1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 
8 #include "include/utils/SkShadowUtils.h"
9 
10 #include "include/core/SkCanvas.h"
11 #include "include/core/SkColorFilter.h"
12 #include "include/core/SkMaskFilter.h"
13 #include "include/core/SkPath.h"
14 #include "include/core/SkString.h"
15 #include "include/core/SkVertices.h"
16 #include "include/private/SkColorData.h"
17 #include "include/private/SkIDChangeListener.h"
18 #include "include/private/SkTPin.h"
19 #include "include/utils/SkRandom.h"
20 #include "src/core/SkBlurMask.h"
21 #include "src/core/SkColorFilterBase.h"
22 #include "src/core/SkColorFilterPriv.h"
23 #include "src/core/SkDevice.h"
24 #include "src/core/SkDrawShadowInfo.h"
25 #include "src/core/SkEffectPriv.h"
26 #include "src/core/SkPathPriv.h"
27 #include "src/core/SkRasterPipeline.h"
28 #include "src/core/SkResourceCache.h"
29 #include "src/core/SkRuntimeEffectPriv.h"
30 #include "src/core/SkTLazy.h"
31 #include "src/core/SkVM.h"
32 #include "src/core/SkVerticesPriv.h"
33 #include "src/utils/SkShadowTessellator.h"
34 #include <new>
35 #if SK_SUPPORT_GPU
36 #include "src/gpu/effects/GrSkSLFP.h"
37 #include "src/gpu/geometry/GrStyledShape.h"
38 #endif
39 
40 /**
41 *  Gaussian color filter -- produces a Gaussian ramp based on the color's B value,
42 *                           then blends with the color's G value.
43 *                           Final result is black with alpha of Gaussian(B)*G.
44 *                           The assumption is that the original color's alpha is 1.
45 */
46 class SkGaussianColorFilter : public SkColorFilterBase {
47 public:
SkGaussianColorFilter()48     SkGaussianColorFilter() : INHERITED() {}
49 
50 #if SK_SUPPORT_GPU
51     GrFPResult asFragmentProcessor(std::unique_ptr<GrFragmentProcessor> inputFP,
52                                    GrRecordingContext*, const GrColorInfo&) const override;
53 #endif
54 
55 protected:
56     void flatten(SkWriteBuffer&) const override {}
57     bool onAppendStages(const SkStageRec& rec, bool shaderIsOpaque) const override {
58         rec.fPipeline->append(SkRasterPipeline::gauss_a_to_rgba);
59         return true;
60     }
61 
62     skvm::Color onProgram(skvm::Builder* p, skvm::Color c, const SkColorInfo& dst, skvm::Uniforms*,
63                           SkArenaAlloc*) const override {
64         // x = 1 - x;
65         // exp(-x * x * 4) - 0.018f;
66         // ... now approximate with quartic
67         //
68         skvm::F32 x = p->splat(-2.26661229133605957031f);
69                   x = c.a * x + 2.89795351028442382812f;
70                   x = c.a * x + 0.21345567703247070312f;
71                   x = c.a * x + 0.15489584207534790039f;
72                   x = c.a * x + 0.00030726194381713867f;
73         return {x, x, x, x};
74     }
75 
76 private:
77     SK_FLATTENABLE_HOOKS(SkGaussianColorFilter)
78 
79     using INHERITED = SkColorFilterBase;
80 };
81 
CreateProc(SkReadBuffer&)82 sk_sp<SkFlattenable> SkGaussianColorFilter::CreateProc(SkReadBuffer&) {
83     return SkColorFilterPriv::MakeGaussian();
84 }
85 
86 #if SK_SUPPORT_GPU
87 
asFragmentProcessor(std::unique_ptr<GrFragmentProcessor> inputFP, GrRecordingContext*, const GrColorInfo&) const88 GrFPResult SkGaussianColorFilter::asFragmentProcessor(std::unique_ptr<GrFragmentProcessor> inputFP,
89                                                       GrRecordingContext*,
90                                                       const GrColorInfo&) const {
91     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
92         half4 main(half4 inColor) {
93             half factor = 1 - inColor.a;
94             factor = exp(-factor * factor * 4) - 0.018;
95             return half4(factor);
96         }
97     )");
98     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
99     return GrFPSuccess(
100             GrSkSLFP::Make(effect, "gaussian_fp", std::move(inputFP), GrSkSLFP::OptFlags::kNone));
101 }
102 #endif
103 
MakeGaussian()104 sk_sp<SkColorFilter> SkColorFilterPriv::MakeGaussian() {
105     return sk_sp<SkColorFilter>(new SkGaussianColorFilter);
106 }
107 
108 ///////////////////////////////////////////////////////////////////////////////////////////////////
109 
110 namespace {
111 
resource_cache_shared_id()112 uint64_t resource_cache_shared_id() {
113     return 0x2020776f64616873llu;  // 'shadow  '
114 }
115 
116 /** Factory for an ambient shadow mesh with particular shadow properties. */
117 struct AmbientVerticesFactory {
118     SkScalar fOccluderHeight = SK_ScalarNaN;  // NaN so that isCompatible will fail until init'ed.
119     bool fTransparent;
120     SkVector fOffset;
121 
isCompatible__anon18979::AmbientVerticesFactory122     bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const {
123         if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) {
124             return false;
125         }
126         *translate = that.fOffset;
127         return true;
128     }
129 
makeVertices__anon18979::AmbientVerticesFactory130     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
131                                    SkVector* translate, bool isLimitElevation = false) const {
132         SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
133         // pick a canonical place to generate shadow
134         SkMatrix noTrans(ctm);
135         if (!ctm.hasPerspective()) {
136             noTrans[SkMatrix::kMTransX] = 0;
137             noTrans[SkMatrix::kMTransY] = 0;
138         }
139         *translate = fOffset;
140         return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent);
141     }
142 };
143 
144 /** Factory for an spot shadow mesh with particular shadow properties. */
145 struct SpotVerticesFactory {
146     enum class OccluderType {
147         // The umbra cannot be dropped out because either the occluder is not opaque,
148         // or the center of the umbra is visible.
149         kTransparent,
150         // The umbra can be dropped where it is occluded.
151         kOpaquePartialUmbra,
152         // It is known that the entire umbra is occluded.
153         kOpaqueNoUmbra,
154         // The light is directional
155         kDirectional
156     };
157 
158     SkVector fOffset;
159     SkPoint  fLocalCenter;
160     SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
161     SkPoint3 fDevLightPos;
162     SkScalar fLightRadius;
163     OccluderType fOccluderType;
164 
isCompatible__anon18979::SpotVerticesFactory165     bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const {
166         if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ ||
167             fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) {
168             return false;
169         }
170         switch (fOccluderType) {
171             case OccluderType::kTransparent:
172             case OccluderType::kOpaqueNoUmbra:
173                 // 'this' and 'that' will either both have no umbra removed or both have all the
174                 // umbra removed.
175                 *translate = that.fOffset;
176                 return true;
177             case OccluderType::kOpaquePartialUmbra:
178                 // In this case we partially remove the umbra differently for 'this' and 'that'
179                 // if the offsets don't match.
180                 if (fOffset == that.fOffset) {
181                     translate->set(0, 0);
182                     return true;
183                 }
184                 return false;
185             case OccluderType::kDirectional:
186                 *translate = that.fOffset - fOffset;
187                 return true;
188         }
189         SK_ABORT("Uninitialized occluder type?");
190     }
191 
makeVertices__anon18979::SpotVerticesFactory192     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
193                                    SkVector* translate, bool isLimitElevation = false) const {
194         bool transparent = OccluderType::kTransparent == fOccluderType;
195         bool directional = OccluderType::kDirectional == fOccluderType;
196         SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
197         if (directional) {
198             translate->set(0, 0);
199             return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius,
200                                                  transparent, true, isLimitElevation);
201         } else if (ctm.hasPerspective() || OccluderType::kOpaquePartialUmbra == fOccluderType) {
202             translate->set(0, 0);
203             return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius,
204                                                  transparent, false, isLimitElevation);
205         } else {
206             // pick a canonical place to generate shadow, with light centered over path
207             SkMatrix noTrans(ctm);
208             noTrans[SkMatrix::kMTransX] = 0;
209             noTrans[SkMatrix::kMTransY] = 0;
210             SkPoint devCenter(fLocalCenter);
211             noTrans.mapPoints(&devCenter, 1);
212             SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ);
213             *translate = fOffset;
214             return SkShadowTessellator::MakeSpot(path, noTrans, zParams,
215                                                  centerLightPos, fLightRadius, transparent, false, isLimitElevation);
216         }
217     }
218 };
219 
220 /**
221  * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache
222  * records are immutable this is not itself a Rec. When we need to update it we return this on
223  * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add
224  * a new Rec with an adjusted size for any deletions/additions.
225  */
226 class CachedTessellations : public SkRefCnt {
227 public:
size() const228     size_t size() const { return fAmbientSet.size() + fSpotSet.size(); }
229 
find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix, SkVector* translate) const230     sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix,
231                            SkVector* translate) const {
232         return fAmbientSet.find(ambient, matrix, translate);
233     }
234 
add(const SkPath& devPath, const AmbientVerticesFactory& ambient, const SkMatrix& matrix, SkVector* translate, bool isLimitElevation = false)235     sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient,
236                           const SkMatrix& matrix, SkVector* translate,
237                           bool isLimitElevation = false) {
238         return fAmbientSet.add(devPath, ambient, matrix, translate, isLimitElevation);
239     }
240 
find(const SpotVerticesFactory& spot, const SkMatrix& matrix, SkVector* translate) const241     sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix,
242                            SkVector* translate) const {
243         return fSpotSet.find(spot, matrix, translate);
244     }
245 
add(const SkPath& devPath, const SpotVerticesFactory& spot, const SkMatrix& matrix, SkVector* translate, bool isLimitElevation = false)246     sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot,
247                           const SkMatrix& matrix, SkVector* translate,
248                           bool isLimitElevation = false) {
249         return fSpotSet.add(devPath, spot, matrix, translate, isLimitElevation);
250     }
251 
252 private:
253     template <typename FACTORY, int MAX_ENTRIES>
254     class Set {
255     public:
size() const256         size_t size() const { return fSize; }
257 
find(const FACTORY& factory, const SkMatrix& matrix, SkVector* translate) const258         sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
259                                SkVector* translate) const {
260             for (int i = 0; i < MAX_ENTRIES; ++i) {
261                 if (fEntries[i].fFactory.isCompatible(factory, translate)) {
262                     const SkMatrix& m = fEntries[i].fMatrix;
263                     if (matrix.hasPerspective() || m.hasPerspective()) {
264                         if (matrix != fEntries[i].fMatrix) {
265                             continue;
266                         }
267                     } else if (matrix.getScaleX() != m.getScaleX() ||
268                                matrix.getSkewX() != m.getSkewX() ||
269                                matrix.getScaleY() != m.getScaleY() ||
270                                matrix.getSkewY() != m.getSkewY()) {
271                         continue;
272                     }
273                     return fEntries[i].fVertices;
274                 }
275             }
276             return nullptr;
277         }
278 
add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix, SkVector* translate, bool isLimitElevation = false)279         sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix,
280                               SkVector* translate, bool isLimitElevation = false) {
281             sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate, isLimitElevation);
282             if (!vertices) {
283                 return nullptr;
284             }
285             int i;
286             if (fCount < MAX_ENTRIES) {
287                 i = fCount++;
288             } else {
289                 i = fRandom.nextULessThan(MAX_ENTRIES);
290                 fSize -= fEntries[i].fVertices->approximateSize();
291             }
292             fEntries[i].fFactory = factory;
293             fEntries[i].fVertices = vertices;
294             fEntries[i].fMatrix = matrix;
295             fSize += vertices->approximateSize();
296             return vertices;
297         }
298 
299     private:
300         struct Entry {
301             FACTORY fFactory;
302             sk_sp<SkVertices> fVertices;
303             SkMatrix fMatrix;
304         };
305         Entry fEntries[MAX_ENTRIES];
306         int fCount = 0;
307         size_t fSize = 0;
308         SkRandom fRandom;
309     };
310 
311     Set<AmbientVerticesFactory, 4> fAmbientSet;
312     Set<SpotVerticesFactory, 4> fSpotSet;
313 };
314 
315 /**
316  * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular
317  * path. The key represents the path's geometry and not any shadow params.
318  */
319 class CachedTessellationsRec : public SkResourceCache::Rec {
320 public:
CachedTessellationsRec(const SkResourceCache::Key& key, sk_sp<CachedTessellations> tessellations)321     CachedTessellationsRec(const SkResourceCache::Key& key,
322                            sk_sp<CachedTessellations> tessellations)
323             : fTessellations(std::move(tessellations)) {
324         fKey.reset(new uint8_t[key.size()]);
325         memcpy(fKey.get(), &key, key.size());
326     }
327 
328     const Key& getKey() const override {
329         return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
330     }
331 
332     size_t bytesUsed() const override { return fTessellations->size(); }
333 
334     const char* getCategory() const override { return "tessellated shadow masks"; }
335 
refTessellations() const336     sk_sp<CachedTessellations> refTessellations() const { return fTessellations; }
337 
338     template <typename FACTORY>
find(const FACTORY& factory, const SkMatrix& matrix, SkVector* translate) const339     sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
340                            SkVector* translate) const {
341         return fTessellations->find(factory, matrix, translate);
342     }
343 
344 private:
345     std::unique_ptr<uint8_t[]> fKey;
346     sk_sp<CachedTessellations> fTessellations;
347 };
348 
349 /**
350  * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the
351  * vertices and a translation vector. If the CachedTessellations does not contain a suitable
352  * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations
353  * to the caller. The caller will update it and reinsert it back into the cache.
354  */
355 template <typename FACTORY>
356 struct FindContext {
FindContext__anon18979::FindContext357     FindContext(const SkMatrix* viewMatrix, const FACTORY* factory)
358             : fViewMatrix(viewMatrix), fFactory(factory) {}
359     const SkMatrix* const fViewMatrix;
360     // If this is valid after Find is called then we found the vertices and they should be drawn
361     // with fTranslate applied.
362     sk_sp<SkVertices> fVertices;
363     SkVector fTranslate = {0, 0};
364 
365     // If this is valid after Find then the caller should add the vertices to the tessellation set
366     // and create a new CachedTessellationsRec and insert it into SkResourceCache.
367     sk_sp<CachedTessellations> fTessellationsOnFailure;
368 
369     const FACTORY* fFactory;
370 };
371 
372 /**
373  * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of
374  * the FindContext are used to determine if the vertices are reusable. If so the vertices and
375  * necessary translation vector are set on the FindContext.
376  */
377 template <typename FACTORY>
FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx)378 bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) {
379     FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx;
380     const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec);
381     findContext->fVertices =
382             rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate);
383     if (findContext->fVertices) {
384         return true;
385     }
386     // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been
387     // manipulated we will add a new Rec.
388     findContext->fTessellationsOnFailure = rec.refTessellations();
389     return false;
390 }
391 
392 class ShadowedPath {
393 public:
ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix)394     ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix)
395             : fPath(path)
396             , fViewMatrix(viewMatrix)
397 #if SK_SUPPORT_GPU
398             , fShapeForKey(*path, GrStyle::SimpleFill())
399 #endif
400     {}
401 
path() const402     const SkPath& path() const { return *fPath; }
viewMatrix() const403     const SkMatrix& viewMatrix() const { return *fViewMatrix; }
404 #if SK_SUPPORT_GPU
405     /** Negative means the vertices should not be cached for this path. */
keyBytes() const406     int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); }
writeKey(void* key) const407     void writeKey(void* key) const {
408         fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key));
409     }
isRRect(SkRRect* rrect)410     bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); }
411 #else
keyBytes() const412     int keyBytes() const { return -1; }
writeKey(void* key) const413     void writeKey(void* key) const { SK_ABORT("Should never be called"); }
isRRect(SkRRect* rrect)414     bool isRRect(SkRRect* rrect) { return false; }
415 #endif
416 
417 private:
418     const SkPath* fPath;
419     const SkMatrix* fViewMatrix;
420 #if SK_SUPPORT_GPU
421     GrStyledShape fShapeForKey;
422 #endif
423 };
424 
425 // This creates a domain of keys in SkResourceCache used by this file.
426 static void* kNamespace;
427 
428 // When the SkPathRef genID changes, invalidate a corresponding GrResource described by key.
429 class ShadowInvalidator : public SkIDChangeListener {
430 public:
ShadowInvalidator(const SkResourceCache::Key& key)431     ShadowInvalidator(const SkResourceCache::Key& key) {
432         fKey.reset(new uint8_t[key.size()]);
433         memcpy(fKey.get(), &key, key.size());
434     }
435 
436 private:
getKey() const437     const SkResourceCache::Key& getKey() const {
438         return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
439     }
440 
441     // always purge
FindVisitor(const SkResourceCache::Rec&, void*)442     static bool FindVisitor(const SkResourceCache::Rec&, void*) {
443         return false;
444     }
445 
446     void changed() override {
447         SkResourceCache::Find(this->getKey(), ShadowInvalidator::FindVisitor, nullptr);
448     }
449 
450     std::unique_ptr<uint8_t[]> fKey;
451 };
452 
453 /**
454  * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless
455  * they are first found in SkResourceCache.
456  */
457 template <typename FACTORY>
draw_shadow(const FACTORY& factory, std::function<void(const SkVertices*, SkBlendMode, const SkPaint&, SkScalar tx, SkScalar ty, bool)> drawProc, ShadowedPath& path, SkColor color, bool isLimitElevation = false)458 bool draw_shadow(const FACTORY& factory,
459                  std::function<void(const SkVertices*, SkBlendMode, const SkPaint&,
460                  SkScalar tx, SkScalar ty, bool)> drawProc, ShadowedPath& path,
461                  SkColor color, bool isLimitElevation = false) {
462     FindContext<FACTORY> context(&path.viewMatrix(), &factory);
463 
464     SkResourceCache::Key* key = nullptr;
465     SkAutoSTArray<32 * 4, uint8_t> keyStorage;
466     int keyDataBytes = path.keyBytes();
467     if (keyDataBytes >= 0) {
468         keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key));
469         key = new (keyStorage.begin()) SkResourceCache::Key();
470         path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key)));
471         key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes);
472         SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context);
473     }
474 
475     sk_sp<SkVertices> vertices;
476     bool foundInCache = SkToBool(context.fVertices);
477     if (foundInCache) {
478         vertices = std::move(context.fVertices);
479     } else {
480         // TODO: handle transforming the path as part of the tessellator
481         if (key) {
482             // Update or initialize a tessellation set and add it to the cache.
483             sk_sp<CachedTessellations> tessellations;
484             if (context.fTessellationsOnFailure) {
485                 tessellations = std::move(context.fTessellationsOnFailure);
486             } else {
487                 tessellations.reset(new CachedTessellations());
488             }
489             vertices = tessellations->add(path.path(), factory, path.viewMatrix(),
490                                           &context.fTranslate, isLimitElevation);
491             if (!vertices) {
492                 return false;
493             }
494             auto rec = new CachedTessellationsRec(*key, std::move(tessellations));
495             SkPathPriv::AddGenIDChangeListener(path.path(), sk_make_sp<ShadowInvalidator>(*key));
496             SkResourceCache::Add(rec);
497         } else {
498             vertices = factory.makeVertices(path.path(), path.viewMatrix(),
499                                             &context.fTranslate);
500             if (!vertices) {
501                 return false;
502             }
503         }
504     }
505 
506     SkPaint paint;
507     // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of
508     // that against our 'color' param.
509     paint.setColorFilter(
510          SkColorFilters::Blend(color, SkBlendMode::kModulate)->makeComposed(
511                                                                 SkColorFilterPriv::MakeGaussian()));
512 
513     drawProc(vertices.get(), SkBlendMode::kModulate, paint,
514              context.fTranslate.fX, context.fTranslate.fY, path.viewMatrix().hasPerspective());
515 
516     return true;
517 }
518 }  // namespace
519 
tilted(const SkPoint3& zPlaneParams)520 static bool tilted(const SkPoint3& zPlaneParams) {
521     return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY);
522 }
523 
ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor, SkColor* outAmbientColor, SkColor* outSpotColor)524 void SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor,
525                                        SkColor* outAmbientColor, SkColor* outSpotColor) {
526     // For tonal color we only compute color values for the spot shadow.
527     // The ambient shadow is greyscale only.
528 
529     // Ambient
530     *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0);
531 
532     // Spot
533     int spotR = SkColorGetR(inSpotColor);
534     int spotG = SkColorGetG(inSpotColor);
535     int spotB = SkColorGetB(inSpotColor);
536     int max = std::max(std::max(spotR, spotG), spotB);
537     int min = std::min(std::min(spotR, spotG), spotB);
538     SkScalar luminance = 0.5f*(max + min)/255.f;
539     SkScalar origA = SkColorGetA(inSpotColor)/255.f;
540 
541     // We compute a color alpha value based on the luminance of the color, scaled by an
542     // adjusted alpha value. We want the following properties to match the UX examples
543     // (assuming a = 0.25) and to ensure that we have reasonable results when the color
544     // is black and/or the alpha is 0:
545     //     f(0, a) = 0
546     //     f(luminance, 0) = 0
547     //     f(1, 0.25) = .5
548     //     f(0.5, 0.25) = .4
549     //     f(1, 1) = 1
550     // The following functions match this as closely as possible.
551     SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA;
552     SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance;
553     colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f);
554 
555     // Similarly, we set the greyscale alpha based on luminance and alpha so that
556     //     f(0, a) = a
557     //     f(luminance, 0) = 0
558     //     f(1, 0.25) = 0.15
559     SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f);
560 
561     // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an
562     // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a)
563     // which is an adjusted value of 'a'.  Assuming SrcOver, a background color of B_rgb, and
564     // ignoring edge falloff, this becomes
565     //
566     //      (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb
567     //
568     // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and
569     // set the alpha to (S_a + C_a - S_a*C_a).
570     SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha);
571     SkScalar tonalAlpha = colorScale + greyscaleAlpha;
572     SkScalar unPremulScale = colorScale / tonalAlpha;
573     *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f,
574                                    unPremulScale*spotR,
575                                    unPremulScale*spotG,
576                                    unPremulScale*spotB);
577 }
578 
fill_shadow_rec(const SkPath& path, const SkPoint3& zPlaneParams, const SkPoint3& lightPos, SkScalar lightRadius, SkColor ambientColor, SkColor spotColor, uint32_t flags, const SkMatrix& ctm, SkDrawShadowRec* rec)579 static bool fill_shadow_rec(const SkPath& path, const SkPoint3& zPlaneParams,
580                             const SkPoint3& lightPos, SkScalar lightRadius,
581                             SkColor ambientColor, SkColor spotColor,
582                             uint32_t flags, const SkMatrix& ctm, SkDrawShadowRec* rec) {
583     SkPoint pt = { lightPos.fX, lightPos.fY };
584     if (!SkToBool(flags & kDirectionalLight_ShadowFlag)) {
585         // If light position is in device space, need to transform to local space
586         // before applying to SkCanvas.
587         SkMatrix inverse;
588         if (!ctm.invert(&inverse)) {
589             return false;
590         }
591         inverse.mapPoints(&pt, 1);
592     }
593 
594     rec->fZPlaneParams   = zPlaneParams;
595     rec->fLightPos       = { pt.fX, pt.fY, lightPos.fZ };
596     rec->fLightRadius    = lightRadius;
597     rec->fAmbientColor   = ambientColor;
598     rec->fSpotColor      = spotColor;
599     rec->fFlags          = flags;
600 
601     return true;
602 }
603 
604 // Draw an offset spot shadow and outlining ambient shadow for the given path.
DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams, const SkPoint3& lightPos, SkScalar lightRadius, SkColor ambientColor, SkColor spotColor, uint32_t flags)605 void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams,
606                                const SkPoint3& lightPos, SkScalar lightRadius,
607                                SkColor ambientColor, SkColor spotColor,
608                                uint32_t flags) {
609     DrawShadowStyle(canvas, path, zPlaneParams, lightPos, lightRadius, ambientColor, spotColor, flags, false);
610 }
611 
DrawShadowStyle(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams, const SkPoint3& lightPos, SkScalar lightRadius, SkColor ambientColor, SkColor spotColor, uint32_t flags, bool isLimitElevation)612 void SkShadowUtils::DrawShadowStyle(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams,
613                                     const SkPoint3& lightPos, SkScalar lightRadius,
614                                     SkColor ambientColor, SkColor spotColor,
615                                     uint32_t flags, bool isLimitElevation) {
616     SkDrawShadowRec rec;
617     rec.isLimitElevation = isLimitElevation;
618     if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, ambientColor, spotColor,
619                          flags, canvas->getTotalMatrix(), &rec)) {
620         return;
621     }
622 
623     canvas->private_draw_shadow_rec(path, rec);
624 }
625 
GetLocalBounds(const SkMatrix& ctm, const SkPath& path, const SkPoint3& zPlaneParams, const SkPoint3& lightPos, SkScalar lightRadius, uint32_t flags, SkRect* bounds)626 bool SkShadowUtils::GetLocalBounds(const SkMatrix& ctm, const SkPath& path,
627                                    const SkPoint3& zPlaneParams, const SkPoint3& lightPos,
628                                    SkScalar lightRadius, uint32_t flags, SkRect* bounds) {
629     SkDrawShadowRec rec;
630     if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, SK_ColorBLACK, SK_ColorBLACK,
631                          flags, ctm, &rec)) {
632         return false;
633     }
634 
635     SkDrawShadowMetrics::GetLocalBounds(path, rec, ctm, bounds);
636 
637     return true;
638 }
639 
640 //////////////////////////////////////////////////////////////////////////////////////////////
641 
validate_rec(const SkDrawShadowRec& rec)642 static bool validate_rec(const SkDrawShadowRec& rec) {
643     return rec.fLightPos.isFinite() && rec.fZPlaneParams.isFinite() &&
644            SkScalarIsFinite(rec.fLightRadius);
645 }
646 
drawShadow(const SkPath& path, const SkDrawShadowRec& rec)647 void SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) {
648     auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint,
649                                 SkScalar tx, SkScalar ty, bool hasPerspective) {
650         if (vertices->priv().vertexCount()) {
651             // For perspective shadows we've already computed the shadow in world space,
652             // and we can't translate it without changing it. Otherwise we concat the
653             // change in translation from the cached version.
654             SkAutoDeviceTransformRestore adr(
655                     this,
656                     hasPerspective ? SkMatrix::I()
657                                    : this->localToDevice() * SkMatrix::Translate(tx, ty));
658             this->drawVertices(vertices, mode, paint);
659         }
660     };
661 
662     if (!validate_rec(rec)) {
663         return;
664     }
665 
666     SkMatrix viewMatrix = this->localToDevice();
667     SkAutoDeviceTransformRestore adr(this, SkMatrix::I());
668 
669     ShadowedPath shadowedPath(&path, &viewMatrix);
670 
671     bool tiltZPlane = tilted(rec.fZPlaneParams);
672     bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
673     bool directional = SkToBool(rec.fFlags & kDirectionalLight_ShadowFlag);
674     bool uncached = tiltZPlane || path.isVolatile();
675 
676     SkPoint3 zPlaneParams = rec.fZPlaneParams;
677     SkPoint3 devLightPos = rec.fLightPos;
678     if (!directional) {
679         viewMatrix.mapPoints((SkPoint*)&devLightPos.fX, 1);
680     }
681     float lightRadius = rec.fLightRadius;
682 
683     if (SkColorGetA(rec.fAmbientColor) > 0) {
684         bool success = false;
685         if (uncached) {
686             sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix,
687                                                                           zPlaneParams,
688                                                                           transparent);
689             if (vertices) {
690                 SkPaint paint;
691                 // Run the vertex color through a GaussianColorFilter and then modulate the
692                 // grayscale result of that against our 'color' param.
693                 paint.setColorFilter(
694                     SkColorFilters::Blend(rec.fAmbientColor,
695                                                   SkBlendMode::kModulate)->makeComposed(
696                                                                SkColorFilterPriv::MakeGaussian()));
697                 this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint);
698                 success = true;
699             }
700         }
701 
702         if (!success) {
703             AmbientVerticesFactory factory;
704             factory.fOccluderHeight = zPlaneParams.fZ;
705             factory.fTransparent = transparent;
706             if (viewMatrix.hasPerspective()) {
707                 factory.fOffset.set(0, 0);
708             } else {
709                 factory.fOffset.fX = viewMatrix.getTranslateX();
710                 factory.fOffset.fY = viewMatrix.getTranslateY();
711             }
712 
713             if (!draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor)) {
714                 // Pretransform the path to avoid transforming the stroke, below.
715                 SkPath devSpacePath;
716                 path.transform(viewMatrix, &devSpacePath);
717                 devSpacePath.setIsVolatile(true);
718 
719                 // The tesselator outsets by AmbientBlurRadius (or 'r') to get the outer ring of
720                 // the tesselation, and sets the alpha on the path to 1/AmbientRecipAlpha (or 'a').
721                 //
722                 // We want to emulate this with a blur. The full blur width (2*blurRadius or 'f')
723                 // can be calculated by interpolating:
724                 //
725                 //            original edge        outer edge
726                 //         |       |<---------- r ------>|
727                 //         |<------|--- f -------------->|
728                 //         |       |                     |
729                 //    alpha = 1  alpha = a          alpha = 0
730                 //
731                 // Taking ratios, f/1 = r/a, so f = r/a and blurRadius = f/2.
732                 //
733                 // We now need to outset the path to place the new edge in the center of the
734                 // blur region:
735                 //
736                 //             original   new
737                 //         |       |<------|--- r ------>|
738                 //         |<------|--- f -|------------>|
739                 //         |       |<- o ->|<--- f/2 --->|
740                 //
741                 //     r = o + f/2, so o = r - f/2
742                 //
743                 // We outset by using the stroker, so the strokeWidth is o/2.
744                 //
745                 SkScalar devSpaceOutset = SkDrawShadowMetrics::AmbientBlurRadius(zPlaneParams.fZ);
746                 SkScalar oneOverA = SkDrawShadowMetrics::AmbientRecipAlpha(zPlaneParams.fZ);
747                 SkScalar blurRadius = 0.5f*devSpaceOutset*oneOverA;
748                 SkScalar strokeWidth = 0.5f*(devSpaceOutset - blurRadius);
749 
750                 // Now draw with blur
751                 SkPaint paint;
752                 paint.setColor(rec.fAmbientColor);
753                 paint.setStrokeWidth(strokeWidth);
754                 paint.setStyle(SkPaint::kStrokeAndFill_Style);
755                 SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(blurRadius);
756                 bool respectCTM = false;
757                 paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
758                 this->drawPath(devSpacePath, paint);
759             }
760         }
761     }
762 
763     if (SkColorGetA(rec.fSpotColor) > 0) {
764         bool success = false;
765         if (uncached) {
766             sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix,
767                                                                        zPlaneParams,
768                                                                        devLightPos, lightRadius,
769                                                                        transparent,
770                                                                        directional, rec.isLimitElevation);
771             if (vertices) {
772                 SkPaint paint;
773                 // Run the vertex color through a GaussianColorFilter and then modulate the
774                 // grayscale result of that against our 'color' param.
775                 paint.setColorFilter(
776                     SkColorFilters::Blend(rec.fSpotColor,
777                                                   SkBlendMode::kModulate)->makeComposed(
778                                                       SkColorFilterPriv::MakeGaussian()));
779                 this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint);
780                 success = true;
781             }
782         }
783 
784         if (!success) {
785             SpotVerticesFactory factory;
786             factory.fOccluderHeight = zPlaneParams.fZ;
787             factory.fDevLightPos = devLightPos;
788             factory.fLightRadius = lightRadius;
789 
790             SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
791             factory.fLocalCenter = center;
792             viewMatrix.mapPoints(&center, 1);
793             SkScalar radius, scale;
794             if (SkToBool(rec.fFlags & kDirectionalLight_ShadowFlag)) {
795                 SkDrawShadowMetrics::GetDirectionalParams(zPlaneParams.fZ, devLightPos.fX,
796                                                           devLightPos.fY, devLightPos.fZ,
797                                                           lightRadius, &radius, &scale,
798                                                           &factory.fOffset);
799             } else {
800                 SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX - center.fX,
801                                                    devLightPos.fY - center.fY, devLightPos.fZ,
802                                                    lightRadius, &radius, &scale, &factory.fOffset,
803                                                    rec.isLimitElevation);
804             }
805 
806             SkRect devBounds;
807             viewMatrix.mapRect(&devBounds, path.getBounds());
808             if (directional) {
809                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kDirectional;
810             } else if (transparent ||
811                        SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() ||
812                        SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) {
813                 // if the translation of the shadow is big enough we're going to end up
814                 // filling the entire umbra, so we can treat these as all the same
815                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent;
816             } else if (factory.fOffset.length()*scale + scale < radius) {
817                 // if we don't translate more than the blur distance, can assume umbra is covered
818                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaqueNoUmbra;
819             } else if (path.isConvex()) {
820                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaquePartialUmbra;
821             } else {
822                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent;
823             }
824             // need to add this after we classify the shadow
825             factory.fOffset.fX += viewMatrix.getTranslateX();
826             factory.fOffset.fY += viewMatrix.getTranslateY();
827 
828             SkColor color = rec.fSpotColor;
829 #ifdef DEBUG_SHADOW_CHECKS
830             switch (factory.fOccluderType) {
831                 case SpotVerticesFactory::OccluderType::kTransparent:
832                     color = 0xFFD2B48C;  // tan for transparent
833                     break;
834                 case SpotVerticesFactory::OccluderType::kOpaquePartialUmbra:
835                     color = 0xFFFFA500;   // orange for opaque
836                     break;
837                 case SpotVerticesFactory::OccluderType::kOpaqueNoUmbra:
838                     color = 0xFFE5E500;  // corn yellow for covered
839                     break;
840                 case SpotVerticesFactory::OccluderType::kDirectional:
841                     color = 0xFF550000;  // dark red for directional
842                     break;
843             }
844 #endif
845             if (!draw_shadow(factory, drawVertsProc, shadowedPath, color, rec.isLimitElevation)) {
846                 // draw with blur
847                 SkMatrix shadowMatrix;
848                 if (!SkDrawShadowMetrics::GetSpotShadowTransform(devLightPos, lightRadius,
849                                                                  viewMatrix, zPlaneParams,
850                                                                  path.getBounds(), directional,
851                                                                  &shadowMatrix, &radius, rec.isLimitElevation)) {
852                     return;
853                 }
854                 SkAutoDeviceTransformRestore adr2(this, shadowMatrix);
855 
856                 SkPaint paint;
857                 paint.setColor(rec.fSpotColor);
858                 SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius);
859                 bool respectCTM = false;
860                 paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
861                 this->drawPath(path, paint);
862             }
863         }
864     }
865 }
866