1 /*
2 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/core_names.h>
16 #include <openssl/ocsp.h>
17 #include <openssl/conf.h>
18 #include <openssl/x509v3.h>
19 #include <openssl/dh.h>
20 #include <openssl/bn.h>
21 #include <openssl/provider.h>
22 #include <openssl/param_build.h>
23 #include "internal/nelem.h"
24 #include "internal/sizes.h"
25 #include "internal/tlsgroups.h"
26 #include "ssl_local.h"
27 #include <openssl/ct.h>
28
29 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
30 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
31
32 SSL3_ENC_METHOD const TLSv1_enc_data = {
33 tls1_enc,
34 tls1_mac,
35 tls1_setup_key_block,
36 tls1_generate_master_secret,
37 tls1_change_cipher_state,
38 tls1_final_finish_mac,
39 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
40 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
41 tls1_alert_code,
42 tls1_export_keying_material,
43 0,
44 ssl3_set_handshake_header,
45 tls_close_construct_packet,
46 ssl3_handshake_write
47 };
48
49 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
50 tls1_enc,
51 tls1_mac,
52 tls1_setup_key_block,
53 tls1_generate_master_secret,
54 tls1_change_cipher_state,
55 tls1_final_finish_mac,
56 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
57 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
58 tls1_alert_code,
59 tls1_export_keying_material,
60 SSL_ENC_FLAG_EXPLICIT_IV,
61 ssl3_set_handshake_header,
62 tls_close_construct_packet,
63 ssl3_handshake_write
64 };
65
66 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
67 tls1_enc,
68 tls1_mac,
69 tls1_setup_key_block,
70 tls1_generate_master_secret,
71 tls1_change_cipher_state,
72 tls1_final_finish_mac,
73 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
74 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
75 tls1_alert_code,
76 tls1_export_keying_material,
77 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
78 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
79 ssl3_set_handshake_header,
80 tls_close_construct_packet,
81 ssl3_handshake_write
82 };
83
84 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
85 tls13_enc,
86 tls1_mac,
87 tls13_setup_key_block,
88 tls13_generate_master_secret,
89 tls13_change_cipher_state,
90 tls13_final_finish_mac,
91 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
92 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
93 tls13_alert_code,
94 tls13_export_keying_material,
95 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
96 ssl3_set_handshake_header,
97 tls_close_construct_packet,
98 ssl3_handshake_write
99 };
100
tls1_default_timeout(void)101 long tls1_default_timeout(void)
102 {
103 /*
104 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
105 * http, the cache would over fill
106 */
107 return (60 * 60 * 2);
108 }
109
tls1_new(SSL *s)110 int tls1_new(SSL *s)
111 {
112 if (!ssl3_new(s))
113 return 0;
114 if (!s->method->ssl_clear(s))
115 return 0;
116
117 return 1;
118 }
119
tls1_free(SSL *s)120 void tls1_free(SSL *s)
121 {
122 OPENSSL_free(s->ext.session_ticket);
123 ssl3_free(s);
124 }
125
tls1_clear(SSL *s)126 int tls1_clear(SSL *s)
127 {
128 if (!ssl3_clear(s))
129 return 0;
130
131 if (s->method->version == TLS_ANY_VERSION)
132 s->version = TLS_MAX_VERSION_INTERNAL;
133 else
134 s->version = s->method->version;
135
136 return 1;
137 }
138
139 /* Legacy NID to group_id mapping. Only works for groups we know about */
140 static struct {
141 int nid;
142 uint16_t group_id;
143 } nid_to_group[] = {
144 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
145 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
146 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
147 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
148 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
149 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
150 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
151 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
152 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
153 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
154 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
155 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
156 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
157 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
158 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
159 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
160 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
161 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
162 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
163 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
164 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
165 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
166 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
167 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
168 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
169 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
170 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
171 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
172 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
173 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
174 {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
175 {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
176 {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
177 {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
178 {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
179 {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
180 {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
181 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
182 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
183 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
184 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
185 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
186 };
187
188 static const unsigned char ecformats_default[] = {
189 TLSEXT_ECPOINTFORMAT_uncompressed,
190 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
191 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
192 };
193
194 /* The default curves */
195 static const uint16_t supported_groups_default[] = {
196 29, /* X25519 (29) */
197 23, /* secp256r1 (23) */
198 30, /* X448 (30) */
199 25, /* secp521r1 (25) */
200 24, /* secp384r1 (24) */
201 34, /* GC256A (34) */
202 35, /* GC256B (35) */
203 36, /* GC256C (36) */
204 37, /* GC256D (37) */
205 38, /* GC512A (38) */
206 39, /* GC512B (39) */
207 40, /* GC512C (40) */
208 0x100, /* ffdhe2048 (0x100) */
209 0x101, /* ffdhe3072 (0x101) */
210 0x102, /* ffdhe4096 (0x102) */
211 0x103, /* ffdhe6144 (0x103) */
212 0x104, /* ffdhe8192 (0x104) */
213 };
214
215 static const uint16_t suiteb_curves[] = {
216 TLSEXT_curve_P_256,
217 TLSEXT_curve_P_384
218 };
219
220 struct provider_group_data_st {
221 SSL_CTX *ctx;
222 OSSL_PROVIDER *provider;
223 };
224
225 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
226 static OSSL_CALLBACK add_provider_groups;
add_provider_groups(const OSSL_PARAM params[], void *data)227 static int add_provider_groups(const OSSL_PARAM params[], void *data)
228 {
229 struct provider_group_data_st *pgd = data;
230 SSL_CTX *ctx = pgd->ctx;
231 OSSL_PROVIDER *provider = pgd->provider;
232 const OSSL_PARAM *p;
233 TLS_GROUP_INFO *ginf = NULL;
234 EVP_KEYMGMT *keymgmt;
235 unsigned int gid;
236 unsigned int is_kem = 0;
237 int ret = 0;
238
239 if (ctx->group_list_max_len == ctx->group_list_len) {
240 TLS_GROUP_INFO *tmp = NULL;
241
242 if (ctx->group_list_max_len == 0)
243 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
244 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
245 else
246 tmp = OPENSSL_realloc(ctx->group_list,
247 (ctx->group_list_max_len
248 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
249 * sizeof(TLS_GROUP_INFO));
250 if (tmp == NULL) {
251 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
252 return 0;
253 }
254 ctx->group_list = tmp;
255 memset(tmp + ctx->group_list_max_len,
256 0,
257 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
258 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
259 }
260
261 ginf = &ctx->group_list[ctx->group_list_len];
262
263 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
264 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
265 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
266 goto err;
267 }
268 ginf->tlsname = OPENSSL_strdup(p->data);
269 if (ginf->tlsname == NULL) {
270 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
271 goto err;
272 }
273
274 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
275 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
276 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
277 goto err;
278 }
279 ginf->realname = OPENSSL_strdup(p->data);
280 if (ginf->realname == NULL) {
281 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
282 goto err;
283 }
284
285 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288 goto err;
289 }
290 ginf->group_id = (uint16_t)gid;
291
292 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295 goto err;
296 }
297 ginf->algorithm = OPENSSL_strdup(p->data);
298 if (ginf->algorithm == NULL) {
299 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
300 goto err;
301 }
302
303 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
304 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
305 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
306 goto err;
307 }
308
309 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
310 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
311 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
312 goto err;
313 }
314 ginf->is_kem = 1 & is_kem;
315
316 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
317 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
318 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
319 goto err;
320 }
321
322 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
323 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
324 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
325 goto err;
326 }
327
328 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
329 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
330 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
331 goto err;
332 }
333
334 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
335 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
336 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
337 goto err;
338 }
339 /*
340 * Now check that the algorithm is actually usable for our property query
341 * string. Regardless of the result we still return success because we have
342 * successfully processed this group, even though we may decide not to use
343 * it.
344 */
345 ret = 1;
346 ERR_set_mark();
347 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
348 if (keymgmt != NULL) {
349 /*
350 * We have successfully fetched the algorithm - however if the provider
351 * doesn't match this one then we ignore it.
352 *
353 * Note: We're cheating a little here. Technically if the same algorithm
354 * is available from more than one provider then it is undefined which
355 * implementation you will get back. Theoretically this could be
356 * different every time...we assume here that you'll always get the
357 * same one back if you repeat the exact same fetch. Is this a reasonable
358 * assumption to make (in which case perhaps we should document this
359 * behaviour)?
360 */
361 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
362 /* We have a match - so we will use this group */
363 ctx->group_list_len++;
364 ginf = NULL;
365 }
366 EVP_KEYMGMT_free(keymgmt);
367 }
368 ERR_pop_to_mark();
369 err:
370 if (ginf != NULL) {
371 OPENSSL_free(ginf->tlsname);
372 OPENSSL_free(ginf->realname);
373 OPENSSL_free(ginf->algorithm);
374 ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
375 }
376 return ret;
377 }
378
discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)379 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
380 {
381 struct provider_group_data_st pgd;
382
383 pgd.ctx = vctx;
384 pgd.provider = provider;
385 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
386 add_provider_groups, &pgd);
387 }
388
ssl_load_groups(SSL_CTX *ctx)389 int ssl_load_groups(SSL_CTX *ctx)
390 {
391 size_t i, j, num_deflt_grps = 0;
392 uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
393
394 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
395 return 0;
396
397 for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
398 for (j = 0; j < ctx->group_list_len; j++) {
399 if (ctx->group_list[j].group_id == supported_groups_default[i]) {
400 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
401 break;
402 }
403 }
404 }
405
406 if (num_deflt_grps == 0)
407 return 1;
408
409 ctx->ext.supported_groups_default
410 = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
411
412 if (ctx->ext.supported_groups_default == NULL) {
413 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
414 return 0;
415 }
416
417 memcpy(ctx->ext.supported_groups_default,
418 tmp_supp_groups,
419 num_deflt_grps * sizeof(tmp_supp_groups[0]));
420 ctx->ext.supported_groups_default_len = num_deflt_grps;
421
422 return 1;
423 }
424
tls1_group_name2id(SSL_CTX *ctx, const char *name)425 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
426 {
427 size_t i;
428
429 for (i = 0; i < ctx->group_list_len; i++) {
430 if (strcmp(ctx->group_list[i].tlsname, name) == 0
431 || strcmp(ctx->group_list[i].realname, name) == 0)
432 return ctx->group_list[i].group_id;
433 }
434
435 return 0;
436 }
437
tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)438 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
439 {
440 size_t i;
441
442 for (i = 0; i < ctx->group_list_len; i++) {
443 if (ctx->group_list[i].group_id == group_id)
444 return &ctx->group_list[i];
445 }
446
447 return NULL;
448 }
449
tls1_group_id2nid(uint16_t group_id, int include_unknown)450 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
451 {
452 size_t i;
453
454 if (group_id == 0)
455 return NID_undef;
456
457 /*
458 * Return well known Group NIDs - for backwards compatibility. This won't
459 * work for groups we don't know about.
460 */
461 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
462 {
463 if (nid_to_group[i].group_id == group_id)
464 return nid_to_group[i].nid;
465 }
466 if (!include_unknown)
467 return NID_undef;
468 return TLSEXT_nid_unknown | (int)group_id;
469 }
470
tls1_nid2group_id(int nid)471 uint16_t tls1_nid2group_id(int nid)
472 {
473 size_t i;
474
475 /*
476 * Return well known Group ids - for backwards compatibility. This won't
477 * work for groups we don't know about.
478 */
479 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
480 {
481 if (nid_to_group[i].nid == nid)
482 return nid_to_group[i].group_id;
483 }
484
485 return 0;
486 }
487
488 /*
489 * Set *pgroups to the supported groups list and *pgroupslen to
490 * the number of groups supported.
491 */
tls1_get_supported_groups(SSL *s, const uint16_t **pgroups, size_t *pgroupslen)492 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
493 size_t *pgroupslen)
494 {
495 /* For Suite B mode only include P-256, P-384 */
496 switch (tls1_suiteb(s)) {
497 case SSL_CERT_FLAG_SUITEB_128_LOS:
498 *pgroups = suiteb_curves;
499 *pgroupslen = OSSL_NELEM(suiteb_curves);
500 break;
501
502 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
503 *pgroups = suiteb_curves;
504 *pgroupslen = 1;
505 break;
506
507 case SSL_CERT_FLAG_SUITEB_192_LOS:
508 *pgroups = suiteb_curves + 1;
509 *pgroupslen = 1;
510 break;
511
512 default:
513 if (s->ext.supportedgroups == NULL) {
514 *pgroups = s->ctx->ext.supported_groups_default;
515 *pgroupslen = s->ctx->ext.supported_groups_default_len;
516 } else {
517 *pgroups = s->ext.supportedgroups;
518 *pgroupslen = s->ext.supportedgroups_len;
519 }
520 break;
521 }
522 }
523
tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion, int isec, int *okfortls13)524 int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
525 int isec, int *okfortls13)
526 {
527 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
528 int ret;
529
530 if (okfortls13 != NULL)
531 *okfortls13 = 0;
532
533 if (ginfo == NULL)
534 return 0;
535
536 if (SSL_IS_DTLS(s)) {
537 if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
538 return 0;
539 if (ginfo->maxdtls == 0)
540 ret = 1;
541 else
542 ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
543 if (ginfo->mindtls > 0)
544 ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
545 } else {
546 if (ginfo->mintls < 0 || ginfo->maxtls < 0)
547 return 0;
548 if (ginfo->maxtls == 0)
549 ret = 1;
550 else
551 ret = (minversion <= ginfo->maxtls);
552 if (ginfo->mintls > 0)
553 ret &= (maxversion >= ginfo->mintls);
554 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
555 *okfortls13 = (ginfo->maxtls == 0)
556 || (ginfo->maxtls >= TLS1_3_VERSION);
557 }
558 ret &= !isec
559 || strcmp(ginfo->algorithm, "EC") == 0
560 || strcmp(ginfo->algorithm, "X25519") == 0
561 || strcmp(ginfo->algorithm, "X448") == 0;
562
563 return ret;
564 }
565
566 /* See if group is allowed by security callback */
tls_group_allowed(SSL *s, uint16_t group, int op)567 int tls_group_allowed(SSL *s, uint16_t group, int op)
568 {
569 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
570 unsigned char gtmp[2];
571
572 if (ginfo == NULL)
573 return 0;
574
575 gtmp[0] = group >> 8;
576 gtmp[1] = group & 0xff;
577 return ssl_security(s, op, ginfo->secbits,
578 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
579 }
580
581 /* Return 1 if "id" is in "list" */
tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)582 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
583 {
584 size_t i;
585 for (i = 0; i < listlen; i++)
586 if (list[i] == id)
587 return 1;
588 return 0;
589 }
590
591 /*-
592 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
593 * if there is no match.
594 * For nmatch == -1, return number of matches
595 * For nmatch == -2, return the id of the group to use for
596 * a tmp key, or 0 if there is no match.
597 */
tls1_shared_group(SSL *s, int nmatch)598 uint16_t tls1_shared_group(SSL *s, int nmatch)
599 {
600 const uint16_t *pref, *supp;
601 size_t num_pref, num_supp, i;
602 int k;
603
604 /* Can't do anything on client side */
605 if (s->server == 0)
606 return 0;
607 if (nmatch == -2) {
608 if (tls1_suiteb(s)) {
609 /*
610 * For Suite B ciphersuite determines curve: we already know
611 * these are acceptable due to previous checks.
612 */
613 unsigned long cid = s->s3.tmp.new_cipher->id;
614
615 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
616 return TLSEXT_curve_P_256;
617 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
618 return TLSEXT_curve_P_384;
619 /* Should never happen */
620 return 0;
621 }
622 /* If not Suite B just return first preference shared curve */
623 nmatch = 0;
624 }
625 /*
626 * If server preference set, our groups are the preference order
627 * otherwise peer decides.
628 */
629 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
630 tls1_get_supported_groups(s, &pref, &num_pref);
631 tls1_get_peer_groups(s, &supp, &num_supp);
632 } else {
633 tls1_get_peer_groups(s, &pref, &num_pref);
634 tls1_get_supported_groups(s, &supp, &num_supp);
635 }
636
637 for (k = 0, i = 0; i < num_pref; i++) {
638 uint16_t id = pref[i];
639
640 if (!tls1_in_list(id, supp, num_supp)
641 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
642 continue;
643 if (nmatch == k)
644 return id;
645 k++;
646 }
647 if (nmatch == -1)
648 return k;
649 /* Out of range (nmatch > k). */
650 return 0;
651 }
652
tls1_set_groups(uint16_t **pext, size_t *pextlen, int *groups, size_t ngroups)653 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
654 int *groups, size_t ngroups)
655 {
656 uint16_t *glist;
657 size_t i;
658 /*
659 * Bitmap of groups included to detect duplicates: two variables are added
660 * to detect duplicates as some values are more than 32.
661 */
662 unsigned long *dup_list = NULL;
663 unsigned long dup_list_egrp = 0;
664 unsigned long dup_list_dhgrp = 0;
665
666 if (ngroups == 0) {
667 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
668 return 0;
669 }
670 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
671 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
672 return 0;
673 }
674 for (i = 0; i < ngroups; i++) {
675 unsigned long idmask;
676 uint16_t id;
677 id = tls1_nid2group_id(groups[i]);
678 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
679 goto err;
680 idmask = 1L << (id & 0x00FF);
681 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
682 if (!id || ((*dup_list) & idmask))
683 goto err;
684 *dup_list |= idmask;
685 glist[i] = id;
686 }
687 OPENSSL_free(*pext);
688 *pext = glist;
689 *pextlen = ngroups;
690 return 1;
691 err:
692 OPENSSL_free(glist);
693 return 0;
694 }
695
696 # define GROUPLIST_INCREMENT 40
697 # define GROUP_NAME_BUFFER_LENGTH 64
698 typedef struct {
699 SSL_CTX *ctx;
700 size_t gidcnt;
701 size_t gidmax;
702 uint16_t *gid_arr;
703 } gid_cb_st;
704
gid_cb(const char *elem, int len, void *arg)705 static int gid_cb(const char *elem, int len, void *arg)
706 {
707 gid_cb_st *garg = arg;
708 size_t i;
709 uint16_t gid = 0;
710 char etmp[GROUP_NAME_BUFFER_LENGTH];
711
712 if (elem == NULL)
713 return 0;
714 if (garg->gidcnt == garg->gidmax) {
715 uint16_t *tmp =
716 OPENSSL_realloc(garg->gid_arr,
717 (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
718 if (tmp == NULL)
719 return 0;
720 garg->gidmax += GROUPLIST_INCREMENT;
721 garg->gid_arr = tmp;
722 }
723 if (len > (int)(sizeof(etmp) - 1))
724 return 0;
725 memcpy(etmp, elem, len);
726 etmp[len] = 0;
727
728 gid = tls1_group_name2id(garg->ctx, etmp);
729 if (gid == 0) {
730 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
731 "group '%s' cannot be set", etmp);
732 return 0;
733 }
734 for (i = 0; i < garg->gidcnt; i++)
735 if (garg->gid_arr[i] == gid)
736 return 0;
737 garg->gid_arr[garg->gidcnt++] = gid;
738 return 1;
739 }
740
741 /* Set groups based on a colon separated list */
tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen, const char *str)742 int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
743 const char *str)
744 {
745 gid_cb_st gcb;
746 uint16_t *tmparr;
747 int ret = 0;
748
749 gcb.gidcnt = 0;
750 gcb.gidmax = GROUPLIST_INCREMENT;
751 gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
752 if (gcb.gid_arr == NULL)
753 return 0;
754 gcb.ctx = ctx;
755 if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
756 goto end;
757 if (pext == NULL) {
758 ret = 1;
759 goto end;
760 }
761
762 /*
763 * gid_cb ensurse there are no duplicates so we can just go ahead and set
764 * the result
765 */
766 tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
767 if (tmparr == NULL)
768 goto end;
769 OPENSSL_free(*pext);
770 *pext = tmparr;
771 *pextlen = gcb.gidcnt;
772 ret = 1;
773 end:
774 OPENSSL_free(gcb.gid_arr);
775 return ret;
776 }
777
778 /* Check a group id matches preferences */
tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)779 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
780 {
781 const uint16_t *groups;
782 size_t groups_len;
783
784 if (group_id == 0)
785 return 0;
786
787 /* Check for Suite B compliance */
788 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
789 unsigned long cid = s->s3.tmp.new_cipher->id;
790
791 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
792 if (group_id != TLSEXT_curve_P_256)
793 return 0;
794 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
795 if (group_id != TLSEXT_curve_P_384)
796 return 0;
797 } else {
798 /* Should never happen */
799 return 0;
800 }
801 }
802
803 if (check_own_groups) {
804 /* Check group is one of our preferences */
805 tls1_get_supported_groups(s, &groups, &groups_len);
806 if (!tls1_in_list(group_id, groups, groups_len))
807 return 0;
808 }
809
810 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
811 return 0;
812
813 /* For clients, nothing more to check */
814 if (!s->server)
815 return 1;
816
817 /* Check group is one of peers preferences */
818 tls1_get_peer_groups(s, &groups, &groups_len);
819
820 /*
821 * RFC 4492 does not require the supported elliptic curves extension
822 * so if it is not sent we can just choose any curve.
823 * It is invalid to send an empty list in the supported groups
824 * extension, so groups_len == 0 always means no extension.
825 */
826 if (groups_len == 0)
827 return 1;
828 return tls1_in_list(group_id, groups, groups_len);
829 }
830
tls1_get_formatlist(SSL *s, const unsigned char **pformats, size_t *num_formats)831 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
832 size_t *num_formats)
833 {
834 /*
835 * If we have a custom point format list use it otherwise use default
836 */
837 if (s->ext.ecpointformats) {
838 *pformats = s->ext.ecpointformats;
839 *num_formats = s->ext.ecpointformats_len;
840 } else {
841 *pformats = ecformats_default;
842 /* For Suite B we don't support char2 fields */
843 if (tls1_suiteb(s))
844 *num_formats = sizeof(ecformats_default) - 1;
845 else
846 *num_formats = sizeof(ecformats_default);
847 }
848 }
849
850 /* Check a key is compatible with compression extension */
tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)851 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
852 {
853 unsigned char comp_id;
854 size_t i;
855 int point_conv;
856
857 /* If not an EC key nothing to check */
858 if (!EVP_PKEY_is_a(pkey, "EC"))
859 return 1;
860
861
862 /* Get required compression id */
863 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
864 if (point_conv == 0)
865 return 0;
866 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
867 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
868 } else if (SSL_IS_TLS13(s)) {
869 /*
870 * ec_point_formats extension is not used in TLSv1.3 so we ignore
871 * this check.
872 */
873 return 1;
874 } else {
875 int field_type = EVP_PKEY_get_field_type(pkey);
876
877 if (field_type == NID_X9_62_prime_field)
878 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
879 else if (field_type == NID_X9_62_characteristic_two_field)
880 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
881 else
882 return 0;
883 }
884 /*
885 * If point formats extension present check it, otherwise everything is
886 * supported (see RFC4492).
887 */
888 if (s->ext.peer_ecpointformats == NULL)
889 return 1;
890
891 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
892 if (s->ext.peer_ecpointformats[i] == comp_id)
893 return 1;
894 }
895 return 0;
896 }
897
898 /* Return group id of a key */
tls1_get_group_id(EVP_PKEY *pkey)899 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
900 {
901 int curve_nid = ssl_get_EC_curve_nid(pkey);
902
903 if (curve_nid == NID_undef)
904 return 0;
905 return tls1_nid2group_id(curve_nid);
906 }
907
908 /*
909 * Check cert parameters compatible with extensions: currently just checks EC
910 * certificates have compatible curves and compression.
911 */
tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)912 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
913 {
914 uint16_t group_id;
915 EVP_PKEY *pkey;
916 pkey = X509_get0_pubkey(x);
917 if (pkey == NULL)
918 return 0;
919 /* If not EC nothing to do */
920 if (!EVP_PKEY_is_a(pkey, "EC"))
921 return 1;
922 /* Check compression */
923 if (!tls1_check_pkey_comp(s, pkey))
924 return 0;
925 group_id = tls1_get_group_id(pkey);
926 /*
927 * For a server we allow the certificate to not be in our list of supported
928 * groups.
929 */
930 if (!tls1_check_group_id(s, group_id, !s->server))
931 return 0;
932 /*
933 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
934 * SHA384+P-384.
935 */
936 if (check_ee_md && tls1_suiteb(s)) {
937 int check_md;
938 size_t i;
939
940 /* Check to see we have necessary signing algorithm */
941 if (group_id == TLSEXT_curve_P_256)
942 check_md = NID_ecdsa_with_SHA256;
943 else if (group_id == TLSEXT_curve_P_384)
944 check_md = NID_ecdsa_with_SHA384;
945 else
946 return 0; /* Should never happen */
947 for (i = 0; i < s->shared_sigalgslen; i++) {
948 if (check_md == s->shared_sigalgs[i]->sigandhash)
949 return 1;;
950 }
951 return 0;
952 }
953 return 1;
954 }
955
956 /*
957 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
958 * @s: SSL connection
959 * @cid: Cipher ID we're considering using
960 *
961 * Checks that the kECDHE cipher suite we're considering using
962 * is compatible with the client extensions.
963 *
964 * Returns 0 when the cipher can't be used or 1 when it can.
965 */
tls1_check_ec_tmp_key(SSL *s, unsigned long cid)966 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
967 {
968 /* If not Suite B just need a shared group */
969 if (!tls1_suiteb(s))
970 return tls1_shared_group(s, 0) != 0;
971 /*
972 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
973 * curves permitted.
974 */
975 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
976 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
977 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
978 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
979
980 return 0;
981 }
982
983 /* Default sigalg schemes */
984 static const uint16_t tls12_sigalgs[] = {
985 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
986 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
987 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
988 TLSEXT_SIGALG_ed25519,
989 TLSEXT_SIGALG_ed448,
990
991 TLSEXT_SIGALG_rsa_pss_pss_sha256,
992 TLSEXT_SIGALG_rsa_pss_pss_sha384,
993 TLSEXT_SIGALG_rsa_pss_pss_sha512,
994 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
995 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
996 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
997
998 TLSEXT_SIGALG_rsa_pkcs1_sha256,
999 TLSEXT_SIGALG_rsa_pkcs1_sha384,
1000 TLSEXT_SIGALG_rsa_pkcs1_sha512,
1001
1002 TLSEXT_SIGALG_ecdsa_sha224,
1003 TLSEXT_SIGALG_ecdsa_sha1,
1004
1005 TLSEXT_SIGALG_rsa_pkcs1_sha224,
1006 TLSEXT_SIGALG_rsa_pkcs1_sha1,
1007
1008 TLSEXT_SIGALG_dsa_sha224,
1009 TLSEXT_SIGALG_dsa_sha1,
1010
1011 TLSEXT_SIGALG_dsa_sha256,
1012 TLSEXT_SIGALG_dsa_sha384,
1013 TLSEXT_SIGALG_dsa_sha512,
1014
1015 #ifndef OPENSSL_NO_GOST
1016 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1017 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1018 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1019 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1020 TLSEXT_SIGALG_gostr34102001_gostr3411,
1021 #endif
1022 };
1023
1024
1025 static const uint16_t suiteb_sigalgs[] = {
1026 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1027 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1028 };
1029
1030 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1031 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1032 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1033 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1034 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1035 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1036 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1037 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1038 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1039 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1040 {"ed25519", TLSEXT_SIGALG_ed25519,
1041 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1042 NID_undef, NID_undef, 1},
1043 {"ed448", TLSEXT_SIGALG_ed448,
1044 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1045 NID_undef, NID_undef, 1},
1046 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1047 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1048 NID_ecdsa_with_SHA224, NID_undef, 1},
1049 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1050 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1051 NID_ecdsa_with_SHA1, NID_undef, 1},
1052 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1053 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1054 NID_undef, NID_undef, 1},
1055 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1056 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1057 NID_undef, NID_undef, 1},
1058 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1059 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1060 NID_undef, NID_undef, 1},
1061 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1062 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1063 NID_undef, NID_undef, 1},
1064 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1065 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1066 NID_undef, NID_undef, 1},
1067 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1068 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1069 NID_undef, NID_undef, 1},
1070 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1071 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1072 NID_sha256WithRSAEncryption, NID_undef, 1},
1073 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1074 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1075 NID_sha384WithRSAEncryption, NID_undef, 1},
1076 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1077 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1078 NID_sha512WithRSAEncryption, NID_undef, 1},
1079 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1080 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1081 NID_sha224WithRSAEncryption, NID_undef, 1},
1082 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1083 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1084 NID_sha1WithRSAEncryption, NID_undef, 1},
1085 {NULL, TLSEXT_SIGALG_dsa_sha256,
1086 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1087 NID_dsa_with_SHA256, NID_undef, 1},
1088 {NULL, TLSEXT_SIGALG_dsa_sha384,
1089 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1090 NID_undef, NID_undef, 1},
1091 {NULL, TLSEXT_SIGALG_dsa_sha512,
1092 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1093 NID_undef, NID_undef, 1},
1094 {NULL, TLSEXT_SIGALG_dsa_sha224,
1095 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1096 NID_undef, NID_undef, 1},
1097 {NULL, TLSEXT_SIGALG_dsa_sha1,
1098 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1099 NID_dsaWithSHA1, NID_undef, 1},
1100 #ifndef OPENSSL_NO_GOST
1101 {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1102 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1103 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1104 NID_undef, NID_undef, 1},
1105 {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1106 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1107 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1108 NID_undef, NID_undef, 1},
1109 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1110 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1111 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1112 NID_undef, NID_undef, 1},
1113 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1114 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1115 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1116 NID_undef, NID_undef, 1},
1117 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1118 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1119 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1120 NID_undef, NID_undef, 1}
1121 #endif
1122 };
1123 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1124 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1125 "rsa_pkcs1_md5_sha1", 0,
1126 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1127 EVP_PKEY_RSA, SSL_PKEY_RSA,
1128 NID_undef, NID_undef, 1
1129 };
1130
1131 /*
1132 * Default signature algorithm values used if signature algorithms not present.
1133 * From RFC5246. Note: order must match certificate index order.
1134 */
1135 static const uint16_t tls_default_sigalg[] = {
1136 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1137 0, /* SSL_PKEY_RSA_PSS_SIGN */
1138 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1139 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1140 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1141 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1142 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1143 0, /* SSL_PKEY_ED25519 */
1144 0, /* SSL_PKEY_ED448 */
1145 };
1146
ssl_setup_sig_algs(SSL_CTX *ctx)1147 int ssl_setup_sig_algs(SSL_CTX *ctx)
1148 {
1149 size_t i;
1150 const SIGALG_LOOKUP *lu;
1151 SIGALG_LOOKUP *cache
1152 = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1153 EVP_PKEY *tmpkey = EVP_PKEY_new();
1154 int ret = 0;
1155
1156 if (cache == NULL || tmpkey == NULL)
1157 goto err;
1158
1159 ERR_set_mark();
1160 for (i = 0, lu = sigalg_lookup_tbl;
1161 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1162 EVP_PKEY_CTX *pctx;
1163
1164 cache[i] = *lu;
1165
1166 /*
1167 * Check hash is available.
1168 * This test is not perfect. A provider could have support
1169 * for a signature scheme, but not a particular hash. However the hash
1170 * could be available from some other loaded provider. In that case it
1171 * could be that the signature is available, and the hash is available
1172 * independently - but not as a combination. We ignore this for now.
1173 */
1174 if (lu->hash != NID_undef
1175 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1176 cache[i].enabled = 0;
1177 continue;
1178 }
1179
1180 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1181 cache[i].enabled = 0;
1182 continue;
1183 }
1184 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1185 /* If unable to create pctx we assume the sig algorithm is unavailable */
1186 if (pctx == NULL)
1187 cache[i].enabled = 0;
1188 EVP_PKEY_CTX_free(pctx);
1189 }
1190 ERR_pop_to_mark();
1191 ctx->sigalg_lookup_cache = cache;
1192 cache = NULL;
1193
1194 ret = 1;
1195 err:
1196 OPENSSL_free(cache);
1197 EVP_PKEY_free(tmpkey);
1198 return ret;
1199 }
1200
1201 /* Lookup TLS signature algorithm */
tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)1202 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1203 {
1204 size_t i;
1205 const SIGALG_LOOKUP *lu;
1206
1207 for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1208 /* cache should have the same number of elements as sigalg_lookup_tbl */
1209 i < OSSL_NELEM(sigalg_lookup_tbl);
1210 lu++, i++) {
1211 if (lu->sigalg == sigalg) {
1212 if (!lu->enabled)
1213 return NULL;
1214 return lu;
1215 }
1216 }
1217 return NULL;
1218 }
1219 /* Lookup hash: return 0 if invalid or not enabled */
tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)1220 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1221 {
1222 const EVP_MD *md;
1223 if (lu == NULL)
1224 return 0;
1225 /* lu->hash == NID_undef means no associated digest */
1226 if (lu->hash == NID_undef) {
1227 md = NULL;
1228 } else {
1229 md = ssl_md(ctx, lu->hash_idx);
1230 if (md == NULL)
1231 return 0;
1232 }
1233 if (pmd)
1234 *pmd = md;
1235 return 1;
1236 }
1237
1238 /*
1239 * Check if key is large enough to generate RSA-PSS signature.
1240 *
1241 * The key must greater than or equal to 2 * hash length + 2.
1242 * SHA512 has a hash length of 64 bytes, which is incompatible
1243 * with a 128 byte (1024 bit) key.
1244 */
1245 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey, const SIGALG_LOOKUP *lu)1246 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1247 const SIGALG_LOOKUP *lu)
1248 {
1249 const EVP_MD *md;
1250
1251 if (pkey == NULL)
1252 return 0;
1253 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1254 return 0;
1255 if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1256 return 0;
1257 return 1;
1258 }
1259
1260 /*
1261 * Returns a signature algorithm when the peer did not send a list of supported
1262 * signature algorithms. The signature algorithm is fixed for the certificate
1263 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1264 * certificate type from |s| will be used.
1265 * Returns the signature algorithm to use, or NULL on error.
1266 */
tls1_get_legacy_sigalg(const SSL *s, int idx)1267 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1268 {
1269 if (idx == -1) {
1270 if (s->server) {
1271 size_t i;
1272
1273 /* Work out index corresponding to ciphersuite */
1274 for (i = 0; i < SSL_PKEY_NUM; i++) {
1275 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1276
1277 if (clu == NULL)
1278 continue;
1279 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1280 idx = i;
1281 break;
1282 }
1283 }
1284
1285 /*
1286 * Some GOST ciphersuites allow more than one signature algorithms
1287 * */
1288 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1289 int real_idx;
1290
1291 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1292 real_idx--) {
1293 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1294 idx = real_idx;
1295 break;
1296 }
1297 }
1298 }
1299 /*
1300 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1301 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1302 */
1303 else if (idx == SSL_PKEY_GOST12_256) {
1304 int real_idx;
1305
1306 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1307 real_idx--) {
1308 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1309 idx = real_idx;
1310 break;
1311 }
1312 }
1313 }
1314 } else {
1315 idx = s->cert->key - s->cert->pkeys;
1316 }
1317 }
1318 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1319 return NULL;
1320 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1321 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1322
1323 if (lu == NULL)
1324 return NULL;
1325 if (!tls1_lookup_md(s->ctx, lu, NULL))
1326 return NULL;
1327 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1328 return NULL;
1329 return lu;
1330 }
1331 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1332 return NULL;
1333 return &legacy_rsa_sigalg;
1334 }
1335 /* Set peer sigalg based key type */
tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)1336 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1337 {
1338 size_t idx;
1339 const SIGALG_LOOKUP *lu;
1340
1341 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1342 return 0;
1343 lu = tls1_get_legacy_sigalg(s, idx);
1344 if (lu == NULL)
1345 return 0;
1346 s->s3.tmp.peer_sigalg = lu;
1347 return 1;
1348 }
1349
tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)1350 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1351 {
1352 /*
1353 * If Suite B mode use Suite B sigalgs only, ignore any other
1354 * preferences.
1355 */
1356 switch (tls1_suiteb(s)) {
1357 case SSL_CERT_FLAG_SUITEB_128_LOS:
1358 *psigs = suiteb_sigalgs;
1359 return OSSL_NELEM(suiteb_sigalgs);
1360
1361 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1362 *psigs = suiteb_sigalgs;
1363 return 1;
1364
1365 case SSL_CERT_FLAG_SUITEB_192_LOS:
1366 *psigs = suiteb_sigalgs + 1;
1367 return 1;
1368 }
1369 /*
1370 * We use client_sigalgs (if not NULL) if we're a server
1371 * and sending a certificate request or if we're a client and
1372 * determining which shared algorithm to use.
1373 */
1374 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1375 *psigs = s->cert->client_sigalgs;
1376 return s->cert->client_sigalgslen;
1377 } else if (s->cert->conf_sigalgs) {
1378 *psigs = s->cert->conf_sigalgs;
1379 return s->cert->conf_sigalgslen;
1380 } else {
1381 *psigs = tls12_sigalgs;
1382 return OSSL_NELEM(tls12_sigalgs);
1383 }
1384 }
1385
1386 /*
1387 * Called by servers only. Checks that we have a sig alg that supports the
1388 * specified EC curve.
1389 */
tls_check_sigalg_curve(const SSL *s, int curve)1390 int tls_check_sigalg_curve(const SSL *s, int curve)
1391 {
1392 const uint16_t *sigs;
1393 size_t siglen, i;
1394
1395 if (s->cert->conf_sigalgs) {
1396 sigs = s->cert->conf_sigalgs;
1397 siglen = s->cert->conf_sigalgslen;
1398 } else {
1399 sigs = tls12_sigalgs;
1400 siglen = OSSL_NELEM(tls12_sigalgs);
1401 }
1402
1403 for (i = 0; i < siglen; i++) {
1404 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1405
1406 if (lu == NULL)
1407 continue;
1408 if (lu->sig == EVP_PKEY_EC
1409 && lu->curve != NID_undef
1410 && curve == lu->curve)
1411 return 1;
1412 }
1413
1414 return 0;
1415 }
1416
1417 /*
1418 * Return the number of security bits for the signature algorithm, or 0 on
1419 * error.
1420 */
sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)1421 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1422 {
1423 const EVP_MD *md = NULL;
1424 int secbits = 0;
1425
1426 if (!tls1_lookup_md(ctx, lu, &md))
1427 return 0;
1428 if (md != NULL)
1429 {
1430 int md_type = EVP_MD_get_type(md);
1431
1432 /* Security bits: half digest bits */
1433 secbits = EVP_MD_get_size(md) * 4;
1434 /*
1435 * SHA1 and MD5 are known to be broken. Reduce security bits so that
1436 * they're no longer accepted at security level 1. The real values don't
1437 * really matter as long as they're lower than 80, which is our
1438 * security level 1.
1439 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1440 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1441 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1442 * puts a chosen-prefix attack for MD5 at 2^39.
1443 */
1444 if (md_type == NID_sha1)
1445 secbits = 64;
1446 else if (md_type == NID_md5_sha1)
1447 secbits = 67;
1448 else if (md_type == NID_md5)
1449 secbits = 39;
1450 } else {
1451 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1452 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1453 secbits = 128;
1454 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1455 secbits = 224;
1456 }
1457 return secbits;
1458 }
1459
1460 /*
1461 * Check signature algorithm is consistent with sent supported signature
1462 * algorithms and if so set relevant digest and signature scheme in
1463 * s.
1464 */
tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)1465 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1466 {
1467 const uint16_t *sent_sigs;
1468 const EVP_MD *md = NULL;
1469 char sigalgstr[2];
1470 size_t sent_sigslen, i, cidx;
1471 int pkeyid = -1;
1472 const SIGALG_LOOKUP *lu;
1473 int secbits = 0;
1474
1475 pkeyid = EVP_PKEY_get_id(pkey);
1476 /* Should never happen */
1477 if (pkeyid == -1)
1478 return -1;
1479 if (SSL_IS_TLS13(s)) {
1480 /* Disallow DSA for TLS 1.3 */
1481 if (pkeyid == EVP_PKEY_DSA) {
1482 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1483 return 0;
1484 }
1485 /* Only allow PSS for TLS 1.3 */
1486 if (pkeyid == EVP_PKEY_RSA)
1487 pkeyid = EVP_PKEY_RSA_PSS;
1488 }
1489 lu = tls1_lookup_sigalg(s, sig);
1490 /*
1491 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1492 * is consistent with signature: RSA keys can be used for RSA-PSS
1493 */
1494 if (lu == NULL
1495 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1496 || (pkeyid != lu->sig
1497 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1498 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1499 return 0;
1500 }
1501 /* Check the sigalg is consistent with the key OID */
1502 if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
1503 || lu->sig_idx != (int)cidx) {
1504 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1505 return 0;
1506 }
1507
1508 if (pkeyid == EVP_PKEY_EC) {
1509
1510 /* Check point compression is permitted */
1511 if (!tls1_check_pkey_comp(s, pkey)) {
1512 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1513 SSL_R_ILLEGAL_POINT_COMPRESSION);
1514 return 0;
1515 }
1516
1517 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1518 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1519 int curve = ssl_get_EC_curve_nid(pkey);
1520
1521 if (lu->curve != NID_undef && curve != lu->curve) {
1522 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1523 return 0;
1524 }
1525 }
1526 if (!SSL_IS_TLS13(s)) {
1527 /* Check curve matches extensions */
1528 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1529 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1530 return 0;
1531 }
1532 if (tls1_suiteb(s)) {
1533 /* Check sigalg matches a permissible Suite B value */
1534 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1535 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1536 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1537 SSL_R_WRONG_SIGNATURE_TYPE);
1538 return 0;
1539 }
1540 }
1541 }
1542 } else if (tls1_suiteb(s)) {
1543 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1544 return 0;
1545 }
1546
1547 /* Check signature matches a type we sent */
1548 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1549 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1550 if (sig == *sent_sigs)
1551 break;
1552 }
1553 /* Allow fallback to SHA1 if not strict mode */
1554 if (i == sent_sigslen && (lu->hash != NID_sha1
1555 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1556 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1557 return 0;
1558 }
1559 if (!tls1_lookup_md(s->ctx, lu, &md)) {
1560 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1561 return 0;
1562 }
1563 /*
1564 * Make sure security callback allows algorithm. For historical
1565 * reasons we have to pass the sigalg as a two byte char array.
1566 */
1567 sigalgstr[0] = (sig >> 8) & 0xff;
1568 sigalgstr[1] = sig & 0xff;
1569 secbits = sigalg_security_bits(s->ctx, lu);
1570 if (secbits == 0 ||
1571 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1572 md != NULL ? EVP_MD_get_type(md) : NID_undef,
1573 (void *)sigalgstr)) {
1574 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1575 return 0;
1576 }
1577 /* Store the sigalg the peer uses */
1578 s->s3.tmp.peer_sigalg = lu;
1579 return 1;
1580 }
1581
SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)1582 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1583 {
1584 if (s->s3.tmp.peer_sigalg == NULL)
1585 return 0;
1586 *pnid = s->s3.tmp.peer_sigalg->sig;
1587 return 1;
1588 }
1589
SSL_get_signature_type_nid(const SSL *s, int *pnid)1590 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1591 {
1592 if (s->s3.tmp.sigalg == NULL)
1593 return 0;
1594 *pnid = s->s3.tmp.sigalg->sig;
1595 return 1;
1596 }
1597
1598 /*
1599 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1600 * supported, doesn't appear in supported signature algorithms, isn't supported
1601 * by the enabled protocol versions or by the security level.
1602 *
1603 * This function should only be used for checking which ciphers are supported
1604 * by the client.
1605 *
1606 * Call ssl_cipher_disabled() to check that it's enabled or not.
1607 */
ssl_set_client_disabled(SSL *s)1608 int ssl_set_client_disabled(SSL *s)
1609 {
1610 s->s3.tmp.mask_a = 0;
1611 s->s3.tmp.mask_k = 0;
1612 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1613 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1614 &s->s3.tmp.max_ver, NULL) != 0)
1615 return 0;
1616 #ifndef OPENSSL_NO_PSK
1617 /* with PSK there must be client callback set */
1618 if (!s->psk_client_callback) {
1619 s->s3.tmp.mask_a |= SSL_aPSK;
1620 s->s3.tmp.mask_k |= SSL_PSK;
1621 }
1622 #endif /* OPENSSL_NO_PSK */
1623 #ifndef OPENSSL_NO_SRP
1624 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1625 s->s3.tmp.mask_a |= SSL_aSRP;
1626 s->s3.tmp.mask_k |= SSL_kSRP;
1627 }
1628 #endif
1629 return 1;
1630 }
1631
1632 /*
1633 * ssl_cipher_disabled - check that a cipher is disabled or not
1634 * @s: SSL connection that you want to use the cipher on
1635 * @c: cipher to check
1636 * @op: Security check that you want to do
1637 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1638 *
1639 * Returns 1 when it's disabled, 0 when enabled.
1640 */
ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)1641 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1642 {
1643 if (c->algorithm_mkey & s->s3.tmp.mask_k
1644 || c->algorithm_auth & s->s3.tmp.mask_a)
1645 return 1;
1646 if (s->s3.tmp.max_ver == 0)
1647 return 1;
1648 if (!SSL_IS_DTLS(s)) {
1649 int min_tls = c->min_tls;
1650
1651 /*
1652 * For historical reasons we will allow ECHDE to be selected by a server
1653 * in SSLv3 if we are a client
1654 */
1655 if (min_tls == TLS1_VERSION && ecdhe
1656 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1657 min_tls = SSL3_VERSION;
1658
1659 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1660 return 1;
1661 }
1662 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1663 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1664 return 1;
1665
1666 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1667 }
1668
tls_use_ticket(SSL *s)1669 int tls_use_ticket(SSL *s)
1670 {
1671 if ((s->options & SSL_OP_NO_TICKET))
1672 return 0;
1673 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1674 }
1675
tls1_set_server_sigalgs(SSL *s)1676 int tls1_set_server_sigalgs(SSL *s)
1677 {
1678 size_t i;
1679
1680 /* Clear any shared signature algorithms */
1681 OPENSSL_free(s->shared_sigalgs);
1682 s->shared_sigalgs = NULL;
1683 s->shared_sigalgslen = 0;
1684 /* Clear certificate validity flags */
1685 for (i = 0; i < SSL_PKEY_NUM; i++)
1686 s->s3.tmp.valid_flags[i] = 0;
1687 /*
1688 * If peer sent no signature algorithms check to see if we support
1689 * the default algorithm for each certificate type
1690 */
1691 if (s->s3.tmp.peer_cert_sigalgs == NULL
1692 && s->s3.tmp.peer_sigalgs == NULL) {
1693 const uint16_t *sent_sigs;
1694 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1695
1696 for (i = 0; i < SSL_PKEY_NUM; i++) {
1697 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1698 size_t j;
1699
1700 if (lu == NULL)
1701 continue;
1702 /* Check default matches a type we sent */
1703 for (j = 0; j < sent_sigslen; j++) {
1704 if (lu->sigalg == sent_sigs[j]) {
1705 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1706 break;
1707 }
1708 }
1709 }
1710 return 1;
1711 }
1712
1713 if (!tls1_process_sigalgs(s)) {
1714 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
1715 return 0;
1716 }
1717 if (s->shared_sigalgs != NULL)
1718 return 1;
1719
1720 /* Fatal error if no shared signature algorithms */
1721 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1722 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1723 return 0;
1724 }
1725
1726 /*-
1727 * Gets the ticket information supplied by the client if any.
1728 *
1729 * hello: The parsed ClientHello data
1730 * ret: (output) on return, if a ticket was decrypted, then this is set to
1731 * point to the resulting session.
1732 */
tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello, SSL_SESSION **ret)1733 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1734 SSL_SESSION **ret)
1735 {
1736 size_t size;
1737 RAW_EXTENSION *ticketext;
1738
1739 *ret = NULL;
1740 s->ext.ticket_expected = 0;
1741
1742 /*
1743 * If tickets disabled or not supported by the protocol version
1744 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1745 * resumption.
1746 */
1747 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1748 return SSL_TICKET_NONE;
1749
1750 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1751 if (!ticketext->present)
1752 return SSL_TICKET_NONE;
1753
1754 size = PACKET_remaining(&ticketext->data);
1755
1756 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1757 hello->session_id, hello->session_id_len, ret);
1758 }
1759
1760 /*-
1761 * tls_decrypt_ticket attempts to decrypt a session ticket.
1762 *
1763 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1764 * expecting a pre-shared key ciphersuite, in which case we have no use for
1765 * session tickets and one will never be decrypted, nor will
1766 * s->ext.ticket_expected be set to 1.
1767 *
1768 * Side effects:
1769 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1770 * a new session ticket to the client because the client indicated support
1771 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1772 * a session ticket or we couldn't use the one it gave us, or if
1773 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1774 * Otherwise, s->ext.ticket_expected is set to 0.
1775 *
1776 * etick: points to the body of the session ticket extension.
1777 * eticklen: the length of the session tickets extension.
1778 * sess_id: points at the session ID.
1779 * sesslen: the length of the session ID.
1780 * psess: (output) on return, if a ticket was decrypted, then this is set to
1781 * point to the resulting session.
1782 */
tls_decrypt_ticket(SSL *s, const unsigned char *etick, size_t eticklen, const unsigned char *sess_id, size_t sesslen, SSL_SESSION **psess)1783 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1784 size_t eticklen, const unsigned char *sess_id,
1785 size_t sesslen, SSL_SESSION **psess)
1786 {
1787 SSL_SESSION *sess = NULL;
1788 unsigned char *sdec;
1789 const unsigned char *p;
1790 int slen, ivlen, renew_ticket = 0, declen;
1791 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1792 size_t mlen;
1793 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1794 SSL_HMAC *hctx = NULL;
1795 EVP_CIPHER_CTX *ctx = NULL;
1796 SSL_CTX *tctx = s->session_ctx;
1797
1798 if (eticklen == 0) {
1799 /*
1800 * The client will accept a ticket but doesn't currently have
1801 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1802 */
1803 ret = SSL_TICKET_EMPTY;
1804 goto end;
1805 }
1806 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1807 /*
1808 * Indicate that the ticket couldn't be decrypted rather than
1809 * generating the session from ticket now, trigger
1810 * abbreviated handshake based on external mechanism to
1811 * calculate the master secret later.
1812 */
1813 ret = SSL_TICKET_NO_DECRYPT;
1814 goto end;
1815 }
1816
1817 /* Need at least keyname + iv */
1818 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1819 ret = SSL_TICKET_NO_DECRYPT;
1820 goto end;
1821 }
1822
1823 /* Initialize session ticket encryption and HMAC contexts */
1824 hctx = ssl_hmac_new(tctx);
1825 if (hctx == NULL) {
1826 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1827 goto end;
1828 }
1829 ctx = EVP_CIPHER_CTX_new();
1830 if (ctx == NULL) {
1831 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1832 goto end;
1833 }
1834 #ifndef OPENSSL_NO_DEPRECATED_3_0
1835 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1836 #else
1837 if (tctx->ext.ticket_key_evp_cb != NULL)
1838 #endif
1839 {
1840 unsigned char *nctick = (unsigned char *)etick;
1841 int rv = 0;
1842
1843 if (tctx->ext.ticket_key_evp_cb != NULL)
1844 rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1845 nctick + TLSEXT_KEYNAME_LENGTH,
1846 ctx,
1847 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1848 0);
1849 #ifndef OPENSSL_NO_DEPRECATED_3_0
1850 else if (tctx->ext.ticket_key_cb != NULL)
1851 /* if 0 is returned, write an empty ticket */
1852 rv = tctx->ext.ticket_key_cb(s, nctick,
1853 nctick + TLSEXT_KEYNAME_LENGTH,
1854 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1855 #endif
1856 if (rv < 0) {
1857 ret = SSL_TICKET_FATAL_ERR_OTHER;
1858 goto end;
1859 }
1860 if (rv == 0) {
1861 ret = SSL_TICKET_NO_DECRYPT;
1862 goto end;
1863 }
1864 if (rv == 2)
1865 renew_ticket = 1;
1866 } else {
1867 EVP_CIPHER *aes256cbc = NULL;
1868
1869 /* Check key name matches */
1870 if (memcmp(etick, tctx->ext.tick_key_name,
1871 TLSEXT_KEYNAME_LENGTH) != 0) {
1872 ret = SSL_TICKET_NO_DECRYPT;
1873 goto end;
1874 }
1875
1876 aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1877 s->ctx->propq);
1878 if (aes256cbc == NULL
1879 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1880 sizeof(tctx->ext.secure->tick_hmac_key),
1881 "SHA256") <= 0
1882 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1883 tctx->ext.secure->tick_aes_key,
1884 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1885 EVP_CIPHER_free(aes256cbc);
1886 ret = SSL_TICKET_FATAL_ERR_OTHER;
1887 goto end;
1888 }
1889 EVP_CIPHER_free(aes256cbc);
1890 if (SSL_IS_TLS13(s))
1891 renew_ticket = 1;
1892 }
1893 /*
1894 * Attempt to process session ticket, first conduct sanity and integrity
1895 * checks on ticket.
1896 */
1897 mlen = ssl_hmac_size(hctx);
1898 if (mlen == 0) {
1899 ret = SSL_TICKET_FATAL_ERR_OTHER;
1900 goto end;
1901 }
1902
1903 ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
1904 if (ivlen < 0) {
1905 ret = SSL_TICKET_FATAL_ERR_OTHER;
1906 goto end;
1907 }
1908
1909 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1910 if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
1911 ret = SSL_TICKET_NO_DECRYPT;
1912 goto end;
1913 }
1914 eticklen -= mlen;
1915 /* Check HMAC of encrypted ticket */
1916 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1917 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1918 ret = SSL_TICKET_FATAL_ERR_OTHER;
1919 goto end;
1920 }
1921
1922 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1923 ret = SSL_TICKET_NO_DECRYPT;
1924 goto end;
1925 }
1926 /* Attempt to decrypt session data */
1927 /* Move p after IV to start of encrypted ticket, update length */
1928 p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
1929 eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
1930 sdec = OPENSSL_malloc(eticklen);
1931 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1932 (int)eticklen) <= 0) {
1933 OPENSSL_free(sdec);
1934 ret = SSL_TICKET_FATAL_ERR_OTHER;
1935 goto end;
1936 }
1937 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1938 OPENSSL_free(sdec);
1939 ret = SSL_TICKET_NO_DECRYPT;
1940 goto end;
1941 }
1942 slen += declen;
1943 p = sdec;
1944
1945 sess = d2i_SSL_SESSION(NULL, &p, slen);
1946 slen -= p - sdec;
1947 OPENSSL_free(sdec);
1948 if (sess) {
1949 /* Some additional consistency checks */
1950 if (slen != 0) {
1951 SSL_SESSION_free(sess);
1952 sess = NULL;
1953 ret = SSL_TICKET_NO_DECRYPT;
1954 goto end;
1955 }
1956 /*
1957 * The session ID, if non-empty, is used by some clients to detect
1958 * that the ticket has been accepted. So we copy it to the session
1959 * structure. If it is empty set length to zero as required by
1960 * standard.
1961 */
1962 if (sesslen) {
1963 memcpy(sess->session_id, sess_id, sesslen);
1964 sess->session_id_length = sesslen;
1965 }
1966 if (renew_ticket)
1967 ret = SSL_TICKET_SUCCESS_RENEW;
1968 else
1969 ret = SSL_TICKET_SUCCESS;
1970 goto end;
1971 }
1972 ERR_clear_error();
1973 /*
1974 * For session parse failure, indicate that we need to send a new ticket.
1975 */
1976 ret = SSL_TICKET_NO_DECRYPT;
1977
1978 end:
1979 EVP_CIPHER_CTX_free(ctx);
1980 ssl_hmac_free(hctx);
1981
1982 /*
1983 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1984 * detected above. The callback is responsible for checking |ret| before it
1985 * performs any action
1986 */
1987 if (s->session_ctx->decrypt_ticket_cb != NULL
1988 && (ret == SSL_TICKET_EMPTY
1989 || ret == SSL_TICKET_NO_DECRYPT
1990 || ret == SSL_TICKET_SUCCESS
1991 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1992 size_t keyname_len = eticklen;
1993 int retcb;
1994
1995 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1996 keyname_len = TLSEXT_KEYNAME_LENGTH;
1997 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1998 ret,
1999 s->session_ctx->ticket_cb_data);
2000 switch (retcb) {
2001 case SSL_TICKET_RETURN_ABORT:
2002 ret = SSL_TICKET_FATAL_ERR_OTHER;
2003 break;
2004
2005 case SSL_TICKET_RETURN_IGNORE:
2006 ret = SSL_TICKET_NONE;
2007 SSL_SESSION_free(sess);
2008 sess = NULL;
2009 break;
2010
2011 case SSL_TICKET_RETURN_IGNORE_RENEW:
2012 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2013 ret = SSL_TICKET_NO_DECRYPT;
2014 /* else the value of |ret| will already do the right thing */
2015 SSL_SESSION_free(sess);
2016 sess = NULL;
2017 break;
2018
2019 case SSL_TICKET_RETURN_USE:
2020 case SSL_TICKET_RETURN_USE_RENEW:
2021 if (ret != SSL_TICKET_SUCCESS
2022 && ret != SSL_TICKET_SUCCESS_RENEW)
2023 ret = SSL_TICKET_FATAL_ERR_OTHER;
2024 else if (retcb == SSL_TICKET_RETURN_USE)
2025 ret = SSL_TICKET_SUCCESS;
2026 else
2027 ret = SSL_TICKET_SUCCESS_RENEW;
2028 break;
2029
2030 default:
2031 ret = SSL_TICKET_FATAL_ERR_OTHER;
2032 }
2033 }
2034
2035 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2036 switch (ret) {
2037 case SSL_TICKET_NO_DECRYPT:
2038 case SSL_TICKET_SUCCESS_RENEW:
2039 case SSL_TICKET_EMPTY:
2040 s->ext.ticket_expected = 1;
2041 }
2042 }
2043
2044 *psess = sess;
2045
2046 return ret;
2047 }
2048
2049 /* Check to see if a signature algorithm is allowed */
tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)2050 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2051 {
2052 unsigned char sigalgstr[2];
2053 int secbits;
2054
2055 if (lu == NULL || !lu->enabled)
2056 return 0;
2057 /* DSA is not allowed in TLS 1.3 */
2058 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2059 return 0;
2060 /*
2061 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2062 * spec
2063 */
2064 if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2065 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2066 || lu->hash_idx == SSL_MD_MD5_IDX
2067 || lu->hash_idx == SSL_MD_SHA224_IDX))
2068 return 0;
2069
2070 /* See if public key algorithm allowed */
2071 if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
2072 return 0;
2073
2074 if (lu->sig == NID_id_GostR3410_2012_256
2075 || lu->sig == NID_id_GostR3410_2012_512
2076 || lu->sig == NID_id_GostR3410_2001) {
2077 /* We never allow GOST sig algs on the server with TLSv1.3 */
2078 if (s->server && SSL_IS_TLS13(s))
2079 return 0;
2080 if (!s->server
2081 && s->method->version == TLS_ANY_VERSION
2082 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2083 int i, num;
2084 STACK_OF(SSL_CIPHER) *sk;
2085
2086 /*
2087 * We're a client that could negotiate TLSv1.3. We only allow GOST
2088 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2089 * ciphersuites enabled.
2090 */
2091
2092 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2093 return 0;
2094
2095 sk = SSL_get_ciphers(s);
2096 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2097 for (i = 0; i < num; i++) {
2098 const SSL_CIPHER *c;
2099
2100 c = sk_SSL_CIPHER_value(sk, i);
2101 /* Skip disabled ciphers */
2102 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2103 continue;
2104
2105 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2106 break;
2107 }
2108 if (i == num)
2109 return 0;
2110 }
2111 }
2112
2113 /* Finally see if security callback allows it */
2114 secbits = sigalg_security_bits(s->ctx, lu);
2115 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2116 sigalgstr[1] = lu->sigalg & 0xff;
2117 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2118 }
2119
2120 /*
2121 * Get a mask of disabled public key algorithms based on supported signature
2122 * algorithms. For example if no signature algorithm supports RSA then RSA is
2123 * disabled.
2124 */
2125
ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)2126 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2127 {
2128 const uint16_t *sigalgs;
2129 size_t i, sigalgslen;
2130 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2131 /*
2132 * Go through all signature algorithms seeing if we support any
2133 * in disabled_mask.
2134 */
2135 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2136 for (i = 0; i < sigalgslen; i++, sigalgs++) {
2137 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2138 const SSL_CERT_LOOKUP *clu;
2139
2140 if (lu == NULL)
2141 continue;
2142
2143 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2144 if (clu == NULL)
2145 continue;
2146
2147 /* If algorithm is disabled see if we can enable it */
2148 if ((clu->amask & disabled_mask) != 0
2149 && tls12_sigalg_allowed(s, op, lu))
2150 disabled_mask &= ~clu->amask;
2151 }
2152 *pmask_a |= disabled_mask;
2153 }
2154
tls12_copy_sigalgs(SSL *s, WPACKET *pkt, const uint16_t *psig, size_t psiglen)2155 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2156 const uint16_t *psig, size_t psiglen)
2157 {
2158 size_t i;
2159 int rv = 0;
2160
2161 for (i = 0; i < psiglen; i++, psig++) {
2162 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2163
2164 if (lu == NULL
2165 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2166 continue;
2167 if (!WPACKET_put_bytes_u16(pkt, *psig))
2168 return 0;
2169 /*
2170 * If TLS 1.3 must have at least one valid TLS 1.3 message
2171 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2172 */
2173 if (rv == 0 && (!SSL_IS_TLS13(s)
2174 || (lu->sig != EVP_PKEY_RSA
2175 && lu->hash != NID_sha1
2176 && lu->hash != NID_sha224)))
2177 rv = 1;
2178 }
2179 if (rv == 0)
2180 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2181 return rv;
2182 }
2183
2184 /* Given preference and allowed sigalgs set shared sigalgs */
tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig, const uint16_t *pref, size_t preflen, const uint16_t *allow, size_t allowlen)2185 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2186 const uint16_t *pref, size_t preflen,
2187 const uint16_t *allow, size_t allowlen)
2188 {
2189 const uint16_t *ptmp, *atmp;
2190 size_t i, j, nmatch = 0;
2191 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2192 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2193
2194 /* Skip disabled hashes or signature algorithms */
2195 if (lu == NULL
2196 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2197 continue;
2198 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2199 if (*ptmp == *atmp) {
2200 nmatch++;
2201 if (shsig)
2202 *shsig++ = lu;
2203 break;
2204 }
2205 }
2206 }
2207 return nmatch;
2208 }
2209
2210 /* Set shared signature algorithms for SSL structures */
tls1_set_shared_sigalgs(SSL *s)2211 static int tls1_set_shared_sigalgs(SSL *s)
2212 {
2213 const uint16_t *pref, *allow, *conf;
2214 size_t preflen, allowlen, conflen;
2215 size_t nmatch;
2216 const SIGALG_LOOKUP **salgs = NULL;
2217 CERT *c = s->cert;
2218 unsigned int is_suiteb = tls1_suiteb(s);
2219
2220 OPENSSL_free(s->shared_sigalgs);
2221 s->shared_sigalgs = NULL;
2222 s->shared_sigalgslen = 0;
2223 /* If client use client signature algorithms if not NULL */
2224 if (!s->server && c->client_sigalgs && !is_suiteb) {
2225 conf = c->client_sigalgs;
2226 conflen = c->client_sigalgslen;
2227 } else if (c->conf_sigalgs && !is_suiteb) {
2228 conf = c->conf_sigalgs;
2229 conflen = c->conf_sigalgslen;
2230 } else
2231 conflen = tls12_get_psigalgs(s, 0, &conf);
2232 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2233 pref = conf;
2234 preflen = conflen;
2235 allow = s->s3.tmp.peer_sigalgs;
2236 allowlen = s->s3.tmp.peer_sigalgslen;
2237 } else {
2238 allow = conf;
2239 allowlen = conflen;
2240 pref = s->s3.tmp.peer_sigalgs;
2241 preflen = s->s3.tmp.peer_sigalgslen;
2242 }
2243 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2244 if (nmatch) {
2245 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2246 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2247 return 0;
2248 }
2249 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2250 } else {
2251 salgs = NULL;
2252 }
2253 s->shared_sigalgs = salgs;
2254 s->shared_sigalgslen = nmatch;
2255 return 1;
2256 }
2257
tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)2258 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2259 {
2260 unsigned int stmp;
2261 size_t size, i;
2262 uint16_t *buf;
2263
2264 size = PACKET_remaining(pkt);
2265
2266 /* Invalid data length */
2267 if (size == 0 || (size & 1) != 0)
2268 return 0;
2269
2270 size >>= 1;
2271
2272 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
2273 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2274 return 0;
2275 }
2276 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2277 buf[i] = stmp;
2278
2279 if (i != size) {
2280 OPENSSL_free(buf);
2281 return 0;
2282 }
2283
2284 OPENSSL_free(*pdest);
2285 *pdest = buf;
2286 *pdestlen = size;
2287
2288 return 1;
2289 }
2290
tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)2291 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2292 {
2293 /* Extension ignored for inappropriate versions */
2294 if (!SSL_USE_SIGALGS(s))
2295 return 1;
2296 /* Should never happen */
2297 if (s->cert == NULL)
2298 return 0;
2299
2300 if (cert)
2301 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2302 &s->s3.tmp.peer_cert_sigalgslen);
2303 else
2304 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2305 &s->s3.tmp.peer_sigalgslen);
2306
2307 }
2308
2309 /* Set preferred digest for each key type */
2310
tls1_process_sigalgs(SSL *s)2311 int tls1_process_sigalgs(SSL *s)
2312 {
2313 size_t i;
2314 uint32_t *pvalid = s->s3.tmp.valid_flags;
2315
2316 if (!tls1_set_shared_sigalgs(s))
2317 return 0;
2318
2319 for (i = 0; i < SSL_PKEY_NUM; i++)
2320 pvalid[i] = 0;
2321
2322 for (i = 0; i < s->shared_sigalgslen; i++) {
2323 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2324 int idx = sigptr->sig_idx;
2325
2326 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2327 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2328 continue;
2329 /* If not disabled indicate we can explicitly sign */
2330 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
2331 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2332 }
2333 return 1;
2334 }
2335
SSL_get_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash)2336 int SSL_get_sigalgs(SSL *s, int idx,
2337 int *psign, int *phash, int *psignhash,
2338 unsigned char *rsig, unsigned char *rhash)
2339 {
2340 uint16_t *psig = s->s3.tmp.peer_sigalgs;
2341 size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2342 if (psig == NULL || numsigalgs > INT_MAX)
2343 return 0;
2344 if (idx >= 0) {
2345 const SIGALG_LOOKUP *lu;
2346
2347 if (idx >= (int)numsigalgs)
2348 return 0;
2349 psig += idx;
2350 if (rhash != NULL)
2351 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2352 if (rsig != NULL)
2353 *rsig = (unsigned char)(*psig & 0xff);
2354 lu = tls1_lookup_sigalg(s, *psig);
2355 if (psign != NULL)
2356 *psign = lu != NULL ? lu->sig : NID_undef;
2357 if (phash != NULL)
2358 *phash = lu != NULL ? lu->hash : NID_undef;
2359 if (psignhash != NULL)
2360 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2361 }
2362 return (int)numsigalgs;
2363 }
2364
SSL_get_shared_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash)2365 int SSL_get_shared_sigalgs(SSL *s, int idx,
2366 int *psign, int *phash, int *psignhash,
2367 unsigned char *rsig, unsigned char *rhash)
2368 {
2369 const SIGALG_LOOKUP *shsigalgs;
2370 if (s->shared_sigalgs == NULL
2371 || idx < 0
2372 || idx >= (int)s->shared_sigalgslen
2373 || s->shared_sigalgslen > INT_MAX)
2374 return 0;
2375 shsigalgs = s->shared_sigalgs[idx];
2376 if (phash != NULL)
2377 *phash = shsigalgs->hash;
2378 if (psign != NULL)
2379 *psign = shsigalgs->sig;
2380 if (psignhash != NULL)
2381 *psignhash = shsigalgs->sigandhash;
2382 if (rsig != NULL)
2383 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2384 if (rhash != NULL)
2385 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2386 return (int)s->shared_sigalgslen;
2387 }
2388
2389 /* Maximum possible number of unique entries in sigalgs array */
2390 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2391
2392 typedef struct {
2393 size_t sigalgcnt;
2394 /* TLSEXT_SIGALG_XXX values */
2395 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2396 } sig_cb_st;
2397
get_sigorhash(int *psig, int *phash, const char *str)2398 static void get_sigorhash(int *psig, int *phash, const char *str)
2399 {
2400 if (strcmp(str, "RSA") == 0) {
2401 *psig = EVP_PKEY_RSA;
2402 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2403 *psig = EVP_PKEY_RSA_PSS;
2404 } else if (strcmp(str, "DSA") == 0) {
2405 *psig = EVP_PKEY_DSA;
2406 } else if (strcmp(str, "ECDSA") == 0) {
2407 *psig = EVP_PKEY_EC;
2408 } else {
2409 *phash = OBJ_sn2nid(str);
2410 if (*phash == NID_undef)
2411 *phash = OBJ_ln2nid(str);
2412 }
2413 }
2414 /* Maximum length of a signature algorithm string component */
2415 #define TLS_MAX_SIGSTRING_LEN 40
2416
sig_cb(const char *elem, int len, void *arg)2417 static int sig_cb(const char *elem, int len, void *arg)
2418 {
2419 sig_cb_st *sarg = arg;
2420 size_t i;
2421 const SIGALG_LOOKUP *s;
2422 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2423 int sig_alg = NID_undef, hash_alg = NID_undef;
2424 if (elem == NULL)
2425 return 0;
2426 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2427 return 0;
2428 if (len > (int)(sizeof(etmp) - 1))
2429 return 0;
2430 memcpy(etmp, elem, len);
2431 etmp[len] = 0;
2432 p = strchr(etmp, '+');
2433 /*
2434 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2435 * if there's no '+' in the provided name, look for the new-style combined
2436 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2437 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2438 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2439 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2440 * in the table.
2441 */
2442 if (p == NULL) {
2443 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2444 i++, s++) {
2445 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2446 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2447 break;
2448 }
2449 }
2450 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2451 return 0;
2452 } else {
2453 *p = 0;
2454 p++;
2455 if (*p == 0)
2456 return 0;
2457 get_sigorhash(&sig_alg, &hash_alg, etmp);
2458 get_sigorhash(&sig_alg, &hash_alg, p);
2459 if (sig_alg == NID_undef || hash_alg == NID_undef)
2460 return 0;
2461 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2462 i++, s++) {
2463 if (s->hash == hash_alg && s->sig == sig_alg) {
2464 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2465 break;
2466 }
2467 }
2468 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2469 return 0;
2470 }
2471
2472 /* Reject duplicates */
2473 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2474 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2475 sarg->sigalgcnt--;
2476 return 0;
2477 }
2478 }
2479 return 1;
2480 }
2481
2482 /*
2483 * Set supported signature algorithms based on a colon separated list of the
2484 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2485 */
tls1_set_sigalgs_list(CERT *c, const char *str, int client)2486 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2487 {
2488 sig_cb_st sig;
2489 sig.sigalgcnt = 0;
2490 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2491 return 0;
2492 if (c == NULL)
2493 return 1;
2494 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2495 }
2496
tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen, int client)2497 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2498 int client)
2499 {
2500 uint16_t *sigalgs;
2501
2502 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2503 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2504 return 0;
2505 }
2506 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2507
2508 if (client) {
2509 OPENSSL_free(c->client_sigalgs);
2510 c->client_sigalgs = sigalgs;
2511 c->client_sigalgslen = salglen;
2512 } else {
2513 OPENSSL_free(c->conf_sigalgs);
2514 c->conf_sigalgs = sigalgs;
2515 c->conf_sigalgslen = salglen;
2516 }
2517
2518 return 1;
2519 }
2520
tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)2521 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2522 {
2523 uint16_t *sigalgs, *sptr;
2524 size_t i;
2525
2526 if (salglen & 1)
2527 return 0;
2528 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2529 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2530 return 0;
2531 }
2532 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2533 size_t j;
2534 const SIGALG_LOOKUP *curr;
2535 int md_id = *psig_nids++;
2536 int sig_id = *psig_nids++;
2537
2538 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2539 j++, curr++) {
2540 if (curr->hash == md_id && curr->sig == sig_id) {
2541 *sptr++ = curr->sigalg;
2542 break;
2543 }
2544 }
2545
2546 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2547 goto err;
2548 }
2549
2550 if (client) {
2551 OPENSSL_free(c->client_sigalgs);
2552 c->client_sigalgs = sigalgs;
2553 c->client_sigalgslen = salglen / 2;
2554 } else {
2555 OPENSSL_free(c->conf_sigalgs);
2556 c->conf_sigalgs = sigalgs;
2557 c->conf_sigalgslen = salglen / 2;
2558 }
2559
2560 return 1;
2561
2562 err:
2563 OPENSSL_free(sigalgs);
2564 return 0;
2565 }
2566
tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)2567 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2568 {
2569 int sig_nid, use_pc_sigalgs = 0;
2570 size_t i;
2571 const SIGALG_LOOKUP *sigalg;
2572 size_t sigalgslen;
2573 if (default_nid == -1)
2574 return 1;
2575 sig_nid = X509_get_signature_nid(x);
2576 if (default_nid)
2577 return sig_nid == default_nid ? 1 : 0;
2578
2579 if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2580 /*
2581 * If we're in TLSv1.3 then we only get here if we're checking the
2582 * chain. If the peer has specified peer_cert_sigalgs then we use them
2583 * otherwise we default to normal sigalgs.
2584 */
2585 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2586 use_pc_sigalgs = 1;
2587 } else {
2588 sigalgslen = s->shared_sigalgslen;
2589 }
2590 for (i = 0; i < sigalgslen; i++) {
2591 sigalg = use_pc_sigalgs
2592 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2593 : s->shared_sigalgs[i];
2594 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2595 return 1;
2596 }
2597 return 0;
2598 }
2599
2600 /* Check to see if a certificate issuer name matches list of CA names */
STACK_OFnull2601 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2602 {
2603 const X509_NAME *nm;
2604 int i;
2605 nm = X509_get_issuer_name(x);
2606 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2607 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2608 return 1;
2609 }
2610 return 0;
2611 }
2612
2613 /*
2614 * Check certificate chain is consistent with TLS extensions and is usable by
2615 * server. This servers two purposes: it allows users to check chains before
2616 * passing them to the server and it allows the server to check chains before
2617 * attempting to use them.
2618 */
2619
2620 /* Flags which need to be set for a certificate when strict mode not set */
2621
2622 #define CERT_PKEY_VALID_FLAGS \
2623 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2624 /* Strict mode flags */
2625 #define CERT_PKEY_STRICT_FLAGS \
2626 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2627 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2628
tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, int idx)2629 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2630 int idx)
2631 {
2632 int i;
2633 int rv = 0;
2634 int check_flags = 0, strict_mode;
2635 CERT_PKEY *cpk = NULL;
2636 CERT *c = s->cert;
2637 uint32_t *pvalid;
2638 unsigned int suiteb_flags = tls1_suiteb(s);
2639 /* idx == -1 means checking server chains */
2640 if (idx != -1) {
2641 /* idx == -2 means checking client certificate chains */
2642 if (idx == -2) {
2643 cpk = c->key;
2644 idx = (int)(cpk - c->pkeys);
2645 } else
2646 cpk = c->pkeys + idx;
2647 pvalid = s->s3.tmp.valid_flags + idx;
2648 x = cpk->x509;
2649 pk = cpk->privatekey;
2650 chain = cpk->chain;
2651 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2652 /* If no cert or key, forget it */
2653 if (!x || !pk)
2654 goto end;
2655 } else {
2656 size_t certidx;
2657
2658 if (!x || !pk)
2659 return 0;
2660
2661 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2662 return 0;
2663 idx = certidx;
2664 pvalid = s->s3.tmp.valid_flags + idx;
2665
2666 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2667 check_flags = CERT_PKEY_STRICT_FLAGS;
2668 else
2669 check_flags = CERT_PKEY_VALID_FLAGS;
2670 strict_mode = 1;
2671 }
2672
2673 if (suiteb_flags) {
2674 int ok;
2675 if (check_flags)
2676 check_flags |= CERT_PKEY_SUITEB;
2677 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2678 if (ok == X509_V_OK)
2679 rv |= CERT_PKEY_SUITEB;
2680 else if (!check_flags)
2681 goto end;
2682 }
2683
2684 /*
2685 * Check all signature algorithms are consistent with signature
2686 * algorithms extension if TLS 1.2 or later and strict mode.
2687 */
2688 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2689 int default_nid;
2690 int rsign = 0;
2691 if (s->s3.tmp.peer_cert_sigalgs != NULL
2692 || s->s3.tmp.peer_sigalgs != NULL) {
2693 default_nid = 0;
2694 /* If no sigalgs extension use defaults from RFC5246 */
2695 } else {
2696 switch (idx) {
2697 case SSL_PKEY_RSA:
2698 rsign = EVP_PKEY_RSA;
2699 default_nid = NID_sha1WithRSAEncryption;
2700 break;
2701
2702 case SSL_PKEY_DSA_SIGN:
2703 rsign = EVP_PKEY_DSA;
2704 default_nid = NID_dsaWithSHA1;
2705 break;
2706
2707 case SSL_PKEY_ECC:
2708 rsign = EVP_PKEY_EC;
2709 default_nid = NID_ecdsa_with_SHA1;
2710 break;
2711
2712 case SSL_PKEY_GOST01:
2713 rsign = NID_id_GostR3410_2001;
2714 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2715 break;
2716
2717 case SSL_PKEY_GOST12_256:
2718 rsign = NID_id_GostR3410_2012_256;
2719 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2720 break;
2721
2722 case SSL_PKEY_GOST12_512:
2723 rsign = NID_id_GostR3410_2012_512;
2724 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2725 break;
2726
2727 default:
2728 default_nid = -1;
2729 break;
2730 }
2731 }
2732 /*
2733 * If peer sent no signature algorithms extension and we have set
2734 * preferred signature algorithms check we support sha1.
2735 */
2736 if (default_nid > 0 && c->conf_sigalgs) {
2737 size_t j;
2738 const uint16_t *p = c->conf_sigalgs;
2739 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2740 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2741
2742 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2743 break;
2744 }
2745 if (j == c->conf_sigalgslen) {
2746 if (check_flags)
2747 goto skip_sigs;
2748 else
2749 goto end;
2750 }
2751 }
2752 /* Check signature algorithm of each cert in chain */
2753 if (SSL_IS_TLS13(s)) {
2754 /*
2755 * We only get here if the application has called SSL_check_chain(),
2756 * so check_flags is always set.
2757 */
2758 if (find_sig_alg(s, x, pk) != NULL)
2759 rv |= CERT_PKEY_EE_SIGNATURE;
2760 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2761 if (!check_flags)
2762 goto end;
2763 } else
2764 rv |= CERT_PKEY_EE_SIGNATURE;
2765 rv |= CERT_PKEY_CA_SIGNATURE;
2766 for (i = 0; i < sk_X509_num(chain); i++) {
2767 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2768 if (check_flags) {
2769 rv &= ~CERT_PKEY_CA_SIGNATURE;
2770 break;
2771 } else
2772 goto end;
2773 }
2774 }
2775 }
2776 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2777 else if (check_flags)
2778 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2779 skip_sigs:
2780 /* Check cert parameters are consistent */
2781 if (tls1_check_cert_param(s, x, 1))
2782 rv |= CERT_PKEY_EE_PARAM;
2783 else if (!check_flags)
2784 goto end;
2785 if (!s->server)
2786 rv |= CERT_PKEY_CA_PARAM;
2787 /* In strict mode check rest of chain too */
2788 else if (strict_mode) {
2789 rv |= CERT_PKEY_CA_PARAM;
2790 for (i = 0; i < sk_X509_num(chain); i++) {
2791 X509 *ca = sk_X509_value(chain, i);
2792 if (!tls1_check_cert_param(s, ca, 0)) {
2793 if (check_flags) {
2794 rv &= ~CERT_PKEY_CA_PARAM;
2795 break;
2796 } else
2797 goto end;
2798 }
2799 }
2800 }
2801 if (!s->server && strict_mode) {
2802 STACK_OF(X509_NAME) *ca_dn;
2803 int check_type = 0;
2804
2805 if (EVP_PKEY_is_a(pk, "RSA"))
2806 check_type = TLS_CT_RSA_SIGN;
2807 else if (EVP_PKEY_is_a(pk, "DSA"))
2808 check_type = TLS_CT_DSS_SIGN;
2809 else if (EVP_PKEY_is_a(pk, "EC"))
2810 check_type = TLS_CT_ECDSA_SIGN;
2811
2812 if (check_type) {
2813 const uint8_t *ctypes = s->s3.tmp.ctype;
2814 size_t j;
2815
2816 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2817 if (*ctypes == check_type) {
2818 rv |= CERT_PKEY_CERT_TYPE;
2819 break;
2820 }
2821 }
2822 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2823 goto end;
2824 } else {
2825 rv |= CERT_PKEY_CERT_TYPE;
2826 }
2827
2828 ca_dn = s->s3.tmp.peer_ca_names;
2829
2830 if (ca_dn == NULL
2831 || sk_X509_NAME_num(ca_dn) == 0
2832 || ssl_check_ca_name(ca_dn, x))
2833 rv |= CERT_PKEY_ISSUER_NAME;
2834 else
2835 for (i = 0; i < sk_X509_num(chain); i++) {
2836 X509 *xtmp = sk_X509_value(chain, i);
2837
2838 if (ssl_check_ca_name(ca_dn, xtmp)) {
2839 rv |= CERT_PKEY_ISSUER_NAME;
2840 break;
2841 }
2842 }
2843
2844 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2845 goto end;
2846 } else
2847 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2848
2849 if (!check_flags || (rv & check_flags) == check_flags)
2850 rv |= CERT_PKEY_VALID;
2851
2852 end:
2853
2854 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2855 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2856 else
2857 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2858
2859 /*
2860 * When checking a CERT_PKEY structure all flags are irrelevant if the
2861 * chain is invalid.
2862 */
2863 if (!check_flags) {
2864 if (rv & CERT_PKEY_VALID) {
2865 *pvalid = rv;
2866 } else {
2867 /* Preserve sign and explicit sign flag, clear rest */
2868 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2869 return 0;
2870 }
2871 }
2872 return rv;
2873 }
2874
2875 /* Set validity of certificates in an SSL structure */
tls1_set_cert_validity(SSL *s)2876 void tls1_set_cert_validity(SSL *s)
2877 {
2878 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2879 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2880 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2881 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2882 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2883 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2884 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2885 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2886 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2887 }
2888
2889 /* User level utility function to check a chain is suitable */
SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)2890 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2891 {
2892 return tls1_check_chain(s, x, pk, chain, -1);
2893 }
2894
ssl_get_auto_dh(SSL *s)2895 EVP_PKEY *ssl_get_auto_dh(SSL *s)
2896 {
2897 EVP_PKEY *dhp = NULL;
2898 BIGNUM *p;
2899 int dh_secbits = 80, sec_level_bits;
2900 EVP_PKEY_CTX *pctx = NULL;
2901 OSSL_PARAM_BLD *tmpl = NULL;
2902 OSSL_PARAM *params = NULL;
2903
2904 if (s->cert->dh_tmp_auto != 2) {
2905 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2906 if (s->s3.tmp.new_cipher->strength_bits == 256)
2907 dh_secbits = 128;
2908 else
2909 dh_secbits = 80;
2910 } else {
2911 if (s->s3.tmp.cert == NULL)
2912 return NULL;
2913 dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
2914 }
2915 }
2916
2917 /* Do not pick a prime that is too weak for the current security level */
2918 sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
2919 if (dh_secbits < sec_level_bits)
2920 dh_secbits = sec_level_bits;
2921
2922 if (dh_secbits >= 192)
2923 p = BN_get_rfc3526_prime_8192(NULL);
2924 else if (dh_secbits >= 152)
2925 p = BN_get_rfc3526_prime_4096(NULL);
2926 else if (dh_secbits >= 128)
2927 p = BN_get_rfc3526_prime_3072(NULL);
2928 else if (dh_secbits >= 112)
2929 p = BN_get_rfc3526_prime_2048(NULL);
2930 else
2931 p = BN_get_rfc2409_prime_1024(NULL);
2932 if (p == NULL)
2933 goto err;
2934
2935 pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
2936 if (pctx == NULL
2937 || EVP_PKEY_fromdata_init(pctx) != 1)
2938 goto err;
2939
2940 tmpl = OSSL_PARAM_BLD_new();
2941 if (tmpl == NULL
2942 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
2943 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
2944 goto err;
2945
2946 params = OSSL_PARAM_BLD_to_param(tmpl);
2947 if (params == NULL
2948 || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
2949 goto err;
2950
2951 err:
2952 OSSL_PARAM_free(params);
2953 OSSL_PARAM_BLD_free(tmpl);
2954 EVP_PKEY_CTX_free(pctx);
2955 BN_free(p);
2956 return dhp;
2957 }
2958
ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)2959 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2960 {
2961 int secbits = -1;
2962 EVP_PKEY *pkey = X509_get0_pubkey(x);
2963 if (pkey) {
2964 /*
2965 * If no parameters this will return -1 and fail using the default
2966 * security callback for any non-zero security level. This will
2967 * reject keys which omit parameters but this only affects DSA and
2968 * omission of parameters is never (?) done in practice.
2969 */
2970 secbits = EVP_PKEY_get_security_bits(pkey);
2971 }
2972 if (s)
2973 return ssl_security(s, op, secbits, 0, x);
2974 else
2975 return ssl_ctx_security(ctx, op, secbits, 0, x);
2976 }
2977
ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)2978 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2979 {
2980 /* Lookup signature algorithm digest */
2981 int secbits, nid, pknid;
2982 /* Don't check signature if self signed */
2983 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2984 return 1;
2985 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2986 secbits = -1;
2987 /* If digest NID not defined use signature NID */
2988 if (nid == NID_undef)
2989 nid = pknid;
2990 if (s)
2991 return ssl_security(s, op, secbits, nid, x);
2992 else
2993 return ssl_ctx_security(ctx, op, secbits, nid, x);
2994 }
2995
ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)2996 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2997 {
2998 if (vfy)
2999 vfy = SSL_SECOP_PEER;
3000 if (is_ee) {
3001 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3002 return SSL_R_EE_KEY_TOO_SMALL;
3003 } else {
3004 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3005 return SSL_R_CA_KEY_TOO_SMALL;
3006 }
3007 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3008 return SSL_R_CA_MD_TOO_WEAK;
3009 return 1;
3010 }
3011
3012 /*
3013 * Check security of a chain, if |sk| includes the end entity certificate then
3014 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3015 * one to the peer. Return values: 1 if ok otherwise error code to use
3016 */
3017
ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)3018 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
3019 {
3020 int rv, start_idx, i;
3021 if (x == NULL) {
3022 x = sk_X509_value(sk, 0);
3023 if (x == NULL)
3024 return ERR_R_INTERNAL_ERROR;
3025 start_idx = 1;
3026 } else
3027 start_idx = 0;
3028
3029 rv = ssl_security_cert(s, NULL, x, vfy, 1);
3030 if (rv != 1)
3031 return rv;
3032
3033 for (i = start_idx; i < sk_X509_num(sk); i++) {
3034 x = sk_X509_value(sk, i);
3035 rv = ssl_security_cert(s, NULL, x, vfy, 0);
3036 if (rv != 1)
3037 return rv;
3038 }
3039 return 1;
3040 }
3041
3042 /*
3043 * For TLS 1.2 servers check if we have a certificate which can be used
3044 * with the signature algorithm "lu" and return index of certificate.
3045 */
3046
tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)3047 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3048 {
3049 int sig_idx = lu->sig_idx;
3050 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3051
3052 /* If not recognised or not supported by cipher mask it is not suitable */
3053 if (clu == NULL
3054 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3055 || (clu->nid == EVP_PKEY_RSA_PSS
3056 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3057 return -1;
3058
3059 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3060 }
3061
3062 /*
3063 * Checks the given cert against signature_algorithm_cert restrictions sent by
3064 * the peer (if any) as well as whether the hash from the sigalg is usable with
3065 * the key.
3066 * Returns true if the cert is usable and false otherwise.
3067 */
check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, EVP_PKEY *pkey)3068 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3069 EVP_PKEY *pkey)
3070 {
3071 const SIGALG_LOOKUP *lu;
3072 int mdnid, pknid, supported;
3073 size_t i;
3074 const char *mdname = NULL;
3075
3076 /*
3077 * If the given EVP_PKEY cannot support signing with this digest,
3078 * the answer is simply 'no'.
3079 */
3080 if (sig->hash != NID_undef)
3081 mdname = OBJ_nid2sn(sig->hash);
3082 supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,
3083 mdname,
3084 s->ctx->propq);
3085 if (supported <= 0)
3086 return 0;
3087
3088 /*
3089 * The TLS 1.3 signature_algorithms_cert extension places restrictions
3090 * on the sigalg with which the certificate was signed (by its issuer).
3091 */
3092 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3093 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3094 return 0;
3095 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3096 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3097 if (lu == NULL)
3098 continue;
3099
3100 /*
3101 * This does not differentiate between the
3102 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3103 * have a chain here that lets us look at the key OID in the
3104 * signing certificate.
3105 */
3106 if (mdnid == lu->hash && pknid == lu->sig)
3107 return 1;
3108 }
3109 return 0;
3110 }
3111
3112 /*
3113 * Without signat_algorithms_cert, any certificate for which we have
3114 * a viable public key is permitted.
3115 */
3116 return 1;
3117 }
3118
3119 /*
3120 * Returns true if |s| has a usable certificate configured for use
3121 * with signature scheme |sig|.
3122 * "Usable" includes a check for presence as well as applying
3123 * the signature_algorithm_cert restrictions sent by the peer (if any).
3124 * Returns false if no usable certificate is found.
3125 */
has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)3126 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3127 {
3128 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3129 if (idx == -1)
3130 idx = sig->sig_idx;
3131 if (!ssl_has_cert(s, idx))
3132 return 0;
3133
3134 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3135 s->cert->pkeys[idx].privatekey);
3136 }
3137
3138 /*
3139 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3140 * specified signature scheme |sig|, or false otherwise.
3141 */
is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, EVP_PKEY *pkey)3142 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3143 EVP_PKEY *pkey)
3144 {
3145 size_t idx;
3146
3147 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3148 return 0;
3149
3150 /* Check the key is consistent with the sig alg */
3151 if ((int)idx != sig->sig_idx)
3152 return 0;
3153
3154 return check_cert_usable(s, sig, x, pkey);
3155 }
3156
3157 /*
3158 * Find a signature scheme that works with the supplied certificate |x| and key
3159 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3160 * available certs/keys to find one that works.
3161 */
find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)3162 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3163 {
3164 const SIGALG_LOOKUP *lu = NULL;
3165 size_t i;
3166 int curve = -1;
3167 EVP_PKEY *tmppkey;
3168
3169 /* Look for a shared sigalgs matching possible certificates */
3170 for (i = 0; i < s->shared_sigalgslen; i++) {
3171 lu = s->shared_sigalgs[i];
3172
3173 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3174 if (lu->hash == NID_sha1
3175 || lu->hash == NID_sha224
3176 || lu->sig == EVP_PKEY_DSA
3177 || lu->sig == EVP_PKEY_RSA)
3178 continue;
3179 /* Check that we have a cert, and signature_algorithms_cert */
3180 if (!tls1_lookup_md(s->ctx, lu, NULL))
3181 continue;
3182 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3183 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3184 continue;
3185
3186 tmppkey = (pkey != NULL) ? pkey
3187 : s->cert->pkeys[lu->sig_idx].privatekey;
3188
3189 if (lu->sig == EVP_PKEY_EC) {
3190 if (curve == -1)
3191 curve = ssl_get_EC_curve_nid(tmppkey);
3192 if (lu->curve != NID_undef && curve != lu->curve)
3193 continue;
3194 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3195 /* validate that key is large enough for the signature algorithm */
3196 if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3197 continue;
3198 }
3199 break;
3200 }
3201
3202 if (i == s->shared_sigalgslen)
3203 return NULL;
3204
3205 return lu;
3206 }
3207
3208 /*
3209 * Choose an appropriate signature algorithm based on available certificates
3210 * Sets chosen certificate and signature algorithm.
3211 *
3212 * For servers if we fail to find a required certificate it is a fatal error,
3213 * an appropriate error code is set and a TLS alert is sent.
3214 *
3215 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3216 * a fatal error: we will either try another certificate or not present one
3217 * to the server. In this case no error is set.
3218 */
tls_choose_sigalg(SSL *s, int fatalerrs)3219 int tls_choose_sigalg(SSL *s, int fatalerrs)
3220 {
3221 const SIGALG_LOOKUP *lu = NULL;
3222 int sig_idx = -1;
3223
3224 s->s3.tmp.cert = NULL;
3225 s->s3.tmp.sigalg = NULL;
3226
3227 if (SSL_IS_TLS13(s)) {
3228 lu = find_sig_alg(s, NULL, NULL);
3229 if (lu == NULL) {
3230 if (!fatalerrs)
3231 return 1;
3232 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3233 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3234 return 0;
3235 }
3236 } else {
3237 /* If ciphersuite doesn't require a cert nothing to do */
3238 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3239 return 1;
3240 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3241 return 1;
3242
3243 if (SSL_USE_SIGALGS(s)) {
3244 size_t i;
3245 if (s->s3.tmp.peer_sigalgs != NULL) {
3246 int curve = -1;
3247
3248 /* For Suite B need to match signature algorithm to curve */
3249 if (tls1_suiteb(s))
3250 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3251 .privatekey);
3252
3253 /*
3254 * Find highest preference signature algorithm matching
3255 * cert type
3256 */
3257 for (i = 0; i < s->shared_sigalgslen; i++) {
3258 lu = s->shared_sigalgs[i];
3259
3260 if (s->server) {
3261 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3262 continue;
3263 } else {
3264 int cc_idx = s->cert->key - s->cert->pkeys;
3265
3266 sig_idx = lu->sig_idx;
3267 if (cc_idx != sig_idx)
3268 continue;
3269 }
3270 /* Check that we have a cert, and sig_algs_cert */
3271 if (!has_usable_cert(s, lu, sig_idx))
3272 continue;
3273 if (lu->sig == EVP_PKEY_RSA_PSS) {
3274 /* validate that key is large enough for the signature algorithm */
3275 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3276
3277 if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3278 continue;
3279 }
3280 if (curve == -1 || lu->curve == curve)
3281 break;
3282 }
3283 #ifndef OPENSSL_NO_GOST
3284 /*
3285 * Some Windows-based implementations do not send GOST algorithms indication
3286 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3287 * we have to assume GOST support.
3288 */
3289 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3290 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3291 if (!fatalerrs)
3292 return 1;
3293 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3294 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3295 return 0;
3296 } else {
3297 i = 0;
3298 sig_idx = lu->sig_idx;
3299 }
3300 }
3301 #endif
3302 if (i == s->shared_sigalgslen) {
3303 if (!fatalerrs)
3304 return 1;
3305 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3306 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3307 return 0;
3308 }
3309 } else {
3310 /*
3311 * If we have no sigalg use defaults
3312 */
3313 const uint16_t *sent_sigs;
3314 size_t sent_sigslen;
3315
3316 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3317 if (!fatalerrs)
3318 return 1;
3319 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3320 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3321 return 0;
3322 }
3323
3324 /* Check signature matches a type we sent */
3325 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3326 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3327 if (lu->sigalg == *sent_sigs
3328 && has_usable_cert(s, lu, lu->sig_idx))
3329 break;
3330 }
3331 if (i == sent_sigslen) {
3332 if (!fatalerrs)
3333 return 1;
3334 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3335 SSL_R_WRONG_SIGNATURE_TYPE);
3336 return 0;
3337 }
3338 }
3339 } else {
3340 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3341 if (!fatalerrs)
3342 return 1;
3343 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3344 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3345 return 0;
3346 }
3347 }
3348 }
3349 if (sig_idx == -1)
3350 sig_idx = lu->sig_idx;
3351 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3352 s->cert->key = s->s3.tmp.cert;
3353 s->s3.tmp.sigalg = lu;
3354 return 1;
3355 }
3356
SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)3357 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3358 {
3359 if (mode != TLSEXT_max_fragment_length_DISABLED
3360 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3361 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3362 return 0;
3363 }
3364
3365 ctx->ext.max_fragment_len_mode = mode;
3366 return 1;
3367 }
3368
SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)3369 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3370 {
3371 if (mode != TLSEXT_max_fragment_length_DISABLED
3372 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3373 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3374 return 0;
3375 }
3376
3377 ssl->ext.max_fragment_len_mode = mode;
3378 return 1;
3379 }
3380
SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)3381 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3382 {
3383 return session->ext.max_fragment_len_mode;
3384 }
3385
3386 /*
3387 * Helper functions for HMAC access with legacy support included.
3388 */
ssl_hmac_new(const SSL_CTX *ctx)3389 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3390 {
3391 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3392 EVP_MAC *mac = NULL;
3393
3394 if (ret == NULL)
3395 return NULL;
3396 #ifndef OPENSSL_NO_DEPRECATED_3_0
3397 if (ctx->ext.ticket_key_evp_cb == NULL
3398 && ctx->ext.ticket_key_cb != NULL) {
3399 if (!ssl_hmac_old_new(ret))
3400 goto err;
3401 return ret;
3402 }
3403 #endif
3404 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3405 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3406 goto err;
3407 EVP_MAC_free(mac);
3408 return ret;
3409 err:
3410 EVP_MAC_CTX_free(ret->ctx);
3411 EVP_MAC_free(mac);
3412 OPENSSL_free(ret);
3413 return NULL;
3414 }
3415
ssl_hmac_free(SSL_HMAC *ctx)3416 void ssl_hmac_free(SSL_HMAC *ctx)
3417 {
3418 if (ctx != NULL) {
3419 EVP_MAC_CTX_free(ctx->ctx);
3420 #ifndef OPENSSL_NO_DEPRECATED_3_0
3421 ssl_hmac_old_free(ctx);
3422 #endif
3423 OPENSSL_free(ctx);
3424 }
3425 }
3426
ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)3427 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3428 {
3429 return ctx->ctx;
3430 }
3431
ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)3432 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3433 {
3434 OSSL_PARAM params[2], *p = params;
3435
3436 if (ctx->ctx != NULL) {
3437 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3438 *p = OSSL_PARAM_construct_end();
3439 if (EVP_MAC_init(ctx->ctx, key, len, params))
3440 return 1;
3441 }
3442 #ifndef OPENSSL_NO_DEPRECATED_3_0
3443 if (ctx->old_ctx != NULL)
3444 return ssl_hmac_old_init(ctx, key, len, md);
3445 #endif
3446 return 0;
3447 }
3448
ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)3449 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3450 {
3451 if (ctx->ctx != NULL)
3452 return EVP_MAC_update(ctx->ctx, data, len);
3453 #ifndef OPENSSL_NO_DEPRECATED_3_0
3454 if (ctx->old_ctx != NULL)
3455 return ssl_hmac_old_update(ctx, data, len);
3456 #endif
3457 return 0;
3458 }
3459
ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len, size_t max_size)3460 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3461 size_t max_size)
3462 {
3463 if (ctx->ctx != NULL)
3464 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3465 #ifndef OPENSSL_NO_DEPRECATED_3_0
3466 if (ctx->old_ctx != NULL)
3467 return ssl_hmac_old_final(ctx, md, len);
3468 #endif
3469 return 0;
3470 }
3471
ssl_hmac_size(const SSL_HMAC *ctx)3472 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3473 {
3474 if (ctx->ctx != NULL)
3475 return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3476 #ifndef OPENSSL_NO_DEPRECATED_3_0
3477 if (ctx->old_ctx != NULL)
3478 return ssl_hmac_old_size(ctx);
3479 #endif
3480 return 0;
3481 }
3482
ssl_get_EC_curve_nid(const EVP_PKEY *pkey)3483 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3484 {
3485 char gname[OSSL_MAX_NAME_SIZE];
3486
3487 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3488 return OBJ_txt2nid(gname);
3489
3490 return NID_undef;
3491 }
3492
tls13_set_encoded_pub_key(EVP_PKEY *pkey, const unsigned char *enckey, size_t enckeylen)3493 __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
3494 const unsigned char *enckey,
3495 size_t enckeylen)
3496 {
3497 if (EVP_PKEY_is_a(pkey, "DH")) {
3498 int bits = EVP_PKEY_get_bits(pkey);
3499
3500 if (bits <= 0 || enckeylen != (size_t)bits / 8)
3501 /* the encoded key must be padded to the length of the p */
3502 return 0;
3503 } else if (EVP_PKEY_is_a(pkey, "EC")) {
3504 if (enckeylen < 3 /* point format and at least 1 byte for x and y */
3505 || enckey[0] != 0x04)
3506 return 0;
3507 }
3508
3509 return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
3510 }
3511