1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 #ifndef V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_
36 #define V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_
37 
38 #include <stdio.h>
39 
40 #include <memory>
41 #include <set>
42 
43 #include "src/codegen/assembler.h"
44 #include "src/codegen/external-reference.h"
45 #include "src/codegen/label.h"
46 #include "src/codegen/machine-type.h"
47 #include "src/codegen/mips64/constants-mips64.h"
48 #include "src/codegen/mips64/register-mips64.h"
49 #include "src/objects/contexts.h"
50 #include "src/objects/smi.h"
51 
52 namespace v8 {
53 namespace internal {
54 
55 class SafepointTableBuilder;
56 
57 // -----------------------------------------------------------------------------
58 // Machine instruction Operands.
59 constexpr int kSmiShift = kSmiTagSize + kSmiShiftSize;
60 constexpr uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
61 // Class Operand represents a shifter operand in data processing instructions.
62 class Operand {
63  public:
64   // Immediate.
Operand(int64_t immediate, RelocInfo::Mode rmode = RelocInfo::NO_INFO)65   V8_INLINE explicit Operand(int64_t immediate,
66                              RelocInfo::Mode rmode = RelocInfo::NO_INFO)
67       : rm_(no_reg), rmode_(rmode) {
68     value_.immediate = immediate;
69   }
Operand(const ExternalReference& f)70   V8_INLINE explicit Operand(const ExternalReference& f)
71       : rm_(no_reg), rmode_(RelocInfo::EXTERNAL_REFERENCE) {
72     value_.immediate = static_cast<int64_t>(f.address());
73   }
74   V8_INLINE explicit Operand(const char* s);
75   explicit Operand(Handle<HeapObject> handle);
Operand(Smi value)76   V8_INLINE explicit Operand(Smi value)
77       : rm_(no_reg), rmode_(RelocInfo::NO_INFO) {
78     value_.immediate = static_cast<intptr_t>(value.ptr());
79   }
80 
81   static Operand EmbeddedNumber(double number);  // Smi or HeapNumber.
82   static Operand EmbeddedStringConstant(const StringConstantBase* str);
83 
84   // Register.
Operand(Register rm)85   V8_INLINE explicit Operand(Register rm) : rm_(rm) {}
86 
87   // Return true if this is a register operand.
88   V8_INLINE bool is_reg() const;
89 
90   inline int64_t immediate() const;
91 
IsImmediate() const92   bool IsImmediate() const { return !rm_.is_valid(); }
93 
heap_object_request() const94   HeapObjectRequest heap_object_request() const {
95     DCHECK(IsHeapObjectRequest());
96     return value_.heap_object_request;
97   }
98 
IsHeapObjectRequest() const99   bool IsHeapObjectRequest() const {
100     DCHECK_IMPLIES(is_heap_object_request_, IsImmediate());
101     DCHECK_IMPLIES(is_heap_object_request_,
102                    rmode_ == RelocInfo::FULL_EMBEDDED_OBJECT ||
103                        rmode_ == RelocInfo::CODE_TARGET);
104     return is_heap_object_request_;
105   }
106 
rm() const107   Register rm() const { return rm_; }
108 
rmode() const109   RelocInfo::Mode rmode() const { return rmode_; }
110 
111  private:
112   Register rm_;
113   union Value {
Value()114     Value() {}
115     HeapObjectRequest heap_object_request;  // if is_heap_object_request_
116     int64_t immediate;                      // otherwise
117   } value_;                                 // valid if rm_ == no_reg
118   bool is_heap_object_request_ = false;
119   RelocInfo::Mode rmode_;
120 
121   friend class Assembler;
122   friend class MacroAssembler;
123 };
124 
125 // On MIPS we have only one addressing mode with base_reg + offset.
126 // Class MemOperand represents a memory operand in load and store instructions.
127 class V8_EXPORT_PRIVATE  MemOperand : public Operand {
128  public:
129   // Immediate value attached to offset.
130   enum OffsetAddend { offset_minus_one = -1, offset_zero = 0 };
131 
132   explicit MemOperand(Register rn, int32_t offset = 0);
133   explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
134                       OffsetAddend offset_addend = offset_zero);
offset() const135   int32_t offset() const { return offset_; }
136 
OffsetIsInt16Encodable() const137   bool OffsetIsInt16Encodable() const { return is_int16(offset_); }
138 
139  private:
140   int32_t offset_;
141 
142   friend class Assembler;
143 };
144 
145 class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
146  public:
147   // Create an assembler. Instructions and relocation information are emitted
148   // into a buffer, with the instructions starting from the beginning and the
149   // relocation information starting from the end of the buffer. See CodeDesc
150   // for a detailed comment on the layout (globals.h).
151   //
152   // If the provided buffer is nullptr, the assembler allocates and grows its
153   // own buffer. Otherwise it takes ownership of the provided buffer.
154   explicit Assembler(const AssemblerOptions&,
155                      std::unique_ptr<AssemblerBuffer> = {});
156 
~Assembler()157   virtual ~Assembler() {}
158 
159   // GetCode emits any pending (non-emitted) code and fills the descriptor desc.
160   static constexpr int kNoHandlerTable = 0;
161   static constexpr SafepointTableBuilder* kNoSafepointTable = nullptr;
162   void GetCode(Isolate* isolate, CodeDesc* desc,
163                SafepointTableBuilder* safepoint_table_builder,
164                int handler_table_offset);
165 
166   // Convenience wrapper for code without safepoint or handler tables.
GetCode(Isolate* isolate, CodeDesc* desc)167   void GetCode(Isolate* isolate, CodeDesc* desc) {
168     GetCode(isolate, desc, kNoSafepointTable, kNoHandlerTable);
169   }
170 
171   // Unused on this architecture.
MaybeEmitOutOfLineConstantPool()172   void MaybeEmitOutOfLineConstantPool() {}
173 
174   // Mips uses BlockTrampolinePool to prevent generating trampoline inside a
175   // continuous instruction block. For Call instruction, it prevents generating
176   // trampoline between jalr and delay slot instruction. In the destructor of
177   // BlockTrampolinePool, it must check if it needs to generate trampoline
178   // immediately, if it does not do this, the branch range will go beyond the
179   // max branch offset, that means the pc_offset after call CheckTrampolinePool
180   // may have changed. So we use pc_for_safepoint_ here for safepoint record.
pc_offset_for_safepoint()181   int pc_offset_for_safepoint() {
182     return static_cast<int>(pc_for_safepoint_ - buffer_start_);
183   }
184 
185   // Label operations & relative jumps (PPUM Appendix D).
186   //
187   // Takes a branch opcode (cc) and a label (L) and generates
188   // either a backward branch or a forward branch and links it
189   // to the label fixup chain. Usage:
190   //
191   // Label L;    // unbound label
192   // j(cc, &L);  // forward branch to unbound label
193   // bind(&L);   // bind label to the current pc
194   // j(cc, &L);  // backward branch to bound label
195   // bind(&L);   // illegal: a label may be bound only once
196   //
197   // Note: The same Label can be used for forward and backward branches
198   // but it may be bound only once.
199   void bind(Label* L);  // Binds an unbound label L to current code position.
200 
201   enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
202 
203   // Determines if Label is bound and near enough so that branch instruction
204   // can be used to reach it, instead of jump instruction.
205   bool is_near(Label* L);
206   bool is_near(Label* L, OffsetSize bits);
207   bool is_near_branch(Label* L);
is_near_pre_r6(Label* L)208   inline bool is_near_pre_r6(Label* L) {
209     DCHECK(!(kArchVariant == kMips64r6));
210     return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
211   }
is_near_r6(Label* L)212   inline bool is_near_r6(Label* L) {
213     DCHECK_EQ(kArchVariant, kMips64r6);
214     return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
215   }
216 
217   int BranchOffset(Instr instr);
218 
219   // Returns the branch offset to the given label from the current code
220   // position. Links the label to the current position if it is still unbound.
221   // Manages the jump elimination optimization if the second parameter is true.
222   int32_t branch_offset_helper(Label* L, OffsetSize bits);
branch_offset(Label* L)223   inline int32_t branch_offset(Label* L) {
224     return branch_offset_helper(L, OffsetSize::kOffset16);
225   }
branch_offset21(Label* L)226   inline int32_t branch_offset21(Label* L) {
227     return branch_offset_helper(L, OffsetSize::kOffset21);
228   }
branch_offset26(Label* L)229   inline int32_t branch_offset26(Label* L) {
230     return branch_offset_helper(L, OffsetSize::kOffset26);
231   }
shifted_branch_offset(Label* L)232   inline int32_t shifted_branch_offset(Label* L) {
233     return branch_offset(L) >> 2;
234   }
shifted_branch_offset21(Label* L)235   inline int32_t shifted_branch_offset21(Label* L) {
236     return branch_offset21(L) >> 2;
237   }
shifted_branch_offset26(Label* L)238   inline int32_t shifted_branch_offset26(Label* L) {
239     return branch_offset26(L) >> 2;
240   }
241   uint64_t jump_address(Label* L);
242   uint64_t jump_offset(Label* L);
243   uint64_t branch_long_offset(Label* L);
244 
245   // Puts a labels target address at the given position.
246   // The high 8 bits are set to zero.
247   void label_at_put(Label* L, int at_offset);
248 
249   // Read/Modify the code target address in the branch/call instruction at pc.
250   // The isolate argument is unused (and may be nullptr) when skipping flushing.
251   static Address target_address_at(Address pc);
set_target_address_at( Address pc, Address target, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)252   V8_INLINE static void set_target_address_at(
253       Address pc, Address target,
254       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
255     set_target_value_at(pc, target, icache_flush_mode);
256   }
257   // On MIPS there is no Constant Pool so we skip that parameter.
target_address_at(Address pc, Address constant_pool)258   V8_INLINE static Address target_address_at(Address pc,
259                                              Address constant_pool) {
260     return target_address_at(pc);
261   }
set_target_address_at( Address pc, Address constant_pool, Address target, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)262   V8_INLINE static void set_target_address_at(
263       Address pc, Address constant_pool, Address target,
264       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
265     set_target_address_at(pc, target, icache_flush_mode);
266   }
267 
268   static void set_target_value_at(
269       Address pc, uint64_t target,
270       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
271 
272   static void JumpLabelToJumpRegister(Address pc);
273 
274   // This sets the branch destination (which gets loaded at the call address).
275   // This is for calls and branches within generated code.  The serializer
276   // has already deserialized the lui/ori instructions etc.
277   inline static void deserialization_set_special_target_at(
278       Address instruction_payload, Code code, Address target);
279 
280   // Get the size of the special target encoded at 'instruction_payload'.
281   inline static int deserialization_special_target_size(
282       Address instruction_payload);
283 
284   // This sets the internal reference at the pc.
285   inline static void deserialization_set_target_internal_reference_at(
286       Address pc, Address target,
287       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
288 
289   // Difference between address of current opcode and target address offset.
290   static constexpr int kBranchPCOffset = kInstrSize;
291 
292   // Difference between address of current opcode and target address offset,
293   // when we are generatinga sequence of instructions for long relative PC
294   // branches
295   static constexpr int kLongBranchPCOffset = 3 * kInstrSize;
296 
297   // Adjust ra register in branch delay slot of bal instruction so to skip
298   // instructions not needed after optimization of PIC in
299   // TurboAssembler::BranchAndLink method.
300 
301   static constexpr int kOptimizedBranchAndLinkLongReturnOffset = 4 * kInstrSize;
302 
303   // Here we are patching the address in the LUI/ORI instruction pair.
304   // These values are used in the serialization process and must be zero for
305   // MIPS platform, as Code, Embedded Object or External-reference pointers
306   // are split across two consecutive instructions and don't exist separately
307   // in the code, so the serializer should not step forwards in memory after
308   // a target is resolved and written.
309   static constexpr int kSpecialTargetSize = 0;
310 
311   // Number of consecutive instructions used to store 32bit/64bit constant.
312   // This constant was used in RelocInfo::target_address_address() function
313   // to tell serializer address of the instruction that follows
314   // LUI/ORI instruction pair.
315   static constexpr int kInstructionsFor32BitConstant = 2;
316   static constexpr int kInstructionsFor64BitConstant = 4;
317 
318   // Difference between address of current opcode and value read from pc
319   // register.
320   static constexpr int kPcLoadDelta = 4;
321 
322   // Max offset for instructions with 16-bit offset field
323   static constexpr int kMaxBranchOffset = (1 << (18 - 1)) - 1;
324 
325   // Max offset for compact branch instructions with 26-bit offset field
326   static constexpr int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
327 
328   static constexpr int kTrampolineSlotsSize =
329       kArchVariant == kMips64r6 ? 2 * kInstrSize : 7 * kInstrSize;
330 
GetScratchRegisterList()331   RegList* GetScratchRegisterList() { return &scratch_register_list_; }
332 
333   // ---------------------------------------------------------------------------
334   // Code generation.
335 
336   // Insert the smallest number of nop instructions
337   // possible to align the pc offset to a multiple
338   // of m. m must be a power of 2 (>= 4).
339   void Align(int m);
340   // Insert the smallest number of zero bytes possible to align the pc offset
341   // to a mulitple of m. m must be a power of 2 (>= 2).
342   void DataAlign(int m);
343   // Aligns code to something that's optimal for a jump target for the platform.
344   void CodeTargetAlign();
LoopHeaderAlign()345   void LoopHeaderAlign() { CodeTargetAlign(); }
346 
347   // Different nop operations are used by the code generator to detect certain
348   // states of the generated code.
349   enum NopMarkerTypes {
350     NON_MARKING_NOP = 0,
351     DEBUG_BREAK_NOP,
352     // IC markers.
353     PROPERTY_ACCESS_INLINED,
354     PROPERTY_ACCESS_INLINED_CONTEXT,
355     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
356     // Helper values.
357     LAST_CODE_MARKER,
358     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
359   };
360 
361   // Type == 0 is the default non-marking nop. For mips this is a
362   // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
363   // marking, to avoid conflict with ssnop and ehb instructions.
nop(unsigned int type = 0)364   void nop(unsigned int type = 0) {
365     DCHECK_LT(type, 32);
366     Register nop_rt_reg = (type == 0) ? zero_reg : at;
367     sll(zero_reg, nop_rt_reg, type, true);
368   }
369 
370   // --------Branch-and-jump-instructions----------
371   // We don't use likely variant of instructions.
372   void b(int16_t offset);
b(Label* L)373   inline void b(Label* L) { b(shifted_branch_offset(L)); }
374   void bal(int16_t offset);
bal(Label* L)375   inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
376   void bc(int32_t offset);
bc(Label* L)377   inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
378   void balc(int32_t offset);
balc(Label* L)379   inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
380 
381   void beq(Register rs, Register rt, int16_t offset);
beq(Register rs, Register rt, Label* L)382   inline void beq(Register rs, Register rt, Label* L) {
383     beq(rs, rt, shifted_branch_offset(L));
384   }
385   void bgez(Register rs, int16_t offset);
386   void bgezc(Register rt, int16_t offset);
bgezc(Register rt, Label* L)387   inline void bgezc(Register rt, Label* L) {
388     bgezc(rt, shifted_branch_offset(L));
389   }
390   void bgeuc(Register rs, Register rt, int16_t offset);
bgeuc(Register rs, Register rt, Label* L)391   inline void bgeuc(Register rs, Register rt, Label* L) {
392     bgeuc(rs, rt, shifted_branch_offset(L));
393   }
394   void bgec(Register rs, Register rt, int16_t offset);
bgec(Register rs, Register rt, Label* L)395   inline void bgec(Register rs, Register rt, Label* L) {
396     bgec(rs, rt, shifted_branch_offset(L));
397   }
398   void bgezal(Register rs, int16_t offset);
399   void bgezalc(Register rt, int16_t offset);
bgezalc(Register rt, Label* L)400   inline void bgezalc(Register rt, Label* L) {
401     bgezalc(rt, shifted_branch_offset(L));
402   }
403   void bgezall(Register rs, int16_t offset);
bgezall(Register rs, Label* L)404   inline void bgezall(Register rs, Label* L) {
405     bgezall(rs, branch_offset(L) >> 2);
406   }
407   void bgtz(Register rs, int16_t offset);
408   void bgtzc(Register rt, int16_t offset);
bgtzc(Register rt, Label* L)409   inline void bgtzc(Register rt, Label* L) {
410     bgtzc(rt, shifted_branch_offset(L));
411   }
412   void blez(Register rs, int16_t offset);
413   void blezc(Register rt, int16_t offset);
blezc(Register rt, Label* L)414   inline void blezc(Register rt, Label* L) {
415     blezc(rt, shifted_branch_offset(L));
416   }
417   void bltz(Register rs, int16_t offset);
418   void bltzc(Register rt, int16_t offset);
bltzc(Register rt, Label* L)419   inline void bltzc(Register rt, Label* L) {
420     bltzc(rt, shifted_branch_offset(L));
421   }
422   void bltuc(Register rs, Register rt, int16_t offset);
bltuc(Register rs, Register rt, Label* L)423   inline void bltuc(Register rs, Register rt, Label* L) {
424     bltuc(rs, rt, shifted_branch_offset(L));
425   }
426   void bltc(Register rs, Register rt, int16_t offset);
bltc(Register rs, Register rt, Label* L)427   inline void bltc(Register rs, Register rt, Label* L) {
428     bltc(rs, rt, shifted_branch_offset(L));
429   }
430   void bltzal(Register rs, int16_t offset);
nal()431   void nal() { bltzal(zero_reg, 0); }
432   void blezalc(Register rt, int16_t offset);
blezalc(Register rt, Label* L)433   inline void blezalc(Register rt, Label* L) {
434     blezalc(rt, shifted_branch_offset(L));
435   }
436   void bltzalc(Register rt, int16_t offset);
bltzalc(Register rt, Label* L)437   inline void bltzalc(Register rt, Label* L) {
438     bltzalc(rt, shifted_branch_offset(L));
439   }
440   void bgtzalc(Register rt, int16_t offset);
bgtzalc(Register rt, Label* L)441   inline void bgtzalc(Register rt, Label* L) {
442     bgtzalc(rt, shifted_branch_offset(L));
443   }
444   void beqzalc(Register rt, int16_t offset);
beqzalc(Register rt, Label* L)445   inline void beqzalc(Register rt, Label* L) {
446     beqzalc(rt, shifted_branch_offset(L));
447   }
448   void beqc(Register rs, Register rt, int16_t offset);
beqc(Register rs, Register rt, Label* L)449   inline void beqc(Register rs, Register rt, Label* L) {
450     beqc(rs, rt, shifted_branch_offset(L));
451   }
452   void beqzc(Register rs, int32_t offset);
beqzc(Register rs, Label* L)453   inline void beqzc(Register rs, Label* L) {
454     beqzc(rs, shifted_branch_offset21(L));
455   }
456   void bnezalc(Register rt, int16_t offset);
bnezalc(Register rt, Label* L)457   inline void bnezalc(Register rt, Label* L) {
458     bnezalc(rt, shifted_branch_offset(L));
459   }
460   void bnec(Register rs, Register rt, int16_t offset);
bnec(Register rs, Register rt, Label* L)461   inline void bnec(Register rs, Register rt, Label* L) {
462     bnec(rs, rt, shifted_branch_offset(L));
463   }
464   void bnezc(Register rt, int32_t offset);
bnezc(Register rt, Label* L)465   inline void bnezc(Register rt, Label* L) {
466     bnezc(rt, shifted_branch_offset21(L));
467   }
468   void bne(Register rs, Register rt, int16_t offset);
bne(Register rs, Register rt, Label* L)469   inline void bne(Register rs, Register rt, Label* L) {
470     bne(rs, rt, shifted_branch_offset(L));
471   }
472   void bovc(Register rs, Register rt, int16_t offset);
bovc(Register rs, Register rt, Label* L)473   inline void bovc(Register rs, Register rt, Label* L) {
474     bovc(rs, rt, shifted_branch_offset(L));
475   }
476   void bnvc(Register rs, Register rt, int16_t offset);
bnvc(Register rs, Register rt, Label* L)477   inline void bnvc(Register rs, Register rt, Label* L) {
478     bnvc(rs, rt, shifted_branch_offset(L));
479   }
480 
481   // Never use the int16_t b(l)cond version with a branch offset
482   // instead of using the Label* version.
483 
484   void jalr(Register rs, Register rd = ra);
485   void jr(Register target);
486   void jic(Register rt, int16_t offset);
487   void jialc(Register rt, int16_t offset);
488 
489   // Following instructions are deprecated and require 256 MB
490   // code alignment. Use PC-relative instructions instead.
491   void j(int64_t target);
492   void jal(int64_t target);
493   void j(Label* target);
494   void jal(Label* target);
495 
496   // -------Data-processing-instructions---------
497 
498   // Arithmetic.
499   void addu(Register rd, Register rs, Register rt);
500   void subu(Register rd, Register rs, Register rt);
501 
502   void div(Register rs, Register rt);
503   void divu(Register rs, Register rt);
504   void ddiv(Register rs, Register rt);
505   void ddivu(Register rs, Register rt);
506   void div(Register rd, Register rs, Register rt);
507   void divu(Register rd, Register rs, Register rt);
508   void ddiv(Register rd, Register rs, Register rt);
509   void ddivu(Register rd, Register rs, Register rt);
510   void mod(Register rd, Register rs, Register rt);
511   void modu(Register rd, Register rs, Register rt);
512   void dmod(Register rd, Register rs, Register rt);
513   void dmodu(Register rd, Register rs, Register rt);
514 
515   void mul(Register rd, Register rs, Register rt);
516   void muh(Register rd, Register rs, Register rt);
517   void mulu(Register rd, Register rs, Register rt);
518   void muhu(Register rd, Register rs, Register rt);
519   void mult(Register rs, Register rt);
520   void multu(Register rs, Register rt);
521   void dmul(Register rd, Register rs, Register rt);
522   void dmuh(Register rd, Register rs, Register rt);
523   void dmulu(Register rd, Register rs, Register rt);
524   void dmuhu(Register rd, Register rs, Register rt);
525   void daddu(Register rd, Register rs, Register rt);
526   void dsubu(Register rd, Register rs, Register rt);
527   void dmult(Register rs, Register rt);
528   void dmultu(Register rs, Register rt);
529 
530   void addiu(Register rd, Register rs, int32_t j);
531   void daddiu(Register rd, Register rs, int32_t j);
532 
533   // Logical.
534   void and_(Register rd, Register rs, Register rt);
535   void or_(Register rd, Register rs, Register rt);
536   void xor_(Register rd, Register rs, Register rt);
537   void nor(Register rd, Register rs, Register rt);
538 
539   void andi(Register rd, Register rs, int32_t j);
540   void ori(Register rd, Register rs, int32_t j);
541   void xori(Register rd, Register rs, int32_t j);
542   void lui(Register rd, int32_t j);
543   void aui(Register rt, Register rs, int32_t j);
544   void daui(Register rt, Register rs, int32_t j);
545   void dahi(Register rs, int32_t j);
546   void dati(Register rs, int32_t j);
547 
548   // Shifts.
549   // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
550   // and may cause problems in normal code. coming_from_nop makes sure this
551   // doesn't happen.
552   void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
553   void sllv(Register rd, Register rt, Register rs);
554   void srl(Register rd, Register rt, uint16_t sa);
555   void srlv(Register rd, Register rt, Register rs);
556   void sra(Register rt, Register rd, uint16_t sa);
557   void srav(Register rt, Register rd, Register rs);
558   void rotr(Register rd, Register rt, uint16_t sa);
559   void rotrv(Register rd, Register rt, Register rs);
560   void dsll(Register rd, Register rt, uint16_t sa);
561   void dsllv(Register rd, Register rt, Register rs);
562   void dsrl(Register rd, Register rt, uint16_t sa);
563   void dsrlv(Register rd, Register rt, Register rs);
564   void drotr(Register rd, Register rt, uint16_t sa);
565   void drotr32(Register rd, Register rt, uint16_t sa);
566   void drotrv(Register rd, Register rt, Register rs);
567   void dsra(Register rt, Register rd, uint16_t sa);
568   void dsrav(Register rd, Register rt, Register rs);
569   void dsll32(Register rt, Register rd, uint16_t sa);
570   void dsrl32(Register rt, Register rd, uint16_t sa);
571   void dsra32(Register rt, Register rd, uint16_t sa);
572 
573   // ------------Memory-instructions-------------
574 
575   void lb(Register rd, const MemOperand& rs);
576   void lbu(Register rd, const MemOperand& rs);
577   void lh(Register rd, const MemOperand& rs);
578   void lhu(Register rd, const MemOperand& rs);
579   void lw(Register rd, const MemOperand& rs);
580   void lwu(Register rd, const MemOperand& rs);
581   void lwl(Register rd, const MemOperand& rs);
582   void lwr(Register rd, const MemOperand& rs);
583   void sb(Register rd, const MemOperand& rs);
584   void sh(Register rd, const MemOperand& rs);
585   void sw(Register rd, const MemOperand& rs);
586   void swl(Register rd, const MemOperand& rs);
587   void swr(Register rd, const MemOperand& rs);
588   void ldl(Register rd, const MemOperand& rs);
589   void ldr(Register rd, const MemOperand& rs);
590   void sdl(Register rd, const MemOperand& rs);
591   void sdr(Register rd, const MemOperand& rs);
592   void ld(Register rd, const MemOperand& rs);
593   void sd(Register rd, const MemOperand& rs);
594 
595   // ----------Atomic instructions--------------
596 
597   void ll(Register rd, const MemOperand& rs);
598   void sc(Register rd, const MemOperand& rs);
599   void lld(Register rd, const MemOperand& rs);
600   void scd(Register rd, const MemOperand& rs);
601 
602   // ---------PC-Relative-instructions-----------
603 
604   void addiupc(Register rs, int32_t imm19);
605   void lwpc(Register rs, int32_t offset19);
606   void lwupc(Register rs, int32_t offset19);
607   void ldpc(Register rs, int32_t offset18);
608   void auipc(Register rs, int16_t imm16);
609   void aluipc(Register rs, int16_t imm16);
610 
611   // ----------------Prefetch--------------------
612 
613   void pref(int32_t hint, const MemOperand& rs);
614 
615   // -------------Misc-instructions--------------
616 
617   // Break / Trap instructions.
618   void break_(uint32_t code, bool break_as_stop = false);
619   void stop(uint32_t code = kMaxStopCode);
620   void tge(Register rs, Register rt, uint16_t code);
621   void tgeu(Register rs, Register rt, uint16_t code);
622   void tlt(Register rs, Register rt, uint16_t code);
623   void tltu(Register rs, Register rt, uint16_t code);
624   void teq(Register rs, Register rt, uint16_t code);
625   void tne(Register rs, Register rt, uint16_t code);
626 
627   // Memory barrier instruction.
628   void sync();
629 
630   // Move from HI/LO register.
631   void mfhi(Register rd);
632   void mflo(Register rd);
633 
634   // Set on less than.
635   void slt(Register rd, Register rs, Register rt);
636   void sltu(Register rd, Register rs, Register rt);
637   void slti(Register rd, Register rs, int32_t j);
638   void sltiu(Register rd, Register rs, int32_t j);
639 
640   // Conditional move.
641   void movz(Register rd, Register rs, Register rt);
642   void movn(Register rd, Register rs, Register rt);
643   void movt(Register rd, Register rs, uint16_t cc = 0);
644   void movf(Register rd, Register rs, uint16_t cc = 0);
645 
646   void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
647   void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
648   void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
649   void seleqz(Register rd, Register rs, Register rt);
650   void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
651               FPURegister ft);
652   void selnez(Register rs, Register rt, Register rd);
653   void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
654               FPURegister ft);
655   void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
656   void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
657   void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
658   void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
659 
660   void movz_s(FPURegister fd, FPURegister fs, Register rt);
661   void movz_d(FPURegister fd, FPURegister fs, Register rt);
662   void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
663   void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
664   void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
665   void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
666   void movn_s(FPURegister fd, FPURegister fs, Register rt);
667   void movn_d(FPURegister fd, FPURegister fs, Register rt);
668   // Bit twiddling.
669   void clz(Register rd, Register rs);
670   void dclz(Register rd, Register rs);
671   void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
672   void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
673   void dext_(Register rt, Register rs, uint16_t pos, uint16_t size);
674   void dextm_(Register rt, Register rs, uint16_t pos, uint16_t size);
675   void dextu_(Register rt, Register rs, uint16_t pos, uint16_t size);
676   void dins_(Register rt, Register rs, uint16_t pos, uint16_t size);
677   void dinsm_(Register rt, Register rs, uint16_t pos, uint16_t size);
678   void dinsu_(Register rt, Register rs, uint16_t pos, uint16_t size);
679   void bitswap(Register rd, Register rt);
680   void dbitswap(Register rd, Register rt);
681   void align(Register rd, Register rs, Register rt, uint8_t bp);
682   void dalign(Register rd, Register rs, Register rt, uint8_t bp);
683 
684   void wsbh(Register rd, Register rt);
685   void dsbh(Register rd, Register rt);
686   void dshd(Register rd, Register rt);
687   void seh(Register rd, Register rt);
688   void seb(Register rd, Register rt);
689 
690   // --------Coprocessor-instructions----------------
691 
692   // Load, store, and move.
693   void lwc1(FPURegister fd, const MemOperand& src);
694   void ldc1(FPURegister fd, const MemOperand& src);
695 
696   void swc1(FPURegister fs, const MemOperand& dst);
697   void sdc1(FPURegister fs, const MemOperand& dst);
698 
699   void mtc1(Register rt, FPURegister fs);
700   void mthc1(Register rt, FPURegister fs);
701   void dmtc1(Register rt, FPURegister fs);
702 
703   void mfc1(Register rt, FPURegister fs);
704   void mfhc1(Register rt, FPURegister fs);
705   void dmfc1(Register rt, FPURegister fs);
706 
707   void ctc1(Register rt, FPUControlRegister fs);
708   void cfc1(Register rt, FPUControlRegister fs);
709 
710   // Arithmetic.
711   void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
712   void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
713   void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
714   void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
715   void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
716   void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
717   void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
718   void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
719   void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
720   void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
721   void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft);
722   void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft);
723   void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft);
724   void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft);
725   void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
726   void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
727   void abs_s(FPURegister fd, FPURegister fs);
728   void abs_d(FPURegister fd, FPURegister fs);
729   void mov_d(FPURegister fd, FPURegister fs);
730   void mov_s(FPURegister fd, FPURegister fs);
731   void neg_s(FPURegister fd, FPURegister fs);
732   void neg_d(FPURegister fd, FPURegister fs);
733   void sqrt_s(FPURegister fd, FPURegister fs);
734   void sqrt_d(FPURegister fd, FPURegister fs);
735   void rsqrt_s(FPURegister fd, FPURegister fs);
736   void rsqrt_d(FPURegister fd, FPURegister fs);
737   void recip_d(FPURegister fd, FPURegister fs);
738   void recip_s(FPURegister fd, FPURegister fs);
739 
740   // Conversion.
741   void cvt_w_s(FPURegister fd, FPURegister fs);
742   void cvt_w_d(FPURegister fd, FPURegister fs);
743   void trunc_w_s(FPURegister fd, FPURegister fs);
744   void trunc_w_d(FPURegister fd, FPURegister fs);
745   void round_w_s(FPURegister fd, FPURegister fs);
746   void round_w_d(FPURegister fd, FPURegister fs);
747   void floor_w_s(FPURegister fd, FPURegister fs);
748   void floor_w_d(FPURegister fd, FPURegister fs);
749   void ceil_w_s(FPURegister fd, FPURegister fs);
750   void ceil_w_d(FPURegister fd, FPURegister fs);
751   void rint_s(FPURegister fd, FPURegister fs);
752   void rint_d(FPURegister fd, FPURegister fs);
753   void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
754 
755   void cvt_l_s(FPURegister fd, FPURegister fs);
756   void cvt_l_d(FPURegister fd, FPURegister fs);
757   void trunc_l_s(FPURegister fd, FPURegister fs);
758   void trunc_l_d(FPURegister fd, FPURegister fs);
759   void round_l_s(FPURegister fd, FPURegister fs);
760   void round_l_d(FPURegister fd, FPURegister fs);
761   void floor_l_s(FPURegister fd, FPURegister fs);
762   void floor_l_d(FPURegister fd, FPURegister fs);
763   void ceil_l_s(FPURegister fd, FPURegister fs);
764   void ceil_l_d(FPURegister fd, FPURegister fs);
765 
766   void class_s(FPURegister fd, FPURegister fs);
767   void class_d(FPURegister fd, FPURegister fs);
768 
769   void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
770   void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
771   void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
772   void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
773   void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
774   void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
775   void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
776   void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
777   void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
778   void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
779   void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
780   void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
781 
782   void cvt_s_w(FPURegister fd, FPURegister fs);
783   void cvt_s_l(FPURegister fd, FPURegister fs);
784   void cvt_s_d(FPURegister fd, FPURegister fs);
785 
786   void cvt_d_w(FPURegister fd, FPURegister fs);
787   void cvt_d_l(FPURegister fd, FPURegister fs);
788   void cvt_d_s(FPURegister fd, FPURegister fs);
789 
790   // Conditions and branches for MIPSr6.
791   void cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd,
792            FPURegister ft, FPURegister fs);
793   void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
794   void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
795 
796   void bc1eqz(int16_t offset, FPURegister ft);
bc1eqz(Label* L, FPURegister ft)797   inline void bc1eqz(Label* L, FPURegister ft) {
798     bc1eqz(shifted_branch_offset(L), ft);
799   }
800   void bc1nez(int16_t offset, FPURegister ft);
bc1nez(Label* L, FPURegister ft)801   inline void bc1nez(Label* L, FPURegister ft) {
802     bc1nez(shifted_branch_offset(L), ft);
803   }
804 
805   // Conditions and branches for non MIPSr6.
806   void c(FPUCondition cond, SecondaryField fmt, FPURegister ft, FPURegister fs,
807          uint16_t cc = 0);
808   void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
809   void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
810 
811   void bc1f(int16_t offset, uint16_t cc = 0);
bc1f(Label* L, uint16_t cc = 0)812   inline void bc1f(Label* L, uint16_t cc = 0) {
813     bc1f(shifted_branch_offset(L), cc);
814   }
815   void bc1t(int16_t offset, uint16_t cc = 0);
bc1t(Label* L, uint16_t cc = 0)816   inline void bc1t(Label* L, uint16_t cc = 0) {
817     bc1t(shifted_branch_offset(L), cc);
818   }
819   void fcmp(FPURegister src1, const double src2, FPUCondition cond);
820 
821   // MSA instructions
822   void bz_v(MSARegister wt, int16_t offset);
bz_v(MSARegister wt, Label* L)823   inline void bz_v(MSARegister wt, Label* L) {
824     bz_v(wt, shifted_branch_offset(L));
825   }
826   void bz_b(MSARegister wt, int16_t offset);
bz_b(MSARegister wt, Label* L)827   inline void bz_b(MSARegister wt, Label* L) {
828     bz_b(wt, shifted_branch_offset(L));
829   }
830   void bz_h(MSARegister wt, int16_t offset);
bz_h(MSARegister wt, Label* L)831   inline void bz_h(MSARegister wt, Label* L) {
832     bz_h(wt, shifted_branch_offset(L));
833   }
834   void bz_w(MSARegister wt, int16_t offset);
bz_w(MSARegister wt, Label* L)835   inline void bz_w(MSARegister wt, Label* L) {
836     bz_w(wt, shifted_branch_offset(L));
837   }
838   void bz_d(MSARegister wt, int16_t offset);
bz_d(MSARegister wt, Label* L)839   inline void bz_d(MSARegister wt, Label* L) {
840     bz_d(wt, shifted_branch_offset(L));
841   }
842   void bnz_v(MSARegister wt, int16_t offset);
bnz_v(MSARegister wt, Label* L)843   inline void bnz_v(MSARegister wt, Label* L) {
844     bnz_v(wt, shifted_branch_offset(L));
845   }
846   void bnz_b(MSARegister wt, int16_t offset);
bnz_b(MSARegister wt, Label* L)847   inline void bnz_b(MSARegister wt, Label* L) {
848     bnz_b(wt, shifted_branch_offset(L));
849   }
850   void bnz_h(MSARegister wt, int16_t offset);
bnz_h(MSARegister wt, Label* L)851   inline void bnz_h(MSARegister wt, Label* L) {
852     bnz_h(wt, shifted_branch_offset(L));
853   }
854   void bnz_w(MSARegister wt, int16_t offset);
bnz_w(MSARegister wt, Label* L)855   inline void bnz_w(MSARegister wt, Label* L) {
856     bnz_w(wt, shifted_branch_offset(L));
857   }
858   void bnz_d(MSARegister wt, int16_t offset);
bnz_d(MSARegister wt, Label* L)859   inline void bnz_d(MSARegister wt, Label* L) {
860     bnz_d(wt, shifted_branch_offset(L));
861   }
862 
863   void ld_b(MSARegister wd, const MemOperand& rs);
864   void ld_h(MSARegister wd, const MemOperand& rs);
865   void ld_w(MSARegister wd, const MemOperand& rs);
866   void ld_d(MSARegister wd, const MemOperand& rs);
867   void st_b(MSARegister wd, const MemOperand& rs);
868   void st_h(MSARegister wd, const MemOperand& rs);
869   void st_w(MSARegister wd, const MemOperand& rs);
870   void st_d(MSARegister wd, const MemOperand& rs);
871 
872   void ldi_b(MSARegister wd, int32_t imm10);
873   void ldi_h(MSARegister wd, int32_t imm10);
874   void ldi_w(MSARegister wd, int32_t imm10);
875   void ldi_d(MSARegister wd, int32_t imm10);
876 
877   void addvi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
878   void addvi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
879   void addvi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
880   void addvi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
881   void subvi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
882   void subvi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
883   void subvi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
884   void subvi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
885   void maxi_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
886   void maxi_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
887   void maxi_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
888   void maxi_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
889   void maxi_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
890   void maxi_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
891   void maxi_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
892   void maxi_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
893   void mini_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
894   void mini_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
895   void mini_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
896   void mini_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
897   void mini_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
898   void mini_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
899   void mini_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
900   void mini_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
901   void ceqi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
902   void ceqi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
903   void ceqi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
904   void ceqi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
905   void clti_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
906   void clti_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
907   void clti_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
908   void clti_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
909   void clti_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
910   void clti_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
911   void clti_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
912   void clti_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
913   void clei_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
914   void clei_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
915   void clei_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
916   void clei_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
917   void clei_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
918   void clei_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
919   void clei_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
920   void clei_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
921 
922   void andi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
923   void ori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
924   void nori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
925   void xori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
926   void bmnzi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
927   void bmzi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
928   void bseli_b(MSARegister wd, MSARegister ws, uint32_t imm8);
929   void shf_b(MSARegister wd, MSARegister ws, uint32_t imm8);
930   void shf_h(MSARegister wd, MSARegister ws, uint32_t imm8);
931   void shf_w(MSARegister wd, MSARegister ws, uint32_t imm8);
932 
933   void and_v(MSARegister wd, MSARegister ws, MSARegister wt);
934   void or_v(MSARegister wd, MSARegister ws, MSARegister wt);
935   void nor_v(MSARegister wd, MSARegister ws, MSARegister wt);
936   void xor_v(MSARegister wd, MSARegister ws, MSARegister wt);
937   void bmnz_v(MSARegister wd, MSARegister ws, MSARegister wt);
938   void bmz_v(MSARegister wd, MSARegister ws, MSARegister wt);
939   void bsel_v(MSARegister wd, MSARegister ws, MSARegister wt);
940 
941   void fill_b(MSARegister wd, Register rs);
942   void fill_h(MSARegister wd, Register rs);
943   void fill_w(MSARegister wd, Register rs);
944   void fill_d(MSARegister wd, Register rs);
945   void pcnt_b(MSARegister wd, MSARegister ws);
946   void pcnt_h(MSARegister wd, MSARegister ws);
947   void pcnt_w(MSARegister wd, MSARegister ws);
948   void pcnt_d(MSARegister wd, MSARegister ws);
949   void nloc_b(MSARegister wd, MSARegister ws);
950   void nloc_h(MSARegister wd, MSARegister ws);
951   void nloc_w(MSARegister wd, MSARegister ws);
952   void nloc_d(MSARegister wd, MSARegister ws);
953   void nlzc_b(MSARegister wd, MSARegister ws);
954   void nlzc_h(MSARegister wd, MSARegister ws);
955   void nlzc_w(MSARegister wd, MSARegister ws);
956   void nlzc_d(MSARegister wd, MSARegister ws);
957 
958   void fclass_w(MSARegister wd, MSARegister ws);
959   void fclass_d(MSARegister wd, MSARegister ws);
960   void ftrunc_s_w(MSARegister wd, MSARegister ws);
961   void ftrunc_s_d(MSARegister wd, MSARegister ws);
962   void ftrunc_u_w(MSARegister wd, MSARegister ws);
963   void ftrunc_u_d(MSARegister wd, MSARegister ws);
964   void fsqrt_w(MSARegister wd, MSARegister ws);
965   void fsqrt_d(MSARegister wd, MSARegister ws);
966   void frsqrt_w(MSARegister wd, MSARegister ws);
967   void frsqrt_d(MSARegister wd, MSARegister ws);
968   void frcp_w(MSARegister wd, MSARegister ws);
969   void frcp_d(MSARegister wd, MSARegister ws);
970   void frint_w(MSARegister wd, MSARegister ws);
971   void frint_d(MSARegister wd, MSARegister ws);
972   void flog2_w(MSARegister wd, MSARegister ws);
973   void flog2_d(MSARegister wd, MSARegister ws);
974   void fexupl_w(MSARegister wd, MSARegister ws);
975   void fexupl_d(MSARegister wd, MSARegister ws);
976   void fexupr_w(MSARegister wd, MSARegister ws);
977   void fexupr_d(MSARegister wd, MSARegister ws);
978   void ffql_w(MSARegister wd, MSARegister ws);
979   void ffql_d(MSARegister wd, MSARegister ws);
980   void ffqr_w(MSARegister wd, MSARegister ws);
981   void ffqr_d(MSARegister wd, MSARegister ws);
982   void ftint_s_w(MSARegister wd, MSARegister ws);
983   void ftint_s_d(MSARegister wd, MSARegister ws);
984   void ftint_u_w(MSARegister wd, MSARegister ws);
985   void ftint_u_d(MSARegister wd, MSARegister ws);
986   void ffint_s_w(MSARegister wd, MSARegister ws);
987   void ffint_s_d(MSARegister wd, MSARegister ws);
988   void ffint_u_w(MSARegister wd, MSARegister ws);
989   void ffint_u_d(MSARegister wd, MSARegister ws);
990 
991   void sll_b(MSARegister wd, MSARegister ws, MSARegister wt);
992   void sll_h(MSARegister wd, MSARegister ws, MSARegister wt);
993   void sll_w(MSARegister wd, MSARegister ws, MSARegister wt);
994   void sll_d(MSARegister wd, MSARegister ws, MSARegister wt);
995   void sra_b(MSARegister wd, MSARegister ws, MSARegister wt);
996   void sra_h(MSARegister wd, MSARegister ws, MSARegister wt);
997   void sra_w(MSARegister wd, MSARegister ws, MSARegister wt);
998   void sra_d(MSARegister wd, MSARegister ws, MSARegister wt);
999   void srl_b(MSARegister wd, MSARegister ws, MSARegister wt);
1000   void srl_h(MSARegister wd, MSARegister ws, MSARegister wt);
1001   void srl_w(MSARegister wd, MSARegister ws, MSARegister wt);
1002   void srl_d(MSARegister wd, MSARegister ws, MSARegister wt);
1003   void bclr_b(MSARegister wd, MSARegister ws, MSARegister wt);
1004   void bclr_h(MSARegister wd, MSARegister ws, MSARegister wt);
1005   void bclr_w(MSARegister wd, MSARegister ws, MSARegister wt);
1006   void bclr_d(MSARegister wd, MSARegister ws, MSARegister wt);
1007   void bset_b(MSARegister wd, MSARegister ws, MSARegister wt);
1008   void bset_h(MSARegister wd, MSARegister ws, MSARegister wt);
1009   void bset_w(MSARegister wd, MSARegister ws, MSARegister wt);
1010   void bset_d(MSARegister wd, MSARegister ws, MSARegister wt);
1011   void bneg_b(MSARegister wd, MSARegister ws, MSARegister wt);
1012   void bneg_h(MSARegister wd, MSARegister ws, MSARegister wt);
1013   void bneg_w(MSARegister wd, MSARegister ws, MSARegister wt);
1014   void bneg_d(MSARegister wd, MSARegister ws, MSARegister wt);
1015   void binsl_b(MSARegister wd, MSARegister ws, MSARegister wt);
1016   void binsl_h(MSARegister wd, MSARegister ws, MSARegister wt);
1017   void binsl_w(MSARegister wd, MSARegister ws, MSARegister wt);
1018   void binsl_d(MSARegister wd, MSARegister ws, MSARegister wt);
1019   void binsr_b(MSARegister wd, MSARegister ws, MSARegister wt);
1020   void binsr_h(MSARegister wd, MSARegister ws, MSARegister wt);
1021   void binsr_w(MSARegister wd, MSARegister ws, MSARegister wt);
1022   void binsr_d(MSARegister wd, MSARegister ws, MSARegister wt);
1023   void addv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1024   void addv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1025   void addv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1026   void addv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1027   void subv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1028   void subv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1029   void subv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1030   void subv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1031   void max_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1032   void max_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1033   void max_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1034   void max_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1035   void max_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1036   void max_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1037   void max_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1038   void max_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1039   void min_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1040   void min_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1041   void min_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1042   void min_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1043   void min_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1044   void min_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1045   void min_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1046   void min_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1047   void max_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
1048   void max_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
1049   void max_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1050   void max_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1051   void min_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
1052   void min_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
1053   void min_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1054   void min_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1055   void ceq_b(MSARegister wd, MSARegister ws, MSARegister wt);
1056   void ceq_h(MSARegister wd, MSARegister ws, MSARegister wt);
1057   void ceq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1058   void ceq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1059   void clt_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1060   void clt_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1061   void clt_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1062   void clt_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1063   void clt_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1064   void clt_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1065   void clt_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1066   void clt_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1067   void cle_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1068   void cle_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1069   void cle_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1070   void cle_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1071   void cle_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1072   void cle_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1073   void cle_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1074   void cle_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1075   void add_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
1076   void add_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
1077   void add_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1078   void add_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1079   void adds_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
1080   void adds_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
1081   void adds_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1082   void adds_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1083   void adds_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1084   void adds_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1085   void adds_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1086   void adds_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1087   void adds_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1088   void adds_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1089   void adds_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1090   void adds_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1091   void ave_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1092   void ave_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1093   void ave_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1094   void ave_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1095   void ave_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1096   void ave_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1097   void ave_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1098   void ave_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1099   void aver_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1100   void aver_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1101   void aver_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1102   void aver_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1103   void aver_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1104   void aver_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1105   void aver_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1106   void aver_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1107   void subs_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1108   void subs_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1109   void subs_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1110   void subs_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1111   void subs_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1112   void subs_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1113   void subs_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1114   void subs_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1115   void subsus_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1116   void subsus_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1117   void subsus_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1118   void subsus_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1119   void subsus_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1120   void subsus_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1121   void subsus_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1122   void subsus_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1123   void subsuu_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1124   void subsuu_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1125   void subsuu_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1126   void subsuu_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1127   void subsuu_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1128   void subsuu_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1129   void subsuu_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1130   void subsuu_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1131   void asub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1132   void asub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1133   void asub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1134   void asub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1135   void asub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1136   void asub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1137   void asub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1138   void asub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1139   void mulv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1140   void mulv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1141   void mulv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1142   void mulv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1143   void maddv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1144   void maddv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1145   void maddv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1146   void maddv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1147   void msubv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1148   void msubv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1149   void msubv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1150   void msubv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1151   void div_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1152   void div_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1153   void div_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1154   void div_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1155   void div_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1156   void div_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1157   void div_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1158   void div_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1159   void mod_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1160   void mod_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1161   void mod_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1162   void mod_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1163   void mod_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1164   void mod_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1165   void mod_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1166   void mod_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1167   void dotp_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1168   void dotp_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1169   void dotp_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1170   void dotp_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1171   void dotp_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1172   void dotp_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1173   void dotp_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1174   void dotp_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1175   void dpadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1176   void dpadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1177   void dpadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1178   void dpadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1179   void dpadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1180   void dpadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1181   void dpadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1182   void dpadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1183   void dpsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1184   void dpsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1185   void dpsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1186   void dpsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1187   void dpsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1188   void dpsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1189   void dpsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1190   void dpsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1191   void sld_b(MSARegister wd, MSARegister ws, Register rt);
1192   void sld_h(MSARegister wd, MSARegister ws, Register rt);
1193   void sld_w(MSARegister wd, MSARegister ws, Register rt);
1194   void sld_d(MSARegister wd, MSARegister ws, Register rt);
1195   void splat_b(MSARegister wd, MSARegister ws, Register rt);
1196   void splat_h(MSARegister wd, MSARegister ws, Register rt);
1197   void splat_w(MSARegister wd, MSARegister ws, Register rt);
1198   void splat_d(MSARegister wd, MSARegister ws, Register rt);
1199   void pckev_b(MSARegister wd, MSARegister ws, MSARegister wt);
1200   void pckev_h(MSARegister wd, MSARegister ws, MSARegister wt);
1201   void pckev_w(MSARegister wd, MSARegister ws, MSARegister wt);
1202   void pckev_d(MSARegister wd, MSARegister ws, MSARegister wt);
1203   void pckod_b(MSARegister wd, MSARegister ws, MSARegister wt);
1204   void pckod_h(MSARegister wd, MSARegister ws, MSARegister wt);
1205   void pckod_w(MSARegister wd, MSARegister ws, MSARegister wt);
1206   void pckod_d(MSARegister wd, MSARegister ws, MSARegister wt);
1207   void ilvl_b(MSARegister wd, MSARegister ws, MSARegister wt);
1208   void ilvl_h(MSARegister wd, MSARegister ws, MSARegister wt);
1209   void ilvl_w(MSARegister wd, MSARegister ws, MSARegister wt);
1210   void ilvl_d(MSARegister wd, MSARegister ws, MSARegister wt);
1211   void ilvr_b(MSARegister wd, MSARegister ws, MSARegister wt);
1212   void ilvr_h(MSARegister wd, MSARegister ws, MSARegister wt);
1213   void ilvr_w(MSARegister wd, MSARegister ws, MSARegister wt);
1214   void ilvr_d(MSARegister wd, MSARegister ws, MSARegister wt);
1215   void ilvev_b(MSARegister wd, MSARegister ws, MSARegister wt);
1216   void ilvev_h(MSARegister wd, MSARegister ws, MSARegister wt);
1217   void ilvev_w(MSARegister wd, MSARegister ws, MSARegister wt);
1218   void ilvev_d(MSARegister wd, MSARegister ws, MSARegister wt);
1219   void ilvod_b(MSARegister wd, MSARegister ws, MSARegister wt);
1220   void ilvod_h(MSARegister wd, MSARegister ws, MSARegister wt);
1221   void ilvod_w(MSARegister wd, MSARegister ws, MSARegister wt);
1222   void ilvod_d(MSARegister wd, MSARegister ws, MSARegister wt);
1223   void vshf_b(MSARegister wd, MSARegister ws, MSARegister wt);
1224   void vshf_h(MSARegister wd, MSARegister ws, MSARegister wt);
1225   void vshf_w(MSARegister wd, MSARegister ws, MSARegister wt);
1226   void vshf_d(MSARegister wd, MSARegister ws, MSARegister wt);
1227   void srar_b(MSARegister wd, MSARegister ws, MSARegister wt);
1228   void srar_h(MSARegister wd, MSARegister ws, MSARegister wt);
1229   void srar_w(MSARegister wd, MSARegister ws, MSARegister wt);
1230   void srar_d(MSARegister wd, MSARegister ws, MSARegister wt);
1231   void srlr_b(MSARegister wd, MSARegister ws, MSARegister wt);
1232   void srlr_h(MSARegister wd, MSARegister ws, MSARegister wt);
1233   void srlr_w(MSARegister wd, MSARegister ws, MSARegister wt);
1234   void srlr_d(MSARegister wd, MSARegister ws, MSARegister wt);
1235   void hadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1236   void hadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1237   void hadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1238   void hadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1239   void hadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1240   void hadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1241   void hadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1242   void hadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1243   void hsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1244   void hsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1245   void hsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1246   void hsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1247   void hsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1248   void hsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1249   void hsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1250   void hsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1251 
1252   void fcaf_w(MSARegister wd, MSARegister ws, MSARegister wt);
1253   void fcaf_d(MSARegister wd, MSARegister ws, MSARegister wt);
1254   void fcun_w(MSARegister wd, MSARegister ws, MSARegister wt);
1255   void fcun_d(MSARegister wd, MSARegister ws, MSARegister wt);
1256   void fceq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1257   void fceq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1258   void fcueq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1259   void fcueq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1260   void fclt_w(MSARegister wd, MSARegister ws, MSARegister wt);
1261   void fclt_d(MSARegister wd, MSARegister ws, MSARegister wt);
1262   void fcult_w(MSARegister wd, MSARegister ws, MSARegister wt);
1263   void fcult_d(MSARegister wd, MSARegister ws, MSARegister wt);
1264   void fcle_w(MSARegister wd, MSARegister ws, MSARegister wt);
1265   void fcle_d(MSARegister wd, MSARegister ws, MSARegister wt);
1266   void fcule_w(MSARegister wd, MSARegister ws, MSARegister wt);
1267   void fcule_d(MSARegister wd, MSARegister ws, MSARegister wt);
1268   void fsaf_w(MSARegister wd, MSARegister ws, MSARegister wt);
1269   void fsaf_d(MSARegister wd, MSARegister ws, MSARegister wt);
1270   void fsun_w(MSARegister wd, MSARegister ws, MSARegister wt);
1271   void fsun_d(MSARegister wd, MSARegister ws, MSARegister wt);
1272   void fseq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1273   void fseq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1274   void fsueq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1275   void fsueq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1276   void fslt_w(MSARegister wd, MSARegister ws, MSARegister wt);
1277   void fslt_d(MSARegister wd, MSARegister ws, MSARegister wt);
1278   void fsult_w(MSARegister wd, MSARegister ws, MSARegister wt);
1279   void fsult_d(MSARegister wd, MSARegister ws, MSARegister wt);
1280   void fsle_w(MSARegister wd, MSARegister ws, MSARegister wt);
1281   void fsle_d(MSARegister wd, MSARegister ws, MSARegister wt);
1282   void fsule_w(MSARegister wd, MSARegister ws, MSARegister wt);
1283   void fsule_d(MSARegister wd, MSARegister ws, MSARegister wt);
1284   void fadd_w(MSARegister wd, MSARegister ws, MSARegister wt);
1285   void fadd_d(MSARegister wd, MSARegister ws, MSARegister wt);
1286   void fsub_w(MSARegister wd, MSARegister ws, MSARegister wt);
1287   void fsub_d(MSARegister wd, MSARegister ws, MSARegister wt);
1288   void fmul_w(MSARegister wd, MSARegister ws, MSARegister wt);
1289   void fmul_d(MSARegister wd, MSARegister ws, MSARegister wt);
1290   void fdiv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1291   void fdiv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1292   void fmadd_w(MSARegister wd, MSARegister ws, MSARegister wt);
1293   void fmadd_d(MSARegister wd, MSARegister ws, MSARegister wt);
1294   void fmsub_w(MSARegister wd, MSARegister ws, MSARegister wt);
1295   void fmsub_d(MSARegister wd, MSARegister ws, MSARegister wt);
1296   void fexp2_w(MSARegister wd, MSARegister ws, MSARegister wt);
1297   void fexp2_d(MSARegister wd, MSARegister ws, MSARegister wt);
1298   void fexdo_h(MSARegister wd, MSARegister ws, MSARegister wt);
1299   void fexdo_w(MSARegister wd, MSARegister ws, MSARegister wt);
1300   void ftq_h(MSARegister wd, MSARegister ws, MSARegister wt);
1301   void ftq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1302   void fmin_w(MSARegister wd, MSARegister ws, MSARegister wt);
1303   void fmin_d(MSARegister wd, MSARegister ws, MSARegister wt);
1304   void fmin_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1305   void fmin_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1306   void fmax_w(MSARegister wd, MSARegister ws, MSARegister wt);
1307   void fmax_d(MSARegister wd, MSARegister ws, MSARegister wt);
1308   void fmax_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1309   void fmax_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1310   void fcor_w(MSARegister wd, MSARegister ws, MSARegister wt);
1311   void fcor_d(MSARegister wd, MSARegister ws, MSARegister wt);
1312   void fcune_w(MSARegister wd, MSARegister ws, MSARegister wt);
1313   void fcune_d(MSARegister wd, MSARegister ws, MSARegister wt);
1314   void fcne_w(MSARegister wd, MSARegister ws, MSARegister wt);
1315   void fcne_d(MSARegister wd, MSARegister ws, MSARegister wt);
1316   void mul_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1317   void mul_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1318   void madd_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1319   void madd_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1320   void msub_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1321   void msub_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1322   void fsor_w(MSARegister wd, MSARegister ws, MSARegister wt);
1323   void fsor_d(MSARegister wd, MSARegister ws, MSARegister wt);
1324   void fsune_w(MSARegister wd, MSARegister ws, MSARegister wt);
1325   void fsune_d(MSARegister wd, MSARegister ws, MSARegister wt);
1326   void fsne_w(MSARegister wd, MSARegister ws, MSARegister wt);
1327   void fsne_d(MSARegister wd, MSARegister ws, MSARegister wt);
1328   void mulr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1329   void mulr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1330   void maddr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1331   void maddr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1332   void msubr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1333   void msubr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1334 
1335   void sldi_b(MSARegister wd, MSARegister ws, uint32_t n);
1336   void sldi_h(MSARegister wd, MSARegister ws, uint32_t n);
1337   void sldi_w(MSARegister wd, MSARegister ws, uint32_t n);
1338   void sldi_d(MSARegister wd, MSARegister ws, uint32_t n);
1339   void splati_b(MSARegister wd, MSARegister ws, uint32_t n);
1340   void splati_h(MSARegister wd, MSARegister ws, uint32_t n);
1341   void splati_w(MSARegister wd, MSARegister ws, uint32_t n);
1342   void splati_d(MSARegister wd, MSARegister ws, uint32_t n);
1343   void copy_s_b(Register rd, MSARegister ws, uint32_t n);
1344   void copy_s_h(Register rd, MSARegister ws, uint32_t n);
1345   void copy_s_w(Register rd, MSARegister ws, uint32_t n);
1346   void copy_s_d(Register rd, MSARegister ws, uint32_t n);
1347   void copy_u_b(Register rd, MSARegister ws, uint32_t n);
1348   void copy_u_h(Register rd, MSARegister ws, uint32_t n);
1349   void copy_u_w(Register rd, MSARegister ws, uint32_t n);
1350   void insert_b(MSARegister wd, uint32_t n, Register rs);
1351   void insert_h(MSARegister wd, uint32_t n, Register rs);
1352   void insert_w(MSARegister wd, uint32_t n, Register rs);
1353   void insert_d(MSARegister wd, uint32_t n, Register rs);
1354   void insve_b(MSARegister wd, uint32_t n, MSARegister ws);
1355   void insve_h(MSARegister wd, uint32_t n, MSARegister ws);
1356   void insve_w(MSARegister wd, uint32_t n, MSARegister ws);
1357   void insve_d(MSARegister wd, uint32_t n, MSARegister ws);
1358   void move_v(MSARegister wd, MSARegister ws);
1359   void ctcmsa(MSAControlRegister cd, Register rs);
1360   void cfcmsa(Register rd, MSAControlRegister cs);
1361 
1362   void slli_b(MSARegister wd, MSARegister ws, uint32_t m);
1363   void slli_h(MSARegister wd, MSARegister ws, uint32_t m);
1364   void slli_w(MSARegister wd, MSARegister ws, uint32_t m);
1365   void slli_d(MSARegister wd, MSARegister ws, uint32_t m);
1366   void srai_b(MSARegister wd, MSARegister ws, uint32_t m);
1367   void srai_h(MSARegister wd, MSARegister ws, uint32_t m);
1368   void srai_w(MSARegister wd, MSARegister ws, uint32_t m);
1369   void srai_d(MSARegister wd, MSARegister ws, uint32_t m);
1370   void srli_b(MSARegister wd, MSARegister ws, uint32_t m);
1371   void srli_h(MSARegister wd, MSARegister ws, uint32_t m);
1372   void srli_w(MSARegister wd, MSARegister ws, uint32_t m);
1373   void srli_d(MSARegister wd, MSARegister ws, uint32_t m);
1374   void bclri_b(MSARegister wd, MSARegister ws, uint32_t m);
1375   void bclri_h(MSARegister wd, MSARegister ws, uint32_t m);
1376   void bclri_w(MSARegister wd, MSARegister ws, uint32_t m);
1377   void bclri_d(MSARegister wd, MSARegister ws, uint32_t m);
1378   void bseti_b(MSARegister wd, MSARegister ws, uint32_t m);
1379   void bseti_h(MSARegister wd, MSARegister ws, uint32_t m);
1380   void bseti_w(MSARegister wd, MSARegister ws, uint32_t m);
1381   void bseti_d(MSARegister wd, MSARegister ws, uint32_t m);
1382   void bnegi_b(MSARegister wd, MSARegister ws, uint32_t m);
1383   void bnegi_h(MSARegister wd, MSARegister ws, uint32_t m);
1384   void bnegi_w(MSARegister wd, MSARegister ws, uint32_t m);
1385   void bnegi_d(MSARegister wd, MSARegister ws, uint32_t m);
1386   void binsli_b(MSARegister wd, MSARegister ws, uint32_t m);
1387   void binsli_h(MSARegister wd, MSARegister ws, uint32_t m);
1388   void binsli_w(MSARegister wd, MSARegister ws, uint32_t m);
1389   void binsli_d(MSARegister wd, MSARegister ws, uint32_t m);
1390   void binsri_b(MSARegister wd, MSARegister ws, uint32_t m);
1391   void binsri_h(MSARegister wd, MSARegister ws, uint32_t m);
1392   void binsri_w(MSARegister wd, MSARegister ws, uint32_t m);
1393   void binsri_d(MSARegister wd, MSARegister ws, uint32_t m);
1394   void sat_s_b(MSARegister wd, MSARegister ws, uint32_t m);
1395   void sat_s_h(MSARegister wd, MSARegister ws, uint32_t m);
1396   void sat_s_w(MSARegister wd, MSARegister ws, uint32_t m);
1397   void sat_s_d(MSARegister wd, MSARegister ws, uint32_t m);
1398   void sat_u_b(MSARegister wd, MSARegister ws, uint32_t m);
1399   void sat_u_h(MSARegister wd, MSARegister ws, uint32_t m);
1400   void sat_u_w(MSARegister wd, MSARegister ws, uint32_t m);
1401   void sat_u_d(MSARegister wd, MSARegister ws, uint32_t m);
1402   void srari_b(MSARegister wd, MSARegister ws, uint32_t m);
1403   void srari_h(MSARegister wd, MSARegister ws, uint32_t m);
1404   void srari_w(MSARegister wd, MSARegister ws, uint32_t m);
1405   void srari_d(MSARegister wd, MSARegister ws, uint32_t m);
1406   void srlri_b(MSARegister wd, MSARegister ws, uint32_t m);
1407   void srlri_h(MSARegister wd, MSARegister ws, uint32_t m);
1408   void srlri_w(MSARegister wd, MSARegister ws, uint32_t m);
1409   void srlri_d(MSARegister wd, MSARegister ws, uint32_t m);
1410 
1411   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label* label)1412   int SizeOfCodeGeneratedSince(Label* label) {
1413     return pc_offset() - label->pos();
1414   }
1415 
1416   // Check the number of instructions generated from label to here.
InstructionsGeneratedSince(Label* label)1417   int InstructionsGeneratedSince(Label* label) {
1418     return SizeOfCodeGeneratedSince(label) / kInstrSize;
1419   }
1420 
1421   // Class for scoping postponing the trampoline pool generation.
1422   class V8_NODISCARD BlockTrampolinePoolScope {
1423    public:
BlockTrampolinePoolScope(Assembler* assem)1424     explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
1425       assem_->StartBlockTrampolinePool();
1426     }
~BlockTrampolinePoolScope()1427     ~BlockTrampolinePoolScope() { assem_->EndBlockTrampolinePool(); }
1428 
1429    private:
1430     Assembler* assem_;
1431 
1432     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1433   };
1434 
1435   // Class for postponing the assembly buffer growth. Typically used for
1436   // sequences of instructions that must be emitted as a unit, before
1437   // buffer growth (and relocation) can occur.
1438   // This blocking scope is not nestable.
1439   class V8_NODISCARD BlockGrowBufferScope {
1440    public:
BlockGrowBufferScope(Assembler* assem)1441     explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1442       assem_->StartBlockGrowBuffer();
1443     }
~BlockGrowBufferScope()1444     ~BlockGrowBufferScope() { assem_->EndBlockGrowBuffer(); }
1445 
1446    private:
1447     Assembler* assem_;
1448 
1449     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1450   };
1451 
1452   // Record a deoptimization reason that can be used by a log or cpu profiler.
1453   // Use --trace-deopt to enable.
1454   void RecordDeoptReason(DeoptimizeReason reason, uint32_t node_id,
1455                          SourcePosition position, int id);
1456 
1457   static int RelocateInternalReference(RelocInfo::Mode rmode, Address pc,
1458                                        intptr_t pc_delta);
1459 
1460   // Writes a single byte or word of data in the code stream.  Used for
1461   // inline tables, e.g., jump-tables.
1462   void db(uint8_t data);
1463   void dd(uint32_t data, RelocInfo::Mode rmode = RelocInfo::NO_INFO);
1464   void dq(uint64_t data, RelocInfo::Mode rmode = RelocInfo::NO_INFO);
dp(uintptr_t data, RelocInfo::Mode rmode = RelocInfo::NO_INFO)1465   void dp(uintptr_t data, RelocInfo::Mode rmode = RelocInfo::NO_INFO) {
1466     dq(data, rmode);
1467   }
1468   void dd(Label* label);
1469 
1470   // Postpone the generation of the trampoline pool for the specified number of
1471   // instructions.
1472   void BlockTrampolinePoolFor(int instructions);
1473 
1474   // Check if there is less than kGap bytes available in the buffer.
1475   // If this is the case, we need to grow the buffer before emitting
1476   // an instruction or relocation information.
overflow() const1477   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1478 
1479   // Get the number of bytes available in the buffer.
available_space() const1480   inline intptr_t available_space() const {
1481     return reloc_info_writer.pos() - pc_;
1482   }
1483 
1484   // Read/patch instructions.
instr_at(Address pc)1485   static Instr instr_at(Address pc) { return *reinterpret_cast<Instr*>(pc); }
instr_at_put(Address pc, Instr instr)1486   static void instr_at_put(Address pc, Instr instr) {
1487     *reinterpret_cast<Instr*>(pc) = instr;
1488   }
instr_at(int pos)1489   Instr instr_at(int pos) {
1490     return *reinterpret_cast<Instr*>(buffer_start_ + pos);
1491   }
instr_at_put(int pos, Instr instr)1492   void instr_at_put(int pos, Instr instr) {
1493     *reinterpret_cast<Instr*>(buffer_start_ + pos) = instr;
1494   }
1495 
1496   // Check if an instruction is a branch of some kind.
1497   static bool IsBranch(Instr instr);
1498   static bool IsMsaBranch(Instr instr);
1499   static bool IsBc(Instr instr);
1500   static bool IsNal(Instr instr);
1501   static bool IsBzc(Instr instr);
1502 
1503   static bool IsBeq(Instr instr);
1504   static bool IsBne(Instr instr);
1505   static bool IsBeqzc(Instr instr);
1506   static bool IsBnezc(Instr instr);
1507   static bool IsBeqc(Instr instr);
1508   static bool IsBnec(Instr instr);
1509 
1510   static bool IsJump(Instr instr);
1511   static bool IsJ(Instr instr);
1512   static bool IsLui(Instr instr);
1513   static bool IsOri(Instr instr);
1514   static bool IsMov(Instr instr, Register rd, Register rs);
1515 
1516   static bool IsJal(Instr instr);
1517   static bool IsJr(Instr instr);
1518   static bool IsJalr(Instr instr);
1519 
1520   static bool IsNop(Instr instr, unsigned int type);
1521   static bool IsPop(Instr instr);
1522   static bool IsPush(Instr instr);
1523   static bool IsLwRegFpOffset(Instr instr);
1524   static bool IsSwRegFpOffset(Instr instr);
1525   static bool IsLwRegFpNegOffset(Instr instr);
1526   static bool IsSwRegFpNegOffset(Instr instr);
1527 
1528   static Register GetRtReg(Instr instr);
1529   static Register GetRsReg(Instr instr);
1530   static Register GetRdReg(Instr instr);
1531 
1532   static uint32_t GetRt(Instr instr);
1533   static uint32_t GetRtField(Instr instr);
1534   static uint32_t GetRs(Instr instr);
1535   static uint32_t GetRsField(Instr instr);
1536   static uint32_t GetRd(Instr instr);
1537   static uint32_t GetRdField(Instr instr);
1538   static uint32_t GetSa(Instr instr);
1539   static uint32_t GetSaField(Instr instr);
1540   static uint32_t GetOpcodeField(Instr instr);
1541   static uint32_t GetFunction(Instr instr);
1542   static uint32_t GetFunctionField(Instr instr);
1543   static uint32_t GetImmediate16(Instr instr);
1544   static uint32_t GetLabelConst(Instr instr);
1545 
1546   static int32_t GetBranchOffset(Instr instr);
1547   static bool IsLw(Instr instr);
1548   static int16_t GetLwOffset(Instr instr);
1549   static Instr SetLwOffset(Instr instr, int16_t offset);
1550 
1551   static bool IsSw(Instr instr);
1552   static Instr SetSwOffset(Instr instr, int16_t offset);
1553   static bool IsAddImmediate(Instr instr);
1554   static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1555 
1556   static bool IsAndImmediate(Instr instr);
1557   static bool IsEmittedConstant(Instr instr);
1558 
1559   void CheckTrampolinePool();
1560 
IsPrevInstrCompactBranch()1561   bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
IsCompactBranchSupported()1562   static bool IsCompactBranchSupported() { return kArchVariant == kMips64r6; }
1563 
UnboundLabelsCount()1564   inline int UnboundLabelsCount() { return unbound_labels_count_; }
1565 
is_trampoline_emitted() const1566   bool is_trampoline_emitted() const { return trampoline_emitted_; }
1567 
1568  protected:
1569   // Load Scaled Address instructions.
1570   void lsa(Register rd, Register rt, Register rs, uint8_t sa);
1571   void dlsa(Register rd, Register rt, Register rs, uint8_t sa);
1572 
1573   // Readable constants for base and offset adjustment helper, these indicate if
1574   // aside from offset, another value like offset + 4 should fit into int16.
1575   enum class OffsetAccessType : bool {
1576     SINGLE_ACCESS = false,
1577     TWO_ACCESSES = true
1578   };
1579 
1580   // Helper function for memory load/store using base register and offset.
1581   void AdjustBaseAndOffset(
1582       MemOperand* src,
1583       OffsetAccessType access_type = OffsetAccessType::SINGLE_ACCESS,
1584       int second_access_add_to_offset = 4);
1585 
1586   inline static void set_target_internal_reference_encoded_at(Address pc,
1587                                                               Address target);
1588 
buffer_space() const1589   int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1590 
1591   // Decode branch instruction at pos and return branch target pos.
1592   int target_at(int pos, bool is_internal);
1593 
1594   // Patch branch instruction at pos to branch to given branch target pos.
1595   void target_at_put(int pos, int target_pos, bool is_internal);
1596 
1597   // Say if we need to relocate with this mode.
1598   bool MustUseReg(RelocInfo::Mode rmode);
1599 
1600   // Record reloc info for current pc_.
1601   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1602 
1603   // Block the emission of the trampoline pool before pc_offset.
BlockTrampolinePoolBefore(int pc_offset)1604   void BlockTrampolinePoolBefore(int pc_offset) {
1605     if (no_trampoline_pool_before_ < pc_offset)
1606       no_trampoline_pool_before_ = pc_offset;
1607   }
1608 
StartBlockTrampolinePool()1609   void StartBlockTrampolinePool() { trampoline_pool_blocked_nesting_++; }
1610 
EndBlockTrampolinePool()1611   void EndBlockTrampolinePool() {
1612     trampoline_pool_blocked_nesting_--;
1613     if (trampoline_pool_blocked_nesting_ == 0) {
1614       CheckTrampolinePoolQuick(1);
1615     }
1616   }
1617 
is_trampoline_pool_blocked() const1618   bool is_trampoline_pool_blocked() const {
1619     return trampoline_pool_blocked_nesting_ > 0;
1620   }
1621 
has_exception() const1622   bool has_exception() const { return internal_trampoline_exception_; }
1623 
1624   // Temporarily block automatic assembly buffer growth.
StartBlockGrowBuffer()1625   void StartBlockGrowBuffer() {
1626     DCHECK(!block_buffer_growth_);
1627     block_buffer_growth_ = true;
1628   }
1629 
EndBlockGrowBuffer()1630   void EndBlockGrowBuffer() {
1631     DCHECK(block_buffer_growth_);
1632     block_buffer_growth_ = false;
1633   }
1634 
is_buffer_growth_blocked() const1635   bool is_buffer_growth_blocked() const { return block_buffer_growth_; }
1636 
EmitForbiddenSlotInstruction()1637   void EmitForbiddenSlotInstruction() {
1638     if (IsPrevInstrCompactBranch()) {
1639       nop();
1640     }
1641   }
1642 
CheckTrampolinePoolQuick(int extra_instructions = 0)1643   void CheckTrampolinePoolQuick(int extra_instructions = 0) {
1644     if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
1645       CheckTrampolinePool();
1646     }
1647   }
1648 
set_pc_for_safepoint()1649   void set_pc_for_safepoint() { pc_for_safepoint_ = pc_; }
1650 
1651  private:
1652   // Avoid overflows for displacements etc.
1653   static const int kMaximalBufferSize = 512 * MB;
1654 
1655   // Buffer size and constant pool distance are checked together at regular
1656   // intervals of kBufferCheckInterval emitted bytes.
1657   static constexpr int kBufferCheckInterval = 1 * KB / 2;
1658 
1659   // Code generation.
1660   // The relocation writer's position is at least kGap bytes below the end of
1661   // the generated instructions. This is so that multi-instruction sequences do
1662   // not have to check for overflow. The same is true for writes of large
1663   // relocation info entries.
1664   static constexpr int kGap = 64;
1665   STATIC_ASSERT(AssemblerBase::kMinimalBufferSize >= 2 * kGap);
1666 
1667   // Repeated checking whether the trampoline pool should be emitted is rather
1668   // expensive. By default we only check again once a number of instructions
1669   // has been generated.
1670   static constexpr int kCheckConstIntervalInst = 32;
1671   static constexpr int kCheckConstInterval =
1672       kCheckConstIntervalInst * kInstrSize;
1673 
1674   int next_buffer_check_;  // pc offset of next buffer check.
1675 
1676   // Emission of the trampoline pool may be blocked in some code sequences.
1677   int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1678   int no_trampoline_pool_before_;  // Block emission before this pc offset.
1679 
1680   // Keep track of the last emitted pool to guarantee a maximal distance.
1681   int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1682 
1683   // Automatic growth of the assembly buffer may be blocked for some sequences.
1684   bool block_buffer_growth_;  // Block growth when true.
1685 
1686   // Relocation information generation.
1687   // Each relocation is encoded as a variable size value.
1688   static constexpr int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1689   RelocInfoWriter reloc_info_writer;
1690 
1691   // The bound position, before this we cannot do instruction elimination.
1692   int last_bound_pos_;
1693 
1694   // Readable constants for compact branch handling in emit()
1695   enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
1696 
1697   // Code emission.
1698   inline void CheckBuffer();
1699   void GrowBuffer();
1700   inline void emit(Instr x,
1701                    CompactBranchType is_compact_branch = CompactBranchType::NO);
1702   inline void emit(uint64_t x);
1703   inline void CheckForEmitInForbiddenSlot();
1704   template <typename T>
1705   inline void EmitHelper(T x);
1706   inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
1707 
1708   // Instruction generation.
1709   // We have 3 different kind of encoding layout on MIPS.
1710   // However due to many different types of objects encoded in the same fields
1711   // we have quite a few aliases for each mode.
1712   // Using the same structure to refer to Register and FPURegister would spare a
1713   // few aliases, but mixing both does not look clean to me.
1714   // Anyway we could surely implement this differently.
1715 
1716   void GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd,
1717                         uint16_t sa = 0, SecondaryField func = nullptrSF);
1718 
1719   void GenInstrRegister(Opcode opcode, Register rs, Register rt, uint16_t msb,
1720                         uint16_t lsb, SecondaryField func);
1721 
1722   void GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft,
1723                         FPURegister fs, FPURegister fd,
1724                         SecondaryField func = nullptrSF);
1725 
1726   void GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
1727                         FPURegister fs, FPURegister fd,
1728                         SecondaryField func = nullptrSF);
1729 
1730   void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1731                         FPURegister fs, FPURegister fd,
1732                         SecondaryField func = nullptrSF);
1733 
1734   void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1735                         FPUControlRegister fs, SecondaryField func = nullptrSF);
1736 
1737   void GenInstrImmediate(
1738       Opcode opcode, Register rs, Register rt, int32_t j,
1739       CompactBranchType is_compact_branch = CompactBranchType::NO);
1740   void GenInstrImmediate(
1741       Opcode opcode, Register rs, SecondaryField SF, int32_t j,
1742       CompactBranchType is_compact_branch = CompactBranchType::NO);
1743   void GenInstrImmediate(
1744       Opcode opcode, Register r1, FPURegister r2, int32_t j,
1745       CompactBranchType is_compact_branch = CompactBranchType::NO);
1746   void GenInstrImmediate(Opcode opcode, Register base, Register rt,
1747                          int32_t offset9, int bit6, SecondaryField func);
1748   void GenInstrImmediate(
1749       Opcode opcode, Register rs, int32_t offset21,
1750       CompactBranchType is_compact_branch = CompactBranchType::NO);
1751   void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
1752   void GenInstrImmediate(
1753       Opcode opcode, int32_t offset26,
1754       CompactBranchType is_compact_branch = CompactBranchType::NO);
1755 
1756   void GenInstrJump(Opcode opcode, uint32_t address);
1757 
1758   // MSA
1759   void GenInstrMsaI8(SecondaryField operation, uint32_t imm8, MSARegister ws,
1760                      MSARegister wd);
1761 
1762   void GenInstrMsaI5(SecondaryField operation, SecondaryField df, int32_t imm5,
1763                      MSARegister ws, MSARegister wd);
1764 
1765   void GenInstrMsaBit(SecondaryField operation, SecondaryField df, uint32_t m,
1766                       MSARegister ws, MSARegister wd);
1767 
1768   void GenInstrMsaI10(SecondaryField operation, SecondaryField df,
1769                       int32_t imm10, MSARegister wd);
1770 
1771   template <typename RegType>
1772   void GenInstrMsa3R(SecondaryField operation, SecondaryField df, RegType t,
1773                      MSARegister ws, MSARegister wd);
1774 
1775   template <typename DstType, typename SrcType>
1776   void GenInstrMsaElm(SecondaryField operation, SecondaryField df, uint32_t n,
1777                       SrcType src, DstType dst);
1778 
1779   void GenInstrMsa3RF(SecondaryField operation, uint32_t df, MSARegister wt,
1780                       MSARegister ws, MSARegister wd);
1781 
1782   void GenInstrMsaVec(SecondaryField operation, MSARegister wt, MSARegister ws,
1783                       MSARegister wd);
1784 
1785   void GenInstrMsaMI10(SecondaryField operation, int32_t s10, Register rs,
1786                        MSARegister wd);
1787 
1788   void GenInstrMsa2R(SecondaryField operation, SecondaryField df,
1789                      MSARegister ws, MSARegister wd);
1790 
1791   void GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
1792                       MSARegister ws, MSARegister wd);
1793 
1794   void GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
1795                          int32_t offset16);
1796 
is_valid_msa_df_m(SecondaryField bit_df, uint32_t m)1797   inline bool is_valid_msa_df_m(SecondaryField bit_df, uint32_t m) {
1798     switch (bit_df) {
1799       case BIT_DF_b:
1800         return is_uint3(m);
1801       case BIT_DF_h:
1802         return is_uint4(m);
1803       case BIT_DF_w:
1804         return is_uint5(m);
1805       case BIT_DF_d:
1806         return is_uint6(m);
1807       default:
1808         return false;
1809     }
1810   }
1811 
is_valid_msa_df_n(SecondaryField elm_df, uint32_t n)1812   inline bool is_valid_msa_df_n(SecondaryField elm_df, uint32_t n) {
1813     switch (elm_df) {
1814       case ELM_DF_B:
1815         return is_uint4(n);
1816       case ELM_DF_H:
1817         return is_uint3(n);
1818       case ELM_DF_W:
1819         return is_uint2(n);
1820       case ELM_DF_D:
1821         return is_uint1(n);
1822       default:
1823         return false;
1824     }
1825   }
1826 
1827   // Labels.
1828   void print(const Label* L);
1829   void bind_to(Label* L, int pos);
1830   void next(Label* L, bool is_internal);
1831 
1832   // One trampoline consists of:
1833   // - space for trampoline slots,
1834   // - space for labels.
1835   //
1836   // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1837   // Space for trampoline slots precedes space for labels. Each label is of one
1838   // instruction size, so total amount for labels is equal to
1839   // label_count *  kInstrSize.
1840   class Trampoline {
1841    public:
Trampoline()1842     Trampoline() {
1843       start_ = 0;
1844       next_slot_ = 0;
1845       free_slot_count_ = 0;
1846       end_ = 0;
1847     }
Trampoline(int start, int slot_count)1848     Trampoline(int start, int slot_count) {
1849       start_ = start;
1850       next_slot_ = start;
1851       free_slot_count_ = slot_count;
1852       end_ = start + slot_count * kTrampolineSlotsSize;
1853     }
start()1854     int start() { return start_; }
end()1855     int end() { return end_; }
take_slot()1856     int take_slot() {
1857       int trampoline_slot = kInvalidSlotPos;
1858       if (free_slot_count_ <= 0) {
1859         // We have run out of space on trampolines.
1860         // Make sure we fail in debug mode, so we become aware of each case
1861         // when this happens.
1862         DCHECK(0);
1863         // Internal exception will be caught.
1864       } else {
1865         trampoline_slot = next_slot_;
1866         free_slot_count_--;
1867         next_slot_ += kTrampolineSlotsSize;
1868       }
1869       return trampoline_slot;
1870     }
1871 
1872    private:
1873     int start_;
1874     int end_;
1875     int next_slot_;
1876     int free_slot_count_;
1877   };
1878 
1879   int32_t get_trampoline_entry(int32_t pos);
1880   int unbound_labels_count_;
1881   // After trampoline is emitted, long branches are used in generated code for
1882   // the forward branches whose target offsets could be beyond reach of branch
1883   // instruction. We use this information to trigger different mode of
1884   // branch instruction generation, where we use jump instructions rather
1885   // than regular branch instructions.
1886   bool trampoline_emitted_;
1887   static constexpr int kInvalidSlotPos = -1;
1888 
1889   // Internal reference positions, required for unbounded internal reference
1890   // labels.
1891   std::set<int64_t> internal_reference_positions_;
is_internal_reference(Label* L)1892   bool is_internal_reference(Label* L) {
1893     return internal_reference_positions_.find(L->pos()) !=
1894            internal_reference_positions_.end();
1895   }
1896 
EmittedCompactBranchInstruction()1897   void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
ClearCompactBranchState()1898   void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
1899   bool prev_instr_compact_branch_ = false;
1900 
1901   Trampoline trampoline_;
1902   bool internal_trampoline_exception_;
1903 
1904   // Keep track of the last Call's position to ensure that safepoint can get the
1905   // correct information even if there is a trampoline immediately after the
1906   // Call.
1907   byte* pc_for_safepoint_;
1908 
1909   RegList scratch_register_list_;
1910 
1911  private:
1912   void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);
1913 
1914   int WriteCodeComments();
1915 
1916   friend class RegExpMacroAssemblerMIPS;
1917   friend class RelocInfo;
1918   friend class BlockTrampolinePoolScope;
1919   friend class EnsureSpace;
1920 };
1921 
1922 class EnsureSpace {
1923  public:
1924   explicit inline EnsureSpace(Assembler* assembler);
1925 };
1926 
1927 class V8_EXPORT_PRIVATE V8_NODISCARD UseScratchRegisterScope {
1928  public:
1929   explicit UseScratchRegisterScope(Assembler* assembler);
1930   ~UseScratchRegisterScope();
1931 
1932   Register Acquire();
1933   bool hasAvailable() const;
1934 
Include(const RegList& list)1935   void Include(const RegList& list) { *available_ |= list; }
Exclude(const RegList& list)1936   void Exclude(const RegList& list) { available_->clear(list); }
Include(const Register& reg1, const Register& reg2 = no_reg)1937   void Include(const Register& reg1, const Register& reg2 = no_reg) {
1938     RegList list({reg1, reg2});
1939     Include(list);
1940   }
Exclude(const Register& reg1, const Register& reg2 = no_reg)1941   void Exclude(const Register& reg1, const Register& reg2 = no_reg) {
1942     RegList list({reg1, reg2});
1943     Exclude(list);
1944   }
1945 
1946  private:
1947   RegList* available_;
1948   RegList old_available_;
1949 };
1950 
1951 // Helper struct for load lane and store lane to indicate what memory size
1952 // to be encoded in the opcode, and the new lane index.
1953 class LoadStoreLaneParams {
1954  public:
1955   MSASize sz;
1956   uint8_t laneidx;
1957 
1958   LoadStoreLaneParams(MachineRepresentation rep, uint8_t laneidx);
1959 
1960  private:
LoadStoreLaneParams(uint8_t laneidx, MSASize sz, int lanes)1961   LoadStoreLaneParams(uint8_t laneidx, MSASize sz, int lanes)
1962       : sz(sz), laneidx(laneidx % lanes) {}
1963 };
1964 
1965 }  // namespace internal
1966 }  // namespace v8
1967 
1968 #endif  // V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_
1969