373 INSTANTIATE_TEMPLATE_MV(00800400, 00000000);
374 INSTANTIATE_TEMPLATE_MV(00800410, 00000000);
375 INSTANTIATE_TEMPLATE_MV(00803000, 00002000);
376 INSTANTIATE_TEMPLATE_MV(00870000, 00000000);
377 INSTANTIATE_TEMPLATE_MV(009f0000, 00010000);
378 INSTANTIATE_TEMPLATE_MV(00c00000, 00000000);
379 INSTANTIATE_TEMPLATE_MV(00c00000, 00400000);
380 INSTANTIATE_TEMPLATE_MV(00c0001f, 00000000);
381 INSTANTIATE_TEMPLATE_MV(00c001ff, 00000000);
382 INSTANTIATE_TEMPLATE_MV(00c00200, 00400000);
383 INSTANTIATE_TEMPLATE_MV(00c0020f, 00400000);
384 INSTANTIATE_TEMPLATE_MV(00c003e0, 00000000);
385 INSTANTIATE_TEMPLATE_MV(00c00800, 00000000);
386 INSTANTIATE_TEMPLATE_MV(00d80800, 00000000);
387 INSTANTIATE_TEMPLATE_MV(00df0000, 00000000);
388 INSTANTIATE_TEMPLATE_MV(00df3800, 001f0800);
389 INSTANTIATE_TEMPLATE_MV(40002000, 40000000);
390 INSTANTIATE_TEMPLATE_MV(40003c00, 00000000);
391 INSTANTIATE_TEMPLATE_MV(40040000, 00000000);
392 INSTANTIATE_TEMPLATE_MV(401f2000, 401f0000);
393 INSTANTIATE_TEMPLATE_MV(40800c00, 40000400);
394 INSTANTIATE_TEMPLATE_MV(40c00000, 00000000);
395 INSTANTIATE_TEMPLATE_MV(40c00000, 00400000);
396 INSTANTIATE_TEMPLATE_MV(40c00000, 40000000);
397 INSTANTIATE_TEMPLATE_MV(40c00000, 40800000);
398 INSTANTIATE_TEMPLATE_MV(40df0000, 00000000);
399 default: {
400 static bool printed_preamble = false;
401 if (!printed_preamble) {
402 printf("One or more missing template instantiations.\n");
403 printf(
404 "Add the following to either GetBitExtractFunction() "
405 "implementations\n");
406 printf("in %s near line %d:\n", __FILE__, __LINE__);
407 printed_preamble = true;
408 }
409
410 if (y == 0) {
411 printf(" INSTANTIATE_TEMPLATE_M(%08x);\n", x);
412 bit_extract_fn = &Instruction::ExtractBitsAbsent;
413 } else {
414 printf(" INSTANTIATE_TEMPLATE_MV(%08x, %08x);\n", y, x);
415 bit_extract_fn = &Instruction::IsMaskedValueAbsent;
416 }
417 }
418 }
419 return bit_extract_fn;
420 }
421
422 #undef INSTANTIATE_TEMPLATE_M
423 #undef INSTANTIATE_TEMPLATE_MV
424
TryCompileOptimisedDecodeTable(Decoder* decoder)425 bool DecodeNode::TryCompileOptimisedDecodeTable(Decoder* decoder) {
426 // EitherOr optimisation: if there are only one or two patterns in the table,
427 // try to optimise the node to exploit that.
428 size_t table_size = pattern_table_.size();
429 if ((table_size <= 2) && (GetSampledBitsCount() > 1)) {
430 // TODO: support 'x' in this optimisation by dropping the sampled bit
431 // positions before making the mask/value.
432 if (!PatternContainsSymbol(pattern_table_[0].pattern,
433 PatternSymbol::kSymbolX) &&
434 (table_size == 1)) {
435 // A pattern table consisting of a fixed pattern with no x's, and an
436 // "otherwise" or absent case. Optimise this into an instruction mask and
437 // value test.
438 uint32_t single_decode_mask = 0;
439 uint32_t single_decode_value = 0;
440 const auto& bits = GetSampledBits();
441
442 // Construct the instruction mask and value from the pattern.
443 VIXL_ASSERT(bits.size() == GetPatternLength(pattern_table_[0].pattern));
444 for (size_t i = 0; i < bits.size(); i++) {
445 single_decode_mask |= 1U << bits[i];
446 if (GetSymbolAt(pattern_table_[0].pattern, i) ==
447 PatternSymbol::kSymbol1) {
448 single_decode_value |= 1U << bits[i];
449 }
450 }
451 BitExtractFn bit_extract_fn =
452 GetBitExtractFunction(single_decode_mask, single_decode_value);
453
454 // Create a compiled node that contains a two entry table for the
455 // either/or cases.
456 CreateCompiledNode(bit_extract_fn, 2);
457
458 // Set DecodeNode for when the instruction after masking doesn't match the
459 // value.
460 CompileNodeForBits(decoder, String("unallocated", GetAllocator().Adapter()), 0);
461
462 // Set DecodeNode for when it does match.
463 CompileNodeForBits(decoder, String(pattern_table_[0].handler, GetAllocator().Adapter()), 1);
464
465 return true;
466 }
467 }
468 return false;
469 }
470
Compile(Decoder* decoder)471 CompiledDecodeNode* DecodeNode::Compile(Decoder* decoder) {
472 if (IsLeafNode()) {
473 // A leaf node is a simple wrapper around a visitor function, with no
474 // instruction decoding to do.
475 CreateVisitorNode();
476 } else if (!TryCompileOptimisedDecodeTable(decoder)) {
477 // The "otherwise" node is the default next node if no pattern matches.
478 String otherwise("unallocated", GetAllocator().Adapter());
479
480 // For each pattern in pattern_table_, create an entry in matches that
481 // has a corresponding mask and value for the pattern.
482 Vector<MaskValuePair> matches(GetAllocator().Adapter());
483 for (size_t i = 0; i < pattern_table_.size(); i++) {
484 matches.push_back(GenerateMaskValuePair(
485 GenerateOrderedPattern(pattern_table_[i].pattern)));
486 }
487
488 BitExtractFn bit_extract_fn =
489 GetBitExtractFunction(GenerateSampledBitsMask());
490
491 // Create a compiled node that contains a table with an entry for every bit
492 // pattern.
493 CreateCompiledNode(bit_extract_fn,
494 static_cast<size_t>(1) << GetSampledBitsCount());
495 VIXL_ASSERT(compiled_node_ != NULL);
496
497 // When we find a pattern matches the representation, set the node's decode
498 // function for that representation to the corresponding function.
499 for (uint32_t bits = 0; bits < (1U << GetSampledBitsCount()); bits++) {
500 for (size_t i = 0; i < matches.size(); i++) {
501 if ((bits & matches[i].first) == matches[i].second) {
502 // Only one instruction class should match for each value of bits, so
503 // if we get here, the node pointed to should still be unallocated.
504 VIXL_ASSERT(compiled_node_->GetNodeForBits(bits) == NULL);
505 CompileNodeForBits(decoder, String(pattern_table_[i].handler, GetAllocator().Adapter()), bits);
506 break;
507 }
508 }
509
510 // If the decode_table_ entry for these bits is still NULL, the
511 // instruction must be handled by the "otherwise" case, which by default
512 // is the Unallocated visitor.
513 if (compiled_node_->GetNodeForBits(bits) == NULL) {
514 CompileNodeForBits(decoder, String(otherwise, GetAllocator().Adapter()), bits);
515 }
516 }
517 }
518
519 VIXL_ASSERT(compiled_node_ != NULL);
520 return compiled_node_;
521 }
522
Decode(const Instruction* instr) const523 void CompiledDecodeNode::Decode(const Instruction* instr) const {
524 if (IsLeafNode()) {
525 // If this node is a leaf, call the registered visitor function.
526 VIXL_ASSERT(decoder_ != NULL);
527 decoder_->VisitNamedInstruction(instr, instruction_name_);
528 } else {
529 // Otherwise, using the sampled bit extractor for this node, look up the
530 // next node in the decode tree, and call its Decode method.
531 VIXL_ASSERT(bit_extract_fn_ != NULL);
532 VIXL_ASSERT((instr->*bit_extract_fn_)() < decode_table_size_);
533 VIXL_ASSERT(decode_table_[(instr->*bit_extract_fn_)()] != NULL);
534 decode_table_[(instr->*bit_extract_fn_)()]->Decode(instr);
535 }
536 }
537
GenerateMaskValuePair( uint32_t pattern) const538 DecodeNode::MaskValuePair DecodeNode::GenerateMaskValuePair(
539 uint32_t pattern) const {
540 uint32_t mask = 0, value = 0;
541 for (size_t i = 0; i < GetPatternLength(pattern); i++) {
542 PatternSymbol sym = GetSymbolAt(pattern, i);
543 mask = (mask << 1) | ((sym == PatternSymbol::kSymbolX) ? 0 : 1);
544 value = (value << 1) | (static_cast<uint32_t>(sym) & 1);
545 }
546 return std::make_pair(mask, value);
547 }
548
GenerateOrderedPattern(uint32_t pattern) const549 uint32_t DecodeNode::GenerateOrderedPattern(uint32_t pattern) const {
550 const auto& sampled_bits = GetSampledBits();
551 uint64_t temp = 0xffffffffffffffff;
552
553 // Place symbols into the field of set bits. Symbols are two bits wide and
554 // take values 0, 1 or 2, so 3 will represent "no symbol".
555 for (size_t i = 0; i < sampled_bits.size(); i++) {
556 int shift = sampled_bits[i] * 2;
557 temp ^= static_cast<uint64_t>(kEndOfPattern) << shift;
558 temp |= static_cast<uint64_t>(GetSymbolAt(pattern, i)) << shift;
559 }
560
561 // Iterate over temp and extract new pattern ordered by sample position.
562 uint32_t result = kEndOfPattern; // End of pattern marker.
563
564 // Iterate over the pattern one symbol (two bits) at a time.
565 for (int i = 62; i >= 0; i -= 2) {
566 uint32_t sym = (temp >> i) & kPatternSymbolMask;
567
568 // If this is a valid symbol, shift into the result.
569 if (sym != kEndOfPattern) {
570 result = (result << 2) | sym;
571 }
572 }
573
574 // The length of the ordered pattern must be the same as the input pattern,
575 // and the number of sampled bits.
576 VIXL_ASSERT(GetPatternLength(result) == GetPatternLength(pattern));
577 VIXL_ASSERT(GetPatternLength(result) == sampled_bits.size());
578
579 return result;
580 }
581
GenerateSampledBitsMask() const582 uint32_t DecodeNode::GenerateSampledBitsMask() const {
583 uint32_t mask = 0;
584 for (int bit : GetSampledBits()) {
585 mask |= 1 << bit;
586 }
587 return mask;
588 }
589
590 } // namespace aarch64
591 } // namespace vixl
592