1 // Copyright (c) 2015-2016 The Khronos Group Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef SOURCE_VAL_VALIDATION_STATE_H_
16 #define SOURCE_VAL_VALIDATION_STATE_H_
17 
18 #include <algorithm>
19 #include <map>
20 #include <set>
21 #include <string>
22 #include <tuple>
23 #include <unordered_map>
24 #include <unordered_set>
25 #include <vector>
26 
27 #include "source/assembly_grammar.h"
28 #include "source/diagnostic.h"
29 #include "source/disassemble.h"
30 #include "source/enum_set.h"
31 #include "source/latest_version_spirv_header.h"
32 #include "source/name_mapper.h"
33 #include "source/spirv_definition.h"
34 #include "source/spirv_validator_options.h"
35 #include "source/val/decoration.h"
36 #include "source/val/function.h"
37 #include "source/val/instruction.h"
38 #include "spirv-tools/libspirv.h"
39 
40 namespace spvtools {
41 namespace val {
42 
43 /// This enum represents the sections of a SPIRV module. See section 2.4
44 /// of the SPIRV spec for additional details of the order. The enumerant values
45 /// are in the same order as the vector returned by GetModuleOrder
46 enum ModuleLayoutSection {
47   kLayoutCapabilities,             /// < Section 2.4 #1
48   kLayoutExtensions,               /// < Section 2.4 #2
49   kLayoutExtInstImport,            /// < Section 2.4 #3
50   kLayoutMemoryModel,              /// < Section 2.4 #4
51   kLayoutSamplerImageAddressMode,  /// < Section 2.4 #5
52   kLayoutEntryPoint,               /// < Section 2.4 #6
53   kLayoutExecutionMode,            /// < Section 2.4 #7
54   kLayoutDebug1,                   /// < Section 2.4 #8 > 1
55   kLayoutDebug2,                   /// < Section 2.4 #8 > 2
56   kLayoutDebug3,                   /// < Section 2.4 #8 > 3
57   kLayoutAnnotations,              /// < Section 2.4 #9
58   kLayoutTypes,                    /// < Section 2.4 #10
59   kLayoutFunctionDeclarations,     /// < Section 2.4 #11
60   kLayoutFunctionDefinitions       /// < Section 2.4 #12
61 };
62 
63 /// This class manages the state of the SPIR-V validation as it is being parsed.
64 class ValidationState_t {
65  public:
66   // Features that can optionally be turned on by a capability or environment.
67   struct Feature {
68     bool declare_int16_type = false;     // Allow OpTypeInt with 16 bit width?
69     bool declare_float16_type = false;   // Allow OpTypeFloat with 16 bit width?
70     bool free_fp_rounding_mode = false;  // Allow the FPRoundingMode decoration
71                                          // and its values to be used without
72                                          // requiring any capability
73 
74     // Allow functionalities enabled by VariablePointers or
75     // VariablePointersStorageBuffer capability.
76     bool variable_pointers = false;
77 
78     // Permit group oerations Reduce, InclusiveScan, ExclusiveScan
79     bool group_ops_reduce_and_scans = false;
80 
81     // Allow OpTypeInt with 8 bit width?
82     bool declare_int8_type = false;
83 
84     // Target environment uses relaxed block layout.
85     // This is true for Vulkan 1.1 or later.
86     bool env_relaxed_block_layout = false;
87 
88     // Allow an OpTypeInt with 8 bit width to be used in more than just int
89     // conversion opcodes
90     bool use_int8_type = false;
91 
92     // SPIR-V 1.4 allows us to select between any two composite values
93     // of the same type.
94     bool select_between_composites = false;
95 
96     // SPIR-V 1.4 allows two memory access operands for OpCopyMemory and
97     // OpCopyMemorySized.
98     bool copy_memory_permits_two_memory_accesses = false;
99 
100     // SPIR-V 1.4 allows UConvert as a spec constant op in any environment.
101     // The Kernel capability already enables it, separately from this flag.
102     bool uconvert_spec_constant_op = false;
103 
104     // SPIR-V 1.4 allows Function and Private variables to be NonWritable
105     bool nonwritable_var_in_function_or_private = false;
106 
107     // Whether LocalSizeId execution mode is allowed by the environment.
108     bool env_allow_localsizeid = false;
109   };
110 
111   ValidationState_t(const spv_const_context context,
112                     const spv_const_validator_options opt,
113                     const uint32_t* words, const size_t num_words,
114                     const uint32_t max_warnings);
115 
116   /// Returns the context
context() const117   spv_const_context context() const { return context_; }
118 
119   /// Returns the command line options
options() const120   spv_const_validator_options options() const { return options_; }
121 
122   /// Sets the ID of the generator for this module.
setGenerator(uint32_t gen)123   void setGenerator(uint32_t gen) { generator_ = gen; }
124 
125   /// Returns the ID of the generator for this module.
generator() const126   uint32_t generator() const { return generator_; }
127 
128   /// Sets the SPIR-V version of this module.
setVersion(uint32_t ver)129   void setVersion(uint32_t ver) { version_ = ver; }
130 
131   /// Gets the SPIR-V version of this module.
version() const132   uint32_t version() const { return version_; }
133 
134   /// Forward declares the id in the module
135   spv_result_t ForwardDeclareId(uint32_t id);
136 
137   /// Removes a forward declared ID if it has been defined
138   spv_result_t RemoveIfForwardDeclared(uint32_t id);
139 
140   /// Registers an ID as a forward pointer
141   spv_result_t RegisterForwardPointer(uint32_t id);
142 
143   /// Returns whether or not an ID is a forward pointer
144   bool IsForwardPointer(uint32_t id) const;
145 
146   /// Assigns a name to an ID
147   void AssignNameToId(uint32_t id, std::string name);
148 
149   /// Returns a string representation of the ID in the format <id>[Name] where
150   /// the <id> is the numeric valid of the id and the Name is a name assigned by
151   /// the OpName instruction
152   std::string getIdName(uint32_t id) const;
153 
154   /// Accessor function for ID bound.
155   uint32_t getIdBound() const;
156 
157   /// Mutator function for ID bound.
158   void setIdBound(uint32_t bound);
159 
160   /// Returns the number of ID which have been forward referenced but not
161   /// defined
162   size_t unresolved_forward_id_count() const;
163 
164   /// Returns a vector of unresolved forward ids.
165   std::vector<uint32_t> UnresolvedForwardIds() const;
166 
167   /// Returns true if the id has been defined
168   bool IsDefinedId(uint32_t id) const;
169 
170   /// Increments the total number of instructions in the file.
increment_total_instructions()171   void increment_total_instructions() { total_instructions_++; }
172 
173   /// Increments the total number of functions in the file.
increment_total_functions()174   void increment_total_functions() { total_functions_++; }
175 
176   /// Allocates internal storage. Note, calling this will invalidate any
177   /// pointers to |ordered_instructions_| or |module_functions_| and, hence,
178   /// should only be called at the beginning of validation.
179   void preallocateStorage();
180 
181   /// Returns the current layout section which is being processed
182   ModuleLayoutSection current_layout_section() const;
183 
184   /// Increments the module_layout_order_section_
185   void ProgressToNextLayoutSectionOrder();
186 
187   /// Determines if the op instruction is in a previous layout section
188   bool IsOpcodeInPreviousLayoutSection(spv::Op op);
189 
190   /// Determines if the op instruction is part of the current section
191   bool IsOpcodeInCurrentLayoutSection(spv::Op op);
192 
193   DiagnosticStream diag(spv_result_t error_code, const Instruction* inst);
194 
195   /// Returns the function states
196   std::vector<Function>& functions();
197 
198   /// Returns the function states
199   Function& current_function();
200   const Function& current_function() const;
201 
202   /// Returns function state with the given id, or nullptr if no such function.
203   const Function* function(uint32_t id) const;
204   Function* function(uint32_t id);
205 
206   /// Returns true if the called after a function instruction but before the
207   /// function end instruction
208   bool in_function_body() const;
209 
210   /// Returns true if called after a label instruction but before a branch
211   /// instruction
212   bool in_block() const;
213 
214   struct EntryPointDescription {
215     std::string name;
216     std::vector<uint32_t> interfaces;
217   };
218 
219   /// Registers |id| as an entry point with |execution_model| and |interfaces|.
RegisterEntryPoint(const uint32_t id, spv::ExecutionModel execution_model, EntryPointDescription&& desc)220   void RegisterEntryPoint(const uint32_t id,
221                           spv::ExecutionModel execution_model,
222                           EntryPointDescription&& desc) {
223     entry_points_.push_back(id);
224     entry_point_to_execution_models_[id].insert(execution_model);
225     entry_point_descriptions_[id].emplace_back(desc);
226   }
227 
228   /// Returns a list of entry point function ids
entry_points() const229   const std::vector<uint32_t>& entry_points() const { return entry_points_; }
230 
231   /// Returns the set of entry points that root call graphs that contain
232   /// recursion.
recursive_entry_points() const233   const std::set<uint32_t>& recursive_entry_points() const {
234     return recursive_entry_points_;
235   }
236 
237   /// Registers execution mode for the given entry point.
RegisterExecutionModeForEntryPoint(uint32_t entry_point, spv::ExecutionMode execution_mode)238   void RegisterExecutionModeForEntryPoint(uint32_t entry_point,
239                                           spv::ExecutionMode execution_mode) {
240     entry_point_to_execution_modes_[entry_point].insert(execution_mode);
241   }
242 
243   /// Returns the interface descriptions of a given entry point.
entry_point_descriptions( uint32_t entry_point)244   const std::vector<EntryPointDescription>& entry_point_descriptions(
245       uint32_t entry_point) {
246     return entry_point_descriptions_.at(entry_point);
247   }
248 
249   /// Returns Execution Models for the given Entry Point.
250   /// Returns nullptr if none found (would trigger assertion).
GetExecutionModels( uint32_t entry_point) const251   const std::set<spv::ExecutionModel>* GetExecutionModels(
252       uint32_t entry_point) const {
253     const auto it = entry_point_to_execution_models_.find(entry_point);
254     if (it == entry_point_to_execution_models_.end()) {
255       assert(0);
256       return nullptr;
257     }
258     return &it->second;
259   }
260 
261   /// Returns Execution Modes for the given Entry Point.
262   /// Returns nullptr if none found.
GetExecutionModes( uint32_t entry_point) const263   const std::set<spv::ExecutionMode>* GetExecutionModes(
264       uint32_t entry_point) const {
265     const auto it = entry_point_to_execution_modes_.find(entry_point);
266     if (it == entry_point_to_execution_modes_.end()) {
267       return nullptr;
268     }
269     return &it->second;
270   }
271 
272   /// Traverses call tree and computes function_to_entry_points_.
273   /// Note: called after fully parsing the binary.
274   void ComputeFunctionToEntryPointMapping();
275 
276   /// Traverse call tree and computes recursive_entry_points_.
277   /// Note: called after fully parsing the binary and calling
278   /// ComputeFunctionToEntryPointMapping.
279   void ComputeRecursiveEntryPoints();
280 
281   /// Returns all the entry points that can call |func|.
282   const std::vector<uint32_t>& FunctionEntryPoints(uint32_t func) const;
283 
284   /// Returns all the entry points that statically use |id|.
285   ///
286   /// Note: requires ComputeFunctionToEntryPointMapping to have been called.
287   std::set<uint32_t> EntryPointReferences(uint32_t id) const;
288 
289   /// Inserts an <id> to the set of functions that are target of OpFunctionCall.
AddFunctionCallTarget(const uint32_t id)290   void AddFunctionCallTarget(const uint32_t id) {
291     function_call_targets_.insert(id);
292     current_function().AddFunctionCallTarget(id);
293   }
294 
295   /// Returns whether or not a function<id> is the target of OpFunctionCall.
IsFunctionCallTarget(const uint32_t id)296   bool IsFunctionCallTarget(const uint32_t id) {
297     return (function_call_targets_.find(id) != function_call_targets_.end());
298   }
299 
IsFunctionCallDefined(const uint32_t id)300   bool IsFunctionCallDefined(const uint32_t id) {
301     return (id_to_function_.find(id) != id_to_function_.end());
302   }
303   /// Registers the capability and its dependent capabilities
304   void RegisterCapability(spv::Capability cap);
305 
306   /// Registers the extension.
307   void RegisterExtension(Extension ext);
308 
309   /// Registers the function in the module. Subsequent instructions will be
310   /// called against this function
311   spv_result_t RegisterFunction(uint32_t id, uint32_t ret_type_id,
312                                 spv::FunctionControlMask function_control,
313                                 uint32_t function_type_id);
314 
315   /// Register a function end instruction
316   spv_result_t RegisterFunctionEnd();
317 
318   /// Returns true if the capability is enabled in the module.
HasCapability(spv::Capability cap) const319   bool HasCapability(spv::Capability cap) const {
320     return module_capabilities_.contains(cap);
321   }
322 
323   /// Returns a reference to the set of capabilities in the module.
324   /// This is provided for debuggability.
module_capabilities() const325   const CapabilitySet& module_capabilities() const {
326     return module_capabilities_;
327   }
328 
329   /// Returns true if the extension is enabled in the module.
HasExtension(Extension ext) const330   bool HasExtension(Extension ext) const {
331     return module_extensions_.contains(ext);
332   }
333 
334   /// Returns true if any of the capabilities is enabled, or if |capabilities|
335   /// is an empty set.
336   bool HasAnyOfCapabilities(const CapabilitySet& capabilities) const;
337 
338   /// Returns true if any of the extensions is enabled, or if |extensions|
339   /// is an empty set.
340   bool HasAnyOfExtensions(const ExtensionSet& extensions) const;
341 
342   /// Sets the addressing model of this module (logical/physical).
343   void set_addressing_model(spv::AddressingModel am);
344 
345   /// Returns true if the OpMemoryModel was found.
has_memory_model_specified() const346   bool has_memory_model_specified() const {
347     return addressing_model_ != spv::AddressingModel::Max &&
348            memory_model_ != spv::MemoryModel::Max;
349   }
350 
351   /// Returns the addressing model of this module, or Logical if uninitialized.
352   spv::AddressingModel addressing_model() const;
353 
354   /// Returns the addressing model of this module, or Logical if uninitialized.
pointer_size_and_alignment() const355   uint32_t pointer_size_and_alignment() const {
356     return pointer_size_and_alignment_;
357   }
358 
359   /// Sets the memory model of this module.
360   void set_memory_model(spv::MemoryModel mm);
361 
362   /// Returns the memory model of this module, or Simple if uninitialized.
363   spv::MemoryModel memory_model() const;
364 
365   /// Sets the bit width for sampler/image type variables. If not set, they are
366   /// considered opaque
367   void set_samplerimage_variable_address_mode(uint32_t bit_width);
368 
369   /// Get the addressing mode currently set. If 0, it means addressing mode is
370   /// invalid Sampler/Image type variables must be considered opaque This mode
371   /// is only valid after the instruction has been read
372   uint32_t samplerimage_variable_address_mode() const;
373 
374   /// Returns true if the OpSamplerImageAddressingModeNV was found.
has_samplerimage_variable_address_mode_specified() const375   bool has_samplerimage_variable_address_mode_specified() const {
376     return sampler_image_addressing_mode_ != 0;
377   }
378 
grammar() const379   const AssemblyGrammar& grammar() const { return grammar_; }
380 
381   /// Inserts the instruction into the list of ordered instructions in the file.
382   Instruction* AddOrderedInstruction(const spv_parsed_instruction_t* inst);
383 
384   /// Registers the instruction. This will add the instruction to the list of
385   /// definitions and register sampled image consumers.
386   void RegisterInstruction(Instruction* inst);
387 
388   /// Registers the debug instruction information.
389   void RegisterDebugInstruction(const Instruction* inst);
390 
391   /// Registers the decoration for the given <id>
RegisterDecorationForId(uint32_t id, const Decoration& dec)392   void RegisterDecorationForId(uint32_t id, const Decoration& dec) {
393     auto& dec_list = id_decorations_[id];
394     dec_list.insert(dec);
395   }
396 
397   /// Registers the list of decorations for the given <id>
398   template <class InputIt>
RegisterDecorationsForId(uint32_t id, InputIt begin, InputIt end)399   void RegisterDecorationsForId(uint32_t id, InputIt begin, InputIt end) {
400     std::set<Decoration>& cur_decs = id_decorations_[id];
401     cur_decs.insert(begin, end);
402   }
403 
404   /// Registers the list of decorations for the given member of the given
405   /// structure.
406   template <class InputIt>
RegisterDecorationsForStructMember(uint32_t struct_id, uint32_t member_index, InputIt begin, InputIt end)407   void RegisterDecorationsForStructMember(uint32_t struct_id,
408                                           uint32_t member_index, InputIt begin,
409                                           InputIt end) {
410     std::set<Decoration>& cur_decs = id_decorations_[struct_id];
411     for (InputIt iter = begin; iter != end; ++iter) {
412       Decoration dec = *iter;
413       dec.set_struct_member_index(member_index);
414       cur_decs.insert(dec);
415     }
416   }
417 
418   /// Returns all the decorations for the given <id>. If no decorations exist
419   /// for the <id>, it registers an empty set for it in the map and
420   /// returns the empty set.
id_decorations(uint32_t id)421   std::set<Decoration>& id_decorations(uint32_t id) {
422     return id_decorations_[id];
423   }
424 
425   /// Returns the range of decorations for the given field of the given <id>.
426   struct FieldDecorationsIter {
427     std::set<Decoration>::const_iterator begin;
428     std::set<Decoration>::const_iterator end;
429   };
id_member_decorations(uint32_t id, uint32_t member_index)430   FieldDecorationsIter id_member_decorations(uint32_t id,
431                                              uint32_t member_index) {
432     const auto& decorations = id_decorations_[id];
433 
434     // The decorations are sorted by member_index, so this look up will give the
435     // exact range of decorations for this member index.
436     Decoration min_decoration((spv::Decoration)0, {}, member_index);
437     Decoration max_decoration(spv::Decoration::Max, {}, member_index);
438 
439     FieldDecorationsIter result;
440     result.begin = decorations.lower_bound(min_decoration);
441     result.end = decorations.upper_bound(max_decoration);
442 
443     return result;
444   }
445 
446   // Returns const pointer to the internal decoration container.
id_decorations() const447   const std::map<uint32_t, std::set<Decoration>>& id_decorations() const {
448     return id_decorations_;
449   }
450 
451   /// Returns true if the given id <id> has the given decoration <dec>,
452   /// otherwise returns false.
HasDecoration(uint32_t id, spv::Decoration dec)453   bool HasDecoration(uint32_t id, spv::Decoration dec) {
454     const auto& decorations = id_decorations_.find(id);
455     if (decorations == id_decorations_.end()) return false;
456 
457     return std::any_of(
458         decorations->second.begin(), decorations->second.end(),
459         [dec](const Decoration& d) { return dec == d.dec_type(); });
460   }
461 
462   /// Finds id's def, if it exists.  If found, returns the definition otherwise
463   /// nullptr
464   const Instruction* FindDef(uint32_t id) const;
465 
466   /// Finds id's def, if it exists.  If found, returns the definition otherwise
467   /// nullptr
468   Instruction* FindDef(uint32_t id);
469 
470   /// Returns the instructions in the order they appear in the binary
ordered_instructions() const471   const std::vector<Instruction>& ordered_instructions() const {
472     return ordered_instructions_;
473   }
474 
475   /// Returns a map of instructions mapped by their result id
all_definitions() const476   const std::unordered_map<uint32_t, Instruction*>& all_definitions() const {
477     return all_definitions_;
478   }
479 
480   /// Returns a vector containing the instructions that consume the given
481   /// SampledImage id.
482   std::vector<Instruction*> getSampledImageConsumers(uint32_t id) const;
483 
484   /// Records cons_id as a consumer of sampled_image_id.
485   void RegisterSampledImageConsumer(uint32_t sampled_image_id,
486                                     Instruction* consumer);
487 
488   // Record a cons_id as a consumer of texture_id
489   // if texture 'texture_id' has a QCOM image processing decoration
490   // and consumer is a load or a sampled image instruction
491   void RegisterQCOMImageProcessingTextureConsumer(uint32_t texture_id,
492                                                   const Instruction* consumer0,
493                                                   const Instruction* consumer1);
494 
495   // Record a function's storage class consumer instruction
496   void RegisterStorageClassConsumer(spv::StorageClass storage_class,
497                                     Instruction* consumer);
498 
499   /// Returns the set of Global Variables.
global_vars()500   std::unordered_set<uint32_t>& global_vars() { return global_vars_; }
501 
502   /// Returns the set of Local Variables.
local_vars()503   std::unordered_set<uint32_t>& local_vars() { return local_vars_; }
504 
505   /// Returns the number of Global Variables.
num_global_vars()506   size_t num_global_vars() { return global_vars_.size(); }
507 
508   /// Returns the number of Local Variables.
num_local_vars()509   size_t num_local_vars() { return local_vars_.size(); }
510 
511   /// Inserts a new <id> to the set of Global Variables.
registerGlobalVariable(const uint32_t id)512   void registerGlobalVariable(const uint32_t id) { global_vars_.insert(id); }
513 
514   /// Inserts a new <id> to the set of Local Variables.
registerLocalVariable(const uint32_t id)515   void registerLocalVariable(const uint32_t id) { local_vars_.insert(id); }
516 
517   // Returns true if using relaxed block layout, equivalent to
518   // VK_KHR_relaxed_block_layout.
IsRelaxedBlockLayout() const519   bool IsRelaxedBlockLayout() const {
520     return features_.env_relaxed_block_layout || options()->relax_block_layout;
521   }
522 
523   // Returns true if allowing localsizeid, either because the environment always
524   // allows it, or because it is enabled from the command-line.
IsLocalSizeIdAllowed() const525   bool IsLocalSizeIdAllowed() const {
526     return features_.env_allow_localsizeid || options()->allow_localsizeid;
527   }
528 
529   /// Sets the struct nesting depth for a given struct ID
set_struct_nesting_depth(uint32_t id, uint32_t depth)530   void set_struct_nesting_depth(uint32_t id, uint32_t depth) {
531     struct_nesting_depth_[id] = depth;
532   }
533 
534   /// Returns the nesting depth of a given structure ID
struct_nesting_depth(uint32_t id)535   uint32_t struct_nesting_depth(uint32_t id) {
536     return struct_nesting_depth_[id];
537   }
538 
539   /// Records the has a nested block/bufferblock decorated struct for a given
540   /// struct ID
SetHasNestedBlockOrBufferBlockStruct(uint32_t id, bool has)541   void SetHasNestedBlockOrBufferBlockStruct(uint32_t id, bool has) {
542     struct_has_nested_blockorbufferblock_struct_[id] = has;
543   }
544 
545   /// For a given struct ID returns true if it has a nested block/bufferblock
546   /// decorated struct
GetHasNestedBlockOrBufferBlockStruct(uint32_t id)547   bool GetHasNestedBlockOrBufferBlockStruct(uint32_t id) {
548     return struct_has_nested_blockorbufferblock_struct_[id];
549   }
550 
551   /// Records that the structure type has a member decorated with a built-in.
RegisterStructTypeWithBuiltInMember(uint32_t id)552   void RegisterStructTypeWithBuiltInMember(uint32_t id) {
553     builtin_structs_.insert(id);
554   }
555 
556   /// Returns true if the struct type with the given Id has a BuiltIn member.
IsStructTypeWithBuiltInMember(uint32_t id) const557   bool IsStructTypeWithBuiltInMember(uint32_t id) const {
558     return (builtin_structs_.find(id) != builtin_structs_.end());
559   }
560 
561   // Returns the state of optional features.
features() const562   const Feature& features() const { return features_; }
563 
564   /// Adds the instruction data to unique_type_declarations_.
565   /// Returns false if an identical type declaration already exists.
566   bool RegisterUniqueTypeDeclaration(const Instruction* inst);
567 
568   // Returns type_id of the scalar component of |id|.
569   // |id| can be either
570   // - scalar, vector or matrix type
571   // - object of either scalar, vector or matrix type
572   uint32_t GetComponentType(uint32_t id) const;
573 
574   // Returns
575   // - 1 for scalar types or objects
576   // - vector size for vector types or objects
577   // - num columns for matrix types or objects
578   // Should not be called with any other arguments (will return zero and invoke
579   // assertion).
580   uint32_t GetDimension(uint32_t id) const;
581 
582   // Returns bit width of scalar or component.
583   // |id| can be
584   // - scalar, vector or matrix type
585   // - object of either scalar, vector or matrix type
586   // Will invoke assertion and return 0 if |id| is none of the above.
587   uint32_t GetBitWidth(uint32_t id) const;
588 
589   // Provides detailed information on matrix type.
590   // Returns false iff |id| is not matrix type.
591   bool GetMatrixTypeInfo(uint32_t id, uint32_t* num_rows, uint32_t* num_cols,
592                          uint32_t* column_type, uint32_t* component_type) const;
593 
594   // Collects struct member types into |member_types|.
595   // Returns false iff not struct type or has no members.
596   // Deletes prior contents of |member_types|.
597   bool GetStructMemberTypes(uint32_t struct_type_id,
598                             std::vector<uint32_t>* member_types) const;
599 
600   // Returns true iff |id| is a type corresponding to the name of the function.
601   // Only works for types not for objects.
602   bool IsVoidType(uint32_t id) const;
603   bool IsFloatScalarType(uint32_t id) const;
604   bool IsFloatVectorType(uint32_t id) const;
605   bool IsFloatScalarOrVectorType(uint32_t id) const;
606   bool IsFloatMatrixType(uint32_t id) const;
607   bool IsIntScalarType(uint32_t id) const;
608   bool IsIntVectorType(uint32_t id) const;
609   bool IsIntScalarOrVectorType(uint32_t id) const;
610   bool IsUnsignedIntScalarType(uint32_t id) const;
611   bool IsUnsignedIntVectorType(uint32_t id) const;
612   bool IsUnsignedIntScalarOrVectorType(uint32_t id) const;
613   bool IsSignedIntScalarType(uint32_t id) const;
614   bool IsSignedIntVectorType(uint32_t id) const;
615   bool IsBoolScalarType(uint32_t id) const;
616   bool IsBoolVectorType(uint32_t id) const;
617   bool IsBoolScalarOrVectorType(uint32_t id) const;
618   bool IsPointerType(uint32_t id) const;
619   bool IsAccelerationStructureType(uint32_t id) const;
620   bool IsCooperativeMatrixType(uint32_t id) const;
621   bool IsCooperativeMatrixNVType(uint32_t id) const;
622   bool IsCooperativeMatrixKHRType(uint32_t id) const;
623   bool IsCooperativeMatrixAType(uint32_t id) const;
624   bool IsCooperativeMatrixBType(uint32_t id) const;
625   bool IsCooperativeMatrixAccType(uint32_t id) const;
626   bool IsFloatCooperativeMatrixType(uint32_t id) const;
627   bool IsIntCooperativeMatrixType(uint32_t id) const;
628   bool IsUnsignedIntCooperativeMatrixType(uint32_t id) const;
629   bool IsUnsigned64BitHandle(uint32_t id) const;
630 
631   // Returns true if |id| is a type id that contains |type| (or integer or
632   // floating point type) of |width| bits.
633   bool ContainsSizedIntOrFloatType(uint32_t id, spv::Op type,
634                                    uint32_t width) const;
635   // Returns true if |id| is a type id that contains a 8- or 16-bit int or
636   // 16-bit float that is not generally enabled for use.
637   bool ContainsLimitedUseIntOrFloatType(uint32_t id) const;
638 
639   // Returns true if |id| is a type that contains a runtime-sized array.
640   // Does not consider a pointers as contains the array.
641   bool ContainsRuntimeArray(uint32_t id) const;
642 
643   // Generic type traversal.
644   // Only traverse pointers and functions if |traverse_all_types| is true.
645   // Recursively tests |f| against the type hierarchy headed by |id|.
646   bool ContainsType(uint32_t id,
647                     const std::function<bool(const Instruction*)>& f,
648                     bool traverse_all_types = true) const;
649 
650   // Gets value from OpConstant and OpSpecConstant as uint64.
651   // Returns false on failure (no instruction, wrong instruction, not int).
652   bool GetConstantValUint64(uint32_t id, uint64_t* val) const;
653 
654   // Returns type_id if id has type or zero otherwise.
655   uint32_t GetTypeId(uint32_t id) const;
656 
657   // Returns opcode of the instruction which issued the id or OpNop if the
658   // instruction is not registered.
659   spv::Op GetIdOpcode(uint32_t id) const;
660 
661   // Returns type_id for given id operand if it has a type or zero otherwise.
662   // |operand_index| is expected to be pointing towards an operand which is an
663   // id.
664   uint32_t GetOperandTypeId(const Instruction* inst,
665                             size_t operand_index) const;
666 
667   // Provides information on pointer type. Returns false iff not pointer type.
668   bool GetPointerTypeInfo(uint32_t id, uint32_t* data_type,
669                           spv::StorageClass* storage_class) const;
670 
671   // Is the ID the type of a pointer to a uniform block: Block-decorated struct
672   // in uniform storage class? The result is only valid after internal method
673   // CheckDecorationsOfBuffers has been called.
IsPointerToUniformBlock(uint32_t type_id) const674   bool IsPointerToUniformBlock(uint32_t type_id) const {
675     return pointer_to_uniform_block_.find(type_id) !=
676            pointer_to_uniform_block_.cend();
677   }
678   // Save the ID of a pointer to uniform block.
RegisterPointerToUniformBlock(uint32_t type_id)679   void RegisterPointerToUniformBlock(uint32_t type_id) {
680     pointer_to_uniform_block_.insert(type_id);
681   }
682   // Is the ID the type of a struct used as a uniform block?
683   // The result is only valid after internal method CheckDecorationsOfBuffers
684   // has been called.
IsStructForUniformBlock(uint32_t type_id) const685   bool IsStructForUniformBlock(uint32_t type_id) const {
686     return struct_for_uniform_block_.find(type_id) !=
687            struct_for_uniform_block_.cend();
688   }
689   // Save the ID of a struct of a uniform block.
RegisterStructForUniformBlock(uint32_t type_id)690   void RegisterStructForUniformBlock(uint32_t type_id) {
691     struct_for_uniform_block_.insert(type_id);
692   }
693   // Is the ID the type of a pointer to a storage buffer: BufferBlock-decorated
694   // struct in uniform storage class, or Block-decorated struct in StorageBuffer
695   // storage class? The result is only valid after internal method
696   // CheckDecorationsOfBuffers has been called.
IsPointerToStorageBuffer(uint32_t type_id) const697   bool IsPointerToStorageBuffer(uint32_t type_id) const {
698     return pointer_to_storage_buffer_.find(type_id) !=
699            pointer_to_storage_buffer_.cend();
700   }
701   // Save the ID of a pointer to a storage buffer.
RegisterPointerToStorageBuffer(uint32_t type_id)702   void RegisterPointerToStorageBuffer(uint32_t type_id) {
703     pointer_to_storage_buffer_.insert(type_id);
704   }
705   // Is the ID the type of a struct for storage buffer?
706   // The result is only valid after internal method CheckDecorationsOfBuffers
707   // has been called.
IsStructForStorageBuffer(uint32_t type_id) const708   bool IsStructForStorageBuffer(uint32_t type_id) const {
709     return struct_for_storage_buffer_.find(type_id) !=
710            struct_for_storage_buffer_.cend();
711   }
712   // Save the ID of a struct of a storage buffer.
RegisterStructForStorageBuffer(uint32_t type_id)713   void RegisterStructForStorageBuffer(uint32_t type_id) {
714     struct_for_storage_buffer_.insert(type_id);
715   }
716 
717   // Is the ID the type of a pointer to a storage image?  That is, the pointee
718   // type is an image type which is known to not use a sampler.
IsPointerToStorageImage(uint32_t type_id) const719   bool IsPointerToStorageImage(uint32_t type_id) const {
720     return pointer_to_storage_image_.find(type_id) !=
721            pointer_to_storage_image_.cend();
722   }
723   // Save the ID of a pointer to a storage image.
RegisterPointerToStorageImage(uint32_t type_id)724   void RegisterPointerToStorageImage(uint32_t type_id) {
725     pointer_to_storage_image_.insert(type_id);
726   }
727 
728   // Tries to evaluate a 32-bit signed or unsigned scalar integer constant.
729   // Returns tuple <is_int32, is_const_int32, value>.
730   // OpSpecConstant* return |is_const_int32| as false since their values cannot
731   // be relied upon during validation.
732   std::tuple<bool, bool, uint32_t> EvalInt32IfConst(uint32_t id) const;
733 
734   // Returns the disassembly string for the given instruction.
735   std::string Disassemble(const Instruction& inst) const;
736 
737   // Returns the disassembly string for the given instruction.
738   std::string Disassemble(const uint32_t* words, uint16_t num_words) const;
739 
740   // Returns the string name for |decoration|.
SpvDecorationString(uint32_t decoration)741   std::string SpvDecorationString(uint32_t decoration) {
742     spv_operand_desc desc = nullptr;
743     if (grammar_.lookupOperand(SPV_OPERAND_TYPE_DECORATION, decoration,
744                                &desc) != SPV_SUCCESS) {
745       return std::string("Unknown");
746     }
747     return std::string(desc->name);
748   }
SpvDecorationString(spv::Decoration decoration)749   std::string SpvDecorationString(spv::Decoration decoration) {
750     return SpvDecorationString(uint32_t(decoration));
751   }
752 
753   // Returns whether type m1 and type m2 are cooperative matrices with
754   // the same "shape" (matching scope, rows, cols). If any are specialization
755   // constants, we assume they can match because we can't prove they don't.
756   spv_result_t CooperativeMatrixShapesMatch(const Instruction* inst,
757                                             uint32_t m1, uint32_t m2);
758 
759   // Returns true if |lhs| and |rhs| logically match and, if the decorations of
760   // |rhs| are a subset of |lhs|.
761   //
762   // 1. Must both be either OpTypeArray or OpTypeStruct
763   // 2. If OpTypeArray, then
764   //  * Length must be the same
765   //  * Element type must match or logically match
766   // 3. If OpTypeStruct, then
767   //  * Both have same number of elements
768   //  * Element N for both structs must match or logically match
769   //
770   // If |check_decorations| is false, then the decorations are not checked.
771   bool LogicallyMatch(const Instruction* lhs, const Instruction* rhs,
772                       bool check_decorations);
773 
774   // Traces |inst| to find a single base pointer. Returns the base pointer.
775   // Will trace through the following instructions:
776   // * OpAccessChain
777   // * OpInBoundsAccessChain
778   // * OpPtrAccessChain
779   // * OpInBoundsPtrAccessChain
780   // * OpCopyObject
781   const Instruction* TracePointer(const Instruction* inst) const;
782 
783   // Validates the storage class for the target environment.
784   bool IsValidStorageClass(spv::StorageClass storage_class) const;
785 
786   // Takes a Vulkan Valid Usage ID (VUID) as |id| and optional |reference| and
787   // will return a non-empty string only if ID is known and targeting Vulkan.
788   // VUIDs are found in the Vulkan-Docs repo in the form "[[VUID-ref-ref-id]]"
789   // where "id" is always an 5 char long number (with zeros padding) and matches
790   // to |id|. |reference| is used if there is a "common validity" and the VUID
791   // shares the same |id| value.
792   //
793   // More details about Vulkan validation can be found in Vulkan Guide:
794   // https://github.com/KhronosGroup/Vulkan-Guide/blob/master/chapters/validation_overview.md
795   std::string VkErrorID(uint32_t id, const char* reference = nullptr) const;
796 
797   // Testing method to allow setting the current layout section.
SetCurrentLayoutSectionForTesting(ModuleLayoutSection section)798   void SetCurrentLayoutSectionForTesting(ModuleLayoutSection section) {
799     current_layout_section_ = section;
800   }
801 
802   // Check if instruction 'id' is a consumer of a texture decorated
803   // with a QCOM image processing decoration
IsQCOMImageProcessingTextureConsumer(uint32_t id)804   bool IsQCOMImageProcessingTextureConsumer(uint32_t id) {
805     return qcom_image_processing_consumers_.find(id) !=
806            qcom_image_processing_consumers_.end();
807   }
808 
809  private:
810   ValidationState_t(const ValidationState_t&);
811 
812   const spv_const_context context_;
813 
814   /// Stores the Validator command line options. Must be a valid options object.
815   const spv_const_validator_options options_;
816 
817   /// The SPIR-V binary module we're validating.
818   const uint32_t* words_;
819   const size_t num_words_;
820 
821   /// The generator of the SPIR-V.
822   uint32_t generator_ = 0;
823 
824   /// The version of the SPIR-V.
825   uint32_t version_ = 0;
826 
827   /// The total number of instructions in the binary.
828   size_t total_instructions_ = 0;
829   /// The total number of functions in the binary.
830   size_t total_functions_ = 0;
831 
832   /// IDs which have been forward declared but have not been defined
833   std::unordered_set<uint32_t> unresolved_forward_ids_;
834 
835   /// IDs that have been declared as forward pointers.
836   std::unordered_set<uint32_t> forward_pointer_ids_;
837 
838   /// Stores a vector of instructions that use the result of a given
839   /// OpSampledImage instruction.
840   std::unordered_map<uint32_t, std::vector<Instruction*>>
841       sampled_image_consumers_;
842 
843   /// Stores load instructions that load textures used
844   //  in QCOM image processing functions
845   std::unordered_set<uint32_t> qcom_image_processing_consumers_;
846 
847   /// A map of operand IDs and their names defined by the OpName instruction
848   std::unordered_map<uint32_t, std::string> operand_names_;
849 
850   /// The section of the code being processed
851   ModuleLayoutSection current_layout_section_;
852 
853   /// A list of functions in the module.
854   /// Pointers to objects in this container are guaranteed to be stable and
855   /// valid until the end of lifetime of the validation state.
856   std::vector<Function> module_functions_;
857 
858   /// Capabilities declared in the module
859   CapabilitySet module_capabilities_;
860 
861   /// Extensions declared in the module
862   ExtensionSet module_extensions_;
863 
864   /// List of all instructions in the order they appear in the binary
865   std::vector<Instruction> ordered_instructions_;
866 
867   /// Instructions that can be referenced by Ids
868   std::unordered_map<uint32_t, Instruction*> all_definitions_;
869 
870   /// IDs that are entry points, ie, arguments to OpEntryPoint.
871   std::vector<uint32_t> entry_points_;
872 
873   /// Maps an entry point id to its descriptions.
874   std::unordered_map<uint32_t, std::vector<EntryPointDescription>>
875       entry_point_descriptions_;
876 
877   /// IDs that are entry points, ie, arguments to OpEntryPoint, and root a call
878   /// graph that recurses.
879   std::set<uint32_t> recursive_entry_points_;
880 
881   /// Functions IDs that are target of OpFunctionCall.
882   std::unordered_set<uint32_t> function_call_targets_;
883 
884   /// ID Bound from the Header
885   uint32_t id_bound_;
886 
887   /// Set of Global Variable IDs (Storage Class other than 'Function')
888   std::unordered_set<uint32_t> global_vars_;
889 
890   /// Set of Local Variable IDs ('Function' Storage Class)
891   std::unordered_set<uint32_t> local_vars_;
892 
893   /// Set of struct types that have members with a BuiltIn decoration.
894   std::unordered_set<uint32_t> builtin_structs_;
895 
896   /// Structure Nesting Depth
897   std::unordered_map<uint32_t, uint32_t> struct_nesting_depth_;
898 
899   /// Structure has nested blockorbufferblock struct
900   std::unordered_map<uint32_t, bool>
901       struct_has_nested_blockorbufferblock_struct_;
902 
903   /// Stores the list of decorations for a given <id>
904   std::map<uint32_t, std::set<Decoration>> id_decorations_;
905 
906   /// Stores type declarations which need to be unique (i.e. non-aggregates),
907   /// in the form [opcode, operand words], result_id is not stored.
908   /// Using ordered set to avoid the need for a vector hash function.
909   /// The size of this container is expected not to exceed double-digits.
910   std::set<std::vector<uint32_t>> unique_type_declarations_;
911 
912   AssemblyGrammar grammar_;
913 
914   spv::AddressingModel addressing_model_;
915   spv::MemoryModel memory_model_;
916   // pointer size derived from addressing model. Assumes all storage classes
917   // have the same pointer size (for physical pointer types).
918   uint32_t pointer_size_and_alignment_;
919 
920   /// bit width of sampler/image type variables. Valid values are 32 and 64
921   uint32_t sampler_image_addressing_mode_;
922 
923   /// NOTE: See correspoding getter functions
924   bool in_function_;
925 
926   /// The state of optional features.  These are determined by capabilities
927   /// declared by the module and the environment.
928   Feature features_;
929 
930   /// Maps function ids to function stat objects.
931   std::unordered_map<uint32_t, Function*> id_to_function_;
932 
933   /// Mapping entry point -> execution models. It is presumed that the same
934   /// function could theoretically be used as 'main' by multiple OpEntryPoint
935   /// instructions.
936   std::unordered_map<uint32_t, std::set<spv::ExecutionModel>>
937       entry_point_to_execution_models_;
938 
939   /// Mapping entry point -> execution modes.
940   std::unordered_map<uint32_t, std::set<spv::ExecutionMode>>
941       entry_point_to_execution_modes_;
942 
943   /// Mapping function -> array of entry points inside this
944   /// module which can (indirectly) call the function.
945   std::unordered_map<uint32_t, std::vector<uint32_t>> function_to_entry_points_;
946   const std::vector<uint32_t> empty_ids_;
947 
948   // The IDs of types of pointers to Block-decorated structs in Uniform storage
949   // class. This is populated at the start of ValidateDecorations.
950   std::unordered_set<uint32_t> pointer_to_uniform_block_;
951   // The IDs of struct types for uniform blocks.
952   // This is populated at the start of ValidateDecorations.
953   std::unordered_set<uint32_t> struct_for_uniform_block_;
954   // The IDs of types of pointers to BufferBlock-decorated structs in Uniform
955   // storage class, or Block-decorated structs in StorageBuffer storage class.
956   // This is populated at the start of ValidateDecorations.
957   std::unordered_set<uint32_t> pointer_to_storage_buffer_;
958   // The IDs of struct types for storage buffers.
959   // This is populated at the start of ValidateDecorations.
960   std::unordered_set<uint32_t> struct_for_storage_buffer_;
961   // The IDs of types of pointers to storage images.  This is populated in the
962   // TypePass.
963   std::unordered_set<uint32_t> pointer_to_storage_image_;
964 
965   /// Maps ids to friendly names.
966   std::unique_ptr<spvtools::FriendlyNameMapper> friendly_mapper_;
967   spvtools::NameMapper name_mapper_;
968 
969   /// Variables used to reduce the number of diagnostic messages.
970   uint32_t num_of_warnings_;
971   uint32_t max_num_of_warnings_;
972 };
973 
974 }  // namespace val
975 }  // namespace spvtools
976 
977 #endif  // SOURCE_VAL_VALIDATION_STATE_H_
978