1cb93a386Sopenharmony_ci/* 2cb93a386Sopenharmony_ci* Copyright 2017 Google Inc. 3cb93a386Sopenharmony_ci* 4cb93a386Sopenharmony_ci* Use of this source code is governed by a BSD-style license that can be 5cb93a386Sopenharmony_ci* found in the LICENSE file. 6cb93a386Sopenharmony_ci*/ 7cb93a386Sopenharmony_ci 8cb93a386Sopenharmony_ci#include "include/utils/SkShadowUtils.h" 9cb93a386Sopenharmony_ci 10cb93a386Sopenharmony_ci#include "include/core/SkCanvas.h" 11cb93a386Sopenharmony_ci#include "include/core/SkColorFilter.h" 12cb93a386Sopenharmony_ci#include "include/core/SkMaskFilter.h" 13cb93a386Sopenharmony_ci#include "include/core/SkPath.h" 14cb93a386Sopenharmony_ci#include "include/core/SkString.h" 15cb93a386Sopenharmony_ci#include "include/core/SkVertices.h" 16cb93a386Sopenharmony_ci#include "include/private/SkColorData.h" 17cb93a386Sopenharmony_ci#include "include/private/SkIDChangeListener.h" 18cb93a386Sopenharmony_ci#include "include/private/SkTPin.h" 19cb93a386Sopenharmony_ci#include "include/utils/SkRandom.h" 20cb93a386Sopenharmony_ci#include "src/core/SkBlurMask.h" 21cb93a386Sopenharmony_ci#include "src/core/SkColorFilterBase.h" 22cb93a386Sopenharmony_ci#include "src/core/SkColorFilterPriv.h" 23cb93a386Sopenharmony_ci#include "src/core/SkDevice.h" 24cb93a386Sopenharmony_ci#include "src/core/SkDrawShadowInfo.h" 25cb93a386Sopenharmony_ci#include "src/core/SkEffectPriv.h" 26cb93a386Sopenharmony_ci#include "src/core/SkPathPriv.h" 27cb93a386Sopenharmony_ci#include "src/core/SkRasterPipeline.h" 28cb93a386Sopenharmony_ci#include "src/core/SkResourceCache.h" 29cb93a386Sopenharmony_ci#include "src/core/SkRuntimeEffectPriv.h" 30cb93a386Sopenharmony_ci#include "src/core/SkTLazy.h" 31cb93a386Sopenharmony_ci#include "src/core/SkVM.h" 32cb93a386Sopenharmony_ci#include "src/core/SkVerticesPriv.h" 33cb93a386Sopenharmony_ci#include "src/utils/SkShadowTessellator.h" 34cb93a386Sopenharmony_ci#include <new> 35cb93a386Sopenharmony_ci#if SK_SUPPORT_GPU 36cb93a386Sopenharmony_ci#include "src/gpu/effects/GrSkSLFP.h" 37cb93a386Sopenharmony_ci#include "src/gpu/geometry/GrStyledShape.h" 38cb93a386Sopenharmony_ci#endif 39cb93a386Sopenharmony_ci 40cb93a386Sopenharmony_ci/** 41cb93a386Sopenharmony_ci* Gaussian color filter -- produces a Gaussian ramp based on the color's B value, 42cb93a386Sopenharmony_ci* then blends with the color's G value. 43cb93a386Sopenharmony_ci* Final result is black with alpha of Gaussian(B)*G. 44cb93a386Sopenharmony_ci* The assumption is that the original color's alpha is 1. 45cb93a386Sopenharmony_ci*/ 46cb93a386Sopenharmony_ciclass SkGaussianColorFilter : public SkColorFilterBase { 47cb93a386Sopenharmony_cipublic: 48cb93a386Sopenharmony_ci SkGaussianColorFilter() : INHERITED() {} 49cb93a386Sopenharmony_ci 50cb93a386Sopenharmony_ci#if SK_SUPPORT_GPU 51cb93a386Sopenharmony_ci GrFPResult asFragmentProcessor(std::unique_ptr<GrFragmentProcessor> inputFP, 52cb93a386Sopenharmony_ci GrRecordingContext*, const GrColorInfo&) const override; 53cb93a386Sopenharmony_ci#endif 54cb93a386Sopenharmony_ci 55cb93a386Sopenharmony_ciprotected: 56cb93a386Sopenharmony_ci void flatten(SkWriteBuffer&) const override {} 57cb93a386Sopenharmony_ci bool onAppendStages(const SkStageRec& rec, bool shaderIsOpaque) const override { 58cb93a386Sopenharmony_ci rec.fPipeline->append(SkRasterPipeline::gauss_a_to_rgba); 59cb93a386Sopenharmony_ci return true; 60cb93a386Sopenharmony_ci } 61cb93a386Sopenharmony_ci 62cb93a386Sopenharmony_ci skvm::Color onProgram(skvm::Builder* p, skvm::Color c, const SkColorInfo& dst, skvm::Uniforms*, 63cb93a386Sopenharmony_ci SkArenaAlloc*) const override { 64cb93a386Sopenharmony_ci // x = 1 - x; 65cb93a386Sopenharmony_ci // exp(-x * x * 4) - 0.018f; 66cb93a386Sopenharmony_ci // ... now approximate with quartic 67cb93a386Sopenharmony_ci // 68cb93a386Sopenharmony_ci skvm::F32 x = p->splat(-2.26661229133605957031f); 69cb93a386Sopenharmony_ci x = c.a * x + 2.89795351028442382812f; 70cb93a386Sopenharmony_ci x = c.a * x + 0.21345567703247070312f; 71cb93a386Sopenharmony_ci x = c.a * x + 0.15489584207534790039f; 72cb93a386Sopenharmony_ci x = c.a * x + 0.00030726194381713867f; 73cb93a386Sopenharmony_ci return {x, x, x, x}; 74cb93a386Sopenharmony_ci } 75cb93a386Sopenharmony_ci 76cb93a386Sopenharmony_ciprivate: 77cb93a386Sopenharmony_ci SK_FLATTENABLE_HOOKS(SkGaussianColorFilter) 78cb93a386Sopenharmony_ci 79cb93a386Sopenharmony_ci using INHERITED = SkColorFilterBase; 80cb93a386Sopenharmony_ci}; 81cb93a386Sopenharmony_ci 82cb93a386Sopenharmony_cisk_sp<SkFlattenable> SkGaussianColorFilter::CreateProc(SkReadBuffer&) { 83cb93a386Sopenharmony_ci return SkColorFilterPriv::MakeGaussian(); 84cb93a386Sopenharmony_ci} 85cb93a386Sopenharmony_ci 86cb93a386Sopenharmony_ci#if SK_SUPPORT_GPU 87cb93a386Sopenharmony_ci 88cb93a386Sopenharmony_ciGrFPResult SkGaussianColorFilter::asFragmentProcessor(std::unique_ptr<GrFragmentProcessor> inputFP, 89cb93a386Sopenharmony_ci GrRecordingContext*, 90cb93a386Sopenharmony_ci const GrColorInfo&) const { 91cb93a386Sopenharmony_ci static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"( 92cb93a386Sopenharmony_ci half4 main(half4 inColor) { 93cb93a386Sopenharmony_ci half factor = 1 - inColor.a; 94cb93a386Sopenharmony_ci factor = exp(-factor * factor * 4) - 0.018; 95cb93a386Sopenharmony_ci return half4(factor); 96cb93a386Sopenharmony_ci } 97cb93a386Sopenharmony_ci )"); 98cb93a386Sopenharmony_ci SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect)); 99cb93a386Sopenharmony_ci return GrFPSuccess( 100cb93a386Sopenharmony_ci GrSkSLFP::Make(effect, "gaussian_fp", std::move(inputFP), GrSkSLFP::OptFlags::kNone)); 101cb93a386Sopenharmony_ci} 102cb93a386Sopenharmony_ci#endif 103cb93a386Sopenharmony_ci 104cb93a386Sopenharmony_cisk_sp<SkColorFilter> SkColorFilterPriv::MakeGaussian() { 105cb93a386Sopenharmony_ci return sk_sp<SkColorFilter>(new SkGaussianColorFilter); 106cb93a386Sopenharmony_ci} 107cb93a386Sopenharmony_ci 108cb93a386Sopenharmony_ci/////////////////////////////////////////////////////////////////////////////////////////////////// 109cb93a386Sopenharmony_ci 110cb93a386Sopenharmony_cinamespace { 111cb93a386Sopenharmony_ci 112cb93a386Sopenharmony_ciuint64_t resource_cache_shared_id() { 113cb93a386Sopenharmony_ci return 0x2020776f64616873llu; // 'shadow ' 114cb93a386Sopenharmony_ci} 115cb93a386Sopenharmony_ci 116cb93a386Sopenharmony_ci/** Factory for an ambient shadow mesh with particular shadow properties. */ 117cb93a386Sopenharmony_cistruct AmbientVerticesFactory { 118cb93a386Sopenharmony_ci SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. 119cb93a386Sopenharmony_ci bool fTransparent; 120cb93a386Sopenharmony_ci SkVector fOffset; 121cb93a386Sopenharmony_ci 122cb93a386Sopenharmony_ci bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const { 123cb93a386Sopenharmony_ci if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) { 124cb93a386Sopenharmony_ci return false; 125cb93a386Sopenharmony_ci } 126cb93a386Sopenharmony_ci *translate = that.fOffset; 127cb93a386Sopenharmony_ci return true; 128cb93a386Sopenharmony_ci } 129cb93a386Sopenharmony_ci 130cb93a386Sopenharmony_ci sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm, 131cb93a386Sopenharmony_ci SkVector* translate, bool isLimitElevation = false) const { 132cb93a386Sopenharmony_ci SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight); 133cb93a386Sopenharmony_ci // pick a canonical place to generate shadow 134cb93a386Sopenharmony_ci SkMatrix noTrans(ctm); 135cb93a386Sopenharmony_ci if (!ctm.hasPerspective()) { 136cb93a386Sopenharmony_ci noTrans[SkMatrix::kMTransX] = 0; 137cb93a386Sopenharmony_ci noTrans[SkMatrix::kMTransY] = 0; 138cb93a386Sopenharmony_ci } 139cb93a386Sopenharmony_ci *translate = fOffset; 140cb93a386Sopenharmony_ci return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent); 141cb93a386Sopenharmony_ci } 142cb93a386Sopenharmony_ci}; 143cb93a386Sopenharmony_ci 144cb93a386Sopenharmony_ci/** Factory for an spot shadow mesh with particular shadow properties. */ 145cb93a386Sopenharmony_cistruct SpotVerticesFactory { 146cb93a386Sopenharmony_ci enum class OccluderType { 147cb93a386Sopenharmony_ci // The umbra cannot be dropped out because either the occluder is not opaque, 148cb93a386Sopenharmony_ci // or the center of the umbra is visible. 149cb93a386Sopenharmony_ci kTransparent, 150cb93a386Sopenharmony_ci // The umbra can be dropped where it is occluded. 151cb93a386Sopenharmony_ci kOpaquePartialUmbra, 152cb93a386Sopenharmony_ci // It is known that the entire umbra is occluded. 153cb93a386Sopenharmony_ci kOpaqueNoUmbra, 154cb93a386Sopenharmony_ci // The light is directional 155cb93a386Sopenharmony_ci kDirectional 156cb93a386Sopenharmony_ci }; 157cb93a386Sopenharmony_ci 158cb93a386Sopenharmony_ci SkVector fOffset; 159cb93a386Sopenharmony_ci SkPoint fLocalCenter; 160cb93a386Sopenharmony_ci SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. 161cb93a386Sopenharmony_ci SkPoint3 fDevLightPos; 162cb93a386Sopenharmony_ci SkScalar fLightRadius; 163cb93a386Sopenharmony_ci OccluderType fOccluderType; 164cb93a386Sopenharmony_ci 165cb93a386Sopenharmony_ci bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const { 166cb93a386Sopenharmony_ci if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ || 167cb93a386Sopenharmony_ci fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) { 168cb93a386Sopenharmony_ci return false; 169cb93a386Sopenharmony_ci } 170cb93a386Sopenharmony_ci switch (fOccluderType) { 171cb93a386Sopenharmony_ci case OccluderType::kTransparent: 172cb93a386Sopenharmony_ci case OccluderType::kOpaqueNoUmbra: 173cb93a386Sopenharmony_ci // 'this' and 'that' will either both have no umbra removed or both have all the 174cb93a386Sopenharmony_ci // umbra removed. 175cb93a386Sopenharmony_ci *translate = that.fOffset; 176cb93a386Sopenharmony_ci return true; 177cb93a386Sopenharmony_ci case OccluderType::kOpaquePartialUmbra: 178cb93a386Sopenharmony_ci // In this case we partially remove the umbra differently for 'this' and 'that' 179cb93a386Sopenharmony_ci // if the offsets don't match. 180cb93a386Sopenharmony_ci if (fOffset == that.fOffset) { 181cb93a386Sopenharmony_ci translate->set(0, 0); 182cb93a386Sopenharmony_ci return true; 183cb93a386Sopenharmony_ci } 184cb93a386Sopenharmony_ci return false; 185cb93a386Sopenharmony_ci case OccluderType::kDirectional: 186cb93a386Sopenharmony_ci *translate = that.fOffset - fOffset; 187cb93a386Sopenharmony_ci return true; 188cb93a386Sopenharmony_ci } 189cb93a386Sopenharmony_ci SK_ABORT("Uninitialized occluder type?"); 190cb93a386Sopenharmony_ci } 191cb93a386Sopenharmony_ci 192cb93a386Sopenharmony_ci sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm, 193cb93a386Sopenharmony_ci SkVector* translate, bool isLimitElevation = false) const { 194cb93a386Sopenharmony_ci bool transparent = OccluderType::kTransparent == fOccluderType; 195cb93a386Sopenharmony_ci bool directional = OccluderType::kDirectional == fOccluderType; 196cb93a386Sopenharmony_ci SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight); 197cb93a386Sopenharmony_ci if (directional) { 198cb93a386Sopenharmony_ci translate->set(0, 0); 199cb93a386Sopenharmony_ci return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius, 200cb93a386Sopenharmony_ci transparent, true, isLimitElevation); 201cb93a386Sopenharmony_ci } else if (ctm.hasPerspective() || OccluderType::kOpaquePartialUmbra == fOccluderType) { 202cb93a386Sopenharmony_ci translate->set(0, 0); 203cb93a386Sopenharmony_ci return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius, 204cb93a386Sopenharmony_ci transparent, false, isLimitElevation); 205cb93a386Sopenharmony_ci } else { 206cb93a386Sopenharmony_ci // pick a canonical place to generate shadow, with light centered over path 207cb93a386Sopenharmony_ci SkMatrix noTrans(ctm); 208cb93a386Sopenharmony_ci noTrans[SkMatrix::kMTransX] = 0; 209cb93a386Sopenharmony_ci noTrans[SkMatrix::kMTransY] = 0; 210cb93a386Sopenharmony_ci SkPoint devCenter(fLocalCenter); 211cb93a386Sopenharmony_ci noTrans.mapPoints(&devCenter, 1); 212cb93a386Sopenharmony_ci SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ); 213cb93a386Sopenharmony_ci *translate = fOffset; 214cb93a386Sopenharmony_ci return SkShadowTessellator::MakeSpot(path, noTrans, zParams, 215cb93a386Sopenharmony_ci centerLightPos, fLightRadius, transparent, false, isLimitElevation); 216cb93a386Sopenharmony_ci } 217cb93a386Sopenharmony_ci } 218cb93a386Sopenharmony_ci}; 219cb93a386Sopenharmony_ci 220cb93a386Sopenharmony_ci/** 221cb93a386Sopenharmony_ci * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache 222cb93a386Sopenharmony_ci * records are immutable this is not itself a Rec. When we need to update it we return this on 223cb93a386Sopenharmony_ci * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add 224cb93a386Sopenharmony_ci * a new Rec with an adjusted size for any deletions/additions. 225cb93a386Sopenharmony_ci */ 226cb93a386Sopenharmony_ciclass CachedTessellations : public SkRefCnt { 227cb93a386Sopenharmony_cipublic: 228cb93a386Sopenharmony_ci size_t size() const { return fAmbientSet.size() + fSpotSet.size(); } 229cb93a386Sopenharmony_ci 230cb93a386Sopenharmony_ci sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix, 231cb93a386Sopenharmony_ci SkVector* translate) const { 232cb93a386Sopenharmony_ci return fAmbientSet.find(ambient, matrix, translate); 233cb93a386Sopenharmony_ci } 234cb93a386Sopenharmony_ci 235cb93a386Sopenharmony_ci sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient, 236cb93a386Sopenharmony_ci const SkMatrix& matrix, SkVector* translate, 237cb93a386Sopenharmony_ci bool isLimitElevation = false) { 238cb93a386Sopenharmony_ci return fAmbientSet.add(devPath, ambient, matrix, translate, isLimitElevation); 239cb93a386Sopenharmony_ci } 240cb93a386Sopenharmony_ci 241cb93a386Sopenharmony_ci sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix, 242cb93a386Sopenharmony_ci SkVector* translate) const { 243cb93a386Sopenharmony_ci return fSpotSet.find(spot, matrix, translate); 244cb93a386Sopenharmony_ci } 245cb93a386Sopenharmony_ci 246cb93a386Sopenharmony_ci sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot, 247cb93a386Sopenharmony_ci const SkMatrix& matrix, SkVector* translate, 248cb93a386Sopenharmony_ci bool isLimitElevation = false) { 249cb93a386Sopenharmony_ci return fSpotSet.add(devPath, spot, matrix, translate, isLimitElevation); 250cb93a386Sopenharmony_ci } 251cb93a386Sopenharmony_ci 252cb93a386Sopenharmony_ciprivate: 253cb93a386Sopenharmony_ci template <typename FACTORY, int MAX_ENTRIES> 254cb93a386Sopenharmony_ci class Set { 255cb93a386Sopenharmony_ci public: 256cb93a386Sopenharmony_ci size_t size() const { return fSize; } 257cb93a386Sopenharmony_ci 258cb93a386Sopenharmony_ci sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix, 259cb93a386Sopenharmony_ci SkVector* translate) const { 260cb93a386Sopenharmony_ci for (int i = 0; i < MAX_ENTRIES; ++i) { 261cb93a386Sopenharmony_ci if (fEntries[i].fFactory.isCompatible(factory, translate)) { 262cb93a386Sopenharmony_ci const SkMatrix& m = fEntries[i].fMatrix; 263cb93a386Sopenharmony_ci if (matrix.hasPerspective() || m.hasPerspective()) { 264cb93a386Sopenharmony_ci if (matrix != fEntries[i].fMatrix) { 265cb93a386Sopenharmony_ci continue; 266cb93a386Sopenharmony_ci } 267cb93a386Sopenharmony_ci } else if (matrix.getScaleX() != m.getScaleX() || 268cb93a386Sopenharmony_ci matrix.getSkewX() != m.getSkewX() || 269cb93a386Sopenharmony_ci matrix.getScaleY() != m.getScaleY() || 270cb93a386Sopenharmony_ci matrix.getSkewY() != m.getSkewY()) { 271cb93a386Sopenharmony_ci continue; 272cb93a386Sopenharmony_ci } 273cb93a386Sopenharmony_ci return fEntries[i].fVertices; 274cb93a386Sopenharmony_ci } 275cb93a386Sopenharmony_ci } 276cb93a386Sopenharmony_ci return nullptr; 277cb93a386Sopenharmony_ci } 278cb93a386Sopenharmony_ci 279cb93a386Sopenharmony_ci sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix, 280cb93a386Sopenharmony_ci SkVector* translate, bool isLimitElevation = false) { 281cb93a386Sopenharmony_ci sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate, isLimitElevation); 282cb93a386Sopenharmony_ci if (!vertices) { 283cb93a386Sopenharmony_ci return nullptr; 284cb93a386Sopenharmony_ci } 285cb93a386Sopenharmony_ci int i; 286cb93a386Sopenharmony_ci if (fCount < MAX_ENTRIES) { 287cb93a386Sopenharmony_ci i = fCount++; 288cb93a386Sopenharmony_ci } else { 289cb93a386Sopenharmony_ci i = fRandom.nextULessThan(MAX_ENTRIES); 290cb93a386Sopenharmony_ci fSize -= fEntries[i].fVertices->approximateSize(); 291cb93a386Sopenharmony_ci } 292cb93a386Sopenharmony_ci fEntries[i].fFactory = factory; 293cb93a386Sopenharmony_ci fEntries[i].fVertices = vertices; 294cb93a386Sopenharmony_ci fEntries[i].fMatrix = matrix; 295cb93a386Sopenharmony_ci fSize += vertices->approximateSize(); 296cb93a386Sopenharmony_ci return vertices; 297cb93a386Sopenharmony_ci } 298cb93a386Sopenharmony_ci 299cb93a386Sopenharmony_ci private: 300cb93a386Sopenharmony_ci struct Entry { 301cb93a386Sopenharmony_ci FACTORY fFactory; 302cb93a386Sopenharmony_ci sk_sp<SkVertices> fVertices; 303cb93a386Sopenharmony_ci SkMatrix fMatrix; 304cb93a386Sopenharmony_ci }; 305cb93a386Sopenharmony_ci Entry fEntries[MAX_ENTRIES]; 306cb93a386Sopenharmony_ci int fCount = 0; 307cb93a386Sopenharmony_ci size_t fSize = 0; 308cb93a386Sopenharmony_ci SkRandom fRandom; 309cb93a386Sopenharmony_ci }; 310cb93a386Sopenharmony_ci 311cb93a386Sopenharmony_ci Set<AmbientVerticesFactory, 4> fAmbientSet; 312cb93a386Sopenharmony_ci Set<SpotVerticesFactory, 4> fSpotSet; 313cb93a386Sopenharmony_ci}; 314cb93a386Sopenharmony_ci 315cb93a386Sopenharmony_ci/** 316cb93a386Sopenharmony_ci * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular 317cb93a386Sopenharmony_ci * path. The key represents the path's geometry and not any shadow params. 318cb93a386Sopenharmony_ci */ 319cb93a386Sopenharmony_ciclass CachedTessellationsRec : public SkResourceCache::Rec { 320cb93a386Sopenharmony_cipublic: 321cb93a386Sopenharmony_ci CachedTessellationsRec(const SkResourceCache::Key& key, 322cb93a386Sopenharmony_ci sk_sp<CachedTessellations> tessellations) 323cb93a386Sopenharmony_ci : fTessellations(std::move(tessellations)) { 324cb93a386Sopenharmony_ci fKey.reset(new uint8_t[key.size()]); 325cb93a386Sopenharmony_ci memcpy(fKey.get(), &key, key.size()); 326cb93a386Sopenharmony_ci } 327cb93a386Sopenharmony_ci 328cb93a386Sopenharmony_ci const Key& getKey() const override { 329cb93a386Sopenharmony_ci return *reinterpret_cast<SkResourceCache::Key*>(fKey.get()); 330cb93a386Sopenharmony_ci } 331cb93a386Sopenharmony_ci 332cb93a386Sopenharmony_ci size_t bytesUsed() const override { return fTessellations->size(); } 333cb93a386Sopenharmony_ci 334cb93a386Sopenharmony_ci const char* getCategory() const override { return "tessellated shadow masks"; } 335cb93a386Sopenharmony_ci 336cb93a386Sopenharmony_ci sk_sp<CachedTessellations> refTessellations() const { return fTessellations; } 337cb93a386Sopenharmony_ci 338cb93a386Sopenharmony_ci template <typename FACTORY> 339cb93a386Sopenharmony_ci sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix, 340cb93a386Sopenharmony_ci SkVector* translate) const { 341cb93a386Sopenharmony_ci return fTessellations->find(factory, matrix, translate); 342cb93a386Sopenharmony_ci } 343cb93a386Sopenharmony_ci 344cb93a386Sopenharmony_ciprivate: 345cb93a386Sopenharmony_ci std::unique_ptr<uint8_t[]> fKey; 346cb93a386Sopenharmony_ci sk_sp<CachedTessellations> fTessellations; 347cb93a386Sopenharmony_ci}; 348cb93a386Sopenharmony_ci 349cb93a386Sopenharmony_ci/** 350cb93a386Sopenharmony_ci * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the 351cb93a386Sopenharmony_ci * vertices and a translation vector. If the CachedTessellations does not contain a suitable 352cb93a386Sopenharmony_ci * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations 353cb93a386Sopenharmony_ci * to the caller. The caller will update it and reinsert it back into the cache. 354cb93a386Sopenharmony_ci */ 355cb93a386Sopenharmony_citemplate <typename FACTORY> 356cb93a386Sopenharmony_cistruct FindContext { 357cb93a386Sopenharmony_ci FindContext(const SkMatrix* viewMatrix, const FACTORY* factory) 358cb93a386Sopenharmony_ci : fViewMatrix(viewMatrix), fFactory(factory) {} 359cb93a386Sopenharmony_ci const SkMatrix* const fViewMatrix; 360cb93a386Sopenharmony_ci // If this is valid after Find is called then we found the vertices and they should be drawn 361cb93a386Sopenharmony_ci // with fTranslate applied. 362cb93a386Sopenharmony_ci sk_sp<SkVertices> fVertices; 363cb93a386Sopenharmony_ci SkVector fTranslate = {0, 0}; 364cb93a386Sopenharmony_ci 365cb93a386Sopenharmony_ci // If this is valid after Find then the caller should add the vertices to the tessellation set 366cb93a386Sopenharmony_ci // and create a new CachedTessellationsRec and insert it into SkResourceCache. 367cb93a386Sopenharmony_ci sk_sp<CachedTessellations> fTessellationsOnFailure; 368cb93a386Sopenharmony_ci 369cb93a386Sopenharmony_ci const FACTORY* fFactory; 370cb93a386Sopenharmony_ci}; 371cb93a386Sopenharmony_ci 372cb93a386Sopenharmony_ci/** 373cb93a386Sopenharmony_ci * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of 374cb93a386Sopenharmony_ci * the FindContext are used to determine if the vertices are reusable. If so the vertices and 375cb93a386Sopenharmony_ci * necessary translation vector are set on the FindContext. 376cb93a386Sopenharmony_ci */ 377cb93a386Sopenharmony_citemplate <typename FACTORY> 378cb93a386Sopenharmony_cibool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) { 379cb93a386Sopenharmony_ci FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx; 380cb93a386Sopenharmony_ci const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec); 381cb93a386Sopenharmony_ci findContext->fVertices = 382cb93a386Sopenharmony_ci rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate); 383cb93a386Sopenharmony_ci if (findContext->fVertices) { 384cb93a386Sopenharmony_ci return true; 385cb93a386Sopenharmony_ci } 386cb93a386Sopenharmony_ci // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been 387cb93a386Sopenharmony_ci // manipulated we will add a new Rec. 388cb93a386Sopenharmony_ci findContext->fTessellationsOnFailure = rec.refTessellations(); 389cb93a386Sopenharmony_ci return false; 390cb93a386Sopenharmony_ci} 391cb93a386Sopenharmony_ci 392cb93a386Sopenharmony_ciclass ShadowedPath { 393cb93a386Sopenharmony_cipublic: 394cb93a386Sopenharmony_ci ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix) 395cb93a386Sopenharmony_ci : fPath(path) 396cb93a386Sopenharmony_ci , fViewMatrix(viewMatrix) 397cb93a386Sopenharmony_ci#if SK_SUPPORT_GPU 398cb93a386Sopenharmony_ci , fShapeForKey(*path, GrStyle::SimpleFill()) 399cb93a386Sopenharmony_ci#endif 400cb93a386Sopenharmony_ci {} 401cb93a386Sopenharmony_ci 402cb93a386Sopenharmony_ci const SkPath& path() const { return *fPath; } 403cb93a386Sopenharmony_ci const SkMatrix& viewMatrix() const { return *fViewMatrix; } 404cb93a386Sopenharmony_ci#if SK_SUPPORT_GPU 405cb93a386Sopenharmony_ci /** Negative means the vertices should not be cached for this path. */ 406cb93a386Sopenharmony_ci int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); } 407cb93a386Sopenharmony_ci void writeKey(void* key) const { 408cb93a386Sopenharmony_ci fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key)); 409cb93a386Sopenharmony_ci } 410cb93a386Sopenharmony_ci bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); } 411cb93a386Sopenharmony_ci#else 412cb93a386Sopenharmony_ci int keyBytes() const { return -1; } 413cb93a386Sopenharmony_ci void writeKey(void* key) const { SK_ABORT("Should never be called"); } 414cb93a386Sopenharmony_ci bool isRRect(SkRRect* rrect) { return false; } 415cb93a386Sopenharmony_ci#endif 416cb93a386Sopenharmony_ci 417cb93a386Sopenharmony_ciprivate: 418cb93a386Sopenharmony_ci const SkPath* fPath; 419cb93a386Sopenharmony_ci const SkMatrix* fViewMatrix; 420cb93a386Sopenharmony_ci#if SK_SUPPORT_GPU 421cb93a386Sopenharmony_ci GrStyledShape fShapeForKey; 422cb93a386Sopenharmony_ci#endif 423cb93a386Sopenharmony_ci}; 424cb93a386Sopenharmony_ci 425cb93a386Sopenharmony_ci// This creates a domain of keys in SkResourceCache used by this file. 426cb93a386Sopenharmony_cistatic void* kNamespace; 427cb93a386Sopenharmony_ci 428cb93a386Sopenharmony_ci// When the SkPathRef genID changes, invalidate a corresponding GrResource described by key. 429cb93a386Sopenharmony_ciclass ShadowInvalidator : public SkIDChangeListener { 430cb93a386Sopenharmony_cipublic: 431cb93a386Sopenharmony_ci ShadowInvalidator(const SkResourceCache::Key& key) { 432cb93a386Sopenharmony_ci fKey.reset(new uint8_t[key.size()]); 433cb93a386Sopenharmony_ci memcpy(fKey.get(), &key, key.size()); 434cb93a386Sopenharmony_ci } 435cb93a386Sopenharmony_ci 436cb93a386Sopenharmony_ciprivate: 437cb93a386Sopenharmony_ci const SkResourceCache::Key& getKey() const { 438cb93a386Sopenharmony_ci return *reinterpret_cast<SkResourceCache::Key*>(fKey.get()); 439cb93a386Sopenharmony_ci } 440cb93a386Sopenharmony_ci 441cb93a386Sopenharmony_ci // always purge 442cb93a386Sopenharmony_ci static bool FindVisitor(const SkResourceCache::Rec&, void*) { 443cb93a386Sopenharmony_ci return false; 444cb93a386Sopenharmony_ci } 445cb93a386Sopenharmony_ci 446cb93a386Sopenharmony_ci void changed() override { 447cb93a386Sopenharmony_ci SkResourceCache::Find(this->getKey(), ShadowInvalidator::FindVisitor, nullptr); 448cb93a386Sopenharmony_ci } 449cb93a386Sopenharmony_ci 450cb93a386Sopenharmony_ci std::unique_ptr<uint8_t[]> fKey; 451cb93a386Sopenharmony_ci}; 452cb93a386Sopenharmony_ci 453cb93a386Sopenharmony_ci/** 454cb93a386Sopenharmony_ci * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless 455cb93a386Sopenharmony_ci * they are first found in SkResourceCache. 456cb93a386Sopenharmony_ci */ 457cb93a386Sopenharmony_citemplate <typename FACTORY> 458cb93a386Sopenharmony_cibool draw_shadow(const FACTORY& factory, 459cb93a386Sopenharmony_ci std::function<void(const SkVertices*, SkBlendMode, const SkPaint&, 460cb93a386Sopenharmony_ci SkScalar tx, SkScalar ty, bool)> drawProc, ShadowedPath& path, 461cb93a386Sopenharmony_ci SkColor color, bool isLimitElevation = false) { 462cb93a386Sopenharmony_ci FindContext<FACTORY> context(&path.viewMatrix(), &factory); 463cb93a386Sopenharmony_ci 464cb93a386Sopenharmony_ci SkResourceCache::Key* key = nullptr; 465cb93a386Sopenharmony_ci SkAutoSTArray<32 * 4, uint8_t> keyStorage; 466cb93a386Sopenharmony_ci int keyDataBytes = path.keyBytes(); 467cb93a386Sopenharmony_ci if (keyDataBytes >= 0) { 468cb93a386Sopenharmony_ci keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key)); 469cb93a386Sopenharmony_ci key = new (keyStorage.begin()) SkResourceCache::Key(); 470cb93a386Sopenharmony_ci path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key))); 471cb93a386Sopenharmony_ci key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes); 472cb93a386Sopenharmony_ci SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context); 473cb93a386Sopenharmony_ci } 474cb93a386Sopenharmony_ci 475cb93a386Sopenharmony_ci sk_sp<SkVertices> vertices; 476cb93a386Sopenharmony_ci bool foundInCache = SkToBool(context.fVertices); 477cb93a386Sopenharmony_ci if (foundInCache) { 478cb93a386Sopenharmony_ci vertices = std::move(context.fVertices); 479cb93a386Sopenharmony_ci } else { 480cb93a386Sopenharmony_ci // TODO: handle transforming the path as part of the tessellator 481cb93a386Sopenharmony_ci if (key) { 482cb93a386Sopenharmony_ci // Update or initialize a tessellation set and add it to the cache. 483cb93a386Sopenharmony_ci sk_sp<CachedTessellations> tessellations; 484cb93a386Sopenharmony_ci if (context.fTessellationsOnFailure) { 485cb93a386Sopenharmony_ci tessellations = std::move(context.fTessellationsOnFailure); 486cb93a386Sopenharmony_ci } else { 487cb93a386Sopenharmony_ci tessellations.reset(new CachedTessellations()); 488cb93a386Sopenharmony_ci } 489cb93a386Sopenharmony_ci vertices = tessellations->add(path.path(), factory, path.viewMatrix(), 490cb93a386Sopenharmony_ci &context.fTranslate, isLimitElevation); 491cb93a386Sopenharmony_ci if (!vertices) { 492cb93a386Sopenharmony_ci return false; 493cb93a386Sopenharmony_ci } 494cb93a386Sopenharmony_ci auto rec = new CachedTessellationsRec(*key, std::move(tessellations)); 495cb93a386Sopenharmony_ci SkPathPriv::AddGenIDChangeListener(path.path(), sk_make_sp<ShadowInvalidator>(*key)); 496cb93a386Sopenharmony_ci SkResourceCache::Add(rec); 497cb93a386Sopenharmony_ci } else { 498cb93a386Sopenharmony_ci vertices = factory.makeVertices(path.path(), path.viewMatrix(), 499cb93a386Sopenharmony_ci &context.fTranslate); 500cb93a386Sopenharmony_ci if (!vertices) { 501cb93a386Sopenharmony_ci return false; 502cb93a386Sopenharmony_ci } 503cb93a386Sopenharmony_ci } 504cb93a386Sopenharmony_ci } 505cb93a386Sopenharmony_ci 506cb93a386Sopenharmony_ci SkPaint paint; 507cb93a386Sopenharmony_ci // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of 508cb93a386Sopenharmony_ci // that against our 'color' param. 509cb93a386Sopenharmony_ci paint.setColorFilter( 510cb93a386Sopenharmony_ci SkColorFilters::Blend(color, SkBlendMode::kModulate)->makeComposed( 511cb93a386Sopenharmony_ci SkColorFilterPriv::MakeGaussian())); 512cb93a386Sopenharmony_ci 513cb93a386Sopenharmony_ci drawProc(vertices.get(), SkBlendMode::kModulate, paint, 514cb93a386Sopenharmony_ci context.fTranslate.fX, context.fTranslate.fY, path.viewMatrix().hasPerspective()); 515cb93a386Sopenharmony_ci 516cb93a386Sopenharmony_ci return true; 517cb93a386Sopenharmony_ci} 518cb93a386Sopenharmony_ci} // namespace 519cb93a386Sopenharmony_ci 520cb93a386Sopenharmony_cistatic bool tilted(const SkPoint3& zPlaneParams) { 521cb93a386Sopenharmony_ci return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY); 522cb93a386Sopenharmony_ci} 523cb93a386Sopenharmony_ci 524cb93a386Sopenharmony_civoid SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor, 525cb93a386Sopenharmony_ci SkColor* outAmbientColor, SkColor* outSpotColor) { 526cb93a386Sopenharmony_ci // For tonal color we only compute color values for the spot shadow. 527cb93a386Sopenharmony_ci // The ambient shadow is greyscale only. 528cb93a386Sopenharmony_ci 529cb93a386Sopenharmony_ci // Ambient 530cb93a386Sopenharmony_ci *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0); 531cb93a386Sopenharmony_ci 532cb93a386Sopenharmony_ci // Spot 533cb93a386Sopenharmony_ci int spotR = SkColorGetR(inSpotColor); 534cb93a386Sopenharmony_ci int spotG = SkColorGetG(inSpotColor); 535cb93a386Sopenharmony_ci int spotB = SkColorGetB(inSpotColor); 536cb93a386Sopenharmony_ci int max = std::max(std::max(spotR, spotG), spotB); 537cb93a386Sopenharmony_ci int min = std::min(std::min(spotR, spotG), spotB); 538cb93a386Sopenharmony_ci SkScalar luminance = 0.5f*(max + min)/255.f; 539cb93a386Sopenharmony_ci SkScalar origA = SkColorGetA(inSpotColor)/255.f; 540cb93a386Sopenharmony_ci 541cb93a386Sopenharmony_ci // We compute a color alpha value based on the luminance of the color, scaled by an 542cb93a386Sopenharmony_ci // adjusted alpha value. We want the following properties to match the UX examples 543cb93a386Sopenharmony_ci // (assuming a = 0.25) and to ensure that we have reasonable results when the color 544cb93a386Sopenharmony_ci // is black and/or the alpha is 0: 545cb93a386Sopenharmony_ci // f(0, a) = 0 546cb93a386Sopenharmony_ci // f(luminance, 0) = 0 547cb93a386Sopenharmony_ci // f(1, 0.25) = .5 548cb93a386Sopenharmony_ci // f(0.5, 0.25) = .4 549cb93a386Sopenharmony_ci // f(1, 1) = 1 550cb93a386Sopenharmony_ci // The following functions match this as closely as possible. 551cb93a386Sopenharmony_ci SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA; 552cb93a386Sopenharmony_ci SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance; 553cb93a386Sopenharmony_ci colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f); 554cb93a386Sopenharmony_ci 555cb93a386Sopenharmony_ci // Similarly, we set the greyscale alpha based on luminance and alpha so that 556cb93a386Sopenharmony_ci // f(0, a) = a 557cb93a386Sopenharmony_ci // f(luminance, 0) = 0 558cb93a386Sopenharmony_ci // f(1, 0.25) = 0.15 559cb93a386Sopenharmony_ci SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f); 560cb93a386Sopenharmony_ci 561cb93a386Sopenharmony_ci // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an 562cb93a386Sopenharmony_ci // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a) 563cb93a386Sopenharmony_ci // which is an adjusted value of 'a'. Assuming SrcOver, a background color of B_rgb, and 564cb93a386Sopenharmony_ci // ignoring edge falloff, this becomes 565cb93a386Sopenharmony_ci // 566cb93a386Sopenharmony_ci // (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb 567cb93a386Sopenharmony_ci // 568cb93a386Sopenharmony_ci // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and 569cb93a386Sopenharmony_ci // set the alpha to (S_a + C_a - S_a*C_a). 570cb93a386Sopenharmony_ci SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha); 571cb93a386Sopenharmony_ci SkScalar tonalAlpha = colorScale + greyscaleAlpha; 572cb93a386Sopenharmony_ci SkScalar unPremulScale = colorScale / tonalAlpha; 573cb93a386Sopenharmony_ci *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f, 574cb93a386Sopenharmony_ci unPremulScale*spotR, 575cb93a386Sopenharmony_ci unPremulScale*spotG, 576cb93a386Sopenharmony_ci unPremulScale*spotB); 577cb93a386Sopenharmony_ci} 578cb93a386Sopenharmony_ci 579cb93a386Sopenharmony_cistatic bool fill_shadow_rec(const SkPath& path, const SkPoint3& zPlaneParams, 580cb93a386Sopenharmony_ci const SkPoint3& lightPos, SkScalar lightRadius, 581cb93a386Sopenharmony_ci SkColor ambientColor, SkColor spotColor, 582cb93a386Sopenharmony_ci uint32_t flags, const SkMatrix& ctm, SkDrawShadowRec* rec) { 583cb93a386Sopenharmony_ci SkPoint pt = { lightPos.fX, lightPos.fY }; 584cb93a386Sopenharmony_ci if (!SkToBool(flags & kDirectionalLight_ShadowFlag)) { 585cb93a386Sopenharmony_ci // If light position is in device space, need to transform to local space 586cb93a386Sopenharmony_ci // before applying to SkCanvas. 587cb93a386Sopenharmony_ci SkMatrix inverse; 588cb93a386Sopenharmony_ci if (!ctm.invert(&inverse)) { 589cb93a386Sopenharmony_ci return false; 590cb93a386Sopenharmony_ci } 591cb93a386Sopenharmony_ci inverse.mapPoints(&pt, 1); 592cb93a386Sopenharmony_ci } 593cb93a386Sopenharmony_ci 594cb93a386Sopenharmony_ci rec->fZPlaneParams = zPlaneParams; 595cb93a386Sopenharmony_ci rec->fLightPos = { pt.fX, pt.fY, lightPos.fZ }; 596cb93a386Sopenharmony_ci rec->fLightRadius = lightRadius; 597cb93a386Sopenharmony_ci rec->fAmbientColor = ambientColor; 598cb93a386Sopenharmony_ci rec->fSpotColor = spotColor; 599cb93a386Sopenharmony_ci rec->fFlags = flags; 600cb93a386Sopenharmony_ci 601cb93a386Sopenharmony_ci return true; 602cb93a386Sopenharmony_ci} 603cb93a386Sopenharmony_ci 604cb93a386Sopenharmony_ci// Draw an offset spot shadow and outlining ambient shadow for the given path. 605cb93a386Sopenharmony_civoid SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams, 606cb93a386Sopenharmony_ci const SkPoint3& lightPos, SkScalar lightRadius, 607cb93a386Sopenharmony_ci SkColor ambientColor, SkColor spotColor, 608cb93a386Sopenharmony_ci uint32_t flags) { 609cb93a386Sopenharmony_ci DrawShadowStyle(canvas, path, zPlaneParams, lightPos, lightRadius, ambientColor, spotColor, flags, false); 610cb93a386Sopenharmony_ci} 611cb93a386Sopenharmony_ci 612cb93a386Sopenharmony_civoid SkShadowUtils::DrawShadowStyle(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams, 613cb93a386Sopenharmony_ci const SkPoint3& lightPos, SkScalar lightRadius, 614cb93a386Sopenharmony_ci SkColor ambientColor, SkColor spotColor, 615cb93a386Sopenharmony_ci uint32_t flags, bool isLimitElevation) { 616cb93a386Sopenharmony_ci SkDrawShadowRec rec; 617cb93a386Sopenharmony_ci rec.isLimitElevation = isLimitElevation; 618cb93a386Sopenharmony_ci if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, ambientColor, spotColor, 619cb93a386Sopenharmony_ci flags, canvas->getTotalMatrix(), &rec)) { 620cb93a386Sopenharmony_ci return; 621cb93a386Sopenharmony_ci } 622cb93a386Sopenharmony_ci 623cb93a386Sopenharmony_ci canvas->private_draw_shadow_rec(path, rec); 624cb93a386Sopenharmony_ci} 625cb93a386Sopenharmony_ci 626cb93a386Sopenharmony_cibool SkShadowUtils::GetLocalBounds(const SkMatrix& ctm, const SkPath& path, 627cb93a386Sopenharmony_ci const SkPoint3& zPlaneParams, const SkPoint3& lightPos, 628cb93a386Sopenharmony_ci SkScalar lightRadius, uint32_t flags, SkRect* bounds) { 629cb93a386Sopenharmony_ci SkDrawShadowRec rec; 630cb93a386Sopenharmony_ci if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, SK_ColorBLACK, SK_ColorBLACK, 631cb93a386Sopenharmony_ci flags, ctm, &rec)) { 632cb93a386Sopenharmony_ci return false; 633cb93a386Sopenharmony_ci } 634cb93a386Sopenharmony_ci 635cb93a386Sopenharmony_ci SkDrawShadowMetrics::GetLocalBounds(path, rec, ctm, bounds); 636cb93a386Sopenharmony_ci 637cb93a386Sopenharmony_ci return true; 638cb93a386Sopenharmony_ci} 639cb93a386Sopenharmony_ci 640cb93a386Sopenharmony_ci////////////////////////////////////////////////////////////////////////////////////////////// 641cb93a386Sopenharmony_ci 642cb93a386Sopenharmony_cistatic bool validate_rec(const SkDrawShadowRec& rec) { 643cb93a386Sopenharmony_ci return rec.fLightPos.isFinite() && rec.fZPlaneParams.isFinite() && 644cb93a386Sopenharmony_ci SkScalarIsFinite(rec.fLightRadius); 645cb93a386Sopenharmony_ci} 646cb93a386Sopenharmony_ci 647cb93a386Sopenharmony_civoid SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) { 648cb93a386Sopenharmony_ci auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint, 649cb93a386Sopenharmony_ci SkScalar tx, SkScalar ty, bool hasPerspective) { 650cb93a386Sopenharmony_ci if (vertices->priv().vertexCount()) { 651cb93a386Sopenharmony_ci // For perspective shadows we've already computed the shadow in world space, 652cb93a386Sopenharmony_ci // and we can't translate it without changing it. Otherwise we concat the 653cb93a386Sopenharmony_ci // change in translation from the cached version. 654cb93a386Sopenharmony_ci SkAutoDeviceTransformRestore adr( 655cb93a386Sopenharmony_ci this, 656cb93a386Sopenharmony_ci hasPerspective ? SkMatrix::I() 657cb93a386Sopenharmony_ci : this->localToDevice() * SkMatrix::Translate(tx, ty)); 658cb93a386Sopenharmony_ci this->drawVertices(vertices, mode, paint); 659cb93a386Sopenharmony_ci } 660cb93a386Sopenharmony_ci }; 661cb93a386Sopenharmony_ci 662cb93a386Sopenharmony_ci if (!validate_rec(rec)) { 663cb93a386Sopenharmony_ci return; 664cb93a386Sopenharmony_ci } 665cb93a386Sopenharmony_ci 666cb93a386Sopenharmony_ci SkMatrix viewMatrix = this->localToDevice(); 667cb93a386Sopenharmony_ci SkAutoDeviceTransformRestore adr(this, SkMatrix::I()); 668cb93a386Sopenharmony_ci 669cb93a386Sopenharmony_ci ShadowedPath shadowedPath(&path, &viewMatrix); 670cb93a386Sopenharmony_ci 671cb93a386Sopenharmony_ci bool tiltZPlane = tilted(rec.fZPlaneParams); 672cb93a386Sopenharmony_ci bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag); 673cb93a386Sopenharmony_ci bool directional = SkToBool(rec.fFlags & kDirectionalLight_ShadowFlag); 674cb93a386Sopenharmony_ci bool uncached = tiltZPlane || path.isVolatile(); 675cb93a386Sopenharmony_ci 676cb93a386Sopenharmony_ci SkPoint3 zPlaneParams = rec.fZPlaneParams; 677cb93a386Sopenharmony_ci SkPoint3 devLightPos = rec.fLightPos; 678cb93a386Sopenharmony_ci if (!directional) { 679cb93a386Sopenharmony_ci viewMatrix.mapPoints((SkPoint*)&devLightPos.fX, 1); 680cb93a386Sopenharmony_ci } 681cb93a386Sopenharmony_ci float lightRadius = rec.fLightRadius; 682cb93a386Sopenharmony_ci 683cb93a386Sopenharmony_ci if (SkColorGetA(rec.fAmbientColor) > 0) { 684cb93a386Sopenharmony_ci bool success = false; 685cb93a386Sopenharmony_ci if (uncached) { 686cb93a386Sopenharmony_ci sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix, 687cb93a386Sopenharmony_ci zPlaneParams, 688cb93a386Sopenharmony_ci transparent); 689cb93a386Sopenharmony_ci if (vertices) { 690cb93a386Sopenharmony_ci SkPaint paint; 691cb93a386Sopenharmony_ci // Run the vertex color through a GaussianColorFilter and then modulate the 692cb93a386Sopenharmony_ci // grayscale result of that against our 'color' param. 693cb93a386Sopenharmony_ci paint.setColorFilter( 694cb93a386Sopenharmony_ci SkColorFilters::Blend(rec.fAmbientColor, 695cb93a386Sopenharmony_ci SkBlendMode::kModulate)->makeComposed( 696cb93a386Sopenharmony_ci SkColorFilterPriv::MakeGaussian())); 697cb93a386Sopenharmony_ci this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint); 698cb93a386Sopenharmony_ci success = true; 699cb93a386Sopenharmony_ci } 700cb93a386Sopenharmony_ci } 701cb93a386Sopenharmony_ci 702cb93a386Sopenharmony_ci if (!success) { 703cb93a386Sopenharmony_ci AmbientVerticesFactory factory; 704cb93a386Sopenharmony_ci factory.fOccluderHeight = zPlaneParams.fZ; 705cb93a386Sopenharmony_ci factory.fTransparent = transparent; 706cb93a386Sopenharmony_ci if (viewMatrix.hasPerspective()) { 707cb93a386Sopenharmony_ci factory.fOffset.set(0, 0); 708cb93a386Sopenharmony_ci } else { 709cb93a386Sopenharmony_ci factory.fOffset.fX = viewMatrix.getTranslateX(); 710cb93a386Sopenharmony_ci factory.fOffset.fY = viewMatrix.getTranslateY(); 711cb93a386Sopenharmony_ci } 712cb93a386Sopenharmony_ci 713cb93a386Sopenharmony_ci if (!draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor)) { 714cb93a386Sopenharmony_ci // Pretransform the path to avoid transforming the stroke, below. 715cb93a386Sopenharmony_ci SkPath devSpacePath; 716cb93a386Sopenharmony_ci path.transform(viewMatrix, &devSpacePath); 717cb93a386Sopenharmony_ci devSpacePath.setIsVolatile(true); 718cb93a386Sopenharmony_ci 719cb93a386Sopenharmony_ci // The tesselator outsets by AmbientBlurRadius (or 'r') to get the outer ring of 720cb93a386Sopenharmony_ci // the tesselation, and sets the alpha on the path to 1/AmbientRecipAlpha (or 'a'). 721cb93a386Sopenharmony_ci // 722cb93a386Sopenharmony_ci // We want to emulate this with a blur. The full blur width (2*blurRadius or 'f') 723cb93a386Sopenharmony_ci // can be calculated by interpolating: 724cb93a386Sopenharmony_ci // 725cb93a386Sopenharmony_ci // original edge outer edge 726cb93a386Sopenharmony_ci // | |<---------- r ------>| 727cb93a386Sopenharmony_ci // |<------|--- f -------------->| 728cb93a386Sopenharmony_ci // | | | 729cb93a386Sopenharmony_ci // alpha = 1 alpha = a alpha = 0 730cb93a386Sopenharmony_ci // 731cb93a386Sopenharmony_ci // Taking ratios, f/1 = r/a, so f = r/a and blurRadius = f/2. 732cb93a386Sopenharmony_ci // 733cb93a386Sopenharmony_ci // We now need to outset the path to place the new edge in the center of the 734cb93a386Sopenharmony_ci // blur region: 735cb93a386Sopenharmony_ci // 736cb93a386Sopenharmony_ci // original new 737cb93a386Sopenharmony_ci // | |<------|--- r ------>| 738cb93a386Sopenharmony_ci // |<------|--- f -|------------>| 739cb93a386Sopenharmony_ci // | |<- o ->|<--- f/2 --->| 740cb93a386Sopenharmony_ci // 741cb93a386Sopenharmony_ci // r = o + f/2, so o = r - f/2 742cb93a386Sopenharmony_ci // 743cb93a386Sopenharmony_ci // We outset by using the stroker, so the strokeWidth is o/2. 744cb93a386Sopenharmony_ci // 745cb93a386Sopenharmony_ci SkScalar devSpaceOutset = SkDrawShadowMetrics::AmbientBlurRadius(zPlaneParams.fZ); 746cb93a386Sopenharmony_ci SkScalar oneOverA = SkDrawShadowMetrics::AmbientRecipAlpha(zPlaneParams.fZ); 747cb93a386Sopenharmony_ci SkScalar blurRadius = 0.5f*devSpaceOutset*oneOverA; 748cb93a386Sopenharmony_ci SkScalar strokeWidth = 0.5f*(devSpaceOutset - blurRadius); 749cb93a386Sopenharmony_ci 750cb93a386Sopenharmony_ci // Now draw with blur 751cb93a386Sopenharmony_ci SkPaint paint; 752cb93a386Sopenharmony_ci paint.setColor(rec.fAmbientColor); 753cb93a386Sopenharmony_ci paint.setStrokeWidth(strokeWidth); 754cb93a386Sopenharmony_ci paint.setStyle(SkPaint::kStrokeAndFill_Style); 755cb93a386Sopenharmony_ci SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(blurRadius); 756cb93a386Sopenharmony_ci bool respectCTM = false; 757cb93a386Sopenharmony_ci paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM)); 758cb93a386Sopenharmony_ci this->drawPath(devSpacePath, paint); 759cb93a386Sopenharmony_ci } 760cb93a386Sopenharmony_ci } 761cb93a386Sopenharmony_ci } 762cb93a386Sopenharmony_ci 763cb93a386Sopenharmony_ci if (SkColorGetA(rec.fSpotColor) > 0) { 764cb93a386Sopenharmony_ci bool success = false; 765cb93a386Sopenharmony_ci if (uncached) { 766cb93a386Sopenharmony_ci sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix, 767cb93a386Sopenharmony_ci zPlaneParams, 768cb93a386Sopenharmony_ci devLightPos, lightRadius, 769cb93a386Sopenharmony_ci transparent, 770cb93a386Sopenharmony_ci directional, rec.isLimitElevation); 771cb93a386Sopenharmony_ci if (vertices) { 772cb93a386Sopenharmony_ci SkPaint paint; 773cb93a386Sopenharmony_ci // Run the vertex color through a GaussianColorFilter and then modulate the 774cb93a386Sopenharmony_ci // grayscale result of that against our 'color' param. 775cb93a386Sopenharmony_ci paint.setColorFilter( 776cb93a386Sopenharmony_ci SkColorFilters::Blend(rec.fSpotColor, 777cb93a386Sopenharmony_ci SkBlendMode::kModulate)->makeComposed( 778cb93a386Sopenharmony_ci SkColorFilterPriv::MakeGaussian())); 779cb93a386Sopenharmony_ci this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint); 780cb93a386Sopenharmony_ci success = true; 781cb93a386Sopenharmony_ci } 782cb93a386Sopenharmony_ci } 783cb93a386Sopenharmony_ci 784cb93a386Sopenharmony_ci if (!success) { 785cb93a386Sopenharmony_ci SpotVerticesFactory factory; 786cb93a386Sopenharmony_ci factory.fOccluderHeight = zPlaneParams.fZ; 787cb93a386Sopenharmony_ci factory.fDevLightPos = devLightPos; 788cb93a386Sopenharmony_ci factory.fLightRadius = lightRadius; 789cb93a386Sopenharmony_ci 790cb93a386Sopenharmony_ci SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY()); 791cb93a386Sopenharmony_ci factory.fLocalCenter = center; 792cb93a386Sopenharmony_ci viewMatrix.mapPoints(¢er, 1); 793cb93a386Sopenharmony_ci SkScalar radius, scale; 794cb93a386Sopenharmony_ci if (SkToBool(rec.fFlags & kDirectionalLight_ShadowFlag)) { 795cb93a386Sopenharmony_ci SkDrawShadowMetrics::GetDirectionalParams(zPlaneParams.fZ, devLightPos.fX, 796cb93a386Sopenharmony_ci devLightPos.fY, devLightPos.fZ, 797cb93a386Sopenharmony_ci lightRadius, &radius, &scale, 798cb93a386Sopenharmony_ci &factory.fOffset); 799cb93a386Sopenharmony_ci } else { 800cb93a386Sopenharmony_ci SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX - center.fX, 801cb93a386Sopenharmony_ci devLightPos.fY - center.fY, devLightPos.fZ, 802cb93a386Sopenharmony_ci lightRadius, &radius, &scale, &factory.fOffset, 803cb93a386Sopenharmony_ci rec.isLimitElevation); 804cb93a386Sopenharmony_ci } 805cb93a386Sopenharmony_ci 806cb93a386Sopenharmony_ci SkRect devBounds; 807cb93a386Sopenharmony_ci viewMatrix.mapRect(&devBounds, path.getBounds()); 808cb93a386Sopenharmony_ci if (directional) { 809cb93a386Sopenharmony_ci factory.fOccluderType = SpotVerticesFactory::OccluderType::kDirectional; 810cb93a386Sopenharmony_ci } else if (transparent || 811cb93a386Sopenharmony_ci SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() || 812cb93a386Sopenharmony_ci SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) { 813cb93a386Sopenharmony_ci // if the translation of the shadow is big enough we're going to end up 814cb93a386Sopenharmony_ci // filling the entire umbra, so we can treat these as all the same 815cb93a386Sopenharmony_ci factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; 816cb93a386Sopenharmony_ci } else if (factory.fOffset.length()*scale + scale < radius) { 817cb93a386Sopenharmony_ci // if we don't translate more than the blur distance, can assume umbra is covered 818cb93a386Sopenharmony_ci factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaqueNoUmbra; 819cb93a386Sopenharmony_ci } else if (path.isConvex()) { 820cb93a386Sopenharmony_ci factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaquePartialUmbra; 821cb93a386Sopenharmony_ci } else { 822cb93a386Sopenharmony_ci factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; 823cb93a386Sopenharmony_ci } 824cb93a386Sopenharmony_ci // need to add this after we classify the shadow 825cb93a386Sopenharmony_ci factory.fOffset.fX += viewMatrix.getTranslateX(); 826cb93a386Sopenharmony_ci factory.fOffset.fY += viewMatrix.getTranslateY(); 827cb93a386Sopenharmony_ci 828cb93a386Sopenharmony_ci SkColor color = rec.fSpotColor; 829cb93a386Sopenharmony_ci#ifdef DEBUG_SHADOW_CHECKS 830cb93a386Sopenharmony_ci switch (factory.fOccluderType) { 831cb93a386Sopenharmony_ci case SpotVerticesFactory::OccluderType::kTransparent: 832cb93a386Sopenharmony_ci color = 0xFFD2B48C; // tan for transparent 833cb93a386Sopenharmony_ci break; 834cb93a386Sopenharmony_ci case SpotVerticesFactory::OccluderType::kOpaquePartialUmbra: 835cb93a386Sopenharmony_ci color = 0xFFFFA500; // orange for opaque 836cb93a386Sopenharmony_ci break; 837cb93a386Sopenharmony_ci case SpotVerticesFactory::OccluderType::kOpaqueNoUmbra: 838cb93a386Sopenharmony_ci color = 0xFFE5E500; // corn yellow for covered 839cb93a386Sopenharmony_ci break; 840cb93a386Sopenharmony_ci case SpotVerticesFactory::OccluderType::kDirectional: 841cb93a386Sopenharmony_ci color = 0xFF550000; // dark red for directional 842cb93a386Sopenharmony_ci break; 843cb93a386Sopenharmony_ci } 844cb93a386Sopenharmony_ci#endif 845cb93a386Sopenharmony_ci if (!draw_shadow(factory, drawVertsProc, shadowedPath, color, rec.isLimitElevation)) { 846cb93a386Sopenharmony_ci // draw with blur 847cb93a386Sopenharmony_ci SkMatrix shadowMatrix; 848cb93a386Sopenharmony_ci if (!SkDrawShadowMetrics::GetSpotShadowTransform(devLightPos, lightRadius, 849cb93a386Sopenharmony_ci viewMatrix, zPlaneParams, 850cb93a386Sopenharmony_ci path.getBounds(), directional, 851cb93a386Sopenharmony_ci &shadowMatrix, &radius, rec.isLimitElevation)) { 852cb93a386Sopenharmony_ci return; 853cb93a386Sopenharmony_ci } 854cb93a386Sopenharmony_ci SkAutoDeviceTransformRestore adr2(this, shadowMatrix); 855cb93a386Sopenharmony_ci 856cb93a386Sopenharmony_ci SkPaint paint; 857cb93a386Sopenharmony_ci paint.setColor(rec.fSpotColor); 858cb93a386Sopenharmony_ci SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius); 859cb93a386Sopenharmony_ci bool respectCTM = false; 860cb93a386Sopenharmony_ci paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM)); 861cb93a386Sopenharmony_ci this->drawPath(path, paint); 862cb93a386Sopenharmony_ci } 863cb93a386Sopenharmony_ci } 864cb93a386Sopenharmony_ci } 865cb93a386Sopenharmony_ci} 866