1// Copyright (c) 1994-2006 Sun Microsystems Inc. 2// All Rights Reserved. 3// 4// Redistribution and use in source and binary forms, with or without 5// modification, are permitted provided that the following conditions are 6// met: 7// 8// - Redistributions of source code must retain the above copyright notice, 9// this list of conditions and the following disclaimer. 10// 11// - Redistribution in binary form must reproduce the above copyright 12// notice, this list of conditions and the following disclaimer in the 13// documentation and/or other materials provided with the distribution. 14// 15// - Neither the name of Sun Microsystems or the names of contributors may 16// be used to endorse or promote products derived from this software without 17// specific prior written permission. 18// 19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31// The original source code covered by the above license above has been 32// modified significantly by Google Inc. 33// Copyright 2012 the V8 project authors. All rights reserved. 34 35#ifndef V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_ 36#define V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_ 37 38#include <stdio.h> 39 40#include <memory> 41#include <set> 42 43#include "src/codegen/assembler.h" 44#include "src/codegen/external-reference.h" 45#include "src/codegen/label.h" 46#include "src/codegen/machine-type.h" 47#include "src/codegen/mips64/constants-mips64.h" 48#include "src/codegen/mips64/register-mips64.h" 49#include "src/objects/contexts.h" 50#include "src/objects/smi.h" 51 52namespace v8 { 53namespace internal { 54 55class SafepointTableBuilder; 56 57// ----------------------------------------------------------------------------- 58// Machine instruction Operands. 59constexpr int kSmiShift = kSmiTagSize + kSmiShiftSize; 60constexpr uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1; 61// Class Operand represents a shifter operand in data processing instructions. 62class Operand { 63 public: 64 // Immediate. 65 V8_INLINE explicit Operand(int64_t immediate, 66 RelocInfo::Mode rmode = RelocInfo::NO_INFO) 67 : rm_(no_reg), rmode_(rmode) { 68 value_.immediate = immediate; 69 } 70 V8_INLINE explicit Operand(const ExternalReference& f) 71 : rm_(no_reg), rmode_(RelocInfo::EXTERNAL_REFERENCE) { 72 value_.immediate = static_cast<int64_t>(f.address()); 73 } 74 V8_INLINE explicit Operand(const char* s); 75 explicit Operand(Handle<HeapObject> handle); 76 V8_INLINE explicit Operand(Smi value) 77 : rm_(no_reg), rmode_(RelocInfo::NO_INFO) { 78 value_.immediate = static_cast<intptr_t>(value.ptr()); 79 } 80 81 static Operand EmbeddedNumber(double number); // Smi or HeapNumber. 82 static Operand EmbeddedStringConstant(const StringConstantBase* str); 83 84 // Register. 85 V8_INLINE explicit Operand(Register rm) : rm_(rm) {} 86 87 // Return true if this is a register operand. 88 V8_INLINE bool is_reg() const; 89 90 inline int64_t immediate() const; 91 92 bool IsImmediate() const { return !rm_.is_valid(); } 93 94 HeapObjectRequest heap_object_request() const { 95 DCHECK(IsHeapObjectRequest()); 96 return value_.heap_object_request; 97 } 98 99 bool IsHeapObjectRequest() const { 100 DCHECK_IMPLIES(is_heap_object_request_, IsImmediate()); 101 DCHECK_IMPLIES(is_heap_object_request_, 102 rmode_ == RelocInfo::FULL_EMBEDDED_OBJECT || 103 rmode_ == RelocInfo::CODE_TARGET); 104 return is_heap_object_request_; 105 } 106 107 Register rm() const { return rm_; } 108 109 RelocInfo::Mode rmode() const { return rmode_; } 110 111 private: 112 Register rm_; 113 union Value { 114 Value() {} 115 HeapObjectRequest heap_object_request; // if is_heap_object_request_ 116 int64_t immediate; // otherwise 117 } value_; // valid if rm_ == no_reg 118 bool is_heap_object_request_ = false; 119 RelocInfo::Mode rmode_; 120 121 friend class Assembler; 122 friend class MacroAssembler; 123}; 124 125// On MIPS we have only one addressing mode with base_reg + offset. 126// Class MemOperand represents a memory operand in load and store instructions. 127class V8_EXPORT_PRIVATE MemOperand : public Operand { 128 public: 129 // Immediate value attached to offset. 130 enum OffsetAddend { offset_minus_one = -1, offset_zero = 0 }; 131 132 explicit MemOperand(Register rn, int32_t offset = 0); 133 explicit MemOperand(Register rn, int32_t unit, int32_t multiplier, 134 OffsetAddend offset_addend = offset_zero); 135 int32_t offset() const { return offset_; } 136 137 bool OffsetIsInt16Encodable() const { return is_int16(offset_); } 138 139 private: 140 int32_t offset_; 141 142 friend class Assembler; 143}; 144 145class V8_EXPORT_PRIVATE Assembler : public AssemblerBase { 146 public: 147 // Create an assembler. Instructions and relocation information are emitted 148 // into a buffer, with the instructions starting from the beginning and the 149 // relocation information starting from the end of the buffer. See CodeDesc 150 // for a detailed comment on the layout (globals.h). 151 // 152 // If the provided buffer is nullptr, the assembler allocates and grows its 153 // own buffer. Otherwise it takes ownership of the provided buffer. 154 explicit Assembler(const AssemblerOptions&, 155 std::unique_ptr<AssemblerBuffer> = {}); 156 157 virtual ~Assembler() {} 158 159 // GetCode emits any pending (non-emitted) code and fills the descriptor desc. 160 static constexpr int kNoHandlerTable = 0; 161 static constexpr SafepointTableBuilder* kNoSafepointTable = nullptr; 162 void GetCode(Isolate* isolate, CodeDesc* desc, 163 SafepointTableBuilder* safepoint_table_builder, 164 int handler_table_offset); 165 166 // Convenience wrapper for code without safepoint or handler tables. 167 void GetCode(Isolate* isolate, CodeDesc* desc) { 168 GetCode(isolate, desc, kNoSafepointTable, kNoHandlerTable); 169 } 170 171 // Unused on this architecture. 172 void MaybeEmitOutOfLineConstantPool() {} 173 174 // Mips uses BlockTrampolinePool to prevent generating trampoline inside a 175 // continuous instruction block. For Call instruction, it prevents generating 176 // trampoline between jalr and delay slot instruction. In the destructor of 177 // BlockTrampolinePool, it must check if it needs to generate trampoline 178 // immediately, if it does not do this, the branch range will go beyond the 179 // max branch offset, that means the pc_offset after call CheckTrampolinePool 180 // may have changed. So we use pc_for_safepoint_ here for safepoint record. 181 int pc_offset_for_safepoint() { 182 return static_cast<int>(pc_for_safepoint_ - buffer_start_); 183 } 184 185 // Label operations & relative jumps (PPUM Appendix D). 186 // 187 // Takes a branch opcode (cc) and a label (L) and generates 188 // either a backward branch or a forward branch and links it 189 // to the label fixup chain. Usage: 190 // 191 // Label L; // unbound label 192 // j(cc, &L); // forward branch to unbound label 193 // bind(&L); // bind label to the current pc 194 // j(cc, &L); // backward branch to bound label 195 // bind(&L); // illegal: a label may be bound only once 196 // 197 // Note: The same Label can be used for forward and backward branches 198 // but it may be bound only once. 199 void bind(Label* L); // Binds an unbound label L to current code position. 200 201 enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 }; 202 203 // Determines if Label is bound and near enough so that branch instruction 204 // can be used to reach it, instead of jump instruction. 205 bool is_near(Label* L); 206 bool is_near(Label* L, OffsetSize bits); 207 bool is_near_branch(Label* L); 208 inline bool is_near_pre_r6(Label* L) { 209 DCHECK(!(kArchVariant == kMips64r6)); 210 return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize; 211 } 212 inline bool is_near_r6(Label* L) { 213 DCHECK_EQ(kArchVariant, kMips64r6); 214 return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize; 215 } 216 217 int BranchOffset(Instr instr); 218 219 // Returns the branch offset to the given label from the current code 220 // position. Links the label to the current position if it is still unbound. 221 // Manages the jump elimination optimization if the second parameter is true. 222 int32_t branch_offset_helper(Label* L, OffsetSize bits); 223 inline int32_t branch_offset(Label* L) { 224 return branch_offset_helper(L, OffsetSize::kOffset16); 225 } 226 inline int32_t branch_offset21(Label* L) { 227 return branch_offset_helper(L, OffsetSize::kOffset21); 228 } 229 inline int32_t branch_offset26(Label* L) { 230 return branch_offset_helper(L, OffsetSize::kOffset26); 231 } 232 inline int32_t shifted_branch_offset(Label* L) { 233 return branch_offset(L) >> 2; 234 } 235 inline int32_t shifted_branch_offset21(Label* L) { 236 return branch_offset21(L) >> 2; 237 } 238 inline int32_t shifted_branch_offset26(Label* L) { 239 return branch_offset26(L) >> 2; 240 } 241 uint64_t jump_address(Label* L); 242 uint64_t jump_offset(Label* L); 243 uint64_t branch_long_offset(Label* L); 244 245 // Puts a labels target address at the given position. 246 // The high 8 bits are set to zero. 247 void label_at_put(Label* L, int at_offset); 248 249 // Read/Modify the code target address in the branch/call instruction at pc. 250 // The isolate argument is unused (and may be nullptr) when skipping flushing. 251 static Address target_address_at(Address pc); 252 V8_INLINE static void set_target_address_at( 253 Address pc, Address target, 254 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) { 255 set_target_value_at(pc, target, icache_flush_mode); 256 } 257 // On MIPS there is no Constant Pool so we skip that parameter. 258 V8_INLINE static Address target_address_at(Address pc, 259 Address constant_pool) { 260 return target_address_at(pc); 261 } 262 V8_INLINE static void set_target_address_at( 263 Address pc, Address constant_pool, Address target, 264 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) { 265 set_target_address_at(pc, target, icache_flush_mode); 266 } 267 268 static void set_target_value_at( 269 Address pc, uint64_t target, 270 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); 271 272 static void JumpLabelToJumpRegister(Address pc); 273 274 // This sets the branch destination (which gets loaded at the call address). 275 // This is for calls and branches within generated code. The serializer 276 // has already deserialized the lui/ori instructions etc. 277 inline static void deserialization_set_special_target_at( 278 Address instruction_payload, Code code, Address target); 279 280 // Get the size of the special target encoded at 'instruction_payload'. 281 inline static int deserialization_special_target_size( 282 Address instruction_payload); 283 284 // This sets the internal reference at the pc. 285 inline static void deserialization_set_target_internal_reference_at( 286 Address pc, Address target, 287 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE); 288 289 // Difference between address of current opcode and target address offset. 290 static constexpr int kBranchPCOffset = kInstrSize; 291 292 // Difference between address of current opcode and target address offset, 293 // when we are generatinga sequence of instructions for long relative PC 294 // branches 295 static constexpr int kLongBranchPCOffset = 3 * kInstrSize; 296 297 // Adjust ra register in branch delay slot of bal instruction so to skip 298 // instructions not needed after optimization of PIC in 299 // TurboAssembler::BranchAndLink method. 300 301 static constexpr int kOptimizedBranchAndLinkLongReturnOffset = 4 * kInstrSize; 302 303 // Here we are patching the address in the LUI/ORI instruction pair. 304 // These values are used in the serialization process and must be zero for 305 // MIPS platform, as Code, Embedded Object or External-reference pointers 306 // are split across two consecutive instructions and don't exist separately 307 // in the code, so the serializer should not step forwards in memory after 308 // a target is resolved and written. 309 static constexpr int kSpecialTargetSize = 0; 310 311 // Number of consecutive instructions used to store 32bit/64bit constant. 312 // This constant was used in RelocInfo::target_address_address() function 313 // to tell serializer address of the instruction that follows 314 // LUI/ORI instruction pair. 315 static constexpr int kInstructionsFor32BitConstant = 2; 316 static constexpr int kInstructionsFor64BitConstant = 4; 317 318 // Difference between address of current opcode and value read from pc 319 // register. 320 static constexpr int kPcLoadDelta = 4; 321 322 // Max offset for instructions with 16-bit offset field 323 static constexpr int kMaxBranchOffset = (1 << (18 - 1)) - 1; 324 325 // Max offset for compact branch instructions with 26-bit offset field 326 static constexpr int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1; 327 328 static constexpr int kTrampolineSlotsSize = 329 kArchVariant == kMips64r6 ? 2 * kInstrSize : 7 * kInstrSize; 330 331 RegList* GetScratchRegisterList() { return &scratch_register_list_; } 332 333 // --------------------------------------------------------------------------- 334 // Code generation. 335 336 // Insert the smallest number of nop instructions 337 // possible to align the pc offset to a multiple 338 // of m. m must be a power of 2 (>= 4). 339 void Align(int m); 340 // Insert the smallest number of zero bytes possible to align the pc offset 341 // to a mulitple of m. m must be a power of 2 (>= 2). 342 void DataAlign(int m); 343 // Aligns code to something that's optimal for a jump target for the platform. 344 void CodeTargetAlign(); 345 void LoopHeaderAlign() { CodeTargetAlign(); } 346 347 // Different nop operations are used by the code generator to detect certain 348 // states of the generated code. 349 enum NopMarkerTypes { 350 NON_MARKING_NOP = 0, 351 DEBUG_BREAK_NOP, 352 // IC markers. 353 PROPERTY_ACCESS_INLINED, 354 PROPERTY_ACCESS_INLINED_CONTEXT, 355 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, 356 // Helper values. 357 LAST_CODE_MARKER, 358 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED, 359 }; 360 361 // Type == 0 is the default non-marking nop. For mips this is a 362 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero 363 // marking, to avoid conflict with ssnop and ehb instructions. 364 void nop(unsigned int type = 0) { 365 DCHECK_LT(type, 32); 366 Register nop_rt_reg = (type == 0) ? zero_reg : at; 367 sll(zero_reg, nop_rt_reg, type, true); 368 } 369 370 // --------Branch-and-jump-instructions---------- 371 // We don't use likely variant of instructions. 372 void b(int16_t offset); 373 inline void b(Label* L) { b(shifted_branch_offset(L)); } 374 void bal(int16_t offset); 375 inline void bal(Label* L) { bal(shifted_branch_offset(L)); } 376 void bc(int32_t offset); 377 inline void bc(Label* L) { bc(shifted_branch_offset26(L)); } 378 void balc(int32_t offset); 379 inline void balc(Label* L) { balc(shifted_branch_offset26(L)); } 380 381 void beq(Register rs, Register rt, int16_t offset); 382 inline void beq(Register rs, Register rt, Label* L) { 383 beq(rs, rt, shifted_branch_offset(L)); 384 } 385 void bgez(Register rs, int16_t offset); 386 void bgezc(Register rt, int16_t offset); 387 inline void bgezc(Register rt, Label* L) { 388 bgezc(rt, shifted_branch_offset(L)); 389 } 390 void bgeuc(Register rs, Register rt, int16_t offset); 391 inline void bgeuc(Register rs, Register rt, Label* L) { 392 bgeuc(rs, rt, shifted_branch_offset(L)); 393 } 394 void bgec(Register rs, Register rt, int16_t offset); 395 inline void bgec(Register rs, Register rt, Label* L) { 396 bgec(rs, rt, shifted_branch_offset(L)); 397 } 398 void bgezal(Register rs, int16_t offset); 399 void bgezalc(Register rt, int16_t offset); 400 inline void bgezalc(Register rt, Label* L) { 401 bgezalc(rt, shifted_branch_offset(L)); 402 } 403 void bgezall(Register rs, int16_t offset); 404 inline void bgezall(Register rs, Label* L) { 405 bgezall(rs, branch_offset(L) >> 2); 406 } 407 void bgtz(Register rs, int16_t offset); 408 void bgtzc(Register rt, int16_t offset); 409 inline void bgtzc(Register rt, Label* L) { 410 bgtzc(rt, shifted_branch_offset(L)); 411 } 412 void blez(Register rs, int16_t offset); 413 void blezc(Register rt, int16_t offset); 414 inline void blezc(Register rt, Label* L) { 415 blezc(rt, shifted_branch_offset(L)); 416 } 417 void bltz(Register rs, int16_t offset); 418 void bltzc(Register rt, int16_t offset); 419 inline void bltzc(Register rt, Label* L) { 420 bltzc(rt, shifted_branch_offset(L)); 421 } 422 void bltuc(Register rs, Register rt, int16_t offset); 423 inline void bltuc(Register rs, Register rt, Label* L) { 424 bltuc(rs, rt, shifted_branch_offset(L)); 425 } 426 void bltc(Register rs, Register rt, int16_t offset); 427 inline void bltc(Register rs, Register rt, Label* L) { 428 bltc(rs, rt, shifted_branch_offset(L)); 429 } 430 void bltzal(Register rs, int16_t offset); 431 void nal() { bltzal(zero_reg, 0); } 432 void blezalc(Register rt, int16_t offset); 433 inline void blezalc(Register rt, Label* L) { 434 blezalc(rt, shifted_branch_offset(L)); 435 } 436 void bltzalc(Register rt, int16_t offset); 437 inline void bltzalc(Register rt, Label* L) { 438 bltzalc(rt, shifted_branch_offset(L)); 439 } 440 void bgtzalc(Register rt, int16_t offset); 441 inline void bgtzalc(Register rt, Label* L) { 442 bgtzalc(rt, shifted_branch_offset(L)); 443 } 444 void beqzalc(Register rt, int16_t offset); 445 inline void beqzalc(Register rt, Label* L) { 446 beqzalc(rt, shifted_branch_offset(L)); 447 } 448 void beqc(Register rs, Register rt, int16_t offset); 449 inline void beqc(Register rs, Register rt, Label* L) { 450 beqc(rs, rt, shifted_branch_offset(L)); 451 } 452 void beqzc(Register rs, int32_t offset); 453 inline void beqzc(Register rs, Label* L) { 454 beqzc(rs, shifted_branch_offset21(L)); 455 } 456 void bnezalc(Register rt, int16_t offset); 457 inline void bnezalc(Register rt, Label* L) { 458 bnezalc(rt, shifted_branch_offset(L)); 459 } 460 void bnec(Register rs, Register rt, int16_t offset); 461 inline void bnec(Register rs, Register rt, Label* L) { 462 bnec(rs, rt, shifted_branch_offset(L)); 463 } 464 void bnezc(Register rt, int32_t offset); 465 inline void bnezc(Register rt, Label* L) { 466 bnezc(rt, shifted_branch_offset21(L)); 467 } 468 void bne(Register rs, Register rt, int16_t offset); 469 inline void bne(Register rs, Register rt, Label* L) { 470 bne(rs, rt, shifted_branch_offset(L)); 471 } 472 void bovc(Register rs, Register rt, int16_t offset); 473 inline void bovc(Register rs, Register rt, Label* L) { 474 bovc(rs, rt, shifted_branch_offset(L)); 475 } 476 void bnvc(Register rs, Register rt, int16_t offset); 477 inline void bnvc(Register rs, Register rt, Label* L) { 478 bnvc(rs, rt, shifted_branch_offset(L)); 479 } 480 481 // Never use the int16_t b(l)cond version with a branch offset 482 // instead of using the Label* version. 483 484 void jalr(Register rs, Register rd = ra); 485 void jr(Register target); 486 void jic(Register rt, int16_t offset); 487 void jialc(Register rt, int16_t offset); 488 489 // Following instructions are deprecated and require 256 MB 490 // code alignment. Use PC-relative instructions instead. 491 void j(int64_t target); 492 void jal(int64_t target); 493 void j(Label* target); 494 void jal(Label* target); 495 496 // -------Data-processing-instructions--------- 497 498 // Arithmetic. 499 void addu(Register rd, Register rs, Register rt); 500 void subu(Register rd, Register rs, Register rt); 501 502 void div(Register rs, Register rt); 503 void divu(Register rs, Register rt); 504 void ddiv(Register rs, Register rt); 505 void ddivu(Register rs, Register rt); 506 void div(Register rd, Register rs, Register rt); 507 void divu(Register rd, Register rs, Register rt); 508 void ddiv(Register rd, Register rs, Register rt); 509 void ddivu(Register rd, Register rs, Register rt); 510 void mod(Register rd, Register rs, Register rt); 511 void modu(Register rd, Register rs, Register rt); 512 void dmod(Register rd, Register rs, Register rt); 513 void dmodu(Register rd, Register rs, Register rt); 514 515 void mul(Register rd, Register rs, Register rt); 516 void muh(Register rd, Register rs, Register rt); 517 void mulu(Register rd, Register rs, Register rt); 518 void muhu(Register rd, Register rs, Register rt); 519 void mult(Register rs, Register rt); 520 void multu(Register rs, Register rt); 521 void dmul(Register rd, Register rs, Register rt); 522 void dmuh(Register rd, Register rs, Register rt); 523 void dmulu(Register rd, Register rs, Register rt); 524 void dmuhu(Register rd, Register rs, Register rt); 525 void daddu(Register rd, Register rs, Register rt); 526 void dsubu(Register rd, Register rs, Register rt); 527 void dmult(Register rs, Register rt); 528 void dmultu(Register rs, Register rt); 529 530 void addiu(Register rd, Register rs, int32_t j); 531 void daddiu(Register rd, Register rs, int32_t j); 532 533 // Logical. 534 void and_(Register rd, Register rs, Register rt); 535 void or_(Register rd, Register rs, Register rt); 536 void xor_(Register rd, Register rs, Register rt); 537 void nor(Register rd, Register rs, Register rt); 538 539 void andi(Register rd, Register rs, int32_t j); 540 void ori(Register rd, Register rs, int32_t j); 541 void xori(Register rd, Register rs, int32_t j); 542 void lui(Register rd, int32_t j); 543 void aui(Register rt, Register rs, int32_t j); 544 void daui(Register rt, Register rs, int32_t j); 545 void dahi(Register rs, int32_t j); 546 void dati(Register rs, int32_t j); 547 548 // Shifts. 549 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop 550 // and may cause problems in normal code. coming_from_nop makes sure this 551 // doesn't happen. 552 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false); 553 void sllv(Register rd, Register rt, Register rs); 554 void srl(Register rd, Register rt, uint16_t sa); 555 void srlv(Register rd, Register rt, Register rs); 556 void sra(Register rt, Register rd, uint16_t sa); 557 void srav(Register rt, Register rd, Register rs); 558 void rotr(Register rd, Register rt, uint16_t sa); 559 void rotrv(Register rd, Register rt, Register rs); 560 void dsll(Register rd, Register rt, uint16_t sa); 561 void dsllv(Register rd, Register rt, Register rs); 562 void dsrl(Register rd, Register rt, uint16_t sa); 563 void dsrlv(Register rd, Register rt, Register rs); 564 void drotr(Register rd, Register rt, uint16_t sa); 565 void drotr32(Register rd, Register rt, uint16_t sa); 566 void drotrv(Register rd, Register rt, Register rs); 567 void dsra(Register rt, Register rd, uint16_t sa); 568 void dsrav(Register rd, Register rt, Register rs); 569 void dsll32(Register rt, Register rd, uint16_t sa); 570 void dsrl32(Register rt, Register rd, uint16_t sa); 571 void dsra32(Register rt, Register rd, uint16_t sa); 572 573 // ------------Memory-instructions------------- 574 575 void lb(Register rd, const MemOperand& rs); 576 void lbu(Register rd, const MemOperand& rs); 577 void lh(Register rd, const MemOperand& rs); 578 void lhu(Register rd, const MemOperand& rs); 579 void lw(Register rd, const MemOperand& rs); 580 void lwu(Register rd, const MemOperand& rs); 581 void lwl(Register rd, const MemOperand& rs); 582 void lwr(Register rd, const MemOperand& rs); 583 void sb(Register rd, const MemOperand& rs); 584 void sh(Register rd, const MemOperand& rs); 585 void sw(Register rd, const MemOperand& rs); 586 void swl(Register rd, const MemOperand& rs); 587 void swr(Register rd, const MemOperand& rs); 588 void ldl(Register rd, const MemOperand& rs); 589 void ldr(Register rd, const MemOperand& rs); 590 void sdl(Register rd, const MemOperand& rs); 591 void sdr(Register rd, const MemOperand& rs); 592 void ld(Register rd, const MemOperand& rs); 593 void sd(Register rd, const MemOperand& rs); 594 595 // ----------Atomic instructions-------------- 596 597 void ll(Register rd, const MemOperand& rs); 598 void sc(Register rd, const MemOperand& rs); 599 void lld(Register rd, const MemOperand& rs); 600 void scd(Register rd, const MemOperand& rs); 601 602 // ---------PC-Relative-instructions----------- 603 604 void addiupc(Register rs, int32_t imm19); 605 void lwpc(Register rs, int32_t offset19); 606 void lwupc(Register rs, int32_t offset19); 607 void ldpc(Register rs, int32_t offset18); 608 void auipc(Register rs, int16_t imm16); 609 void aluipc(Register rs, int16_t imm16); 610 611 // ----------------Prefetch-------------------- 612 613 void pref(int32_t hint, const MemOperand& rs); 614 615 // -------------Misc-instructions-------------- 616 617 // Break / Trap instructions. 618 void break_(uint32_t code, bool break_as_stop = false); 619 void stop(uint32_t code = kMaxStopCode); 620 void tge(Register rs, Register rt, uint16_t code); 621 void tgeu(Register rs, Register rt, uint16_t code); 622 void tlt(Register rs, Register rt, uint16_t code); 623 void tltu(Register rs, Register rt, uint16_t code); 624 void teq(Register rs, Register rt, uint16_t code); 625 void tne(Register rs, Register rt, uint16_t code); 626 627 // Memory barrier instruction. 628 void sync(); 629 630 // Move from HI/LO register. 631 void mfhi(Register rd); 632 void mflo(Register rd); 633 634 // Set on less than. 635 void slt(Register rd, Register rs, Register rt); 636 void sltu(Register rd, Register rs, Register rt); 637 void slti(Register rd, Register rs, int32_t j); 638 void sltiu(Register rd, Register rs, int32_t j); 639 640 // Conditional move. 641 void movz(Register rd, Register rs, Register rt); 642 void movn(Register rd, Register rs, Register rt); 643 void movt(Register rd, Register rs, uint16_t cc = 0); 644 void movf(Register rd, Register rs, uint16_t cc = 0); 645 646 void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 647 void sel_s(FPURegister fd, FPURegister fs, FPURegister ft); 648 void sel_d(FPURegister fd, FPURegister fs, FPURegister ft); 649 void seleqz(Register rd, Register rs, Register rt); 650 void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs, 651 FPURegister ft); 652 void selnez(Register rs, Register rt, Register rd); 653 void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs, 654 FPURegister ft); 655 void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft); 656 void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft); 657 void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft); 658 void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft); 659 660 void movz_s(FPURegister fd, FPURegister fs, Register rt); 661 void movz_d(FPURegister fd, FPURegister fs, Register rt); 662 void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0); 663 void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0); 664 void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0); 665 void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0); 666 void movn_s(FPURegister fd, FPURegister fs, Register rt); 667 void movn_d(FPURegister fd, FPURegister fs, Register rt); 668 // Bit twiddling. 669 void clz(Register rd, Register rs); 670 void dclz(Register rd, Register rs); 671 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size); 672 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size); 673 void dext_(Register rt, Register rs, uint16_t pos, uint16_t size); 674 void dextm_(Register rt, Register rs, uint16_t pos, uint16_t size); 675 void dextu_(Register rt, Register rs, uint16_t pos, uint16_t size); 676 void dins_(Register rt, Register rs, uint16_t pos, uint16_t size); 677 void dinsm_(Register rt, Register rs, uint16_t pos, uint16_t size); 678 void dinsu_(Register rt, Register rs, uint16_t pos, uint16_t size); 679 void bitswap(Register rd, Register rt); 680 void dbitswap(Register rd, Register rt); 681 void align(Register rd, Register rs, Register rt, uint8_t bp); 682 void dalign(Register rd, Register rs, Register rt, uint8_t bp); 683 684 void wsbh(Register rd, Register rt); 685 void dsbh(Register rd, Register rt); 686 void dshd(Register rd, Register rt); 687 void seh(Register rd, Register rt); 688 void seb(Register rd, Register rt); 689 690 // --------Coprocessor-instructions---------------- 691 692 // Load, store, and move. 693 void lwc1(FPURegister fd, const MemOperand& src); 694 void ldc1(FPURegister fd, const MemOperand& src); 695 696 void swc1(FPURegister fs, const MemOperand& dst); 697 void sdc1(FPURegister fs, const MemOperand& dst); 698 699 void mtc1(Register rt, FPURegister fs); 700 void mthc1(Register rt, FPURegister fs); 701 void dmtc1(Register rt, FPURegister fs); 702 703 void mfc1(Register rt, FPURegister fs); 704 void mfhc1(Register rt, FPURegister fs); 705 void dmfc1(Register rt, FPURegister fs); 706 707 void ctc1(Register rt, FPUControlRegister fs); 708 void cfc1(Register rt, FPUControlRegister fs); 709 710 // Arithmetic. 711 void add_s(FPURegister fd, FPURegister fs, FPURegister ft); 712 void add_d(FPURegister fd, FPURegister fs, FPURegister ft); 713 void sub_s(FPURegister fd, FPURegister fs, FPURegister ft); 714 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft); 715 void mul_s(FPURegister fd, FPURegister fs, FPURegister ft); 716 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft); 717 void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 718 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 719 void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 720 void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 721 void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft); 722 void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft); 723 void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft); 724 void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft); 725 void div_s(FPURegister fd, FPURegister fs, FPURegister ft); 726 void div_d(FPURegister fd, FPURegister fs, FPURegister ft); 727 void abs_s(FPURegister fd, FPURegister fs); 728 void abs_d(FPURegister fd, FPURegister fs); 729 void mov_d(FPURegister fd, FPURegister fs); 730 void mov_s(FPURegister fd, FPURegister fs); 731 void neg_s(FPURegister fd, FPURegister fs); 732 void neg_d(FPURegister fd, FPURegister fs); 733 void sqrt_s(FPURegister fd, FPURegister fs); 734 void sqrt_d(FPURegister fd, FPURegister fs); 735 void rsqrt_s(FPURegister fd, FPURegister fs); 736 void rsqrt_d(FPURegister fd, FPURegister fs); 737 void recip_d(FPURegister fd, FPURegister fs); 738 void recip_s(FPURegister fd, FPURegister fs); 739 740 // Conversion. 741 void cvt_w_s(FPURegister fd, FPURegister fs); 742 void cvt_w_d(FPURegister fd, FPURegister fs); 743 void trunc_w_s(FPURegister fd, FPURegister fs); 744 void trunc_w_d(FPURegister fd, FPURegister fs); 745 void round_w_s(FPURegister fd, FPURegister fs); 746 void round_w_d(FPURegister fd, FPURegister fs); 747 void floor_w_s(FPURegister fd, FPURegister fs); 748 void floor_w_d(FPURegister fd, FPURegister fs); 749 void ceil_w_s(FPURegister fd, FPURegister fs); 750 void ceil_w_d(FPURegister fd, FPURegister fs); 751 void rint_s(FPURegister fd, FPURegister fs); 752 void rint_d(FPURegister fd, FPURegister fs); 753 void rint(SecondaryField fmt, FPURegister fd, FPURegister fs); 754 755 void cvt_l_s(FPURegister fd, FPURegister fs); 756 void cvt_l_d(FPURegister fd, FPURegister fs); 757 void trunc_l_s(FPURegister fd, FPURegister fs); 758 void trunc_l_d(FPURegister fd, FPURegister fs); 759 void round_l_s(FPURegister fd, FPURegister fs); 760 void round_l_d(FPURegister fd, FPURegister fs); 761 void floor_l_s(FPURegister fd, FPURegister fs); 762 void floor_l_d(FPURegister fd, FPURegister fs); 763 void ceil_l_s(FPURegister fd, FPURegister fs); 764 void ceil_l_d(FPURegister fd, FPURegister fs); 765 766 void class_s(FPURegister fd, FPURegister fs); 767 void class_d(FPURegister fd, FPURegister fs); 768 769 void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 770 void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 771 void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 772 void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 773 void min_s(FPURegister fd, FPURegister fs, FPURegister ft); 774 void min_d(FPURegister fd, FPURegister fs, FPURegister ft); 775 void max_s(FPURegister fd, FPURegister fs, FPURegister ft); 776 void max_d(FPURegister fd, FPURegister fs, FPURegister ft); 777 void mina_s(FPURegister fd, FPURegister fs, FPURegister ft); 778 void mina_d(FPURegister fd, FPURegister fs, FPURegister ft); 779 void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft); 780 void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft); 781 782 void cvt_s_w(FPURegister fd, FPURegister fs); 783 void cvt_s_l(FPURegister fd, FPURegister fs); 784 void cvt_s_d(FPURegister fd, FPURegister fs); 785 786 void cvt_d_w(FPURegister fd, FPURegister fs); 787 void cvt_d_l(FPURegister fd, FPURegister fs); 788 void cvt_d_s(FPURegister fd, FPURegister fs); 789 790 // Conditions and branches for MIPSr6. 791 void cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd, 792 FPURegister ft, FPURegister fs); 793 void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft); 794 void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft); 795 796 void bc1eqz(int16_t offset, FPURegister ft); 797 inline void bc1eqz(Label* L, FPURegister ft) { 798 bc1eqz(shifted_branch_offset(L), ft); 799 } 800 void bc1nez(int16_t offset, FPURegister ft); 801 inline void bc1nez(Label* L, FPURegister ft) { 802 bc1nez(shifted_branch_offset(L), ft); 803 } 804 805 // Conditions and branches for non MIPSr6. 806 void c(FPUCondition cond, SecondaryField fmt, FPURegister ft, FPURegister fs, 807 uint16_t cc = 0); 808 void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0); 809 void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0); 810 811 void bc1f(int16_t offset, uint16_t cc = 0); 812 inline void bc1f(Label* L, uint16_t cc = 0) { 813 bc1f(shifted_branch_offset(L), cc); 814 } 815 void bc1t(int16_t offset, uint16_t cc = 0); 816 inline void bc1t(Label* L, uint16_t cc = 0) { 817 bc1t(shifted_branch_offset(L), cc); 818 } 819 void fcmp(FPURegister src1, const double src2, FPUCondition cond); 820 821 // MSA instructions 822 void bz_v(MSARegister wt, int16_t offset); 823 inline void bz_v(MSARegister wt, Label* L) { 824 bz_v(wt, shifted_branch_offset(L)); 825 } 826 void bz_b(MSARegister wt, int16_t offset); 827 inline void bz_b(MSARegister wt, Label* L) { 828 bz_b(wt, shifted_branch_offset(L)); 829 } 830 void bz_h(MSARegister wt, int16_t offset); 831 inline void bz_h(MSARegister wt, Label* L) { 832 bz_h(wt, shifted_branch_offset(L)); 833 } 834 void bz_w(MSARegister wt, int16_t offset); 835 inline void bz_w(MSARegister wt, Label* L) { 836 bz_w(wt, shifted_branch_offset(L)); 837 } 838 void bz_d(MSARegister wt, int16_t offset); 839 inline void bz_d(MSARegister wt, Label* L) { 840 bz_d(wt, shifted_branch_offset(L)); 841 } 842 void bnz_v(MSARegister wt, int16_t offset); 843 inline void bnz_v(MSARegister wt, Label* L) { 844 bnz_v(wt, shifted_branch_offset(L)); 845 } 846 void bnz_b(MSARegister wt, int16_t offset); 847 inline void bnz_b(MSARegister wt, Label* L) { 848 bnz_b(wt, shifted_branch_offset(L)); 849 } 850 void bnz_h(MSARegister wt, int16_t offset); 851 inline void bnz_h(MSARegister wt, Label* L) { 852 bnz_h(wt, shifted_branch_offset(L)); 853 } 854 void bnz_w(MSARegister wt, int16_t offset); 855 inline void bnz_w(MSARegister wt, Label* L) { 856 bnz_w(wt, shifted_branch_offset(L)); 857 } 858 void bnz_d(MSARegister wt, int16_t offset); 859 inline void bnz_d(MSARegister wt, Label* L) { 860 bnz_d(wt, shifted_branch_offset(L)); 861 } 862 863 void ld_b(MSARegister wd, const MemOperand& rs); 864 void ld_h(MSARegister wd, const MemOperand& rs); 865 void ld_w(MSARegister wd, const MemOperand& rs); 866 void ld_d(MSARegister wd, const MemOperand& rs); 867 void st_b(MSARegister wd, const MemOperand& rs); 868 void st_h(MSARegister wd, const MemOperand& rs); 869 void st_w(MSARegister wd, const MemOperand& rs); 870 void st_d(MSARegister wd, const MemOperand& rs); 871 872 void ldi_b(MSARegister wd, int32_t imm10); 873 void ldi_h(MSARegister wd, int32_t imm10); 874 void ldi_w(MSARegister wd, int32_t imm10); 875 void ldi_d(MSARegister wd, int32_t imm10); 876 877 void addvi_b(MSARegister wd, MSARegister ws, uint32_t imm5); 878 void addvi_h(MSARegister wd, MSARegister ws, uint32_t imm5); 879 void addvi_w(MSARegister wd, MSARegister ws, uint32_t imm5); 880 void addvi_d(MSARegister wd, MSARegister ws, uint32_t imm5); 881 void subvi_b(MSARegister wd, MSARegister ws, uint32_t imm5); 882 void subvi_h(MSARegister wd, MSARegister ws, uint32_t imm5); 883 void subvi_w(MSARegister wd, MSARegister ws, uint32_t imm5); 884 void subvi_d(MSARegister wd, MSARegister ws, uint32_t imm5); 885 void maxi_s_b(MSARegister wd, MSARegister ws, uint32_t imm5); 886 void maxi_s_h(MSARegister wd, MSARegister ws, uint32_t imm5); 887 void maxi_s_w(MSARegister wd, MSARegister ws, uint32_t imm5); 888 void maxi_s_d(MSARegister wd, MSARegister ws, uint32_t imm5); 889 void maxi_u_b(MSARegister wd, MSARegister ws, uint32_t imm5); 890 void maxi_u_h(MSARegister wd, MSARegister ws, uint32_t imm5); 891 void maxi_u_w(MSARegister wd, MSARegister ws, uint32_t imm5); 892 void maxi_u_d(MSARegister wd, MSARegister ws, uint32_t imm5); 893 void mini_s_b(MSARegister wd, MSARegister ws, uint32_t imm5); 894 void mini_s_h(MSARegister wd, MSARegister ws, uint32_t imm5); 895 void mini_s_w(MSARegister wd, MSARegister ws, uint32_t imm5); 896 void mini_s_d(MSARegister wd, MSARegister ws, uint32_t imm5); 897 void mini_u_b(MSARegister wd, MSARegister ws, uint32_t imm5); 898 void mini_u_h(MSARegister wd, MSARegister ws, uint32_t imm5); 899 void mini_u_w(MSARegister wd, MSARegister ws, uint32_t imm5); 900 void mini_u_d(MSARegister wd, MSARegister ws, uint32_t imm5); 901 void ceqi_b(MSARegister wd, MSARegister ws, uint32_t imm5); 902 void ceqi_h(MSARegister wd, MSARegister ws, uint32_t imm5); 903 void ceqi_w(MSARegister wd, MSARegister ws, uint32_t imm5); 904 void ceqi_d(MSARegister wd, MSARegister ws, uint32_t imm5); 905 void clti_s_b(MSARegister wd, MSARegister ws, uint32_t imm5); 906 void clti_s_h(MSARegister wd, MSARegister ws, uint32_t imm5); 907 void clti_s_w(MSARegister wd, MSARegister ws, uint32_t imm5); 908 void clti_s_d(MSARegister wd, MSARegister ws, uint32_t imm5); 909 void clti_u_b(MSARegister wd, MSARegister ws, uint32_t imm5); 910 void clti_u_h(MSARegister wd, MSARegister ws, uint32_t imm5); 911 void clti_u_w(MSARegister wd, MSARegister ws, uint32_t imm5); 912 void clti_u_d(MSARegister wd, MSARegister ws, uint32_t imm5); 913 void clei_s_b(MSARegister wd, MSARegister ws, uint32_t imm5); 914 void clei_s_h(MSARegister wd, MSARegister ws, uint32_t imm5); 915 void clei_s_w(MSARegister wd, MSARegister ws, uint32_t imm5); 916 void clei_s_d(MSARegister wd, MSARegister ws, uint32_t imm5); 917 void clei_u_b(MSARegister wd, MSARegister ws, uint32_t imm5); 918 void clei_u_h(MSARegister wd, MSARegister ws, uint32_t imm5); 919 void clei_u_w(MSARegister wd, MSARegister ws, uint32_t imm5); 920 void clei_u_d(MSARegister wd, MSARegister ws, uint32_t imm5); 921 922 void andi_b(MSARegister wd, MSARegister ws, uint32_t imm8); 923 void ori_b(MSARegister wd, MSARegister ws, uint32_t imm8); 924 void nori_b(MSARegister wd, MSARegister ws, uint32_t imm8); 925 void xori_b(MSARegister wd, MSARegister ws, uint32_t imm8); 926 void bmnzi_b(MSARegister wd, MSARegister ws, uint32_t imm8); 927 void bmzi_b(MSARegister wd, MSARegister ws, uint32_t imm8); 928 void bseli_b(MSARegister wd, MSARegister ws, uint32_t imm8); 929 void shf_b(MSARegister wd, MSARegister ws, uint32_t imm8); 930 void shf_h(MSARegister wd, MSARegister ws, uint32_t imm8); 931 void shf_w(MSARegister wd, MSARegister ws, uint32_t imm8); 932 933 void and_v(MSARegister wd, MSARegister ws, MSARegister wt); 934 void or_v(MSARegister wd, MSARegister ws, MSARegister wt); 935 void nor_v(MSARegister wd, MSARegister ws, MSARegister wt); 936 void xor_v(MSARegister wd, MSARegister ws, MSARegister wt); 937 void bmnz_v(MSARegister wd, MSARegister ws, MSARegister wt); 938 void bmz_v(MSARegister wd, MSARegister ws, MSARegister wt); 939 void bsel_v(MSARegister wd, MSARegister ws, MSARegister wt); 940 941 void fill_b(MSARegister wd, Register rs); 942 void fill_h(MSARegister wd, Register rs); 943 void fill_w(MSARegister wd, Register rs); 944 void fill_d(MSARegister wd, Register rs); 945 void pcnt_b(MSARegister wd, MSARegister ws); 946 void pcnt_h(MSARegister wd, MSARegister ws); 947 void pcnt_w(MSARegister wd, MSARegister ws); 948 void pcnt_d(MSARegister wd, MSARegister ws); 949 void nloc_b(MSARegister wd, MSARegister ws); 950 void nloc_h(MSARegister wd, MSARegister ws); 951 void nloc_w(MSARegister wd, MSARegister ws); 952 void nloc_d(MSARegister wd, MSARegister ws); 953 void nlzc_b(MSARegister wd, MSARegister ws); 954 void nlzc_h(MSARegister wd, MSARegister ws); 955 void nlzc_w(MSARegister wd, MSARegister ws); 956 void nlzc_d(MSARegister wd, MSARegister ws); 957 958 void fclass_w(MSARegister wd, MSARegister ws); 959 void fclass_d(MSARegister wd, MSARegister ws); 960 void ftrunc_s_w(MSARegister wd, MSARegister ws); 961 void ftrunc_s_d(MSARegister wd, MSARegister ws); 962 void ftrunc_u_w(MSARegister wd, MSARegister ws); 963 void ftrunc_u_d(MSARegister wd, MSARegister ws); 964 void fsqrt_w(MSARegister wd, MSARegister ws); 965 void fsqrt_d(MSARegister wd, MSARegister ws); 966 void frsqrt_w(MSARegister wd, MSARegister ws); 967 void frsqrt_d(MSARegister wd, MSARegister ws); 968 void frcp_w(MSARegister wd, MSARegister ws); 969 void frcp_d(MSARegister wd, MSARegister ws); 970 void frint_w(MSARegister wd, MSARegister ws); 971 void frint_d(MSARegister wd, MSARegister ws); 972 void flog2_w(MSARegister wd, MSARegister ws); 973 void flog2_d(MSARegister wd, MSARegister ws); 974 void fexupl_w(MSARegister wd, MSARegister ws); 975 void fexupl_d(MSARegister wd, MSARegister ws); 976 void fexupr_w(MSARegister wd, MSARegister ws); 977 void fexupr_d(MSARegister wd, MSARegister ws); 978 void ffql_w(MSARegister wd, MSARegister ws); 979 void ffql_d(MSARegister wd, MSARegister ws); 980 void ffqr_w(MSARegister wd, MSARegister ws); 981 void ffqr_d(MSARegister wd, MSARegister ws); 982 void ftint_s_w(MSARegister wd, MSARegister ws); 983 void ftint_s_d(MSARegister wd, MSARegister ws); 984 void ftint_u_w(MSARegister wd, MSARegister ws); 985 void ftint_u_d(MSARegister wd, MSARegister ws); 986 void ffint_s_w(MSARegister wd, MSARegister ws); 987 void ffint_s_d(MSARegister wd, MSARegister ws); 988 void ffint_u_w(MSARegister wd, MSARegister ws); 989 void ffint_u_d(MSARegister wd, MSARegister ws); 990 991 void sll_b(MSARegister wd, MSARegister ws, MSARegister wt); 992 void sll_h(MSARegister wd, MSARegister ws, MSARegister wt); 993 void sll_w(MSARegister wd, MSARegister ws, MSARegister wt); 994 void sll_d(MSARegister wd, MSARegister ws, MSARegister wt); 995 void sra_b(MSARegister wd, MSARegister ws, MSARegister wt); 996 void sra_h(MSARegister wd, MSARegister ws, MSARegister wt); 997 void sra_w(MSARegister wd, MSARegister ws, MSARegister wt); 998 void sra_d(MSARegister wd, MSARegister ws, MSARegister wt); 999 void srl_b(MSARegister wd, MSARegister ws, MSARegister wt); 1000 void srl_h(MSARegister wd, MSARegister ws, MSARegister wt); 1001 void srl_w(MSARegister wd, MSARegister ws, MSARegister wt); 1002 void srl_d(MSARegister wd, MSARegister ws, MSARegister wt); 1003 void bclr_b(MSARegister wd, MSARegister ws, MSARegister wt); 1004 void bclr_h(MSARegister wd, MSARegister ws, MSARegister wt); 1005 void bclr_w(MSARegister wd, MSARegister ws, MSARegister wt); 1006 void bclr_d(MSARegister wd, MSARegister ws, MSARegister wt); 1007 void bset_b(MSARegister wd, MSARegister ws, MSARegister wt); 1008 void bset_h(MSARegister wd, MSARegister ws, MSARegister wt); 1009 void bset_w(MSARegister wd, MSARegister ws, MSARegister wt); 1010 void bset_d(MSARegister wd, MSARegister ws, MSARegister wt); 1011 void bneg_b(MSARegister wd, MSARegister ws, MSARegister wt); 1012 void bneg_h(MSARegister wd, MSARegister ws, MSARegister wt); 1013 void bneg_w(MSARegister wd, MSARegister ws, MSARegister wt); 1014 void bneg_d(MSARegister wd, MSARegister ws, MSARegister wt); 1015 void binsl_b(MSARegister wd, MSARegister ws, MSARegister wt); 1016 void binsl_h(MSARegister wd, MSARegister ws, MSARegister wt); 1017 void binsl_w(MSARegister wd, MSARegister ws, MSARegister wt); 1018 void binsl_d(MSARegister wd, MSARegister ws, MSARegister wt); 1019 void binsr_b(MSARegister wd, MSARegister ws, MSARegister wt); 1020 void binsr_h(MSARegister wd, MSARegister ws, MSARegister wt); 1021 void binsr_w(MSARegister wd, MSARegister ws, MSARegister wt); 1022 void binsr_d(MSARegister wd, MSARegister ws, MSARegister wt); 1023 void addv_b(MSARegister wd, MSARegister ws, MSARegister wt); 1024 void addv_h(MSARegister wd, MSARegister ws, MSARegister wt); 1025 void addv_w(MSARegister wd, MSARegister ws, MSARegister wt); 1026 void addv_d(MSARegister wd, MSARegister ws, MSARegister wt); 1027 void subv_b(MSARegister wd, MSARegister ws, MSARegister wt); 1028 void subv_h(MSARegister wd, MSARegister ws, MSARegister wt); 1029 void subv_w(MSARegister wd, MSARegister ws, MSARegister wt); 1030 void subv_d(MSARegister wd, MSARegister ws, MSARegister wt); 1031 void max_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1032 void max_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1033 void max_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1034 void max_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1035 void max_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1036 void max_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1037 void max_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1038 void max_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1039 void min_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1040 void min_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1041 void min_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1042 void min_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1043 void min_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1044 void min_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1045 void min_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1046 void min_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1047 void max_a_b(MSARegister wd, MSARegister ws, MSARegister wt); 1048 void max_a_h(MSARegister wd, MSARegister ws, MSARegister wt); 1049 void max_a_w(MSARegister wd, MSARegister ws, MSARegister wt); 1050 void max_a_d(MSARegister wd, MSARegister ws, MSARegister wt); 1051 void min_a_b(MSARegister wd, MSARegister ws, MSARegister wt); 1052 void min_a_h(MSARegister wd, MSARegister ws, MSARegister wt); 1053 void min_a_w(MSARegister wd, MSARegister ws, MSARegister wt); 1054 void min_a_d(MSARegister wd, MSARegister ws, MSARegister wt); 1055 void ceq_b(MSARegister wd, MSARegister ws, MSARegister wt); 1056 void ceq_h(MSARegister wd, MSARegister ws, MSARegister wt); 1057 void ceq_w(MSARegister wd, MSARegister ws, MSARegister wt); 1058 void ceq_d(MSARegister wd, MSARegister ws, MSARegister wt); 1059 void clt_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1060 void clt_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1061 void clt_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1062 void clt_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1063 void clt_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1064 void clt_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1065 void clt_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1066 void clt_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1067 void cle_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1068 void cle_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1069 void cle_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1070 void cle_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1071 void cle_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1072 void cle_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1073 void cle_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1074 void cle_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1075 void add_a_b(MSARegister wd, MSARegister ws, MSARegister wt); 1076 void add_a_h(MSARegister wd, MSARegister ws, MSARegister wt); 1077 void add_a_w(MSARegister wd, MSARegister ws, MSARegister wt); 1078 void add_a_d(MSARegister wd, MSARegister ws, MSARegister wt); 1079 void adds_a_b(MSARegister wd, MSARegister ws, MSARegister wt); 1080 void adds_a_h(MSARegister wd, MSARegister ws, MSARegister wt); 1081 void adds_a_w(MSARegister wd, MSARegister ws, MSARegister wt); 1082 void adds_a_d(MSARegister wd, MSARegister ws, MSARegister wt); 1083 void adds_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1084 void adds_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1085 void adds_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1086 void adds_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1087 void adds_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1088 void adds_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1089 void adds_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1090 void adds_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1091 void ave_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1092 void ave_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1093 void ave_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1094 void ave_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1095 void ave_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1096 void ave_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1097 void ave_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1098 void ave_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1099 void aver_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1100 void aver_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1101 void aver_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1102 void aver_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1103 void aver_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1104 void aver_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1105 void aver_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1106 void aver_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1107 void subs_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1108 void subs_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1109 void subs_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1110 void subs_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1111 void subs_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1112 void subs_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1113 void subs_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1114 void subs_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1115 void subsus_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1116 void subsus_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1117 void subsus_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1118 void subsus_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1119 void subsus_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1120 void subsus_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1121 void subsus_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1122 void subsus_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1123 void subsuu_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1124 void subsuu_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1125 void subsuu_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1126 void subsuu_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1127 void subsuu_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1128 void subsuu_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1129 void subsuu_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1130 void subsuu_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1131 void asub_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1132 void asub_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1133 void asub_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1134 void asub_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1135 void asub_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1136 void asub_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1137 void asub_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1138 void asub_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1139 void mulv_b(MSARegister wd, MSARegister ws, MSARegister wt); 1140 void mulv_h(MSARegister wd, MSARegister ws, MSARegister wt); 1141 void mulv_w(MSARegister wd, MSARegister ws, MSARegister wt); 1142 void mulv_d(MSARegister wd, MSARegister ws, MSARegister wt); 1143 void maddv_b(MSARegister wd, MSARegister ws, MSARegister wt); 1144 void maddv_h(MSARegister wd, MSARegister ws, MSARegister wt); 1145 void maddv_w(MSARegister wd, MSARegister ws, MSARegister wt); 1146 void maddv_d(MSARegister wd, MSARegister ws, MSARegister wt); 1147 void msubv_b(MSARegister wd, MSARegister ws, MSARegister wt); 1148 void msubv_h(MSARegister wd, MSARegister ws, MSARegister wt); 1149 void msubv_w(MSARegister wd, MSARegister ws, MSARegister wt); 1150 void msubv_d(MSARegister wd, MSARegister ws, MSARegister wt); 1151 void div_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1152 void div_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1153 void div_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1154 void div_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1155 void div_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1156 void div_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1157 void div_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1158 void div_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1159 void mod_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1160 void mod_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1161 void mod_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1162 void mod_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1163 void mod_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1164 void mod_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1165 void mod_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1166 void mod_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1167 void dotp_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1168 void dotp_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1169 void dotp_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1170 void dotp_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1171 void dotp_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1172 void dotp_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1173 void dotp_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1174 void dotp_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1175 void dpadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1176 void dpadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1177 void dpadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1178 void dpadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1179 void dpadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1180 void dpadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1181 void dpadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1182 void dpadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1183 void dpsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1184 void dpsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1185 void dpsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1186 void dpsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1187 void dpsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1188 void dpsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1189 void dpsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1190 void dpsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1191 void sld_b(MSARegister wd, MSARegister ws, Register rt); 1192 void sld_h(MSARegister wd, MSARegister ws, Register rt); 1193 void sld_w(MSARegister wd, MSARegister ws, Register rt); 1194 void sld_d(MSARegister wd, MSARegister ws, Register rt); 1195 void splat_b(MSARegister wd, MSARegister ws, Register rt); 1196 void splat_h(MSARegister wd, MSARegister ws, Register rt); 1197 void splat_w(MSARegister wd, MSARegister ws, Register rt); 1198 void splat_d(MSARegister wd, MSARegister ws, Register rt); 1199 void pckev_b(MSARegister wd, MSARegister ws, MSARegister wt); 1200 void pckev_h(MSARegister wd, MSARegister ws, MSARegister wt); 1201 void pckev_w(MSARegister wd, MSARegister ws, MSARegister wt); 1202 void pckev_d(MSARegister wd, MSARegister ws, MSARegister wt); 1203 void pckod_b(MSARegister wd, MSARegister ws, MSARegister wt); 1204 void pckod_h(MSARegister wd, MSARegister ws, MSARegister wt); 1205 void pckod_w(MSARegister wd, MSARegister ws, MSARegister wt); 1206 void pckod_d(MSARegister wd, MSARegister ws, MSARegister wt); 1207 void ilvl_b(MSARegister wd, MSARegister ws, MSARegister wt); 1208 void ilvl_h(MSARegister wd, MSARegister ws, MSARegister wt); 1209 void ilvl_w(MSARegister wd, MSARegister ws, MSARegister wt); 1210 void ilvl_d(MSARegister wd, MSARegister ws, MSARegister wt); 1211 void ilvr_b(MSARegister wd, MSARegister ws, MSARegister wt); 1212 void ilvr_h(MSARegister wd, MSARegister ws, MSARegister wt); 1213 void ilvr_w(MSARegister wd, MSARegister ws, MSARegister wt); 1214 void ilvr_d(MSARegister wd, MSARegister ws, MSARegister wt); 1215 void ilvev_b(MSARegister wd, MSARegister ws, MSARegister wt); 1216 void ilvev_h(MSARegister wd, MSARegister ws, MSARegister wt); 1217 void ilvev_w(MSARegister wd, MSARegister ws, MSARegister wt); 1218 void ilvev_d(MSARegister wd, MSARegister ws, MSARegister wt); 1219 void ilvod_b(MSARegister wd, MSARegister ws, MSARegister wt); 1220 void ilvod_h(MSARegister wd, MSARegister ws, MSARegister wt); 1221 void ilvod_w(MSARegister wd, MSARegister ws, MSARegister wt); 1222 void ilvod_d(MSARegister wd, MSARegister ws, MSARegister wt); 1223 void vshf_b(MSARegister wd, MSARegister ws, MSARegister wt); 1224 void vshf_h(MSARegister wd, MSARegister ws, MSARegister wt); 1225 void vshf_w(MSARegister wd, MSARegister ws, MSARegister wt); 1226 void vshf_d(MSARegister wd, MSARegister ws, MSARegister wt); 1227 void srar_b(MSARegister wd, MSARegister ws, MSARegister wt); 1228 void srar_h(MSARegister wd, MSARegister ws, MSARegister wt); 1229 void srar_w(MSARegister wd, MSARegister ws, MSARegister wt); 1230 void srar_d(MSARegister wd, MSARegister ws, MSARegister wt); 1231 void srlr_b(MSARegister wd, MSARegister ws, MSARegister wt); 1232 void srlr_h(MSARegister wd, MSARegister ws, MSARegister wt); 1233 void srlr_w(MSARegister wd, MSARegister ws, MSARegister wt); 1234 void srlr_d(MSARegister wd, MSARegister ws, MSARegister wt); 1235 void hadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1236 void hadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1237 void hadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1238 void hadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1239 void hadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1240 void hadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1241 void hadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1242 void hadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1243 void hsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt); 1244 void hsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt); 1245 void hsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt); 1246 void hsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt); 1247 void hsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt); 1248 void hsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt); 1249 void hsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt); 1250 void hsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt); 1251 1252 void fcaf_w(MSARegister wd, MSARegister ws, MSARegister wt); 1253 void fcaf_d(MSARegister wd, MSARegister ws, MSARegister wt); 1254 void fcun_w(MSARegister wd, MSARegister ws, MSARegister wt); 1255 void fcun_d(MSARegister wd, MSARegister ws, MSARegister wt); 1256 void fceq_w(MSARegister wd, MSARegister ws, MSARegister wt); 1257 void fceq_d(MSARegister wd, MSARegister ws, MSARegister wt); 1258 void fcueq_w(MSARegister wd, MSARegister ws, MSARegister wt); 1259 void fcueq_d(MSARegister wd, MSARegister ws, MSARegister wt); 1260 void fclt_w(MSARegister wd, MSARegister ws, MSARegister wt); 1261 void fclt_d(MSARegister wd, MSARegister ws, MSARegister wt); 1262 void fcult_w(MSARegister wd, MSARegister ws, MSARegister wt); 1263 void fcult_d(MSARegister wd, MSARegister ws, MSARegister wt); 1264 void fcle_w(MSARegister wd, MSARegister ws, MSARegister wt); 1265 void fcle_d(MSARegister wd, MSARegister ws, MSARegister wt); 1266 void fcule_w(MSARegister wd, MSARegister ws, MSARegister wt); 1267 void fcule_d(MSARegister wd, MSARegister ws, MSARegister wt); 1268 void fsaf_w(MSARegister wd, MSARegister ws, MSARegister wt); 1269 void fsaf_d(MSARegister wd, MSARegister ws, MSARegister wt); 1270 void fsun_w(MSARegister wd, MSARegister ws, MSARegister wt); 1271 void fsun_d(MSARegister wd, MSARegister ws, MSARegister wt); 1272 void fseq_w(MSARegister wd, MSARegister ws, MSARegister wt); 1273 void fseq_d(MSARegister wd, MSARegister ws, MSARegister wt); 1274 void fsueq_w(MSARegister wd, MSARegister ws, MSARegister wt); 1275 void fsueq_d(MSARegister wd, MSARegister ws, MSARegister wt); 1276 void fslt_w(MSARegister wd, MSARegister ws, MSARegister wt); 1277 void fslt_d(MSARegister wd, MSARegister ws, MSARegister wt); 1278 void fsult_w(MSARegister wd, MSARegister ws, MSARegister wt); 1279 void fsult_d(MSARegister wd, MSARegister ws, MSARegister wt); 1280 void fsle_w(MSARegister wd, MSARegister ws, MSARegister wt); 1281 void fsle_d(MSARegister wd, MSARegister ws, MSARegister wt); 1282 void fsule_w(MSARegister wd, MSARegister ws, MSARegister wt); 1283 void fsule_d(MSARegister wd, MSARegister ws, MSARegister wt); 1284 void fadd_w(MSARegister wd, MSARegister ws, MSARegister wt); 1285 void fadd_d(MSARegister wd, MSARegister ws, MSARegister wt); 1286 void fsub_w(MSARegister wd, MSARegister ws, MSARegister wt); 1287 void fsub_d(MSARegister wd, MSARegister ws, MSARegister wt); 1288 void fmul_w(MSARegister wd, MSARegister ws, MSARegister wt); 1289 void fmul_d(MSARegister wd, MSARegister ws, MSARegister wt); 1290 void fdiv_w(MSARegister wd, MSARegister ws, MSARegister wt); 1291 void fdiv_d(MSARegister wd, MSARegister ws, MSARegister wt); 1292 void fmadd_w(MSARegister wd, MSARegister ws, MSARegister wt); 1293 void fmadd_d(MSARegister wd, MSARegister ws, MSARegister wt); 1294 void fmsub_w(MSARegister wd, MSARegister ws, MSARegister wt); 1295 void fmsub_d(MSARegister wd, MSARegister ws, MSARegister wt); 1296 void fexp2_w(MSARegister wd, MSARegister ws, MSARegister wt); 1297 void fexp2_d(MSARegister wd, MSARegister ws, MSARegister wt); 1298 void fexdo_h(MSARegister wd, MSARegister ws, MSARegister wt); 1299 void fexdo_w(MSARegister wd, MSARegister ws, MSARegister wt); 1300 void ftq_h(MSARegister wd, MSARegister ws, MSARegister wt); 1301 void ftq_w(MSARegister wd, MSARegister ws, MSARegister wt); 1302 void fmin_w(MSARegister wd, MSARegister ws, MSARegister wt); 1303 void fmin_d(MSARegister wd, MSARegister ws, MSARegister wt); 1304 void fmin_a_w(MSARegister wd, MSARegister ws, MSARegister wt); 1305 void fmin_a_d(MSARegister wd, MSARegister ws, MSARegister wt); 1306 void fmax_w(MSARegister wd, MSARegister ws, MSARegister wt); 1307 void fmax_d(MSARegister wd, MSARegister ws, MSARegister wt); 1308 void fmax_a_w(MSARegister wd, MSARegister ws, MSARegister wt); 1309 void fmax_a_d(MSARegister wd, MSARegister ws, MSARegister wt); 1310 void fcor_w(MSARegister wd, MSARegister ws, MSARegister wt); 1311 void fcor_d(MSARegister wd, MSARegister ws, MSARegister wt); 1312 void fcune_w(MSARegister wd, MSARegister ws, MSARegister wt); 1313 void fcune_d(MSARegister wd, MSARegister ws, MSARegister wt); 1314 void fcne_w(MSARegister wd, MSARegister ws, MSARegister wt); 1315 void fcne_d(MSARegister wd, MSARegister ws, MSARegister wt); 1316 void mul_q_h(MSARegister wd, MSARegister ws, MSARegister wt); 1317 void mul_q_w(MSARegister wd, MSARegister ws, MSARegister wt); 1318 void madd_q_h(MSARegister wd, MSARegister ws, MSARegister wt); 1319 void madd_q_w(MSARegister wd, MSARegister ws, MSARegister wt); 1320 void msub_q_h(MSARegister wd, MSARegister ws, MSARegister wt); 1321 void msub_q_w(MSARegister wd, MSARegister ws, MSARegister wt); 1322 void fsor_w(MSARegister wd, MSARegister ws, MSARegister wt); 1323 void fsor_d(MSARegister wd, MSARegister ws, MSARegister wt); 1324 void fsune_w(MSARegister wd, MSARegister ws, MSARegister wt); 1325 void fsune_d(MSARegister wd, MSARegister ws, MSARegister wt); 1326 void fsne_w(MSARegister wd, MSARegister ws, MSARegister wt); 1327 void fsne_d(MSARegister wd, MSARegister ws, MSARegister wt); 1328 void mulr_q_h(MSARegister wd, MSARegister ws, MSARegister wt); 1329 void mulr_q_w(MSARegister wd, MSARegister ws, MSARegister wt); 1330 void maddr_q_h(MSARegister wd, MSARegister ws, MSARegister wt); 1331 void maddr_q_w(MSARegister wd, MSARegister ws, MSARegister wt); 1332 void msubr_q_h(MSARegister wd, MSARegister ws, MSARegister wt); 1333 void msubr_q_w(MSARegister wd, MSARegister ws, MSARegister wt); 1334 1335 void sldi_b(MSARegister wd, MSARegister ws, uint32_t n); 1336 void sldi_h(MSARegister wd, MSARegister ws, uint32_t n); 1337 void sldi_w(MSARegister wd, MSARegister ws, uint32_t n); 1338 void sldi_d(MSARegister wd, MSARegister ws, uint32_t n); 1339 void splati_b(MSARegister wd, MSARegister ws, uint32_t n); 1340 void splati_h(MSARegister wd, MSARegister ws, uint32_t n); 1341 void splati_w(MSARegister wd, MSARegister ws, uint32_t n); 1342 void splati_d(MSARegister wd, MSARegister ws, uint32_t n); 1343 void copy_s_b(Register rd, MSARegister ws, uint32_t n); 1344 void copy_s_h(Register rd, MSARegister ws, uint32_t n); 1345 void copy_s_w(Register rd, MSARegister ws, uint32_t n); 1346 void copy_s_d(Register rd, MSARegister ws, uint32_t n); 1347 void copy_u_b(Register rd, MSARegister ws, uint32_t n); 1348 void copy_u_h(Register rd, MSARegister ws, uint32_t n); 1349 void copy_u_w(Register rd, MSARegister ws, uint32_t n); 1350 void insert_b(MSARegister wd, uint32_t n, Register rs); 1351 void insert_h(MSARegister wd, uint32_t n, Register rs); 1352 void insert_w(MSARegister wd, uint32_t n, Register rs); 1353 void insert_d(MSARegister wd, uint32_t n, Register rs); 1354 void insve_b(MSARegister wd, uint32_t n, MSARegister ws); 1355 void insve_h(MSARegister wd, uint32_t n, MSARegister ws); 1356 void insve_w(MSARegister wd, uint32_t n, MSARegister ws); 1357 void insve_d(MSARegister wd, uint32_t n, MSARegister ws); 1358 void move_v(MSARegister wd, MSARegister ws); 1359 void ctcmsa(MSAControlRegister cd, Register rs); 1360 void cfcmsa(Register rd, MSAControlRegister cs); 1361 1362 void slli_b(MSARegister wd, MSARegister ws, uint32_t m); 1363 void slli_h(MSARegister wd, MSARegister ws, uint32_t m); 1364 void slli_w(MSARegister wd, MSARegister ws, uint32_t m); 1365 void slli_d(MSARegister wd, MSARegister ws, uint32_t m); 1366 void srai_b(MSARegister wd, MSARegister ws, uint32_t m); 1367 void srai_h(MSARegister wd, MSARegister ws, uint32_t m); 1368 void srai_w(MSARegister wd, MSARegister ws, uint32_t m); 1369 void srai_d(MSARegister wd, MSARegister ws, uint32_t m); 1370 void srli_b(MSARegister wd, MSARegister ws, uint32_t m); 1371 void srli_h(MSARegister wd, MSARegister ws, uint32_t m); 1372 void srli_w(MSARegister wd, MSARegister ws, uint32_t m); 1373 void srli_d(MSARegister wd, MSARegister ws, uint32_t m); 1374 void bclri_b(MSARegister wd, MSARegister ws, uint32_t m); 1375 void bclri_h(MSARegister wd, MSARegister ws, uint32_t m); 1376 void bclri_w(MSARegister wd, MSARegister ws, uint32_t m); 1377 void bclri_d(MSARegister wd, MSARegister ws, uint32_t m); 1378 void bseti_b(MSARegister wd, MSARegister ws, uint32_t m); 1379 void bseti_h(MSARegister wd, MSARegister ws, uint32_t m); 1380 void bseti_w(MSARegister wd, MSARegister ws, uint32_t m); 1381 void bseti_d(MSARegister wd, MSARegister ws, uint32_t m); 1382 void bnegi_b(MSARegister wd, MSARegister ws, uint32_t m); 1383 void bnegi_h(MSARegister wd, MSARegister ws, uint32_t m); 1384 void bnegi_w(MSARegister wd, MSARegister ws, uint32_t m); 1385 void bnegi_d(MSARegister wd, MSARegister ws, uint32_t m); 1386 void binsli_b(MSARegister wd, MSARegister ws, uint32_t m); 1387 void binsli_h(MSARegister wd, MSARegister ws, uint32_t m); 1388 void binsli_w(MSARegister wd, MSARegister ws, uint32_t m); 1389 void binsli_d(MSARegister wd, MSARegister ws, uint32_t m); 1390 void binsri_b(MSARegister wd, MSARegister ws, uint32_t m); 1391 void binsri_h(MSARegister wd, MSARegister ws, uint32_t m); 1392 void binsri_w(MSARegister wd, MSARegister ws, uint32_t m); 1393 void binsri_d(MSARegister wd, MSARegister ws, uint32_t m); 1394 void sat_s_b(MSARegister wd, MSARegister ws, uint32_t m); 1395 void sat_s_h(MSARegister wd, MSARegister ws, uint32_t m); 1396 void sat_s_w(MSARegister wd, MSARegister ws, uint32_t m); 1397 void sat_s_d(MSARegister wd, MSARegister ws, uint32_t m); 1398 void sat_u_b(MSARegister wd, MSARegister ws, uint32_t m); 1399 void sat_u_h(MSARegister wd, MSARegister ws, uint32_t m); 1400 void sat_u_w(MSARegister wd, MSARegister ws, uint32_t m); 1401 void sat_u_d(MSARegister wd, MSARegister ws, uint32_t m); 1402 void srari_b(MSARegister wd, MSARegister ws, uint32_t m); 1403 void srari_h(MSARegister wd, MSARegister ws, uint32_t m); 1404 void srari_w(MSARegister wd, MSARegister ws, uint32_t m); 1405 void srari_d(MSARegister wd, MSARegister ws, uint32_t m); 1406 void srlri_b(MSARegister wd, MSARegister ws, uint32_t m); 1407 void srlri_h(MSARegister wd, MSARegister ws, uint32_t m); 1408 void srlri_w(MSARegister wd, MSARegister ws, uint32_t m); 1409 void srlri_d(MSARegister wd, MSARegister ws, uint32_t m); 1410 1411 // Check the code size generated from label to here. 1412 int SizeOfCodeGeneratedSince(Label* label) { 1413 return pc_offset() - label->pos(); 1414 } 1415 1416 // Check the number of instructions generated from label to here. 1417 int InstructionsGeneratedSince(Label* label) { 1418 return SizeOfCodeGeneratedSince(label) / kInstrSize; 1419 } 1420 1421 // Class for scoping postponing the trampoline pool generation. 1422 class V8_NODISCARD BlockTrampolinePoolScope { 1423 public: 1424 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) { 1425 assem_->StartBlockTrampolinePool(); 1426 } 1427 ~BlockTrampolinePoolScope() { assem_->EndBlockTrampolinePool(); } 1428 1429 private: 1430 Assembler* assem_; 1431 1432 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope); 1433 }; 1434 1435 // Class for postponing the assembly buffer growth. Typically used for 1436 // sequences of instructions that must be emitted as a unit, before 1437 // buffer growth (and relocation) can occur. 1438 // This blocking scope is not nestable. 1439 class V8_NODISCARD BlockGrowBufferScope { 1440 public: 1441 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) { 1442 assem_->StartBlockGrowBuffer(); 1443 } 1444 ~BlockGrowBufferScope() { assem_->EndBlockGrowBuffer(); } 1445 1446 private: 1447 Assembler* assem_; 1448 1449 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope); 1450 }; 1451 1452 // Record a deoptimization reason that can be used by a log or cpu profiler. 1453 // Use --trace-deopt to enable. 1454 void RecordDeoptReason(DeoptimizeReason reason, uint32_t node_id, 1455 SourcePosition position, int id); 1456 1457 static int RelocateInternalReference(RelocInfo::Mode rmode, Address pc, 1458 intptr_t pc_delta); 1459 1460 // Writes a single byte or word of data in the code stream. Used for 1461 // inline tables, e.g., jump-tables. 1462 void db(uint8_t data); 1463 void dd(uint32_t data, RelocInfo::Mode rmode = RelocInfo::NO_INFO); 1464 void dq(uint64_t data, RelocInfo::Mode rmode = RelocInfo::NO_INFO); 1465 void dp(uintptr_t data, RelocInfo::Mode rmode = RelocInfo::NO_INFO) { 1466 dq(data, rmode); 1467 } 1468 void dd(Label* label); 1469 1470 // Postpone the generation of the trampoline pool for the specified number of 1471 // instructions. 1472 void BlockTrampolinePoolFor(int instructions); 1473 1474 // Check if there is less than kGap bytes available in the buffer. 1475 // If this is the case, we need to grow the buffer before emitting 1476 // an instruction or relocation information. 1477 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } 1478 1479 // Get the number of bytes available in the buffer. 1480 inline intptr_t available_space() const { 1481 return reloc_info_writer.pos() - pc_; 1482 } 1483 1484 // Read/patch instructions. 1485 static Instr instr_at(Address pc) { return *reinterpret_cast<Instr*>(pc); } 1486 static void instr_at_put(Address pc, Instr instr) { 1487 *reinterpret_cast<Instr*>(pc) = instr; 1488 } 1489 Instr instr_at(int pos) { 1490 return *reinterpret_cast<Instr*>(buffer_start_ + pos); 1491 } 1492 void instr_at_put(int pos, Instr instr) { 1493 *reinterpret_cast<Instr*>(buffer_start_ + pos) = instr; 1494 } 1495 1496 // Check if an instruction is a branch of some kind. 1497 static bool IsBranch(Instr instr); 1498 static bool IsMsaBranch(Instr instr); 1499 static bool IsBc(Instr instr); 1500 static bool IsNal(Instr instr); 1501 static bool IsBzc(Instr instr); 1502 1503 static bool IsBeq(Instr instr); 1504 static bool IsBne(Instr instr); 1505 static bool IsBeqzc(Instr instr); 1506 static bool IsBnezc(Instr instr); 1507 static bool IsBeqc(Instr instr); 1508 static bool IsBnec(Instr instr); 1509 1510 static bool IsJump(Instr instr); 1511 static bool IsJ(Instr instr); 1512 static bool IsLui(Instr instr); 1513 static bool IsOri(Instr instr); 1514 static bool IsMov(Instr instr, Register rd, Register rs); 1515 1516 static bool IsJal(Instr instr); 1517 static bool IsJr(Instr instr); 1518 static bool IsJalr(Instr instr); 1519 1520 static bool IsNop(Instr instr, unsigned int type); 1521 static bool IsPop(Instr instr); 1522 static bool IsPush(Instr instr); 1523 static bool IsLwRegFpOffset(Instr instr); 1524 static bool IsSwRegFpOffset(Instr instr); 1525 static bool IsLwRegFpNegOffset(Instr instr); 1526 static bool IsSwRegFpNegOffset(Instr instr); 1527 1528 static Register GetRtReg(Instr instr); 1529 static Register GetRsReg(Instr instr); 1530 static Register GetRdReg(Instr instr); 1531 1532 static uint32_t GetRt(Instr instr); 1533 static uint32_t GetRtField(Instr instr); 1534 static uint32_t GetRs(Instr instr); 1535 static uint32_t GetRsField(Instr instr); 1536 static uint32_t GetRd(Instr instr); 1537 static uint32_t GetRdField(Instr instr); 1538 static uint32_t GetSa(Instr instr); 1539 static uint32_t GetSaField(Instr instr); 1540 static uint32_t GetOpcodeField(Instr instr); 1541 static uint32_t GetFunction(Instr instr); 1542 static uint32_t GetFunctionField(Instr instr); 1543 static uint32_t GetImmediate16(Instr instr); 1544 static uint32_t GetLabelConst(Instr instr); 1545 1546 static int32_t GetBranchOffset(Instr instr); 1547 static bool IsLw(Instr instr); 1548 static int16_t GetLwOffset(Instr instr); 1549 static Instr SetLwOffset(Instr instr, int16_t offset); 1550 1551 static bool IsSw(Instr instr); 1552 static Instr SetSwOffset(Instr instr, int16_t offset); 1553 static bool IsAddImmediate(Instr instr); 1554 static Instr SetAddImmediateOffset(Instr instr, int16_t offset); 1555 1556 static bool IsAndImmediate(Instr instr); 1557 static bool IsEmittedConstant(Instr instr); 1558 1559 void CheckTrampolinePool(); 1560 1561 bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; } 1562 static bool IsCompactBranchSupported() { return kArchVariant == kMips64r6; } 1563 1564 inline int UnboundLabelsCount() { return unbound_labels_count_; } 1565 1566 bool is_trampoline_emitted() const { return trampoline_emitted_; } 1567 1568 protected: 1569 // Load Scaled Address instructions. 1570 void lsa(Register rd, Register rt, Register rs, uint8_t sa); 1571 void dlsa(Register rd, Register rt, Register rs, uint8_t sa); 1572 1573 // Readable constants for base and offset adjustment helper, these indicate if 1574 // aside from offset, another value like offset + 4 should fit into int16. 1575 enum class OffsetAccessType : bool { 1576 SINGLE_ACCESS = false, 1577 TWO_ACCESSES = true 1578 }; 1579 1580 // Helper function for memory load/store using base register and offset. 1581 void AdjustBaseAndOffset( 1582 MemOperand* src, 1583 OffsetAccessType access_type = OffsetAccessType::SINGLE_ACCESS, 1584 int second_access_add_to_offset = 4); 1585 1586 inline static void set_target_internal_reference_encoded_at(Address pc, 1587 Address target); 1588 1589 int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; } 1590 1591 // Decode branch instruction at pos and return branch target pos. 1592 int target_at(int pos, bool is_internal); 1593 1594 // Patch branch instruction at pos to branch to given branch target pos. 1595 void target_at_put(int pos, int target_pos, bool is_internal); 1596 1597 // Say if we need to relocate with this mode. 1598 bool MustUseReg(RelocInfo::Mode rmode); 1599 1600 // Record reloc info for current pc_. 1601 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); 1602 1603 // Block the emission of the trampoline pool before pc_offset. 1604 void BlockTrampolinePoolBefore(int pc_offset) { 1605 if (no_trampoline_pool_before_ < pc_offset) 1606 no_trampoline_pool_before_ = pc_offset; 1607 } 1608 1609 void StartBlockTrampolinePool() { trampoline_pool_blocked_nesting_++; } 1610 1611 void EndBlockTrampolinePool() { 1612 trampoline_pool_blocked_nesting_--; 1613 if (trampoline_pool_blocked_nesting_ == 0) { 1614 CheckTrampolinePoolQuick(1); 1615 } 1616 } 1617 1618 bool is_trampoline_pool_blocked() const { 1619 return trampoline_pool_blocked_nesting_ > 0; 1620 } 1621 1622 bool has_exception() const { return internal_trampoline_exception_; } 1623 1624 // Temporarily block automatic assembly buffer growth. 1625 void StartBlockGrowBuffer() { 1626 DCHECK(!block_buffer_growth_); 1627 block_buffer_growth_ = true; 1628 } 1629 1630 void EndBlockGrowBuffer() { 1631 DCHECK(block_buffer_growth_); 1632 block_buffer_growth_ = false; 1633 } 1634 1635 bool is_buffer_growth_blocked() const { return block_buffer_growth_; } 1636 1637 void EmitForbiddenSlotInstruction() { 1638 if (IsPrevInstrCompactBranch()) { 1639 nop(); 1640 } 1641 } 1642 1643 void CheckTrampolinePoolQuick(int extra_instructions = 0) { 1644 if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) { 1645 CheckTrampolinePool(); 1646 } 1647 } 1648 1649 void set_pc_for_safepoint() { pc_for_safepoint_ = pc_; } 1650 1651 private: 1652 // Avoid overflows for displacements etc. 1653 static const int kMaximalBufferSize = 512 * MB; 1654 1655 // Buffer size and constant pool distance are checked together at regular 1656 // intervals of kBufferCheckInterval emitted bytes. 1657 static constexpr int kBufferCheckInterval = 1 * KB / 2; 1658 1659 // Code generation. 1660 // The relocation writer's position is at least kGap bytes below the end of 1661 // the generated instructions. This is so that multi-instruction sequences do 1662 // not have to check for overflow. The same is true for writes of large 1663 // relocation info entries. 1664 static constexpr int kGap = 64; 1665 STATIC_ASSERT(AssemblerBase::kMinimalBufferSize >= 2 * kGap); 1666 1667 // Repeated checking whether the trampoline pool should be emitted is rather 1668 // expensive. By default we only check again once a number of instructions 1669 // has been generated. 1670 static constexpr int kCheckConstIntervalInst = 32; 1671 static constexpr int kCheckConstInterval = 1672 kCheckConstIntervalInst * kInstrSize; 1673 1674 int next_buffer_check_; // pc offset of next buffer check. 1675 1676 // Emission of the trampoline pool may be blocked in some code sequences. 1677 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero. 1678 int no_trampoline_pool_before_; // Block emission before this pc offset. 1679 1680 // Keep track of the last emitted pool to guarantee a maximal distance. 1681 int last_trampoline_pool_end_; // pc offset of the end of the last pool. 1682 1683 // Automatic growth of the assembly buffer may be blocked for some sequences. 1684 bool block_buffer_growth_; // Block growth when true. 1685 1686 // Relocation information generation. 1687 // Each relocation is encoded as a variable size value. 1688 static constexpr int kMaxRelocSize = RelocInfoWriter::kMaxSize; 1689 RelocInfoWriter reloc_info_writer; 1690 1691 // The bound position, before this we cannot do instruction elimination. 1692 int last_bound_pos_; 1693 1694 // Readable constants for compact branch handling in emit() 1695 enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true }; 1696 1697 // Code emission. 1698 inline void CheckBuffer(); 1699 void GrowBuffer(); 1700 inline void emit(Instr x, 1701 CompactBranchType is_compact_branch = CompactBranchType::NO); 1702 inline void emit(uint64_t x); 1703 inline void CheckForEmitInForbiddenSlot(); 1704 template <typename T> 1705 inline void EmitHelper(T x); 1706 inline void EmitHelper(Instr x, CompactBranchType is_compact_branch); 1707 1708 // Instruction generation. 1709 // We have 3 different kind of encoding layout on MIPS. 1710 // However due to many different types of objects encoded in the same fields 1711 // we have quite a few aliases for each mode. 1712 // Using the same structure to refer to Register and FPURegister would spare a 1713 // few aliases, but mixing both does not look clean to me. 1714 // Anyway we could surely implement this differently. 1715 1716 void GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd, 1717 uint16_t sa = 0, SecondaryField func = nullptrSF); 1718 1719 void GenInstrRegister(Opcode opcode, Register rs, Register rt, uint16_t msb, 1720 uint16_t lsb, SecondaryField func); 1721 1722 void GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft, 1723 FPURegister fs, FPURegister fd, 1724 SecondaryField func = nullptrSF); 1725 1726 void GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft, 1727 FPURegister fs, FPURegister fd, 1728 SecondaryField func = nullptrSF); 1729 1730 void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, 1731 FPURegister fs, FPURegister fd, 1732 SecondaryField func = nullptrSF); 1733 1734 void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, 1735 FPUControlRegister fs, SecondaryField func = nullptrSF); 1736 1737 void GenInstrImmediate( 1738 Opcode opcode, Register rs, Register rt, int32_t j, 1739 CompactBranchType is_compact_branch = CompactBranchType::NO); 1740 void GenInstrImmediate( 1741 Opcode opcode, Register rs, SecondaryField SF, int32_t j, 1742 CompactBranchType is_compact_branch = CompactBranchType::NO); 1743 void GenInstrImmediate( 1744 Opcode opcode, Register r1, FPURegister r2, int32_t j, 1745 CompactBranchType is_compact_branch = CompactBranchType::NO); 1746 void GenInstrImmediate(Opcode opcode, Register base, Register rt, 1747 int32_t offset9, int bit6, SecondaryField func); 1748 void GenInstrImmediate( 1749 Opcode opcode, Register rs, int32_t offset21, 1750 CompactBranchType is_compact_branch = CompactBranchType::NO); 1751 void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21); 1752 void GenInstrImmediate( 1753 Opcode opcode, int32_t offset26, 1754 CompactBranchType is_compact_branch = CompactBranchType::NO); 1755 1756 void GenInstrJump(Opcode opcode, uint32_t address); 1757 1758 // MSA 1759 void GenInstrMsaI8(SecondaryField operation, uint32_t imm8, MSARegister ws, 1760 MSARegister wd); 1761 1762 void GenInstrMsaI5(SecondaryField operation, SecondaryField df, int32_t imm5, 1763 MSARegister ws, MSARegister wd); 1764 1765 void GenInstrMsaBit(SecondaryField operation, SecondaryField df, uint32_t m, 1766 MSARegister ws, MSARegister wd); 1767 1768 void GenInstrMsaI10(SecondaryField operation, SecondaryField df, 1769 int32_t imm10, MSARegister wd); 1770 1771 template <typename RegType> 1772 void GenInstrMsa3R(SecondaryField operation, SecondaryField df, RegType t, 1773 MSARegister ws, MSARegister wd); 1774 1775 template <typename DstType, typename SrcType> 1776 void GenInstrMsaElm(SecondaryField operation, SecondaryField df, uint32_t n, 1777 SrcType src, DstType dst); 1778 1779 void GenInstrMsa3RF(SecondaryField operation, uint32_t df, MSARegister wt, 1780 MSARegister ws, MSARegister wd); 1781 1782 void GenInstrMsaVec(SecondaryField operation, MSARegister wt, MSARegister ws, 1783 MSARegister wd); 1784 1785 void GenInstrMsaMI10(SecondaryField operation, int32_t s10, Register rs, 1786 MSARegister wd); 1787 1788 void GenInstrMsa2R(SecondaryField operation, SecondaryField df, 1789 MSARegister ws, MSARegister wd); 1790 1791 void GenInstrMsa2RF(SecondaryField operation, SecondaryField df, 1792 MSARegister ws, MSARegister wd); 1793 1794 void GenInstrMsaBranch(SecondaryField operation, MSARegister wt, 1795 int32_t offset16); 1796 1797 inline bool is_valid_msa_df_m(SecondaryField bit_df, uint32_t m) { 1798 switch (bit_df) { 1799 case BIT_DF_b: 1800 return is_uint3(m); 1801 case BIT_DF_h: 1802 return is_uint4(m); 1803 case BIT_DF_w: 1804 return is_uint5(m); 1805 case BIT_DF_d: 1806 return is_uint6(m); 1807 default: 1808 return false; 1809 } 1810 } 1811 1812 inline bool is_valid_msa_df_n(SecondaryField elm_df, uint32_t n) { 1813 switch (elm_df) { 1814 case ELM_DF_B: 1815 return is_uint4(n); 1816 case ELM_DF_H: 1817 return is_uint3(n); 1818 case ELM_DF_W: 1819 return is_uint2(n); 1820 case ELM_DF_D: 1821 return is_uint1(n); 1822 default: 1823 return false; 1824 } 1825 } 1826 1827 // Labels. 1828 void print(const Label* L); 1829 void bind_to(Label* L, int pos); 1830 void next(Label* L, bool is_internal); 1831 1832 // One trampoline consists of: 1833 // - space for trampoline slots, 1834 // - space for labels. 1835 // 1836 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize. 1837 // Space for trampoline slots precedes space for labels. Each label is of one 1838 // instruction size, so total amount for labels is equal to 1839 // label_count * kInstrSize. 1840 class Trampoline { 1841 public: 1842 Trampoline() { 1843 start_ = 0; 1844 next_slot_ = 0; 1845 free_slot_count_ = 0; 1846 end_ = 0; 1847 } 1848 Trampoline(int start, int slot_count) { 1849 start_ = start; 1850 next_slot_ = start; 1851 free_slot_count_ = slot_count; 1852 end_ = start + slot_count * kTrampolineSlotsSize; 1853 } 1854 int start() { return start_; } 1855 int end() { return end_; } 1856 int take_slot() { 1857 int trampoline_slot = kInvalidSlotPos; 1858 if (free_slot_count_ <= 0) { 1859 // We have run out of space on trampolines. 1860 // Make sure we fail in debug mode, so we become aware of each case 1861 // when this happens. 1862 DCHECK(0); 1863 // Internal exception will be caught. 1864 } else { 1865 trampoline_slot = next_slot_; 1866 free_slot_count_--; 1867 next_slot_ += kTrampolineSlotsSize; 1868 } 1869 return trampoline_slot; 1870 } 1871 1872 private: 1873 int start_; 1874 int end_; 1875 int next_slot_; 1876 int free_slot_count_; 1877 }; 1878 1879 int32_t get_trampoline_entry(int32_t pos); 1880 int unbound_labels_count_; 1881 // After trampoline is emitted, long branches are used in generated code for 1882 // the forward branches whose target offsets could be beyond reach of branch 1883 // instruction. We use this information to trigger different mode of 1884 // branch instruction generation, where we use jump instructions rather 1885 // than regular branch instructions. 1886 bool trampoline_emitted_; 1887 static constexpr int kInvalidSlotPos = -1; 1888 1889 // Internal reference positions, required for unbounded internal reference 1890 // labels. 1891 std::set<int64_t> internal_reference_positions_; 1892 bool is_internal_reference(Label* L) { 1893 return internal_reference_positions_.find(L->pos()) != 1894 internal_reference_positions_.end(); 1895 } 1896 1897 void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; } 1898 void ClearCompactBranchState() { prev_instr_compact_branch_ = false; } 1899 bool prev_instr_compact_branch_ = false; 1900 1901 Trampoline trampoline_; 1902 bool internal_trampoline_exception_; 1903 1904 // Keep track of the last Call's position to ensure that safepoint can get the 1905 // correct information even if there is a trampoline immediately after the 1906 // Call. 1907 byte* pc_for_safepoint_; 1908 1909 RegList scratch_register_list_; 1910 1911 private: 1912 void AllocateAndInstallRequestedHeapObjects(Isolate* isolate); 1913 1914 int WriteCodeComments(); 1915 1916 friend class RegExpMacroAssemblerMIPS; 1917 friend class RelocInfo; 1918 friend class BlockTrampolinePoolScope; 1919 friend class EnsureSpace; 1920}; 1921 1922class EnsureSpace { 1923 public: 1924 explicit inline EnsureSpace(Assembler* assembler); 1925}; 1926 1927class V8_EXPORT_PRIVATE V8_NODISCARD UseScratchRegisterScope { 1928 public: 1929 explicit UseScratchRegisterScope(Assembler* assembler); 1930 ~UseScratchRegisterScope(); 1931 1932 Register Acquire(); 1933 bool hasAvailable() const; 1934 1935 void Include(const RegList& list) { *available_ |= list; } 1936 void Exclude(const RegList& list) { available_->clear(list); } 1937 void Include(const Register& reg1, const Register& reg2 = no_reg) { 1938 RegList list({reg1, reg2}); 1939 Include(list); 1940 } 1941 void Exclude(const Register& reg1, const Register& reg2 = no_reg) { 1942 RegList list({reg1, reg2}); 1943 Exclude(list); 1944 } 1945 1946 private: 1947 RegList* available_; 1948 RegList old_available_; 1949}; 1950 1951// Helper struct for load lane and store lane to indicate what memory size 1952// to be encoded in the opcode, and the new lane index. 1953class LoadStoreLaneParams { 1954 public: 1955 MSASize sz; 1956 uint8_t laneidx; 1957 1958 LoadStoreLaneParams(MachineRepresentation rep, uint8_t laneidx); 1959 1960 private: 1961 LoadStoreLaneParams(uint8_t laneidx, MSASize sz, int lanes) 1962 : sz(sz), laneidx(laneidx % lanes) {} 1963}; 1964 1965} // namespace internal 1966} // namespace v8 1967 1968#endif // V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_ 1969