1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/ops/AAHairLinePathRenderer.h"
9
10 #include "include/core/SkPoint3.h"
11 #include "include/private/SkTemplates.h"
12 #include "src/core/SkGeometry.h"
13 #include "src/core/SkMatrixPriv.h"
14 #include "src/core/SkPointPriv.h"
15 #include "src/core/SkRectPriv.h"
16 #include "src/core/SkStroke.h"
17 #include "src/gpu/GrAuditTrail.h"
18 #include "src/gpu/GrBuffer.h"
19 #include "src/gpu/GrCaps.h"
20 #include "src/gpu/GrDefaultGeoProcFactory.h"
21 #include "src/gpu/GrDrawOpTest.h"
22 #include "src/gpu/GrOpFlushState.h"
23 #include "src/gpu/GrProcessor.h"
24 #include "src/gpu/GrProgramInfo.h"
25 #include "src/gpu/GrResourceProvider.h"
26 #include "src/gpu/GrStyle.h"
27 #include "src/gpu/GrUtil.h"
28 #include "src/gpu/effects/GrBezierEffect.h"
29 #include "src/gpu/geometry/GrPathUtils.h"
30 #include "src/gpu/geometry/GrStyledShape.h"
31 #include "src/gpu/ops/GrMeshDrawOp.h"
32 #include "src/gpu/ops/GrSimpleMeshDrawOpHelperWithStencil.h"
33 #include "src/gpu/v1/SurfaceDrawContext_v1.h"
34
35 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
36
37 using PtArray = SkTArray<SkPoint, true>;
38 using IntArray = SkTArray<int, true>;
39 using FloatArray = SkTArray<float, true>;
40
41 namespace {
42
43 // quadratics are rendered as 5-sided polys in order to bound the
44 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
45 // bloat_quad. Quadratics and conics share an index buffer
46
47 // lines are rendered as:
48 // *______________*
49 // |\ -_______ /|
50 // | \ \ / |
51 // | *--------* |
52 // | / ______/ \ |
53 // */_-__________\*
54 // For: 6 vertices and 18 indices (for 6 triangles)
55
56 // Each quadratic is rendered as a five sided polygon. This poly bounds
57 // the quadratic's bounding triangle but has been expanded so that the
58 // 1-pixel wide area around the curve is inside the poly.
59 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
60 // that is rendered would look like this:
61 // b0
62 // b
63 //
64 // a0 c0
65 // a c
66 // a1 c1
67 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
68 // specified by these 9 indices:
69 static const uint16_t kQuadIdxBufPattern[] = {
70 0, 1, 2,
71 2, 4, 3,
72 1, 4, 2
73 };
74
75 static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
76 static const int kQuadNumVertices = 5;
77 static const int kQuadsNumInIdxBuffer = 256;
78 GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
79
get_quads_index_buffer(GrResourceProvider* resourceProvider)80 sk_sp<const GrBuffer> get_quads_index_buffer(GrResourceProvider* resourceProvider) {
81 GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
82 return resourceProvider->findOrCreatePatternedIndexBuffer(
83 kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
84 gQuadsIndexBufferKey);
85 }
86
87
88 // Each line segment is rendered as two quads and two triangles.
89 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
90 // The four external points are offset 1 pixel perpendicular to the
91 // line and half a pixel parallel to the line.
92 //
93 // p4 p5
94 // p0 p1
95 // p2 p3
96 //
97 // Each is drawn as six triangles specified by these 18 indices:
98
99 static const uint16_t kLineSegIdxBufPattern[] = {
100 0, 1, 3,
101 0, 3, 2,
102 0, 4, 5,
103 0, 5, 1,
104 0, 2, 4,
105 1, 5, 3
106 };
107
108 static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
109 static const int kLineSegNumVertices = 6;
110 static const int kLineSegsNumInIdxBuffer = 256;
111
112 GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
113
get_lines_index_buffer(GrResourceProvider* resourceProvider)114 sk_sp<const GrBuffer> get_lines_index_buffer(GrResourceProvider* resourceProvider) {
115 GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
116 return resourceProvider->findOrCreatePatternedIndexBuffer(
117 kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices,
118 gLinesIndexBufferKey);
119 }
120
121 // Takes 178th time of logf on Z600 / VC2010
get_float_exp(float x)122 int get_float_exp(float x) {
123 static_assert(sizeof(int) == sizeof(float));
124 #ifdef SK_DEBUG
125 static bool tested;
126 if (!tested) {
127 tested = true;
128 SkASSERT(get_float_exp(0.25f) == -2);
129 SkASSERT(get_float_exp(0.3f) == -2);
130 SkASSERT(get_float_exp(0.5f) == -1);
131 SkASSERT(get_float_exp(1.f) == 0);
132 SkASSERT(get_float_exp(2.f) == 1);
133 SkASSERT(get_float_exp(2.5f) == 1);
134 SkASSERT(get_float_exp(8.f) == 3);
135 SkASSERT(get_float_exp(100.f) == 6);
136 SkASSERT(get_float_exp(1000.f) == 9);
137 SkASSERT(get_float_exp(1024.f) == 10);
138 SkASSERT(get_float_exp(3000000.f) == 21);
139 }
140 #endif
141 const int* iptr = (const int*)&x;
142 return (((*iptr) & 0x7f800000) >> 23) - 127;
143 }
144
145 // Uses the max curvature function for quads to estimate
146 // where to chop the conic. If the max curvature is not
147 // found along the curve segment it will return 1 and
148 // dst[0] is the original conic. If it returns 2 the dst[0]
149 // and dst[1] are the two new conics.
split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight)150 int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
151 SkScalar t = SkFindQuadMaxCurvature(src);
152 if (t == 0 || t == 1) {
153 if (dst) {
154 dst[0].set(src, weight);
155 }
156 return 1;
157 } else {
158 if (dst) {
159 SkConic conic;
160 conic.set(src, weight);
161 if (!conic.chopAt(t, dst)) {
162 dst[0].set(src, weight);
163 return 1;
164 }
165 }
166 return 2;
167 }
168 }
169
170 // Calls split_conic on the entire conic and then once more on each subsection.
171 // Most cases will result in either 1 conic (chop point is not within t range)
172 // or 3 points (split once and then one subsection is split again).
chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight)173 int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
174 SkConic dstTemp[2];
175 int conicCnt = split_conic(src, dstTemp, weight);
176 if (2 == conicCnt) {
177 int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
178 conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
179 } else {
180 dst[0] = dstTemp[0];
181 }
182 return conicCnt;
183 }
184
185 // returns 0 if quad/conic is degen or close to it
186 // in this case approx the path with lines
187 // otherwise returns 1
is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd)188 int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
189 static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
190 static const SkScalar gDegenerateToLineTolSqd =
191 gDegenerateToLineTol * gDegenerateToLineTol;
192
193 if (SkPointPriv::DistanceToSqd(p[0], p[1]) < gDegenerateToLineTolSqd ||
194 SkPointPriv::DistanceToSqd(p[1], p[2]) < gDegenerateToLineTolSqd) {
195 return 1;
196 }
197
198 *dsqd = SkPointPriv::DistanceToLineBetweenSqd(p[1], p[0], p[2]);
199 if (*dsqd < gDegenerateToLineTolSqd) {
200 return 1;
201 }
202
203 if (SkPointPriv::DistanceToLineBetweenSqd(p[2], p[1], p[0]) < gDegenerateToLineTolSqd) {
204 return 1;
205 }
206 return 0;
207 }
208
is_degen_quad_or_conic(const SkPoint p[3])209 int is_degen_quad_or_conic(const SkPoint p[3]) {
210 SkScalar dsqd;
211 return is_degen_quad_or_conic(p, &dsqd);
212 }
213
214 // we subdivide the quads to avoid huge overfill
215 // if it returns -1 then should be drawn as lines
num_quad_subdivs(const SkPoint p[3])216 int num_quad_subdivs(const SkPoint p[3]) {
217 SkScalar dsqd;
218 if (is_degen_quad_or_conic(p, &dsqd)) {
219 return -1;
220 }
221
222 // tolerance of triangle height in pixels
223 // tuned on windows Quadro FX 380 / Z600
224 // trade off of fill vs cpu time on verts
225 // maybe different when do this using gpu (geo or tess shaders)
226 static const SkScalar gSubdivTol = 175 * SK_Scalar1;
227
228 if (dsqd <= gSubdivTol * gSubdivTol) {
229 return 0;
230 } else {
231 static const int kMaxSub = 4;
232 // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
233 // = log4(d*d/tol*tol)/2
234 // = log2(d*d/tol*tol)
235
236 // +1 since we're ignoring the mantissa contribution.
237 int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
238 log = std::min(std::max(0, log), kMaxSub);
239 return log;
240 }
241 }
242
243 /**
244 * Generates the lines and quads to be rendered. Lines are always recorded in
245 * device space. We will do a device space bloat to account for the 1pixel
246 * thickness.
247 * Quads are recorded in device space unless m contains
248 * perspective, then in they are in src space. We do this because we will
249 * subdivide large quads to reduce over-fill. This subdivision has to be
250 * performed before applying the perspective matrix.
251 */
gather_lines_and_quads(const SkPath& path, const SkMatrix& m, const SkIRect& devClipBounds, SkScalar capLength, bool convertConicsToQuads, PtArray* lines, PtArray* quads, PtArray* conics, IntArray* quadSubdivCnts, FloatArray* conicWeights)252 int gather_lines_and_quads(const SkPath& path,
253 const SkMatrix& m,
254 const SkIRect& devClipBounds,
255 SkScalar capLength,
256 bool convertConicsToQuads,
257 PtArray* lines,
258 PtArray* quads,
259 PtArray* conics,
260 IntArray* quadSubdivCnts,
261 FloatArray* conicWeights) {
262 SkPath::Iter iter(path, false);
263
264 int totalQuadCount = 0;
265 SkRect bounds;
266 SkIRect ibounds;
267
268 bool persp = m.hasPerspective();
269
270 // Whenever a degenerate, zero-length contour is encountered, this code will insert a
271 // 'capLength' x-aligned line segment. Since this is rendering hairlines it is hoped this will
272 // suffice for AA square & circle capping.
273 int verbsInContour = 0; // Does not count moves
274 bool seenZeroLengthVerb = false;
275 SkPoint zeroVerbPt;
276
277 // Adds a quad that has already been chopped to the list and checks for quads that are close to
278 // lines. Also does a bounding box check. It takes points that are in src space and device
279 // space. The src points are only required if the view matrix has perspective.
280 auto addChoppedQuad = [&](const SkPoint srcPts[3], const SkPoint devPts[4],
281 bool isContourStart) {
282 SkRect bounds;
283 SkIRect ibounds;
284 bounds.setBounds(devPts, 3);
285 bounds.outset(SK_Scalar1, SK_Scalar1);
286 bounds.roundOut(&ibounds);
287 // We only need the src space space pts when not in perspective.
288 SkASSERT(srcPts || !persp);
289 if (SkIRect::Intersects(devClipBounds, ibounds)) {
290 int subdiv = num_quad_subdivs(devPts);
291 SkASSERT(subdiv >= -1);
292 if (-1 == subdiv) {
293 SkPoint* pts = lines->push_back_n(4);
294 pts[0] = devPts[0];
295 pts[1] = devPts[1];
296 pts[2] = devPts[1];
297 pts[3] = devPts[2];
298 if (isContourStart && pts[0] == pts[1] && pts[2] == pts[3]) {
299 seenZeroLengthVerb = true;
300 zeroVerbPt = pts[0];
301 }
302 } else {
303 // when in perspective keep quads in src space
304 const SkPoint* qPts = persp ? srcPts : devPts;
305 SkPoint* pts = quads->push_back_n(3);
306 pts[0] = qPts[0];
307 pts[1] = qPts[1];
308 pts[2] = qPts[2];
309 quadSubdivCnts->push_back() = subdiv;
310 totalQuadCount += 1 << subdiv;
311 }
312 }
313 };
314
315 // Applies the view matrix to quad src points and calls the above helper.
316 auto addSrcChoppedQuad = [&](const SkPoint srcSpaceQuadPts[3], bool isContourStart) {
317 SkPoint devPts[3];
318 m.mapPoints(devPts, srcSpaceQuadPts, 3);
319 addChoppedQuad(srcSpaceQuadPts, devPts, isContourStart);
320 };
321
322 for (;;) {
323 SkPoint pathPts[4];
324 SkPath::Verb verb = iter.next(pathPts);
325 switch (verb) {
326 case SkPath::kConic_Verb:
327 if (convertConicsToQuads) {
328 SkScalar weight = iter.conicWeight();
329 SkAutoConicToQuads converter;
330 const SkPoint* quadPts = converter.computeQuads(pathPts, weight, 0.25f);
331 for (int i = 0; i < converter.countQuads(); ++i) {
332 addSrcChoppedQuad(quadPts + 2 * i, !verbsInContour && 0 == i);
333 }
334 } else {
335 SkConic dst[4];
336 // We chop the conics to create tighter clipping to hide error
337 // that appears near max curvature of very thin conics. Thin
338 // hyperbolas with high weight still show error.
339 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
340 for (int i = 0; i < conicCnt; ++i) {
341 SkPoint devPts[4];
342 SkPoint* chopPnts = dst[i].fPts;
343 m.mapPoints(devPts, chopPnts, 3);
344 bounds.setBounds(devPts, 3);
345 bounds.outset(SK_Scalar1, SK_Scalar1);
346 bounds.roundOut(&ibounds);
347 if (SkIRect::Intersects(devClipBounds, ibounds)) {
348 if (is_degen_quad_or_conic(devPts)) {
349 SkPoint* pts = lines->push_back_n(4);
350 pts[0] = devPts[0];
351 pts[1] = devPts[1];
352 pts[2] = devPts[1];
353 pts[3] = devPts[2];
354 if (verbsInContour == 0 && i == 0 && pts[0] == pts[1] &&
355 pts[2] == pts[3]) {
356 seenZeroLengthVerb = true;
357 zeroVerbPt = pts[0];
358 }
359 } else {
360 // when in perspective keep conics in src space
361 SkPoint* cPts = persp ? chopPnts : devPts;
362 SkPoint* pts = conics->push_back_n(3);
363 pts[0] = cPts[0];
364 pts[1] = cPts[1];
365 pts[2] = cPts[2];
366 conicWeights->push_back() = dst[i].fW;
367 }
368 }
369 }
370 }
371 verbsInContour++;
372 break;
373 case SkPath::kMove_Verb:
374 // New contour (and last one was unclosed). If it was just a zero length drawing
375 // operation, and we're supposed to draw caps, then add a tiny line.
376 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
377 SkPoint* pts = lines->push_back_n(2);
378 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
379 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
380 }
381 verbsInContour = 0;
382 seenZeroLengthVerb = false;
383 break;
384 case SkPath::kLine_Verb: {
385 SkPoint devPts[2];
386 m.mapPoints(devPts, pathPts, 2);
387 bounds.setBounds(devPts, 2);
388 bounds.outset(SK_Scalar1, SK_Scalar1);
389 bounds.roundOut(&ibounds);
390 if (SkIRect::Intersects(devClipBounds, ibounds)) {
391 SkPoint* pts = lines->push_back_n(2);
392 pts[0] = devPts[0];
393 pts[1] = devPts[1];
394 if (verbsInContour == 0 && pts[0] == pts[1]) {
395 seenZeroLengthVerb = true;
396 zeroVerbPt = pts[0];
397 }
398 }
399 verbsInContour++;
400 break;
401 }
402 case SkPath::kQuad_Verb: {
403 SkPoint choppedPts[5];
404 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
405 // When it is degenerate it allows the approximation with lines to work since the
406 // chop point (if there is one) will be at the parabola's vertex. In the nearly
407 // degenerate the QuadUVMatrix computed for the points is almost singular which
408 // can cause rendering artifacts.
409 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
410 for (int i = 0; i < n; ++i) {
411 addSrcChoppedQuad(choppedPts + i * 2, !verbsInContour && 0 == i);
412 }
413 verbsInContour++;
414 break;
415 }
416 case SkPath::kCubic_Verb: {
417 SkPoint devPts[4];
418 m.mapPoints(devPts, pathPts, 4);
419 bounds.setBounds(devPts, 4);
420 bounds.outset(SK_Scalar1, SK_Scalar1);
421 bounds.roundOut(&ibounds);
422 if (SkIRect::Intersects(devClipBounds, ibounds)) {
423 PREALLOC_PTARRAY(32) q;
424 // We convert cubics to quadratics (for now).
425 // In perspective have to do conversion in src space.
426 if (persp) {
427 SkScalar tolScale =
428 GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
429 GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
430 } else {
431 GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
432 }
433 for (int i = 0; i < q.count(); i += 3) {
434 if (persp) {
435 addSrcChoppedQuad(&q[i], !verbsInContour && 0 == i);
436 } else {
437 addChoppedQuad(nullptr, &q[i], !verbsInContour && 0 == i);
438 }
439 }
440 }
441 verbsInContour++;
442 break;
443 }
444 case SkPath::kClose_Verb:
445 // Contour is closed, so we don't need to grow the starting line, unless it's
446 // *just* a zero length subpath. (SVG Spec 11.4, 'stroke').
447 if (capLength > 0) {
448 if (seenZeroLengthVerb && verbsInContour == 1) {
449 SkPoint* pts = lines->push_back_n(2);
450 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
451 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
452 } else if (verbsInContour == 0) {
453 // Contour was (moveTo, close). Add a line.
454 SkPoint devPts[2];
455 m.mapPoints(devPts, pathPts, 1);
456 devPts[1] = devPts[0];
457 bounds.setBounds(devPts, 2);
458 bounds.outset(SK_Scalar1, SK_Scalar1);
459 bounds.roundOut(&ibounds);
460 if (SkIRect::Intersects(devClipBounds, ibounds)) {
461 SkPoint* pts = lines->push_back_n(2);
462 pts[0] = SkPoint::Make(devPts[0].fX - capLength, devPts[0].fY);
463 pts[1] = SkPoint::Make(devPts[1].fX + capLength, devPts[1].fY);
464 }
465 }
466 }
467 break;
468 case SkPath::kDone_Verb:
469 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
470 // Path ended with a dangling (moveTo, line|quad|etc). If the final verb is
471 // degenerate, we need to draw a line.
472 SkPoint* pts = lines->push_back_n(2);
473 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
474 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
475 }
476 return totalQuadCount;
477 }
478 }
479 }
480
481 struct LineVertex {
482 SkPoint fPos;
483 float fCoverage;
484 };
485
486 struct BezierVertex {
487 SkPoint fPos;
488 union {
489 struct {
490 SkScalar fKLM[3];
491 } fConic;
492 SkVector fQuadCoord;
493 struct {
494 SkScalar fBogus[4];
495 };
496 };
497 };
498
499 static_assert(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
500
intersect_lines(const SkPoint& ptA, const SkVector& normA, const SkPoint& ptB, const SkVector& normB, SkPoint* result)501 void intersect_lines(const SkPoint& ptA, const SkVector& normA,
502 const SkPoint& ptB, const SkVector& normB,
503 SkPoint* result) {
504
505 SkScalar lineAW = -normA.dot(ptA);
506 SkScalar lineBW = -normB.dot(ptB);
507
508 SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
509 wInv = SkScalarInvert(wInv);
510 if (!SkScalarIsFinite(wInv)) {
511 // lines are parallel, pick the point in between
512 *result = (ptA + ptB)*SK_ScalarHalf;
513 *result += normA;
514 } else {
515 result->fX = normA.fY * lineBW - lineAW * normB.fY;
516 result->fX *= wInv;
517
518 result->fY = lineAW * normB.fX - normA.fX * lineBW;
519 result->fY *= wInv;
520 }
521 }
522
set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices])523 void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
524 // this should be in the src space, not dev coords, when we have perspective
525 GrPathUtils::QuadUVMatrix DevToUV(qpts);
526 DevToUV.apply(verts, kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint));
527 }
528
bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice, const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices])529 void bloat_quad(const SkPoint qpts[3],
530 const SkMatrix* toDevice,
531 const SkMatrix* toSrc,
532 BezierVertex verts[kQuadNumVertices]) {
533 SkASSERT(!toDevice == !toSrc);
534 // original quad is specified by tri a,b,c
535 SkPoint a = qpts[0];
536 SkPoint b = qpts[1];
537 SkPoint c = qpts[2];
538
539 if (toDevice) {
540 toDevice->mapPoints(&a, 1);
541 toDevice->mapPoints(&b, 1);
542 toDevice->mapPoints(&c, 1);
543 }
544 // make a new poly where we replace a and c by a 1-pixel wide edges orthog
545 // to edges ab and bc:
546 //
547 // before | after
548 // | b0
549 // b |
550 // |
551 // | a0 c0
552 // a c | a1 c1
553 //
554 // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
555 // respectively.
556 BezierVertex& a0 = verts[0];
557 BezierVertex& a1 = verts[1];
558 BezierVertex& b0 = verts[2];
559 BezierVertex& c0 = verts[3];
560 BezierVertex& c1 = verts[4];
561
562 SkVector ab = b;
563 ab -= a;
564 SkVector ac = c;
565 ac -= a;
566 SkVector cb = b;
567 cb -= c;
568
569 // After the transform (or due to floating point math) we might have a line,
570 // try to do something reasonable
571 if (SkPointPriv::LengthSqd(ab) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
572 ab = cb;
573 }
574 if (SkPointPriv::LengthSqd(cb) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
575 cb = ab;
576 }
577
578 // We should have already handled degenerates
579 SkASSERT(ab.length() > 0 && cb.length() > 0);
580
581 ab.normalize();
582 SkVector abN = SkPointPriv::MakeOrthog(ab, SkPointPriv::kLeft_Side);
583 if (abN.dot(ac) > 0) {
584 abN.negate();
585 }
586
587 cb.normalize();
588 SkVector cbN = SkPointPriv::MakeOrthog(cb, SkPointPriv::kLeft_Side);
589 if (cbN.dot(ac) < 0) {
590 cbN.negate();
591 }
592
593 a0.fPos = a;
594 a0.fPos += abN;
595 a1.fPos = a;
596 a1.fPos -= abN;
597
598 if (toDevice && SkPointPriv::LengthSqd(ac) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
599 c = b;
600 }
601 c0.fPos = c;
602 c0.fPos += cbN;
603 c1.fPos = c;
604 c1.fPos -= cbN;
605
606 intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
607
608 if (toSrc) {
609 SkMatrixPriv::MapPointsWithStride(*toSrc, &verts[0].fPos, sizeof(BezierVertex),
610 kQuadNumVertices);
611 }
612 }
613
614 // Equations based off of Loop-Blinn Quadratic GPU Rendering
615 // Input Parametric:
616 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
617 // Output Implicit:
618 // f(x, y, w) = f(P) = K^2 - LM
619 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
620 // k, l, m are calculated in function GrPathUtils::getConicKLM
set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices], const SkScalar weight)621 void set_conic_coeffs(const SkPoint p[3],
622 BezierVertex verts[kQuadNumVertices],
623 const SkScalar weight) {
624 SkMatrix klm;
625
626 GrPathUtils::getConicKLM(p, weight, &klm);
627
628 for (int i = 0; i < kQuadNumVertices; ++i) {
629 const SkPoint3 pt3 = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
630 klm.mapHomogeneousPoints((SkPoint3* ) verts[i].fConic.fKLM, &pt3, 1);
631 }
632 }
633
add_conics(const SkPoint p[3], const SkScalar weight, const SkMatrix* toDevice, const SkMatrix* toSrc, BezierVertex** vert)634 void add_conics(const SkPoint p[3],
635 const SkScalar weight,
636 const SkMatrix* toDevice,
637 const SkMatrix* toSrc,
638 BezierVertex** vert) {
639 bloat_quad(p, toDevice, toSrc, *vert);
640 set_conic_coeffs(p, *vert, weight);
641 *vert += kQuadNumVertices;
642 }
643
add_quads(const SkPoint p[3], int subdiv, const SkMatrix* toDevice, const SkMatrix* toSrc, BezierVertex** vert)644 void add_quads(const SkPoint p[3],
645 int subdiv,
646 const SkMatrix* toDevice,
647 const SkMatrix* toSrc,
648 BezierVertex** vert) {
649 SkASSERT(subdiv >= 0);
650 // temporary vertex storage to avoid reading the vertex buffer
651 BezierVertex outVerts[kQuadNumVertices] = {};
652
653 // storage for the chopped quad
654 // pts 0,1,2 are the first quad, and 2,3,4 the second quad
655 SkPoint choppedQuadPts[5];
656 // start off with our original curve in the second quad slot
657 memcpy(&choppedQuadPts[2], p, 3*sizeof(SkPoint));
658
659 int stepCount = 1 << subdiv;
660 while (stepCount > 1) {
661 // The general idea is:
662 // * chop the quad using pts 2,3,4 as the input
663 // * write out verts using pts 0,1,2
664 // * now 2,3,4 is the remainder of the curve, chop again until all subdivisions are done
665 SkScalar h = 1.f / stepCount;
666 SkChopQuadAt(&choppedQuadPts[2], choppedQuadPts, h);
667
668 bloat_quad(choppedQuadPts, toDevice, toSrc, outVerts);
669 set_uv_quad(choppedQuadPts, outVerts);
670 memcpy(*vert, outVerts, kQuadNumVertices*sizeof(BezierVertex));
671 *vert += kQuadNumVertices;
672 --stepCount;
673 }
674
675 // finish up, write out the final quad
676 bloat_quad(&choppedQuadPts[2], toDevice, toSrc, outVerts);
677 set_uv_quad(&choppedQuadPts[2], outVerts);
678 memcpy(*vert, outVerts, kQuadNumVertices * sizeof(BezierVertex));
679 *vert += kQuadNumVertices;
680 }
681
add_line(const SkPoint p[2], const SkMatrix* toSrc, uint8_t coverage, LineVertex** vert)682 void add_line(const SkPoint p[2],
683 const SkMatrix* toSrc,
684 uint8_t coverage,
685 LineVertex** vert) {
686 const SkPoint& a = p[0];
687 const SkPoint& b = p[1];
688
689 SkVector ortho, vec = b;
690 vec -= a;
691
692 SkScalar lengthSqd = SkPointPriv::LengthSqd(vec);
693
694 if (vec.setLength(SK_ScalarHalf)) {
695 // Create a vector orthogonal to 'vec' and of unit length
696 ortho.fX = 2.0f * vec.fY;
697 ortho.fY = -2.0f * vec.fX;
698
699 float floatCoverage = GrNormalizeByteToFloat(coverage);
700
701 if (lengthSqd >= 1.0f) {
702 // Relative to points a and b:
703 // The inner vertices are inset half a pixel along the line a,b
704 (*vert)[0].fPos = a + vec;
705 (*vert)[0].fCoverage = floatCoverage;
706 (*vert)[1].fPos = b - vec;
707 (*vert)[1].fCoverage = floatCoverage;
708 } else {
709 // The inner vertices are inset a distance of length(a,b) from the outer edge of
710 // geometry. For the "a" inset this is the same as insetting from b by half a pixel.
711 // The coverage is then modulated by the length. This gives us the correct
712 // coverage for rects shorter than a pixel as they get translated subpixel amounts
713 // inside of a pixel.
714 SkScalar length = SkScalarSqrt(lengthSqd);
715 (*vert)[0].fPos = b - vec;
716 (*vert)[0].fCoverage = floatCoverage * length;
717 (*vert)[1].fPos = a + vec;
718 (*vert)[1].fCoverage = floatCoverage * length;
719 }
720 // Relative to points a and b:
721 // The outer vertices are outset half a pixel along the line a,b and then a whole pixel
722 // orthogonally.
723 (*vert)[2].fPos = a - vec + ortho;
724 (*vert)[2].fCoverage = 0;
725 (*vert)[3].fPos = b + vec + ortho;
726 (*vert)[3].fCoverage = 0;
727 (*vert)[4].fPos = a - vec - ortho;
728 (*vert)[4].fCoverage = 0;
729 (*vert)[5].fPos = b + vec - ortho;
730 (*vert)[5].fCoverage = 0;
731
732 if (toSrc) {
733 SkMatrixPriv::MapPointsWithStride(*toSrc, &(*vert)->fPos, sizeof(LineVertex),
734 kLineSegNumVertices);
735 }
736 } else {
737 // just make it degenerate and likely offscreen
738 for (int i = 0; i < kLineSegNumVertices; ++i) {
739 (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
740 }
741 }
742
743 *vert += kLineSegNumVertices;
744 }
745
746 ///////////////////////////////////////////////////////////////////////////////
747
748 class AAHairlineOp final : public GrMeshDrawOp {
749 private:
750 using Helper = GrSimpleMeshDrawOpHelperWithStencil;
751
752 public:
753 DEFINE_OP_CLASS_ID
754
Make(GrRecordingContext* context, GrPaint&& paint, const SkMatrix& viewMatrix, const SkPath& path, const GrStyle& style, const SkIRect& devClipBounds, const GrUserStencilSettings* stencilSettings)755 static GrOp::Owner Make(GrRecordingContext* context,
756 GrPaint&& paint,
757 const SkMatrix& viewMatrix,
758 const SkPath& path,
759 const GrStyle& style,
760 const SkIRect& devClipBounds,
761 const GrUserStencilSettings* stencilSettings) {
762 SkScalar hairlineCoverage;
763 uint8_t newCoverage = 0xff;
764 if (GrIsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
765 newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
766 }
767
768 const SkStrokeRec& stroke = style.strokeRec();
769 SkScalar capLength = SkPaint::kButt_Cap != stroke.getCap() ? hairlineCoverage * 0.5f : 0.0f;
770
771 return Helper::FactoryHelper<AAHairlineOp>(context, std::move(paint), newCoverage,
772 viewMatrix, path,
773 devClipBounds, capLength, stencilSettings);
774 }
775
AAHairlineOp(GrProcessorSet* processorSet, const SkPMColor4f& color, uint8_t coverage, const SkMatrix& viewMatrix, const SkPath& path, SkIRect devClipBounds, SkScalar capLength, const GrUserStencilSettings* stencilSettings)776 AAHairlineOp(GrProcessorSet* processorSet,
777 const SkPMColor4f& color,
778 uint8_t coverage,
779 const SkMatrix& viewMatrix,
780 const SkPath& path,
781 SkIRect devClipBounds,
782 SkScalar capLength,
783 const GrUserStencilSettings* stencilSettings)
784 : INHERITED(ClassID())
785 , fHelper(processorSet, GrAAType::kCoverage, stencilSettings)
786 , fColor(color)
787 , fCoverage(coverage) {
788 fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds, capLength});
789
790 this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
791 IsHairline::kYes);
792 }
793
794 const char* name() const override { return "AAHairlineOp"; }
795
796 void visitProxies(const GrVisitProxyFunc& func) const override {
797
798 bool visited = false;
799 for (int i = 0; i < 3; ++i) {
800 if (fProgramInfos[i]) {
801 fProgramInfos[i]->visitFPProxies(func);
802 visited = true;
803 }
804 }
805
806 if (!visited) {
807 fHelper.visitProxies(func);
808 }
809 }
810
811 FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
812
813 GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
814 GrClampType clampType) override {
815 // This Op uses uniform (not vertex) color, so doesn't need to track wide color.
816 return fHelper.finalizeProcessors(caps, clip, clampType,
817 GrProcessorAnalysisCoverage::kSingleChannel, &fColor,
818 nullptr);
819 }
820
821 enum class Program : uint8_t {
822 kNone = 0x0,
823 kLine = 0x1,
824 kQuad = 0x2,
825 kConic = 0x4,
826 };
827
828 private:
829 void makeLineProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
830 const GrSurfaceProxyView& writeView,
831 bool usesMSAASurface,
832 const SkMatrix* geometryProcessorViewM,
833 const SkMatrix* geometryProcessorLocalM,
834 GrXferBarrierFlags renderPassXferBarriers,
835 GrLoadOp colorLoadOp);
836 void makeQuadProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
837 const GrSurfaceProxyView& writeView,
838 bool usesMSAASurface,
839 const SkMatrix* geometryProcessorViewM,
840 const SkMatrix* geometryProcessorLocalM,
841 GrXferBarrierFlags renderPassXferBarriers,
842 GrLoadOp colorLoadOp);
843 void makeConicProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
844 const GrSurfaceProxyView& writeView,
845 bool usesMSAASurface,
846 const SkMatrix* geometryProcessorViewM,
847 const SkMatrix* geometryProcessorLocalM,
848 GrXferBarrierFlags renderPassXferBarriers,
849 GrLoadOp colorLoadOp);
850
851 GrProgramInfo* programInfo() override {
852 // This Op has 3 programInfos and implements its own onPrePrepareDraws so this entry point
853 // should really never be called.
854 SkASSERT(0);
855 return nullptr;
856 }
857
858 Program predictPrograms(const GrCaps*) const;
859
860 void onCreateProgramInfo(const GrCaps*,
861 SkArenaAlloc*,
862 const GrSurfaceProxyView& writeView,
863 bool usesMSAASurface,
864 GrAppliedClip&&,
865 const GrDstProxyView&,
866 GrXferBarrierFlags renderPassXferBarriers,
867 GrLoadOp colorLoadOp) override;
868
869 void onPrePrepareDraws(GrRecordingContext*,
870 const GrSurfaceProxyView& writeView,
871 GrAppliedClip*,
872 const GrDstProxyView&,
873 GrXferBarrierFlags renderPassXferBarriers,
874 GrLoadOp colorLoadOp) override;
875
876 void onPrepareDraws(GrMeshDrawTarget*) override;
877 void onExecute(GrOpFlushState*, const SkRect& chainBounds) override;
878
879 CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override {
880 AAHairlineOp* that = t->cast<AAHairlineOp>();
881
882 if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
883 return CombineResult::kCannotCombine;
884 }
885
886 if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
887 return CombineResult::kCannotCombine;
888 }
889
890 // We go to identity if we don't have perspective
891 if (this->viewMatrix().hasPerspective() &&
892 !SkMatrixPriv::CheapEqual(this->viewMatrix(), that->viewMatrix())) {
893 return CombineResult::kCannotCombine;
894 }
895
896 // TODO we can actually combine hairlines if they are the same color in a kind of bulk
897 // method but we haven't implemented this yet
898 // TODO investigate going to vertex color and coverage?
899 if (this->coverage() != that->coverage()) {
900 return CombineResult::kCannotCombine;
901 }
902
903 if (this->color() != that->color()) {
904 return CombineResult::kCannotCombine;
905 }
906
907 if (fHelper.usesLocalCoords() && !SkMatrixPriv::CheapEqual(this->viewMatrix(),
908 that->viewMatrix())) {
909 return CombineResult::kCannotCombine;
910 }
911
912 fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
913 return CombineResult::kMerged;
914 }
915
916 #if GR_TEST_UTILS
917 SkString onDumpInfo() const override {
918 return SkStringPrintf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n%s",
919 fColor.toBytes_RGBA(), fCoverage, fPaths.count(),
920 fHelper.dumpInfo().c_str());
921 }
922 #endif
923
color() const924 const SkPMColor4f& color() const { return fColor; }
coverage() const925 uint8_t coverage() const { return fCoverage; }
viewMatrix() const926 const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
927
928 struct PathData {
929 SkMatrix fViewMatrix;
930 SkPath fPath;
931 SkIRect fDevClipBounds;
932 SkScalar fCapLength;
933 };
934
935 SkSTArray<1, PathData, true> fPaths;
936 Helper fHelper;
937 SkPMColor4f fColor;
938 uint8_t fCoverage;
939
940 Program fCharacterization = Program::kNone; // holds a mask of required programs
941 GrSimpleMesh* fMeshes[3] = { nullptr };
942 GrProgramInfo* fProgramInfos[3] = { nullptr };
943
944 using INHERITED = GrMeshDrawOp;
945 };
946
947 GR_MAKE_BITFIELD_CLASS_OPS(AAHairlineOp::Program)
948
makeLineProgramInfo(const GrCaps& caps, SkArenaAlloc* arena, const GrPipeline* pipeline, const GrSurfaceProxyView& writeView, bool usesMSAASurface, const SkMatrix* geometryProcessorViewM, const SkMatrix* geometryProcessorLocalM, GrXferBarrierFlags renderPassXferBarriers, GrLoadOp colorLoadOp)949 void AAHairlineOp::makeLineProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
950 const GrPipeline* pipeline,
951 const GrSurfaceProxyView& writeView,
952 bool usesMSAASurface,
953 const SkMatrix* geometryProcessorViewM,
954 const SkMatrix* geometryProcessorLocalM,
955 GrXferBarrierFlags renderPassXferBarriers,
956 GrLoadOp colorLoadOp) {
957 if (fProgramInfos[0]) {
958 return;
959 }
960
961 GrGeometryProcessor* lineGP;
962 {
963 using namespace GrDefaultGeoProcFactory;
964
965 Color color(this->color());
966 LocalCoords localCoords(fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type
967 : LocalCoords::kUnused_Type);
968 localCoords.fMatrix = geometryProcessorLocalM;
969
970 lineGP = GrDefaultGeoProcFactory::Make(arena,
971 color,
972 Coverage::kAttribute_Type,
973 localCoords,
974 *geometryProcessorViewM);
975 SkASSERT(sizeof(LineVertex) == lineGP->vertexStride());
976 }
977
978 fProgramInfos[0] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
979 &caps, arena, pipeline, writeView, usesMSAASurface, lineGP, GrPrimitiveType::kTriangles,
980 renderPassXferBarriers, colorLoadOp, fHelper.stencilSettings());
981 }
982
makeQuadProgramInfo(const GrCaps& caps, SkArenaAlloc* arena, const GrPipeline* pipeline, const GrSurfaceProxyView& writeView, bool usesMSAASurface, const SkMatrix* geometryProcessorViewM, const SkMatrix* geometryProcessorLocalM, GrXferBarrierFlags renderPassXferBarriers, GrLoadOp colorLoadOp)983 void AAHairlineOp::makeQuadProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
984 const GrPipeline* pipeline,
985 const GrSurfaceProxyView& writeView,
986 bool usesMSAASurface,
987 const SkMatrix* geometryProcessorViewM,
988 const SkMatrix* geometryProcessorLocalM,
989 GrXferBarrierFlags renderPassXferBarriers,
990 GrLoadOp colorLoadOp) {
991 if (fProgramInfos[1]) {
992 return;
993 }
994
995 GrGeometryProcessor* quadGP = GrQuadEffect::Make(arena,
996 this->color(),
997 *geometryProcessorViewM,
998 caps,
999 *geometryProcessorLocalM,
1000 fHelper.usesLocalCoords(),
1001 this->coverage());
1002 SkASSERT(sizeof(BezierVertex) == quadGP->vertexStride());
1003
1004 fProgramInfos[1] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
1005 &caps, arena, pipeline, writeView, usesMSAASurface, quadGP, GrPrimitiveType::kTriangles,
1006 renderPassXferBarriers, colorLoadOp, fHelper.stencilSettings());
1007 }
1008
makeConicProgramInfo(const GrCaps& caps, SkArenaAlloc* arena, const GrPipeline* pipeline, const GrSurfaceProxyView& writeView, bool usesMSAASurface, const SkMatrix* geometryProcessorViewM, const SkMatrix* geometryProcessorLocalM, GrXferBarrierFlags renderPassXferBarriers, GrLoadOp colorLoadOp)1009 void AAHairlineOp::makeConicProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
1010 const GrPipeline* pipeline,
1011 const GrSurfaceProxyView& writeView,
1012 bool usesMSAASurface,
1013 const SkMatrix* geometryProcessorViewM,
1014 const SkMatrix* geometryProcessorLocalM,
1015 GrXferBarrierFlags renderPassXferBarriers,
1016 GrLoadOp colorLoadOp) {
1017 if (fProgramInfos[2]) {
1018 return;
1019 }
1020
1021 GrGeometryProcessor* conicGP = GrConicEffect::Make(arena,
1022 this->color(),
1023 *geometryProcessorViewM,
1024 caps,
1025 *geometryProcessorLocalM,
1026 fHelper.usesLocalCoords(),
1027 this->coverage());
1028 SkASSERT(sizeof(BezierVertex) == conicGP->vertexStride());
1029
1030 fProgramInfos[2] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
1031 &caps, arena, pipeline, writeView, usesMSAASurface, conicGP,
1032 GrPrimitiveType::kTriangles, renderPassXferBarriers, colorLoadOp,
1033 fHelper.stencilSettings());
1034 }
1035
predictPrograms(const GrCaps* caps) const1036 AAHairlineOp::Program AAHairlineOp::predictPrograms(const GrCaps* caps) const {
1037 bool convertConicsToQuads = !caps->shaderCaps()->floatIs32Bits();
1038
1039 // When predicting the programs we always include the lineProgram bc it is used as a fallback
1040 // for quads and conics. In non-DDL mode there are cases where it sometimes isn't needed for a
1041 // given path.
1042 Program neededPrograms = Program::kLine;
1043
1044 for (int i = 0; i < fPaths.count(); i++) {
1045 uint32_t mask = fPaths[i].fPath.getSegmentMasks();
1046
1047 if (mask & (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask)) {
1048 neededPrograms |= Program::kQuad;
1049 }
1050 if (mask & SkPath::kConic_SegmentMask) {
1051 if (convertConicsToQuads) {
1052 neededPrograms |= Program::kQuad;
1053 } else {
1054 neededPrograms |= Program::kConic;
1055 }
1056 }
1057 }
1058
1059 return neededPrograms;
1060 }
1061
onCreateProgramInfo(const GrCaps* caps, SkArenaAlloc* arena, const GrSurfaceProxyView& writeView, bool usesMSAASurface, GrAppliedClip&& appliedClip, const GrDstProxyView& dstProxyView, GrXferBarrierFlags renderPassXferBarriers, GrLoadOp colorLoadOp)1062 void AAHairlineOp::onCreateProgramInfo(const GrCaps* caps,
1063 SkArenaAlloc* arena,
1064 const GrSurfaceProxyView& writeView,
1065 bool usesMSAASurface,
1066 GrAppliedClip&& appliedClip,
1067 const GrDstProxyView& dstProxyView,
1068 GrXferBarrierFlags renderPassXferBarriers,
1069 GrLoadOp colorLoadOp) {
1070 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
1071 SkMatrix invert;
1072 if (!this->viewMatrix().invert(&invert)) {
1073 return;
1074 }
1075
1076 // we will transform to identity space if the viewmatrix does not have perspective
1077 bool hasPerspective = this->viewMatrix().hasPerspective();
1078 const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
1079 const SkMatrix* geometryProcessorLocalM = &invert;
1080 if (hasPerspective) {
1081 geometryProcessorViewM = &this->viewMatrix();
1082 geometryProcessorLocalM = &SkMatrix::I();
1083 }
1084
1085 auto pipeline = fHelper.createPipeline(caps, arena, writeView.swizzle(),
1086 std::move(appliedClip), dstProxyView);
1087
1088 if (fCharacterization & Program::kLine) {
1089 this->makeLineProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1090 geometryProcessorViewM, geometryProcessorLocalM,
1091 renderPassXferBarriers, colorLoadOp);
1092 }
1093 if (fCharacterization & Program::kQuad) {
1094 this->makeQuadProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1095 geometryProcessorViewM, geometryProcessorLocalM,
1096 renderPassXferBarriers, colorLoadOp);
1097 }
1098 if (fCharacterization & Program::kConic) {
1099 this->makeConicProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1100 geometryProcessorViewM, geometryProcessorLocalM,
1101 renderPassXferBarriers, colorLoadOp);
1102
1103 }
1104 }
1105
onPrePrepareDraws(GrRecordingContext* context, const GrSurfaceProxyView& writeView, GrAppliedClip* clip, const GrDstProxyView& dstProxyView, GrXferBarrierFlags renderPassXferBarriers, GrLoadOp colorLoadOp)1106 void AAHairlineOp::onPrePrepareDraws(GrRecordingContext* context,
1107 const GrSurfaceProxyView& writeView,
1108 GrAppliedClip* clip,
1109 const GrDstProxyView& dstProxyView,
1110 GrXferBarrierFlags renderPassXferBarriers,
1111 GrLoadOp colorLoadOp) {
1112 SkArenaAlloc* arena = context->priv().recordTimeAllocator();
1113 const GrCaps* caps = context->priv().caps();
1114
1115 // http://skbug.com/12201 -- DDL does not yet support DMSAA.
1116 bool usesMSAASurface = writeView.asRenderTargetProxy()->numSamples() > 1;
1117
1118 // This is equivalent to a GrOpFlushState::detachAppliedClip
1119 GrAppliedClip appliedClip = clip ? std::move(*clip) : GrAppliedClip::Disabled();
1120
1121 // Conservatively predict which programs will be required
1122 fCharacterization = this->predictPrograms(caps);
1123
1124 this->createProgramInfo(caps, arena, writeView, usesMSAASurface, std::move(appliedClip),
1125 dstProxyView, renderPassXferBarriers, colorLoadOp);
1126
1127 context->priv().recordProgramInfo(fProgramInfos[0]);
1128 context->priv().recordProgramInfo(fProgramInfos[1]);
1129 context->priv().recordProgramInfo(fProgramInfos[2]);
1130 }
1131
onPrepareDraws(GrMeshDrawTarget* target)1132 void AAHairlineOp::onPrepareDraws(GrMeshDrawTarget* target) {
1133 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
1134 SkMatrix invert;
1135 if (!this->viewMatrix().invert(&invert)) {
1136 return;
1137 }
1138
1139 // we will transform to identity space if the viewmatrix does not have perspective
1140 const SkMatrix* toDevice = nullptr;
1141 const SkMatrix* toSrc = nullptr;
1142 if (this->viewMatrix().hasPerspective()) {
1143 toDevice = &this->viewMatrix();
1144 toSrc = &invert;
1145 }
1146
1147 SkDEBUGCODE(Program predictedPrograms = this->predictPrograms(&target->caps()));
1148 Program actualPrograms = Program::kNone;
1149
1150 // This is hand inlined for maximum performance.
1151 PREALLOC_PTARRAY(128) lines;
1152 PREALLOC_PTARRAY(128) quads;
1153 PREALLOC_PTARRAY(128) conics;
1154 IntArray qSubdivs;
1155 FloatArray cWeights;
1156 int quadCount = 0;
1157
1158 int instanceCount = fPaths.count();
1159 bool convertConicsToQuads = !target->caps().shaderCaps()->floatIs32Bits();
1160 for (int i = 0; i < instanceCount; i++) {
1161 const PathData& args = fPaths[i];
1162 quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
1163 args.fCapLength, convertConicsToQuads, &lines, &quads,
1164 &conics, &qSubdivs, &cWeights);
1165 }
1166
1167 int lineCount = lines.count() / 2;
1168 int conicCount = conics.count() / 3;
1169 int quadAndConicCount = conicCount + quadCount;
1170
1171 static constexpr int kMaxLines = SK_MaxS32 / kLineSegNumVertices;
1172 static constexpr int kMaxQuadsAndConics = SK_MaxS32 / kQuadNumVertices;
1173 if (lineCount > kMaxLines || quadAndConicCount > kMaxQuadsAndConics) {
1174 return;
1175 }
1176
1177 // do lines first
1178 if (lineCount) {
1179 SkASSERT(predictedPrograms & Program::kLine);
1180 actualPrograms |= Program::kLine;
1181
1182 sk_sp<const GrBuffer> linesIndexBuffer = get_lines_index_buffer(target->resourceProvider());
1183
1184 GrMeshDrawOp::PatternHelper helper(target, GrPrimitiveType::kTriangles, sizeof(LineVertex),
1185 std::move(linesIndexBuffer), kLineSegNumVertices,
1186 kIdxsPerLineSeg, lineCount, kLineSegsNumInIdxBuffer);
1187
1188 LineVertex* verts = reinterpret_cast<LineVertex*>(helper.vertices());
1189 if (!verts) {
1190 SkDebugf("Could not allocate vertices\n");
1191 return;
1192 }
1193
1194 for (int i = 0; i < lineCount; ++i) {
1195 add_line(&lines[2*i], toSrc, this->coverage(), &verts);
1196 }
1197
1198 fMeshes[0] = helper.mesh();
1199 }
1200
1201 if (quadCount || conicCount) {
1202 sk_sp<const GrBuffer> vertexBuffer;
1203 int firstVertex;
1204
1205 sk_sp<const GrBuffer> quadsIndexBuffer = get_quads_index_buffer(target->resourceProvider());
1206
1207 int vertexCount = kQuadNumVertices * quadAndConicCount;
1208 void* vertices = target->makeVertexSpace(sizeof(BezierVertex), vertexCount, &vertexBuffer,
1209 &firstVertex);
1210
1211 if (!vertices || !quadsIndexBuffer) {
1212 SkDebugf("Could not allocate vertices\n");
1213 return;
1214 }
1215
1216 // Setup vertices
1217 BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
1218
1219 int unsubdivQuadCnt = quads.count() / 3;
1220 for (int i = 0; i < unsubdivQuadCnt; ++i) {
1221 SkASSERT(qSubdivs[i] >= 0);
1222 if (!quads[3*i].isFinite() || !quads[3*i+1].isFinite() || !quads[3*i+2].isFinite()) {
1223 return;
1224 }
1225 add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
1226 }
1227
1228 // Start Conics
1229 for (int i = 0; i < conicCount; ++i) {
1230 add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
1231 }
1232
1233 if (quadCount > 0) {
1234 SkASSERT(predictedPrograms & Program::kQuad);
1235 actualPrograms |= Program::kQuad;
1236
1237 fMeshes[1] = target->allocMesh();
1238 fMeshes[1]->setIndexedPatterned(quadsIndexBuffer, kIdxsPerQuad, quadCount,
1239 kQuadsNumInIdxBuffer, vertexBuffer, kQuadNumVertices,
1240 firstVertex);
1241 firstVertex += quadCount * kQuadNumVertices;
1242 }
1243
1244 if (conicCount > 0) {
1245 SkASSERT(predictedPrograms & Program::kConic);
1246 actualPrograms |= Program::kConic;
1247
1248 fMeshes[2] = target->allocMesh();
1249 fMeshes[2]->setIndexedPatterned(std::move(quadsIndexBuffer), kIdxsPerQuad, conicCount,
1250 kQuadsNumInIdxBuffer, std::move(vertexBuffer),
1251 kQuadNumVertices, firstVertex);
1252 }
1253 }
1254
1255 // In DDL mode this will replace the predicted program requirements with the actual ones.
1256 // However, we will already have surfaced the predicted programs to the DDL.
1257 fCharacterization = actualPrograms;
1258 }
1259
onExecute(GrOpFlushState* flushState, const SkRect& chainBounds)1260 void AAHairlineOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) {
1261 this->createProgramInfo(flushState);
1262
1263 for (int i = 0; i < 3; ++i) {
1264 if (fProgramInfos[i] && fMeshes[i]) {
1265 flushState->bindPipelineAndScissorClip(*fProgramInfos[i], chainBounds);
1266 flushState->bindTextures(fProgramInfos[i]->geomProc(), nullptr,
1267 fProgramInfos[i]->pipeline());
1268 flushState->drawMesh(*fMeshes[i]);
1269 }
1270 }
1271 }
1272
1273 } // anonymous namespace
1274
1275 ///////////////////////////////////////////////////////////////////////////////////////////////////
1276
1277 #if GR_TEST_UTILS
1278
GR_DRAW_OP_TEST_DEFINE(AAHairlineOp)1279 GR_DRAW_OP_TEST_DEFINE(AAHairlineOp) {
1280 SkMatrix viewMatrix = GrTest::TestMatrix(random);
1281 const SkPath& path = GrTest::TestPath(random);
1282 SkIRect devClipBounds;
1283 devClipBounds.setEmpty();
1284 return AAHairlineOp::Make(context, std::move(paint), viewMatrix, path,
1285 GrStyle::SimpleHairline(), devClipBounds,
1286 GrGetRandomStencil(random, context));
1287 }
1288
1289 #endif
1290
1291 ///////////////////////////////////////////////////////////////////////////////////////////////////
1292
1293 namespace skgpu::v1 {
1294
onCanDrawPath(const CanDrawPathArgs& args) const1295 PathRenderer::CanDrawPath AAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
1296 if (GrAAType::kCoverage != args.fAAType) {
1297 return CanDrawPath::kNo;
1298 }
1299
1300 if (!GrIsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
1301 return CanDrawPath::kNo;
1302 }
1303
1304 // We don't currently handle dashing in this class though perhaps we should.
1305 if (args.fShape->style().pathEffect()) {
1306 return CanDrawPath::kNo;
1307 }
1308
1309 if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
1310 args.fCaps->shaderCaps()->shaderDerivativeSupport()) {
1311 return CanDrawPath::kYes;
1312 }
1313
1314 return CanDrawPath::kNo;
1315 }
1316
1317
onDrawPath(const DrawPathArgs& args)1318 bool AAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
1319 GR_AUDIT_TRAIL_AUTO_FRAME(args.fContext->priv().auditTrail(),
1320 "AAHairlinePathRenderer::onDrawPath");
1321 SkASSERT(args.fSurfaceDrawContext->numSamples() <= 1);
1322
1323 SkPath path;
1324 args.fShape->asPath(&path);
1325 GrOp::Owner op =
1326 AAHairlineOp::Make(args.fContext, std::move(args.fPaint), *args.fViewMatrix, path,
1327 args.fShape->style(), *args.fClipConservativeBounds,
1328 args.fUserStencilSettings);
1329 args.fSurfaceDrawContext->addDrawOp(args.fClip, std::move(op));
1330 return true;
1331 }
1332
1333 } // namespace skgpu::v1
1334
1335