1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_V8_PLATFORM_H_
6 #define V8_V8_PLATFORM_H_
7 
8 #include <math.h>
9 #include <stddef.h>
10 #include <stdint.h>
11 #include <stdlib.h>  // For abort.
12 
13 #include <memory>
14 #include <string>
15 
16 #include "v8-source-location.h"  // NOLINT(build/include_directory)
17 #include "v8config.h"  // NOLINT(build/include_directory)
18 
19 namespace v8 {
20 
21 class Isolate;
22 
23 // Valid priorities supported by the task scheduling infrastructure.
24 enum class TaskPriority : uint8_t {
25   /**
26    * Best effort tasks are not critical for performance of the application. The
27    * platform implementation should preempt such tasks if higher priority tasks
28    * arrive.
29    */
30   kBestEffort,
31   /**
32    * User visible tasks are long running background tasks that will
33    * improve performance and memory usage of the application upon completion.
34    * Example: background compilation and garbage collection.
35    */
36   kUserVisible,
37   /**
38    * User blocking tasks are highest priority tasks that block the execution
39    * thread (e.g. major garbage collection). They must be finished as soon as
40    * possible.
41    */
42   kUserBlocking,
43 };
44 
45 /**
46  * A Task represents a unit of work.
47  */
48 class Task {
49  public:
50   virtual ~Task() = default;
51 
52   virtual void Run() = 0;
53 };
54 
55 /**
56  * An IdleTask represents a unit of work to be performed in idle time.
57  * The Run method is invoked with an argument that specifies the deadline in
58  * seconds returned by MonotonicallyIncreasingTime().
59  * The idle task is expected to complete by this deadline.
60  */
61 class IdleTask {
62  public:
63   virtual ~IdleTask() = default;
64   virtual void Run(double deadline_in_seconds) = 0;
65 };
66 
67 /**
68  * A TaskRunner allows scheduling of tasks. The TaskRunner may still be used to
69  * post tasks after the isolate gets destructed, but these tasks may not get
70  * executed anymore. All tasks posted to a given TaskRunner will be invoked in
71  * sequence. Tasks can be posted from any thread.
72  */
73 class TaskRunner {
74  public:
75   /**
76    * Schedules a task to be invoked by this TaskRunner. The TaskRunner
77    * implementation takes ownership of |task|.
78    */
79   virtual void PostTask(std::unique_ptr<Task> task) = 0;
80 
81   /**
82    * Schedules a task to be invoked by this TaskRunner. The TaskRunner
83    * implementation takes ownership of |task|. The |task| cannot be nested
84    * within other task executions.
85    *
86    * Tasks which shouldn't be interleaved with JS execution must be posted with
87    * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the
88    * embedder may process tasks in a callback which is called during JS
89    * execution.
90    *
91    * In particular, tasks which execute JS must be non-nestable, since JS
92    * execution is not allowed to nest.
93    *
94    * Requires that |TaskRunner::NonNestableTasksEnabled()| is true.
95    */
PostNonNestableTask(std::unique_ptr<Task> task)96   virtual void PostNonNestableTask(std::unique_ptr<Task> task) {}
97 
98   /**
99    * Schedules a task to be invoked by this TaskRunner. The task is scheduled
100    * after the given number of seconds |delay_in_seconds|. The TaskRunner
101    * implementation takes ownership of |task|.
102    */
103   virtual void PostDelayedTask(std::unique_ptr<Task> task,
104                                double delay_in_seconds) = 0;
105 
106   /**
107    * Schedules a task to be invoked by this TaskRunner. The task is scheduled
108    * after the given number of seconds |delay_in_seconds|. The TaskRunner
109    * implementation takes ownership of |task|. The |task| cannot be nested
110    * within other task executions.
111    *
112    * Tasks which shouldn't be interleaved with JS execution must be posted with
113    * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the
114    * embedder may process tasks in a callback which is called during JS
115    * execution.
116    *
117    * In particular, tasks which execute JS must be non-nestable, since JS
118    * execution is not allowed to nest.
119    *
120    * Requires that |TaskRunner::NonNestableDelayedTasksEnabled()| is true.
121    */
PostNonNestableDelayedTask(std::unique_ptr<Task> task, double delay_in_seconds)122   virtual void PostNonNestableDelayedTask(std::unique_ptr<Task> task,
123                                           double delay_in_seconds) {}
124 
125   /**
126    * Schedules an idle task to be invoked by this TaskRunner. The task is
127    * scheduled when the embedder is idle. Requires that
128    * |TaskRunner::IdleTasksEnabled()| is true. Idle tasks may be reordered
129    * relative to other task types and may be starved for an arbitrarily long
130    * time if no idle time is available. The TaskRunner implementation takes
131    * ownership of |task|.
132    */
133   virtual void PostIdleTask(std::unique_ptr<IdleTask> task) = 0;
134 
135   /**
136    * Returns true if idle tasks are enabled for this TaskRunner.
137    */
138   virtual bool IdleTasksEnabled() = 0;
139 
140   /**
141    * Returns true if non-nestable tasks are enabled for this TaskRunner.
142    */
NonNestableTasksEnabled() const143   virtual bool NonNestableTasksEnabled() const { return false; }
144 
145   /**
146    * Returns true if non-nestable delayed tasks are enabled for this TaskRunner.
147    */
NonNestableDelayedTasksEnabled() const148   virtual bool NonNestableDelayedTasksEnabled() const { return false; }
149 
150   TaskRunner() = default;
151   virtual ~TaskRunner() = default;
152 
153   TaskRunner(const TaskRunner&) = delete;
154   TaskRunner& operator=(const TaskRunner&) = delete;
155 };
156 
157 /**
158  * Delegate that's passed to Job's worker task, providing an entry point to
159  * communicate with the scheduler.
160  */
161 class JobDelegate {
162  public:
163   /**
164    * Returns true if this thread *must* return from the worker task on the
165    * current thread ASAP. Workers should periodically invoke ShouldYield (or
166    * YieldIfNeeded()) as often as is reasonable.
167    * After this method returned true, ShouldYield must not be called again.
168    */
169   virtual bool ShouldYield() = 0;
170 
171   /**
172    * Notifies the scheduler that max concurrency was increased, and the number
173    * of worker should be adjusted accordingly. See Platform::PostJob() for more
174    * details.
175    */
176   virtual void NotifyConcurrencyIncrease() = 0;
177 
178   /**
179    * Returns a task_id unique among threads currently running this job, such
180    * that GetTaskId() < worker count. To achieve this, the same task_id may be
181    * reused by a different thread after a worker_task returns.
182    */
183   virtual uint8_t GetTaskId() = 0;
184 
185   /**
186    * Returns true if the current task is called from the thread currently
187    * running JobHandle::Join().
188    */
189   virtual bool IsJoiningThread() const = 0;
190 };
191 
192 /**
193  * Handle returned when posting a Job. Provides methods to control execution of
194  * the posted Job.
195  */
196 class JobHandle {
197  public:
198   virtual ~JobHandle() = default;
199 
200   /**
201    * Notifies the scheduler that max concurrency was increased, and the number
202    * of worker should be adjusted accordingly. See Platform::PostJob() for more
203    * details.
204    */
205   virtual void NotifyConcurrencyIncrease() = 0;
206 
207   /**
208    * Contributes to the job on this thread. Doesn't return until all tasks have
209    * completed and max concurrency becomes 0. When Join() is called and max
210    * concurrency reaches 0, it should not increase again. This also promotes
211    * this Job's priority to be at least as high as the calling thread's
212    * priority.
213    */
214   virtual void Join() = 0;
215 
216   /**
217    * Forces all existing workers to yield ASAP. Waits until they have all
218    * returned from the Job's callback before returning.
219    */
220   virtual void Cancel() = 0;
221 
222   /*
223    * Forces all existing workers to yield ASAP but doesn’t wait for them.
224    * Warning, this is dangerous if the Job's callback is bound to or has access
225    * to state which may be deleted after this call.
226    */
227   virtual void CancelAndDetach() = 0;
228 
229   /**
230    * Returns true if there's any work pending or any worker running.
231    */
232   virtual bool IsActive() = 0;
233 
234   /**
235    * Returns true if associated with a Job and other methods may be called.
236    * Returns false after Join() or Cancel() was called. This may return true
237    * even if no workers are running and IsCompleted() returns true
238    */
239   virtual bool IsValid() = 0;
240 
241   /**
242    * Returns true if job priority can be changed.
243    */
UpdatePriorityEnabled() const244   virtual bool UpdatePriorityEnabled() const { return false; }
245 
246   /**
247    *  Update this Job's priority.
248    */
UpdatePriority(TaskPriority new_priority)249   virtual void UpdatePriority(TaskPriority new_priority) {}
250 };
251 
252 /**
253  * A JobTask represents work to run in parallel from Platform::PostJob().
254  */
255 class JobTask {
256  public:
257   virtual ~JobTask() = default;
258 
259   virtual void Run(JobDelegate* delegate) = 0;
260 
261   /**
262    * Controls the maximum number of threads calling Run() concurrently, given
263    * the number of threads currently assigned to this job and executing Run().
264    * Run() is only invoked if the number of threads previously running Run() was
265    * less than the value returned. In general, this should return the latest
266    * number of incomplete work items (smallest unit of work) left to process,
267    * including items that are currently in progress. |worker_count| is the
268    * number of threads currently assigned to this job which some callers may
269    * need to determine their return value. Since GetMaxConcurrency() is a leaf
270    * function, it must not call back any JobHandle methods.
271    */
272   virtual size_t GetMaxConcurrency(size_t worker_count) const = 0;
273 };
274 
275 /**
276  * A "blocking call" refers to any call that causes the calling thread to wait
277  * off-CPU. It includes but is not limited to calls that wait on synchronous
278  * file I/O operations: read or write a file from disk, interact with a pipe or
279  * a socket, rename or delete a file, enumerate files in a directory, etc.
280  * Acquiring a low contention lock is not considered a blocking call.
281  */
282 
283 /**
284  * BlockingType indicates the likelihood that a blocking call will actually
285  * block.
286  */
287 enum class BlockingType {
288   // The call might block (e.g. file I/O that might hit in memory cache).
289   kMayBlock,
290   // The call will definitely block (e.g. cache already checked and now pinging
291   // server synchronously).
292   kWillBlock
293 };
294 
295 /**
296  * This class is instantiated with CreateBlockingScope() in every scope where a
297  * blocking call is made and serves as a precise annotation of the scope that
298  * may/will block. May be implemented by an embedder to adjust the thread count.
299  * CPU usage should be minimal within that scope. ScopedBlockingCalls can be
300  * nested.
301  */
302 class ScopedBlockingCall {
303  public:
304   virtual ~ScopedBlockingCall() = default;
305 };
306 
307 /**
308  * The interface represents complex arguments to trace events.
309  */
310 class ConvertableToTraceFormat {
311  public:
312   virtual ~ConvertableToTraceFormat() = default;
313 
314   /**
315    * Append the class info to the provided |out| string. The appended
316    * data must be a valid JSON object. Strings must be properly quoted, and
317    * escaped. There is no processing applied to the content after it is
318    * appended.
319    */
320   virtual void AppendAsTraceFormat(std::string* out) const = 0;
321 };
322 
323 /**
324  * V8 Tracing controller.
325  *
326  * Can be implemented by an embedder to record trace events from V8.
327  *
328  * Will become obsolete in Perfetto SDK build (v8_use_perfetto = true).
329  */
330 class TracingController {
331  public:
332   virtual ~TracingController() = default;
333 
334   // In Perfetto mode, trace events are written using Perfetto's Track Event
335   // API directly without going through the embedder. However, it is still
336   // possible to observe tracing being enabled and disabled.
337 #if !defined(V8_USE_PERFETTO)
338   /**
339    * Called by TRACE_EVENT* macros, don't call this directly.
340    * The name parameter is a category group for example:
341    * TRACE_EVENT0("v8,parse", "V8.Parse")
342    * The pointer returned points to a value with zero or more of the bits
343    * defined in CategoryGroupEnabledFlags.
344    **/
GetCategoryGroupEnabled(const char* name)345   virtual const uint8_t* GetCategoryGroupEnabled(const char* name) {
346     static uint8_t no = 0;
347     return &no;
348   }
349 
350   /**
351    * Adds a trace event to the platform tracing system. These function calls are
352    * usually the result of a TRACE_* macro from trace_event_common.h when
353    * tracing and the category of the particular trace are enabled. It is not
354    * advisable to call these functions on their own; they are really only meant
355    * to be used by the trace macros. The returned handle can be used by
356    * UpdateTraceEventDuration to update the duration of COMPLETE events.
357    */
AddTraceEvent( char phase, const uint8_t* category_enabled_flag, const char* name, const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args, const char** arg_names, const uint8_t* arg_types, const uint64_t* arg_values, std::unique_ptr<ConvertableToTraceFormat>* arg_convertables, unsigned int flags)358   virtual uint64_t AddTraceEvent(
359       char phase, const uint8_t* category_enabled_flag, const char* name,
360       const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
361       const char** arg_names, const uint8_t* arg_types,
362       const uint64_t* arg_values,
363       std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
364       unsigned int flags) {
365     return 0;
366   }
AddTraceEventWithTimestamp( char phase, const uint8_t* category_enabled_flag, const char* name, const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args, const char** arg_names, const uint8_t* arg_types, const uint64_t* arg_values, std::unique_ptr<ConvertableToTraceFormat>* arg_convertables, unsigned int flags, int64_t timestamp)367   virtual uint64_t AddTraceEventWithTimestamp(
368       char phase, const uint8_t* category_enabled_flag, const char* name,
369       const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
370       const char** arg_names, const uint8_t* arg_types,
371       const uint64_t* arg_values,
372       std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
373       unsigned int flags, int64_t timestamp) {
374     return 0;
375   }
376 
377   /**
378    * Sets the duration field of a COMPLETE trace event. It must be called with
379    * the handle returned from AddTraceEvent().
380    **/
UpdateTraceEventDuration(const uint8_t* category_enabled_flag, const char* name, uint64_t handle)381   virtual void UpdateTraceEventDuration(const uint8_t* category_enabled_flag,
382                                         const char* name, uint64_t handle) {}
383 #endif  // !defined(V8_USE_PERFETTO)
384 
385   class TraceStateObserver {
386    public:
387     virtual ~TraceStateObserver() = default;
388     virtual void OnTraceEnabled() = 0;
389     virtual void OnTraceDisabled() = 0;
390   };
391 
392   /**
393    * Adds tracing state change observer.
394    * Does nothing in Perfetto SDK build (v8_use_perfetto = true).
395    */
AddTraceStateObserver(TraceStateObserver*)396   virtual void AddTraceStateObserver(TraceStateObserver*) {}
397 
398   /**
399    * Removes tracing state change observer.
400    * Does nothing in Perfetto SDK build (v8_use_perfetto = true).
401    */
RemoveTraceStateObserver(TraceStateObserver*)402   virtual void RemoveTraceStateObserver(TraceStateObserver*) {}
403 };
404 
405 /**
406  * A V8 memory page allocator.
407  *
408  * Can be implemented by an embedder to manage large host OS allocations.
409  */
410 class PageAllocator {
411  public:
412   virtual ~PageAllocator() = default;
413 
414   /**
415    * Gets the page granularity for AllocatePages and FreePages. Addresses and
416    * lengths for those calls should be multiples of AllocatePageSize().
417    */
418   virtual size_t AllocatePageSize() = 0;
419 
420   /**
421    * Gets the page granularity for SetPermissions and ReleasePages. Addresses
422    * and lengths for those calls should be multiples of CommitPageSize().
423    */
424   virtual size_t CommitPageSize() = 0;
425 
426   /**
427    * Sets the random seed so that GetRandomMmapAddr() will generate repeatable
428    * sequences of random mmap addresses.
429    */
430   virtual void SetRandomMmapSeed(int64_t seed) = 0;
431 
432   /**
433    * Returns a randomized address, suitable for memory allocation under ASLR.
434    * The address will be aligned to AllocatePageSize.
435    */
436   virtual void* GetRandomMmapAddr() = 0;
437 
438   /**
439    * Memory permissions.
440    */
441   enum Permission {
442     kNoAccess,
443     kRead,
444     kReadWrite,
445     kReadWriteExecute,
446     kReadExecute,
447     // Set this when reserving memory that will later require kReadWriteExecute
448     // permissions. The resulting behavior is platform-specific, currently
449     // this is used to set the MAP_JIT flag on Apple Silicon.
450     // TODO(jkummerow): Remove this when Wasm has a platform-independent
451     // w^x implementation.
452     // TODO(saelo): Remove this once all JIT pages are allocated through the
453     // VirtualAddressSpace API.
454     kNoAccessWillJitLater
455   };
456 
457   /**
458    * Allocates memory in range with the given alignment and permission.
459    */
460   virtual void* AllocatePages(void* address, size_t length, size_t alignment,
461                               Permission permissions) = 0;
462 
463   /**
464    * Frees memory in a range that was allocated by a call to AllocatePages.
465    */
466   virtual bool FreePages(void* address, size_t length) = 0;
467 
468   /**
469    * Releases memory in a range that was allocated by a call to AllocatePages.
470    */
471   virtual bool ReleasePages(void* address, size_t length,
472                             size_t new_length) = 0;
473 
474   /**
475    * Sets permissions on pages in an allocated range.
476    */
477   virtual bool SetPermissions(void* address, size_t length,
478                               Permission permissions) = 0;
479 
480   /**
481    * Recommits discarded pages in the given range with given permissions.
482    * Discarded pages must be recommitted with their original permissions
483    * before they are used again.
484    */
RecommitPages(void* address, size_t length, Permission permissions)485   virtual bool RecommitPages(void* address, size_t length,
486                              Permission permissions) {
487     // TODO(v8:12797): make it pure once it's implemented on Chromium side.
488     return false;
489   }
490 
491   /**
492    * Frees memory in the given [address, address + size) range. address and size
493    * should be operating system page-aligned. The next write to this
494    * memory area brings the memory transparently back. This should be treated as
495    * a hint to the OS that the pages are no longer needed. It does not guarantee
496    * that the pages will be discarded immediately or at all.
497    */
DiscardSystemPages(void* address, size_t size)498   virtual bool DiscardSystemPages(void* address, size_t size) { return true; }
499 
500   /**
501    * Decommits any wired memory pages in the given range, allowing the OS to
502    * reclaim them, and marks the region as inacessible (kNoAccess). The address
503    * range stays reserved and can be accessed again later by changing its
504    * permissions. However, in that case the memory content is guaranteed to be
505    * zero-initialized again. The memory must have been previously allocated by a
506    * call to AllocatePages. Returns true on success, false otherwise.
507    */
508   virtual bool DecommitPages(void* address, size_t size) = 0;
509 
510   /**
511    * INTERNAL ONLY: This interface has not been stabilised and may change
512    * without notice from one release to another without being deprecated first.
513    */
514   class SharedMemoryMapping {
515    public:
516     // Implementations are expected to free the shared memory mapping in the
517     // destructor.
518     virtual ~SharedMemoryMapping() = default;
519     virtual void* GetMemory() const = 0;
520   };
521 
522   /**
523    * INTERNAL ONLY: This interface has not been stabilised and may change
524    * without notice from one release to another without being deprecated first.
525    */
526   class SharedMemory {
527    public:
528     // Implementations are expected to free the shared memory in the destructor.
529     virtual ~SharedMemory() = default;
530     virtual std::unique_ptr<SharedMemoryMapping> RemapTo(
531         void* new_address) const = 0;
532     virtual void* GetMemory() const = 0;
533     virtual size_t GetSize() const = 0;
534   };
535 
536   /**
537    * INTERNAL ONLY: This interface has not been stabilised and may change
538    * without notice from one release to another without being deprecated first.
539    *
540    * Reserve pages at a fixed address returning whether the reservation is
541    * possible. The reserved memory is detached from the PageAllocator and so
542    * should not be freed by it. It's intended for use with
543    * SharedMemory::RemapTo, where ~SharedMemoryMapping would free the memory.
544    */
ReserveForSharedMemoryMapping(void* address, size_t size)545   virtual bool ReserveForSharedMemoryMapping(void* address, size_t size) {
546     return false;
547   }
548 
549   /**
550    * INTERNAL ONLY: This interface has not been stabilised and may change
551    * without notice from one release to another without being deprecated first.
552    *
553    * Allocates shared memory pages. Not all PageAllocators need support this and
554    * so this method need not be overridden.
555    * Allocates a new read-only shared memory region of size |length| and copies
556    * the memory at |original_address| into it.
557    */
AllocateSharedPages( size_t length, const void* original_address)558   virtual std::unique_ptr<SharedMemory> AllocateSharedPages(
559       size_t length, const void* original_address) {
560     return {};
561   }
562 
563   /**
564    * INTERNAL ONLY: This interface has not been stabilised and may change
565    * without notice from one release to another without being deprecated first.
566    *
567    * If not overridden and changed to return true, V8 will not attempt to call
568    * AllocateSharedPages or RemapSharedPages. If overridden, AllocateSharedPages
569    * and RemapSharedPages must also be overridden.
570    */
CanAllocateSharedPages()571   virtual bool CanAllocateSharedPages() { return false; }
572 };
573 
574 // Opaque type representing a handle to a shared memory region.
575 using PlatformSharedMemoryHandle = intptr_t;
576 static constexpr PlatformSharedMemoryHandle kInvalidSharedMemoryHandle = -1;
577 
578 // Conversion routines from the platform-dependent shared memory identifiers
579 // into the opaque PlatformSharedMemoryHandle type. These use the underlying
580 // types (e.g. unsigned int) instead of the typedef'd ones (e.g. mach_port_t)
581 // to avoid pulling in large OS header files into this header file. Instead,
582 // the users of these routines are expected to include the respecitve OS
583 // headers in addition to this one.
584 #if V8_OS_DARWIN
585 // Convert between a shared memory handle and a mach_port_t referencing a memory
586 // entry object.
SharedMemoryHandleFromMachMemoryEntry( unsigned int port)587 inline PlatformSharedMemoryHandle SharedMemoryHandleFromMachMemoryEntry(
588     unsigned int port) {
589   return static_cast<PlatformSharedMemoryHandle>(port);
590 }
MachMemoryEntryFromSharedMemoryHandle( PlatformSharedMemoryHandle handle)591 inline unsigned int MachMemoryEntryFromSharedMemoryHandle(
592     PlatformSharedMemoryHandle handle) {
593   return static_cast<unsigned int>(handle);
594 }
595 #elif V8_OS_FUCHSIA
596 // Convert between a shared memory handle and a zx_handle_t to a VMO.
SharedMemoryHandleFromVMO(uint32_t handle)597 inline PlatformSharedMemoryHandle SharedMemoryHandleFromVMO(uint32_t handle) {
598   return static_cast<PlatformSharedMemoryHandle>(handle);
599 }
VMOFromSharedMemoryHandle(PlatformSharedMemoryHandle handle)600 inline uint32_t VMOFromSharedMemoryHandle(PlatformSharedMemoryHandle handle) {
601   return static_cast<uint32_t>(handle);
602 }
603 #elif V8_OS_WIN
604 // Convert between a shared memory handle and a Windows HANDLE to a file mapping
605 // object.
SharedMemoryHandleFromFileMapping( void* handle)606 inline PlatformSharedMemoryHandle SharedMemoryHandleFromFileMapping(
607     void* handle) {
608   return reinterpret_cast<PlatformSharedMemoryHandle>(handle);
609 }
FileMappingFromSharedMemoryHandle( PlatformSharedMemoryHandle handle)610 inline void* FileMappingFromSharedMemoryHandle(
611     PlatformSharedMemoryHandle handle) {
612   return reinterpret_cast<void*>(handle);
613 }
614 #else
615 // Convert between a shared memory handle and a file descriptor.
SharedMemoryHandleFromFileDescriptor(int fd)616 inline PlatformSharedMemoryHandle SharedMemoryHandleFromFileDescriptor(int fd) {
617   return static_cast<PlatformSharedMemoryHandle>(fd);
618 }
FileDescriptorFromSharedMemoryHandle( PlatformSharedMemoryHandle handle)619 inline int FileDescriptorFromSharedMemoryHandle(
620     PlatformSharedMemoryHandle handle) {
621   return static_cast<int>(handle);
622 }
623 #endif
624 
625 /**
626  * Possible permissions for memory pages.
627  */
628 enum class PagePermissions {
629   kNoAccess,
630   kRead,
631   kReadWrite,
632   kReadWriteExecute,
633   kReadExecute,
634 };
635 
636 /**
637  * Class to manage a virtual memory address space.
638  *
639  * This class represents a contiguous region of virtual address space in which
640  * sub-spaces and (private or shared) memory pages can be allocated, freed, and
641  * modified. This interface is meant to eventually replace the PageAllocator
642  * interface, and can be used as an alternative in the meantime.
643  *
644  * This API is not yet stable and may change without notice!
645  */
646 class VirtualAddressSpace {
647  public:
648   using Address = uintptr_t;
649 
VirtualAddressSpace(size_t page_size, size_t allocation_granularity, Address base, size_t size, PagePermissions max_page_permissions)650   VirtualAddressSpace(size_t page_size, size_t allocation_granularity,
651                       Address base, size_t size,
652                       PagePermissions max_page_permissions)
653       : page_size_(page_size),
654         allocation_granularity_(allocation_granularity),
655         base_(base),
656         size_(size),
657         max_page_permissions_(max_page_permissions) {}
658 
659   virtual ~VirtualAddressSpace() = default;
660 
661   /**
662    * The page size used inside this space. Guaranteed to be a power of two.
663    * Used as granularity for all page-related operations except for allocation,
664    * which use the allocation_granularity(), see below.
665    *
666    * \returns the page size in bytes.
667    */
page_size() const668   size_t page_size() const { return page_size_; }
669 
670   /**
671    * The granularity of page allocations and, by extension, of subspace
672    * allocations. This is guaranteed to be a power of two and a multiple of the
673    * page_size(). In practice, this is equal to the page size on most OSes, but
674    * on Windows it is usually 64KB, while the page size is 4KB.
675    *
676    * \returns the allocation granularity in bytes.
677    */
allocation_granularity() const678   size_t allocation_granularity() const { return allocation_granularity_; }
679 
680   /**
681    * The base address of the address space managed by this instance.
682    *
683    * \returns the base address of this address space.
684    */
base() const685   Address base() const { return base_; }
686 
687   /**
688    * The size of the address space managed by this instance.
689    *
690    * \returns the size of this address space in bytes.
691    */
size() const692   size_t size() const { return size_; }
693 
694   /**
695    * The maximum page permissions that pages allocated inside this space can
696    * obtain.
697    *
698    * \returns the maximum page permissions.
699    */
max_page_permissions() const700   PagePermissions max_page_permissions() const { return max_page_permissions_; }
701 
702   /**
703    * Sets the random seed so that GetRandomPageAddress() will generate
704    * repeatable sequences of random addresses.
705    *
706    * \param The seed for the PRNG.
707    */
708   virtual void SetRandomSeed(int64_t seed) = 0;
709 
710   /**
711    * Returns a random address inside this address space, suitable for page
712    * allocations hints.
713    *
714    * \returns a random address aligned to allocation_granularity().
715    */
716   virtual Address RandomPageAddress() = 0;
717 
718   /**
719    * Allocates private memory pages with the given alignment and permissions.
720    *
721    * \param hint If nonzero, the allocation is attempted to be placed at the
722    * given address first. If that fails, the allocation is attempted to be
723    * placed elsewhere, possibly nearby, but that is not guaranteed. Specifying
724    * zero for the hint always causes this function to choose a random address.
725    * The hint, if specified, must be aligned to the specified alignment.
726    *
727    * \param size The size of the allocation in bytes. Must be a multiple of the
728    * allocation_granularity().
729    *
730    * \param alignment The alignment of the allocation in bytes. Must be a
731    * multiple of the allocation_granularity() and should be a power of two.
732    *
733    * \param permissions The page permissions of the newly allocated pages.
734    *
735    * \returns the start address of the allocated pages on success, zero on
736    * failure.
737    */
738   static constexpr Address kNoHint = 0;
739   virtual V8_WARN_UNUSED_RESULT Address
740   AllocatePages(Address hint, size_t size, size_t alignment,
741                 PagePermissions permissions) = 0;
742 
743   /**
744    * Frees previously allocated pages.
745    *
746    * This function will terminate the process on failure as this implies a bug
747    * in the client. As such, there is no return value.
748    *
749    * \param address The start address of the pages to free. This address must
750    * have been obtained through a call to AllocatePages.
751    *
752    * \param size The size in bytes of the region to free. This must match the
753    * size passed to AllocatePages when the pages were allocated.
754    */
755   virtual void FreePages(Address address, size_t size) = 0;
756 
757   /**
758    * Sets permissions of all allocated pages in the given range.
759    *
760    * This operation can fail due to OOM, in which case false is returned. If
761    * the operation fails for a reason other than OOM, this function will
762    * terminate the process as this implies a bug in the client.
763    *
764    * \param address The start address of the range. Must be aligned to
765    * page_size().
766    *
767    * \param size The size in bytes of the range. Must be a multiple
768    * of page_size().
769    *
770    * \param permissions The new permissions for the range.
771    *
772    * \returns true on success, false on OOM.
773    */
774   virtual V8_WARN_UNUSED_RESULT bool SetPagePermissions(
775       Address address, size_t size, PagePermissions permissions) = 0;
776 
777   /**
778    * Creates a guard region at the specified address.
779    *
780    * Guard regions are guaranteed to cause a fault when accessed and generally
781    * do not count towards any memory consumption limits. Further, allocating
782    * guard regions can usually not fail in subspaces if the region does not
783    * overlap with another region, subspace, or page allocation.
784    *
785    * \param address The start address of the guard region. Must be aligned to
786    * the allocation_granularity().
787    *
788    * \param size The size of the guard region in bytes. Must be a multiple of
789    * the allocation_granularity().
790    *
791    * \returns true on success, false otherwise.
792    */
793   virtual V8_WARN_UNUSED_RESULT bool AllocateGuardRegion(Address address,
794                                                          size_t size) = 0;
795 
796   /**
797    * Frees an existing guard region.
798    *
799    * This function will terminate the process on failure as this implies a bug
800    * in the client. As such, there is no return value.
801    *
802    * \param address The start address of the guard region to free. This address
803    * must have previously been used as address parameter in a successful
804    * invocation of AllocateGuardRegion.
805    *
806    * \param size The size in bytes of the guard region to free. This must match
807    * the size passed to AllocateGuardRegion when the region was created.
808    */
809   virtual void FreeGuardRegion(Address address, size_t size) = 0;
810 
811   /**
812    * Allocates shared memory pages with the given permissions.
813    *
814    * \param hint Placement hint. See AllocatePages.
815    *
816    * \param size The size of the allocation in bytes. Must be a multiple of the
817    * allocation_granularity().
818    *
819    * \param permissions The page permissions of the newly allocated pages.
820    *
821    * \param handle A platform-specific handle to a shared memory object. See
822    * the SharedMemoryHandleFromX routines above for ways to obtain these.
823    *
824    * \param offset The offset in the shared memory object at which the mapping
825    * should start. Must be a multiple of the allocation_granularity().
826    *
827    * \returns the start address of the allocated pages on success, zero on
828    * failure.
829    */
830   virtual V8_WARN_UNUSED_RESULT Address
831   AllocateSharedPages(Address hint, size_t size, PagePermissions permissions,
832                       PlatformSharedMemoryHandle handle, uint64_t offset) = 0;
833 
834   /**
835    * Frees previously allocated shared pages.
836    *
837    * This function will terminate the process on failure as this implies a bug
838    * in the client. As such, there is no return value.
839    *
840    * \param address The start address of the pages to free. This address must
841    * have been obtained through a call to AllocateSharedPages.
842    *
843    * \param size The size in bytes of the region to free. This must match the
844    * size passed to AllocateSharedPages when the pages were allocated.
845    */
846   virtual void FreeSharedPages(Address address, size_t size) = 0;
847 
848   /**
849    * Whether this instance can allocate subspaces or not.
850    *
851    * \returns true if subspaces can be allocated, false if not.
852    */
853   virtual bool CanAllocateSubspaces() = 0;
854 
855   /*
856    * Allocate a subspace.
857    *
858    * The address space of a subspace stays reserved in the parent space for the
859    * lifetime of the subspace. As such, it is guaranteed that page allocations
860    * on the parent space cannot end up inside a subspace.
861    *
862    * \param hint Hints where the subspace should be allocated. See
863    * AllocatePages() for more details.
864    *
865    * \param size The size in bytes of the subspace. Must be a multiple of the
866    * allocation_granularity().
867    *
868    * \param alignment The alignment of the subspace in bytes. Must be a multiple
869    * of the allocation_granularity() and should be a power of two.
870    *
871    * \param max_page_permissions The maximum permissions that pages allocated in
872    * the subspace can obtain.
873    *
874    * \returns a new subspace or nullptr on failure.
875    */
876   virtual std::unique_ptr<VirtualAddressSpace> AllocateSubspace(
877       Address hint, size_t size, size_t alignment,
878       PagePermissions max_page_permissions) = 0;
879 
880   //
881   // TODO(v8) maybe refactor the methods below before stabilizing the API. For
882   // example by combining them into some form of page operation method that
883   // takes a command enum as parameter.
884   //
885 
886   /**
887    * Recommits discarded pages in the given range with given permissions.
888    * Discarded pages must be recommitted with their original permissions
889    * before they are used again.
890    *
891    * \param address The start address of the range. Must be aligned to
892    * page_size().
893    *
894    * \param size The size in bytes of the range. Must be a multiple
895    * of page_size().
896    *
897    * \param permissions The permissions for the range that the pages must have.
898    *
899    * \returns true on success, false otherwise.
900    */
901   virtual V8_WARN_UNUSED_RESULT bool RecommitPages(
902       Address address, size_t size, PagePermissions permissions) = 0;
903 
904   /**
905    * Frees memory in the given [address, address + size) range. address and
906    * size should be aligned to the page_size(). The next write to this memory
907    * area brings the memory transparently back. This should be treated as a
908    * hint to the OS that the pages are no longer needed. It does not guarantee
909    * that the pages will be discarded immediately or at all.
910    *
911    * \returns true on success, false otherwise. Since this method is only a
912    * hint, a successful invocation does not imply that pages have been removed.
913    */
DiscardSystemPages(Address address, size_t size)914   virtual V8_WARN_UNUSED_RESULT bool DiscardSystemPages(Address address,
915                                                         size_t size) {
916     return true;
917   }
918   /**
919    * Decommits any wired memory pages in the given range, allowing the OS to
920    * reclaim them, and marks the region as inacessible (kNoAccess). The address
921    * range stays reserved and can be accessed again later by changing its
922    * permissions. However, in that case the memory content is guaranteed to be
923    * zero-initialized again. The memory must have been previously allocated by a
924    * call to AllocatePages.
925    *
926    * \returns true on success, false otherwise.
927    */
928   virtual V8_WARN_UNUSED_RESULT bool DecommitPages(Address address,
929                                                    size_t size) = 0;
930 
931  private:
932   const size_t page_size_;
933   const size_t allocation_granularity_;
934   const Address base_;
935   const size_t size_;
936   const PagePermissions max_page_permissions_;
937 };
938 
939 /**
940  * V8 Allocator used for allocating zone backings.
941  */
942 class ZoneBackingAllocator {
943  public:
944   using MallocFn = void* (*)(size_t);
945   using FreeFn = void (*)(void*);
946 
GetMallocFn() const947   virtual MallocFn GetMallocFn() const { return ::malloc; }
GetFreeFn() const948   virtual FreeFn GetFreeFn() const { return ::free; }
949 };
950 
951 /**
952  * Observer used by V8 to notify the embedder about entering/leaving sections
953  * with high throughput of malloc/free operations.
954  */
955 class HighAllocationThroughputObserver {
956  public:
EnterSection()957   virtual void EnterSection() {}
LeaveSection()958   virtual void LeaveSection() {}
959 };
960 
961 /**
962  * V8 Platform abstraction layer.
963  *
964  * The embedder has to provide an implementation of this interface before
965  * initializing the rest of V8.
966  */
967 class Platform {
968  public:
969   virtual ~Platform() = default;
970 
971   /**
972    * Allows the embedder to manage memory page allocations.
973    * Returning nullptr will cause V8 to use the default page allocator.
974    */
975   virtual PageAllocator* GetPageAllocator() = 0;
976 
977   /**
978    * Allows the embedder to specify a custom allocator used for zones.
979    */
GetZoneBackingAllocator()980   virtual ZoneBackingAllocator* GetZoneBackingAllocator() {
981     static ZoneBackingAllocator default_allocator;
982     return &default_allocator;
983   }
984 
985   /**
986    * Enables the embedder to respond in cases where V8 can't allocate large
987    * blocks of memory. V8 retries the failed allocation once after calling this
988    * method. On success, execution continues; otherwise V8 exits with a fatal
989    * error.
990    * Embedder overrides of this function must NOT call back into V8.
991    */
OnCriticalMemoryPressure()992   virtual void OnCriticalMemoryPressure() {}
993 
994   /**
995    * Gets the max number of worker threads that may be used to execute
996    * concurrent work scheduled for any single TaskPriority by
997    * Call(BlockingTask)OnWorkerThread() or PostJob(). This can be used to
998    * estimate the number of tasks a work package should be split into. A return
999    * value of 0 means that there are no worker threads available. Note that a
1000    * value of 0 won't prohibit V8 from posting tasks using |CallOnWorkerThread|.
1001    */
1002   virtual int NumberOfWorkerThreads() = 0;
1003 
1004   /**
1005    * Returns a TaskRunner which can be used to post a task on the foreground.
1006    * The TaskRunner's NonNestableTasksEnabled() must be true. This function
1007    * should only be called from a foreground thread.
1008    */
1009   virtual std::shared_ptr<v8::TaskRunner> GetForegroundTaskRunner(
1010       Isolate* isolate) = 0;
1011 
1012   /**
1013    * Schedules a task to be invoked on a worker thread.
1014    * Embedders should override PostTaskOnWorkerThreadImpl() instead of
1015    * CallOnWorkerThread().
1016    * TODO(chromium:1424158): Make non-virtual once embedders are migrated to
1017    * PostTaskOnWorkerThreadImpl().
1018    */
CallOnWorkerThread(std::unique_ptr<Task> task)1019   virtual void CallOnWorkerThread(std::unique_ptr<Task> task) {
1020     PostTaskOnWorkerThreadImpl(TaskPriority::kUserVisible, std::move(task),
1021                                SourceLocation::Current());
1022   }
1023 
1024   /**
1025    * Schedules a task that blocks the main thread to be invoked with
1026    * high-priority on a worker thread.
1027    * Embedders should override PostTaskOnWorkerThreadImpl() instead of
1028    * CallBlockingTaskOnWorkerThread().
1029    * TODO(chromium:1424158): Make non-virtual once embedders are migrated to
1030    * PostTaskOnWorkerThreadImpl().
1031    */
CallBlockingTaskOnWorkerThread(std::unique_ptr<Task> task)1032   virtual void CallBlockingTaskOnWorkerThread(std::unique_ptr<Task> task) {
1033     // Embedders may optionally override this to process these tasks in a high
1034     // priority pool.
1035     CallOnWorkerThread(std::move(task));
1036   }
1037 
1038   /**
1039    * Schedules a task to be invoked with low-priority on a worker thread.
1040    * Embedders should override PostTaskOnWorkerThreadImpl() instead of
1041    * CallLowPriorityTaskOnWorkerThread().
1042    * TODO(chromium:1424158): Make non-virtual once embedders are migrated to
1043    * PostTaskOnWorkerThreadImpl().
1044    */
CallLowPriorityTaskOnWorkerThread(std::unique_ptr<Task> task)1045   virtual void CallLowPriorityTaskOnWorkerThread(std::unique_ptr<Task> task) {
1046     // Embedders may optionally override this to process these tasks in a low
1047     // priority pool.
1048     CallOnWorkerThread(std::move(task));
1049   }
1050 
1051   /**
1052    * Schedules a task to be invoked on a worker thread after |delay_in_seconds|
1053    * expires.
1054    * Embedders should override PostDelayedTaskOnWorkerThreadImpl() instead of
1055    * CallDelayedOnWorkerThread().
1056    * TODO(chromium:1424158): Make non-virtual once embedders are migrated to
1057    * PostDelayedTaskOnWorkerThreadImpl().
1058    */
CallDelayedOnWorkerThread(std::unique_ptr<Task> task, double delay_in_seconds)1059   virtual void CallDelayedOnWorkerThread(std::unique_ptr<Task> task,
1060                                          double delay_in_seconds) {
1061     PostDelayedTaskOnWorkerThreadImpl(TaskPriority::kUserVisible,
1062                                       std::move(task), delay_in_seconds,
1063                                       SourceLocation::Current());
1064   }
1065 
1066   /**
1067    * Returns true if idle tasks are enabled for the given |isolate|.
1068    */
IdleTasksEnabled(Isolate* isolate)1069   virtual bool IdleTasksEnabled(Isolate* isolate) { return false; }
1070 
1071   /**
1072    * Posts |job_task| to run in parallel. Returns a JobHandle associated with
1073    * the Job, which can be joined or canceled.
1074    * This avoids degenerate cases:
1075    * - Calling CallOnWorkerThread() for each work item, causing significant
1076    *   overhead.
1077    * - Fixed number of CallOnWorkerThread() calls that split the work and might
1078    *   run for a long time. This is problematic when many components post
1079    *   "num cores" tasks and all expect to use all the cores. In these cases,
1080    *   the scheduler lacks context to be fair to multiple same-priority requests
1081    *   and/or ability to request lower priority work to yield when high priority
1082    *   work comes in.
1083    * A canonical implementation of |job_task| looks like:
1084    * class MyJobTask : public JobTask {
1085    *  public:
1086    *   MyJobTask(...) : worker_queue_(...) {}
1087    *   // JobTask:
1088    *   void Run(JobDelegate* delegate) override {
1089    *     while (!delegate->ShouldYield()) {
1090    *       // Smallest unit of work.
1091    *       auto work_item = worker_queue_.TakeWorkItem(); // Thread safe.
1092    *       if (!work_item) return;
1093    *       ProcessWork(work_item);
1094    *     }
1095    *   }
1096    *
1097    *   size_t GetMaxConcurrency() const override {
1098    *     return worker_queue_.GetSize(); // Thread safe.
1099    *   }
1100    * };
1101    * auto handle = PostJob(TaskPriority::kUserVisible,
1102    *                       std::make_unique<MyJobTask>(...));
1103    * handle->Join();
1104    *
1105    * PostJob() and methods of the returned JobHandle/JobDelegate, must never be
1106    * called while holding a lock that could be acquired by JobTask::Run or
1107    * JobTask::GetMaxConcurrency -- that could result in a deadlock. This is
1108    * because [1] JobTask::GetMaxConcurrency may be invoked while holding
1109    * internal lock (A), hence JobTask::GetMaxConcurrency can only use a lock (B)
1110    * if that lock is *never* held while calling back into JobHandle from any
1111    * thread (A=>B/B=>A deadlock) and [2] JobTask::Run or
1112    * JobTask::GetMaxConcurrency may be invoked synchronously from JobHandle
1113    * (B=>JobHandle::foo=>B deadlock).
1114    * Embedders should override CreateJobImpl() instead of PostJob().
1115    * TODO(chromium:1424158): Make non-virtual once embedders are migrated to
1116    * CreateJobImpl().
1117    */
PostJob( TaskPriority priority, std::unique_ptr<JobTask> job_task)1118   virtual std::unique_ptr<JobHandle> PostJob(
1119       TaskPriority priority, std::unique_ptr<JobTask> job_task) {
1120     auto handle = CreateJob(priority, std::move(job_task));
1121     handle->NotifyConcurrencyIncrease();
1122     return handle;
1123   }
1124 
1125   /**
1126    * Creates and returns a JobHandle associated with a Job. Unlike PostJob(),
1127    * this doesn't immediately schedules |worker_task| to run; the Job is then
1128    * scheduled by calling either NotifyConcurrencyIncrease() or Join().
1129    *
1130    * A sufficient CreateJob() implementation that uses the default Job provided
1131    * in libplatform looks like:
1132    *  std::unique_ptr<JobHandle> CreateJob(
1133    *      TaskPriority priority, std::unique_ptr<JobTask> job_task) override {
1134    *    return v8::platform::NewDefaultJobHandle(
1135    *        this, priority, std::move(job_task), NumberOfWorkerThreads());
1136    * }
1137    *
1138    * Embedders should override CreateJobImpl() instead of CreateJob().
1139    * TODO(chromium:1424158): Make non-virtual once embedders are migrated to
1140    * CreateJobImpl().
1141    */
CreateJob( TaskPriority priority, std::unique_ptr<JobTask> job_task)1142   virtual std::unique_ptr<JobHandle> CreateJob(
1143       TaskPriority priority, std::unique_ptr<JobTask> job_task) {
1144     return CreateJobImpl(priority, std::move(job_task),
1145                          SourceLocation::Current());
1146   }
1147 
1148   /**
1149    * Instantiates a ScopedBlockingCall to annotate a scope that may/will block.
1150    */
CreateBlockingScope( BlockingType blocking_type)1151   virtual std::unique_ptr<ScopedBlockingCall> CreateBlockingScope(
1152       BlockingType blocking_type) {
1153     return nullptr;
1154   }
1155 
1156   /**
1157    * Monotonically increasing time in seconds from an arbitrary fixed point in
1158    * the past. This function is expected to return at least
1159    * millisecond-precision values. For this reason,
1160    * it is recommended that the fixed point be no further in the past than
1161    * the epoch.
1162    **/
1163   virtual double MonotonicallyIncreasingTime() = 0;
1164 
1165   /**
1166    * Current wall-clock time in milliseconds since epoch. Use
1167    * CurrentClockTimeMillisHighResolution() when higher precision is
1168    * required.
1169    */
CurrentClockTimeMilliseconds()1170   virtual int64_t CurrentClockTimeMilliseconds() {
1171     return floor(CurrentClockTimeMillis());
1172   }
1173 
1174   /**
1175    * This function is deprecated and will be deleted. Use either
1176    * CurrentClockTimeMilliseconds() or
1177    * CurrentClockTimeMillisecondsHighResolution().
1178    */
1179   virtual double CurrentClockTimeMillis() = 0;
1180 
1181   /**
1182    * Same as CurrentClockTimeMilliseconds(), but with more precision.
1183    */
CurrentClockTimeMillisecondsHighResolution()1184   virtual double CurrentClockTimeMillisecondsHighResolution() {
1185     return CurrentClockTimeMillis();
1186   }
1187 
1188   typedef void (*StackTracePrinter)();
1189 
1190   /**
1191    * Returns a function pointer that print a stack trace of the current stack
1192    * on invocation. Disables printing of the stack trace if nullptr.
1193    */
GetStackTracePrinter()1194   virtual StackTracePrinter GetStackTracePrinter() { return nullptr; }
1195 
1196   /**
1197    * Returns an instance of a v8::TracingController. This must be non-nullptr.
1198    */
1199   virtual TracingController* GetTracingController() = 0;
1200 
1201   /**
1202    * Tells the embedder to generate and upload a crashdump during an unexpected
1203    * but non-critical scenario.
1204    */
DumpWithoutCrashing()1205   virtual void DumpWithoutCrashing() {}
1206 
1207   /**
1208    * Allows the embedder to observe sections with high throughput allocation
1209    * operations.
1210    */
1211   virtual HighAllocationThroughputObserver*
GetHighAllocationThroughputObserver()1212   GetHighAllocationThroughputObserver() {
1213     static HighAllocationThroughputObserver default_observer;
1214     return &default_observer;
1215   }
1216 
1217  protected:
1218   /**
1219    * Default implementation of current wall-clock time in milliseconds
1220    * since epoch. Useful for implementing |CurrentClockTimeMillis| if
1221    * nothing special needed.
1222    */
1223   V8_EXPORT static double SystemClockTimeMillis();
1224 
1225   /**
1226    * Creates and returns a JobHandle associated with a Job.
1227    * TODO(chromium:1424158): Make pure virtual once embedders implement it.
1228    */
CreateJobImpl( TaskPriority priority, std::unique_ptr<JobTask> job_task, const SourceLocation& location)1229   virtual std::unique_ptr<JobHandle> CreateJobImpl(
1230       TaskPriority priority, std::unique_ptr<JobTask> job_task,
1231       const SourceLocation& location) {
1232     return nullptr;
1233   }
1234 
1235   /**
1236    * Schedules a task with |priority| to be invoked on a worker thread.
1237    * TODO(chromium:1424158): Make pure virtual once embedders implement it.
1238    */
PostTaskOnWorkerThreadImpl(TaskPriority priority, std::unique_ptr<Task> task, const SourceLocation& location)1239   virtual void PostTaskOnWorkerThreadImpl(TaskPriority priority,
1240                                           std::unique_ptr<Task> task,
1241                                           const SourceLocation& location) {}
1242 
1243   /**
1244    * Schedules a task with |priority| to be invoked on a worker thread after
1245    * |delay_in_seconds| expires.
1246    * TODO(chromium:1424158): Make pure virtual once embedders implement it.
1247    */
PostDelayedTaskOnWorkerThreadImpl( TaskPriority priority, std::unique_ptr<Task> task, double delay_in_seconds, const SourceLocation& location)1248   virtual void PostDelayedTaskOnWorkerThreadImpl(
1249       TaskPriority priority, std::unique_ptr<Task> task,
1250       double delay_in_seconds, const SourceLocation& location) {}
1251 };
1252 
1253 }  // namespace v8
1254 
1255 #endif  // V8_V8_PLATFORM_H_
1256