1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_V8_PLATFORM_H_
6 #define V8_V8_PLATFORM_H_
7
8 #include <math.h>
9 #include <stddef.h>
10 #include <stdint.h>
11 #include <stdlib.h> // For abort.
12
13 #include <memory>
14 #include <string>
15
16 #include "v8-source-location.h" // NOLINT(build/include_directory)
17 #include "v8config.h" // NOLINT(build/include_directory)
18
19 namespace v8 {
20
21 class Isolate;
22
23 // Valid priorities supported by the task scheduling infrastructure.
24 enum class TaskPriority : uint8_t {
25 /**
26 * Best effort tasks are not critical for performance of the application. The
27 * platform implementation should preempt such tasks if higher priority tasks
28 * arrive.
29 */
30 kBestEffort,
31 /**
32 * User visible tasks are long running background tasks that will
33 * improve performance and memory usage of the application upon completion.
34 * Example: background compilation and garbage collection.
35 */
36 kUserVisible,
37 /**
38 * User blocking tasks are highest priority tasks that block the execution
39 * thread (e.g. major garbage collection). They must be finished as soon as
40 * possible.
41 */
42 kUserBlocking,
43 };
44
45 /**
46 * A Task represents a unit of work.
47 */
48 class Task {
49 public:
50 virtual ~Task() = default;
51
52 virtual void Run() = 0;
53 };
54
55 /**
56 * An IdleTask represents a unit of work to be performed in idle time.
57 * The Run method is invoked with an argument that specifies the deadline in
58 * seconds returned by MonotonicallyIncreasingTime().
59 * The idle task is expected to complete by this deadline.
60 */
61 class IdleTask {
62 public:
63 virtual ~IdleTask() = default;
64 virtual void Run(double deadline_in_seconds) = 0;
65 };
66
67 /**
68 * A TaskRunner allows scheduling of tasks. The TaskRunner may still be used to
69 * post tasks after the isolate gets destructed, but these tasks may not get
70 * executed anymore. All tasks posted to a given TaskRunner will be invoked in
71 * sequence. Tasks can be posted from any thread.
72 */
73 class TaskRunner {
74 public:
75 /**
76 * Schedules a task to be invoked by this TaskRunner. The TaskRunner
77 * implementation takes ownership of |task|.
78 */
79 virtual void PostTask(std::unique_ptr<Task> task) = 0;
80
81 /**
82 * Schedules a task to be invoked by this TaskRunner. The TaskRunner
83 * implementation takes ownership of |task|. The |task| cannot be nested
84 * within other task executions.
85 *
86 * Tasks which shouldn't be interleaved with JS execution must be posted with
87 * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the
88 * embedder may process tasks in a callback which is called during JS
89 * execution.
90 *
91 * In particular, tasks which execute JS must be non-nestable, since JS
92 * execution is not allowed to nest.
93 *
94 * Requires that |TaskRunner::NonNestableTasksEnabled()| is true.
95 */
PostNonNestableTask(std::unique_ptr<Task> task)96 virtual void PostNonNestableTask(std::unique_ptr<Task> task) {}
97
98 /**
99 * Schedules a task to be invoked by this TaskRunner. The task is scheduled
100 * after the given number of seconds |delay_in_seconds|. The TaskRunner
101 * implementation takes ownership of |task|.
102 */
103 virtual void PostDelayedTask(std::unique_ptr<Task> task,
104 double delay_in_seconds) = 0;
105
106 /**
107 * Schedules a task to be invoked by this TaskRunner. The task is scheduled
108 * after the given number of seconds |delay_in_seconds|. The TaskRunner
109 * implementation takes ownership of |task|. The |task| cannot be nested
110 * within other task executions.
111 *
112 * Tasks which shouldn't be interleaved with JS execution must be posted with
113 * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the
114 * embedder may process tasks in a callback which is called during JS
115 * execution.
116 *
117 * In particular, tasks which execute JS must be non-nestable, since JS
118 * execution is not allowed to nest.
119 *
120 * Requires that |TaskRunner::NonNestableDelayedTasksEnabled()| is true.
121 */
PostNonNestableDelayedTask(std::unique_ptr<Task> task, double delay_in_seconds)122 virtual void PostNonNestableDelayedTask(std::unique_ptr<Task> task,
123 double delay_in_seconds) {}
124
125 /**
126 * Schedules an idle task to be invoked by this TaskRunner. The task is
127 * scheduled when the embedder is idle. Requires that
128 * |TaskRunner::IdleTasksEnabled()| is true. Idle tasks may be reordered
129 * relative to other task types and may be starved for an arbitrarily long
130 * time if no idle time is available. The TaskRunner implementation takes
131 * ownership of |task|.
132 */
133 virtual void PostIdleTask(std::unique_ptr<IdleTask> task) = 0;
134
135 /**
136 * Returns true if idle tasks are enabled for this TaskRunner.
137 */
138 virtual bool IdleTasksEnabled() = 0;
139
140 /**
141 * Returns true if non-nestable tasks are enabled for this TaskRunner.
142 */
NonNestableTasksEnabled() const143 virtual bool NonNestableTasksEnabled() const { return false; }
144
145 /**
146 * Returns true if non-nestable delayed tasks are enabled for this TaskRunner.
147 */
NonNestableDelayedTasksEnabled() const148 virtual bool NonNestableDelayedTasksEnabled() const { return false; }
149
150 TaskRunner() = default;
151 virtual ~TaskRunner() = default;
152
153 TaskRunner(const TaskRunner&) = delete;
154 TaskRunner& operator=(const TaskRunner&) = delete;
155 };
156
157 /**
158 * Delegate that's passed to Job's worker task, providing an entry point to
159 * communicate with the scheduler.
160 */
161 class JobDelegate {
162 public:
163 /**
164 * Returns true if this thread *must* return from the worker task on the
165 * current thread ASAP. Workers should periodically invoke ShouldYield (or
166 * YieldIfNeeded()) as often as is reasonable.
167 * After this method returned true, ShouldYield must not be called again.
168 */
169 virtual bool ShouldYield() = 0;
170
171 /**
172 * Notifies the scheduler that max concurrency was increased, and the number
173 * of worker should be adjusted accordingly. See Platform::PostJob() for more
174 * details.
175 */
176 virtual void NotifyConcurrencyIncrease() = 0;
177
178 /**
179 * Returns a task_id unique among threads currently running this job, such
180 * that GetTaskId() < worker count. To achieve this, the same task_id may be
181 * reused by a different thread after a worker_task returns.
182 */
183 virtual uint8_t GetTaskId() = 0;
184
185 /**
186 * Returns true if the current task is called from the thread currently
187 * running JobHandle::Join().
188 */
189 virtual bool IsJoiningThread() const = 0;
190 };
191
192 /**
193 * Handle returned when posting a Job. Provides methods to control execution of
194 * the posted Job.
195 */
196 class JobHandle {
197 public:
198 virtual ~JobHandle() = default;
199
200 /**
201 * Notifies the scheduler that max concurrency was increased, and the number
202 * of worker should be adjusted accordingly. See Platform::PostJob() for more
203 * details.
204 */
205 virtual void NotifyConcurrencyIncrease() = 0;
206
207 /**
208 * Contributes to the job on this thread. Doesn't return until all tasks have
209 * completed and max concurrency becomes 0. When Join() is called and max
210 * concurrency reaches 0, it should not increase again. This also promotes
211 * this Job's priority to be at least as high as the calling thread's
212 * priority.
213 */
214 virtual void Join() = 0;
215
216 /**
217 * Forces all existing workers to yield ASAP. Waits until they have all
218 * returned from the Job's callback before returning.
219 */
220 virtual void Cancel() = 0;
221
222 /*
223 * Forces all existing workers to yield ASAP but doesn’t wait for them.
224 * Warning, this is dangerous if the Job's callback is bound to or has access
225 * to state which may be deleted after this call.
226 */
227 virtual void CancelAndDetach() = 0;
228
229 /**
230 * Returns true if there's any work pending or any worker running.
231 */
232 virtual bool IsActive() = 0;
233
234 /**
235 * Returns true if associated with a Job and other methods may be called.
236 * Returns false after Join() or Cancel() was called. This may return true
237 * even if no workers are running and IsCompleted() returns true
238 */
239 virtual bool IsValid() = 0;
240
241 /**
242 * Returns true if job priority can be changed.
243 */
UpdatePriorityEnabled() const244 virtual bool UpdatePriorityEnabled() const { return false; }
245
246 /**
247 * Update this Job's priority.
248 */
UpdatePriority(TaskPriority new_priority)249 virtual void UpdatePriority(TaskPriority new_priority) {}
250 };
251
252 /**
253 * A JobTask represents work to run in parallel from Platform::PostJob().
254 */
255 class JobTask {
256 public:
257 virtual ~JobTask() = default;
258
259 virtual void Run(JobDelegate* delegate) = 0;
260
261 /**
262 * Controls the maximum number of threads calling Run() concurrently, given
263 * the number of threads currently assigned to this job and executing Run().
264 * Run() is only invoked if the number of threads previously running Run() was
265 * less than the value returned. In general, this should return the latest
266 * number of incomplete work items (smallest unit of work) left to process,
267 * including items that are currently in progress. |worker_count| is the
268 * number of threads currently assigned to this job which some callers may
269 * need to determine their return value. Since GetMaxConcurrency() is a leaf
270 * function, it must not call back any JobHandle methods.
271 */
272 virtual size_t GetMaxConcurrency(size_t worker_count) const = 0;
273 };
274
275 /**
276 * A "blocking call" refers to any call that causes the calling thread to wait
277 * off-CPU. It includes but is not limited to calls that wait on synchronous
278 * file I/O operations: read or write a file from disk, interact with a pipe or
279 * a socket, rename or delete a file, enumerate files in a directory, etc.
280 * Acquiring a low contention lock is not considered a blocking call.
281 */
282
283 /**
284 * BlockingType indicates the likelihood that a blocking call will actually
285 * block.
286 */
287 enum class BlockingType {
288 // The call might block (e.g. file I/O that might hit in memory cache).
289 kMayBlock,
290 // The call will definitely block (e.g. cache already checked and now pinging
291 // server synchronously).
292 kWillBlock
293 };
294
295 /**
296 * This class is instantiated with CreateBlockingScope() in every scope where a
297 * blocking call is made and serves as a precise annotation of the scope that
298 * may/will block. May be implemented by an embedder to adjust the thread count.
299 * CPU usage should be minimal within that scope. ScopedBlockingCalls can be
300 * nested.
301 */
302 class ScopedBlockingCall {
303 public:
304 virtual ~ScopedBlockingCall() = default;
305 };
306
307 /**
308 * The interface represents complex arguments to trace events.
309 */
310 class ConvertableToTraceFormat {
311 public:
312 virtual ~ConvertableToTraceFormat() = default;
313
314 /**
315 * Append the class info to the provided |out| string. The appended
316 * data must be a valid JSON object. Strings must be properly quoted, and
317 * escaped. There is no processing applied to the content after it is
318 * appended.
319 */
320 virtual void AppendAsTraceFormat(std::string* out) const = 0;
321 };
322
323 /**
324 * V8 Tracing controller.
325 *
326 * Can be implemented by an embedder to record trace events from V8.
327 *
328 * Will become obsolete in Perfetto SDK build (v8_use_perfetto = true).
329 */
330 class TracingController {
331 public:
332 virtual ~TracingController() = default;
333
334 // In Perfetto mode, trace events are written using Perfetto's Track Event
335 // API directly without going through the embedder. However, it is still
336 // possible to observe tracing being enabled and disabled.
337 #if !defined(V8_USE_PERFETTO)
338 /**
339 * Called by TRACE_EVENT* macros, don't call this directly.
340 * The name parameter is a category group for example:
341 * TRACE_EVENT0("v8,parse", "V8.Parse")
342 * The pointer returned points to a value with zero or more of the bits
343 * defined in CategoryGroupEnabledFlags.
344 **/
GetCategoryGroupEnabled(const char* name)345 virtual const uint8_t* GetCategoryGroupEnabled(const char* name) {
346 static uint8_t no = 0;
347 return &no;
348 }
349
350 /**
351 * Adds a trace event to the platform tracing system. These function calls are
352 * usually the result of a TRACE_* macro from trace_event_common.h when
353 * tracing and the category of the particular trace are enabled. It is not
354 * advisable to call these functions on their own; they are really only meant
355 * to be used by the trace macros. The returned handle can be used by
356 * UpdateTraceEventDuration to update the duration of COMPLETE events.
357 */
AddTraceEvent( char phase, const uint8_t* category_enabled_flag, const char* name, const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args, const char** arg_names, const uint8_t* arg_types, const uint64_t* arg_values, std::unique_ptr<ConvertableToTraceFormat>* arg_convertables, unsigned int flags)358 virtual uint64_t AddTraceEvent(
359 char phase, const uint8_t* category_enabled_flag, const char* name,
360 const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
361 const char** arg_names, const uint8_t* arg_types,
362 const uint64_t* arg_values,
363 std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
364 unsigned int flags) {
365 return 0;
366 }
AddTraceEventWithTimestamp( char phase, const uint8_t* category_enabled_flag, const char* name, const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args, const char** arg_names, const uint8_t* arg_types, const uint64_t* arg_values, std::unique_ptr<ConvertableToTraceFormat>* arg_convertables, unsigned int flags, int64_t timestamp)367 virtual uint64_t AddTraceEventWithTimestamp(
368 char phase, const uint8_t* category_enabled_flag, const char* name,
369 const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
370 const char** arg_names, const uint8_t* arg_types,
371 const uint64_t* arg_values,
372 std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
373 unsigned int flags, int64_t timestamp) {
374 return 0;
375 }
376
377 /**
378 * Sets the duration field of a COMPLETE trace event. It must be called with
379 * the handle returned from AddTraceEvent().
380 **/
UpdateTraceEventDuration(const uint8_t* category_enabled_flag, const char* name, uint64_t handle)381 virtual void UpdateTraceEventDuration(const uint8_t* category_enabled_flag,
382 const char* name, uint64_t handle) {}
383 #endif // !defined(V8_USE_PERFETTO)
384
385 class TraceStateObserver {
386 public:
387 virtual ~TraceStateObserver() = default;
388 virtual void OnTraceEnabled() = 0;
389 virtual void OnTraceDisabled() = 0;
390 };
391
392 /**
393 * Adds tracing state change observer.
394 * Does nothing in Perfetto SDK build (v8_use_perfetto = true).
395 */
AddTraceStateObserver(TraceStateObserver*)396 virtual void AddTraceStateObserver(TraceStateObserver*) {}
397
398 /**
399 * Removes tracing state change observer.
400 * Does nothing in Perfetto SDK build (v8_use_perfetto = true).
401 */
RemoveTraceStateObserver(TraceStateObserver*)402 virtual void RemoveTraceStateObserver(TraceStateObserver*) {}
403 };
404
405 /**
406 * A V8 memory page allocator.
407 *
408 * Can be implemented by an embedder to manage large host OS allocations.
409 */
410 class PageAllocator {
411 public:
412 virtual ~PageAllocator() = default;
413
414 /**
415 * Gets the page granularity for AllocatePages and FreePages. Addresses and
416 * lengths for those calls should be multiples of AllocatePageSize().
417 */
418 virtual size_t AllocatePageSize() = 0;
419
420 /**
421 * Gets the page granularity for SetPermissions and ReleasePages. Addresses
422 * and lengths for those calls should be multiples of CommitPageSize().
423 */
424 virtual size_t CommitPageSize() = 0;
425
426 /**
427 * Sets the random seed so that GetRandomMmapAddr() will generate repeatable
428 * sequences of random mmap addresses.
429 */
430 virtual void SetRandomMmapSeed(int64_t seed) = 0;
431
432 /**
433 * Returns a randomized address, suitable for memory allocation under ASLR.
434 * The address will be aligned to AllocatePageSize.
435 */
436 virtual void* GetRandomMmapAddr() = 0;
437
438 /**
439 * Memory permissions.
440 */
441 enum Permission {
442 kNoAccess,
443 kRead,
444 kReadWrite,
445 kReadWriteExecute,
446 kReadExecute,
447 // Set this when reserving memory that will later require kReadWriteExecute
448 // permissions. The resulting behavior is platform-specific, currently
449 // this is used to set the MAP_JIT flag on Apple Silicon.
450 // TODO(jkummerow): Remove this when Wasm has a platform-independent
451 // w^x implementation.
452 // TODO(saelo): Remove this once all JIT pages are allocated through the
453 // VirtualAddressSpace API.
454 kNoAccessWillJitLater
455 };
456
457 /**
458 * Allocates memory in range with the given alignment and permission.
459 */
460 virtual void* AllocatePages(void* address, size_t length, size_t alignment,
461 Permission permissions) = 0;
462
463 /**
464 * Frees memory in a range that was allocated by a call to AllocatePages.
465 */
466 virtual bool FreePages(void* address, size_t length) = 0;
467
468 /**
469 * Releases memory in a range that was allocated by a call to AllocatePages.
470 */
471 virtual bool ReleasePages(void* address, size_t length,
472 size_t new_length) = 0;
473
474 /**
475 * Sets permissions on pages in an allocated range.
476 */
477 virtual bool SetPermissions(void* address, size_t length,
478 Permission permissions) = 0;
479
480 /**
481 * Recommits discarded pages in the given range with given permissions.
482 * Discarded pages must be recommitted with their original permissions
483 * before they are used again.
484 */
RecommitPages(void* address, size_t length, Permission permissions)485 virtual bool RecommitPages(void* address, size_t length,
486 Permission permissions) {
487 // TODO(v8:12797): make it pure once it's implemented on Chromium side.
488 return false;
489 }
490
491 /**
492 * Frees memory in the given [address, address + size) range. address and size
493 * should be operating system page-aligned. The next write to this
494 * memory area brings the memory transparently back. This should be treated as
495 * a hint to the OS that the pages are no longer needed. It does not guarantee
496 * that the pages will be discarded immediately or at all.
497 */
DiscardSystemPages(void* address, size_t size)498 virtual bool DiscardSystemPages(void* address, size_t size) { return true; }
499
500 /**
501 * Decommits any wired memory pages in the given range, allowing the OS to
502 * reclaim them, and marks the region as inacessible (kNoAccess). The address
503 * range stays reserved and can be accessed again later by changing its
504 * permissions. However, in that case the memory content is guaranteed to be
505 * zero-initialized again. The memory must have been previously allocated by a
506 * call to AllocatePages. Returns true on success, false otherwise.
507 */
508 virtual bool DecommitPages(void* address, size_t size) = 0;
509
510 /**
511 * INTERNAL ONLY: This interface has not been stabilised and may change
512 * without notice from one release to another without being deprecated first.
513 */
514 class SharedMemoryMapping {
515 public:
516 // Implementations are expected to free the shared memory mapping in the
517 // destructor.
518 virtual ~SharedMemoryMapping() = default;
519 virtual void* GetMemory() const = 0;
520 };
521
522 /**
523 * INTERNAL ONLY: This interface has not been stabilised and may change
524 * without notice from one release to another without being deprecated first.
525 */
526 class SharedMemory {
527 public:
528 // Implementations are expected to free the shared memory in the destructor.
529 virtual ~SharedMemory() = default;
530 virtual std::unique_ptr<SharedMemoryMapping> RemapTo(
531 void* new_address) const = 0;
532 virtual void* GetMemory() const = 0;
533 virtual size_t GetSize() const = 0;
534 };
535
536 /**
537 * INTERNAL ONLY: This interface has not been stabilised and may change
538 * without notice from one release to another without being deprecated first.
539 *
540 * Reserve pages at a fixed address returning whether the reservation is
541 * possible. The reserved memory is detached from the PageAllocator and so
542 * should not be freed by it. It's intended for use with
543 * SharedMemory::RemapTo, where ~SharedMemoryMapping would free the memory.
544 */
ReserveForSharedMemoryMapping(void* address, size_t size)545 virtual bool ReserveForSharedMemoryMapping(void* address, size_t size) {
546 return false;
547 }
548
549 /**
550 * INTERNAL ONLY: This interface has not been stabilised and may change
551 * without notice from one release to another without being deprecated first.
552 *
553 * Allocates shared memory pages. Not all PageAllocators need support this and
554 * so this method need not be overridden.
555 * Allocates a new read-only shared memory region of size |length| and copies
556 * the memory at |original_address| into it.
557 */
AllocateSharedPages( size_t length, const void* original_address)558 virtual std::unique_ptr<SharedMemory> AllocateSharedPages(
559 size_t length, const void* original_address) {
560 return {};
561 }
562
563 /**
564 * INTERNAL ONLY: This interface has not been stabilised and may change
565 * without notice from one release to another without being deprecated first.
566 *
567 * If not overridden and changed to return true, V8 will not attempt to call
568 * AllocateSharedPages or RemapSharedPages. If overridden, AllocateSharedPages
569 * and RemapSharedPages must also be overridden.
570 */
CanAllocateSharedPages()571 virtual bool CanAllocateSharedPages() { return false; }
572 };
573
574 // Opaque type representing a handle to a shared memory region.
575 using PlatformSharedMemoryHandle = intptr_t;
576 static constexpr PlatformSharedMemoryHandle kInvalidSharedMemoryHandle = -1;
577
578 // Conversion routines from the platform-dependent shared memory identifiers
579 // into the opaque PlatformSharedMemoryHandle type. These use the underlying
580 // types (e.g. unsigned int) instead of the typedef'd ones (e.g. mach_port_t)
581 // to avoid pulling in large OS header files into this header file. Instead,
582 // the users of these routines are expected to include the respecitve OS
583 // headers in addition to this one.
584 #if V8_OS_DARWIN
585 // Convert between a shared memory handle and a mach_port_t referencing a memory
586 // entry object.
SharedMemoryHandleFromMachMemoryEntry( unsigned int port)587 inline PlatformSharedMemoryHandle SharedMemoryHandleFromMachMemoryEntry(
588 unsigned int port) {
589 return static_cast<PlatformSharedMemoryHandle>(port);
590 }
MachMemoryEntryFromSharedMemoryHandle( PlatformSharedMemoryHandle handle)591 inline unsigned int MachMemoryEntryFromSharedMemoryHandle(
592 PlatformSharedMemoryHandle handle) {
593 return static_cast<unsigned int>(handle);
594 }
595 #elif V8_OS_FUCHSIA
596 // Convert between a shared memory handle and a zx_handle_t to a VMO.
SharedMemoryHandleFromVMO(uint32_t handle)597 inline PlatformSharedMemoryHandle SharedMemoryHandleFromVMO(uint32_t handle) {
598 return static_cast<PlatformSharedMemoryHandle>(handle);
599 }
VMOFromSharedMemoryHandle(PlatformSharedMemoryHandle handle)600 inline uint32_t VMOFromSharedMemoryHandle(PlatformSharedMemoryHandle handle) {
601 return static_cast<uint32_t>(handle);
602 }
603 #elif V8_OS_WIN
604 // Convert between a shared memory handle and a Windows HANDLE to a file mapping
605 // object.
SharedMemoryHandleFromFileMapping( void* handle)606 inline PlatformSharedMemoryHandle SharedMemoryHandleFromFileMapping(
607 void* handle) {
608 return reinterpret_cast<PlatformSharedMemoryHandle>(handle);
609 }
FileMappingFromSharedMemoryHandle( PlatformSharedMemoryHandle handle)610 inline void* FileMappingFromSharedMemoryHandle(
611 PlatformSharedMemoryHandle handle) {
612 return reinterpret_cast<void*>(handle);
613 }
614 #else
615 // Convert between a shared memory handle and a file descriptor.
SharedMemoryHandleFromFileDescriptor(int fd)616 inline PlatformSharedMemoryHandle SharedMemoryHandleFromFileDescriptor(int fd) {
617 return static_cast<PlatformSharedMemoryHandle>(fd);
618 }
FileDescriptorFromSharedMemoryHandle( PlatformSharedMemoryHandle handle)619 inline int FileDescriptorFromSharedMemoryHandle(
620 PlatformSharedMemoryHandle handle) {
621 return static_cast<int>(handle);
622 }
623 #endif
624
625 /**
626 * Possible permissions for memory pages.
627 */
628 enum class PagePermissions {
629 kNoAccess,
630 kRead,
631 kReadWrite,
632 kReadWriteExecute,
633 kReadExecute,
634 };
635
636 /**
637 * Class to manage a virtual memory address space.
638 *
639 * This class represents a contiguous region of virtual address space in which
640 * sub-spaces and (private or shared) memory pages can be allocated, freed, and
641 * modified. This interface is meant to eventually replace the PageAllocator
642 * interface, and can be used as an alternative in the meantime.
643 *
644 * This API is not yet stable and may change without notice!
645 */
646 class VirtualAddressSpace {
647 public:
648 using Address = uintptr_t;
649
VirtualAddressSpace(size_t page_size, size_t allocation_granularity, Address base, size_t size, PagePermissions max_page_permissions)650 VirtualAddressSpace(size_t page_size, size_t allocation_granularity,
651 Address base, size_t size,
652 PagePermissions max_page_permissions)
653 : page_size_(page_size),
654 allocation_granularity_(allocation_granularity),
655 base_(base),
656 size_(size),
657 max_page_permissions_(max_page_permissions) {}
658
659 virtual ~VirtualAddressSpace() = default;
660
661 /**
662 * The page size used inside this space. Guaranteed to be a power of two.
663 * Used as granularity for all page-related operations except for allocation,
664 * which use the allocation_granularity(), see below.
665 *
666 * \returns the page size in bytes.
667 */
page_size() const668 size_t page_size() const { return page_size_; }
669
670 /**
671 * The granularity of page allocations and, by extension, of subspace
672 * allocations. This is guaranteed to be a power of two and a multiple of the
673 * page_size(). In practice, this is equal to the page size on most OSes, but
674 * on Windows it is usually 64KB, while the page size is 4KB.
675 *
676 * \returns the allocation granularity in bytes.
677 */
allocation_granularity() const678 size_t allocation_granularity() const { return allocation_granularity_; }
679
680 /**
681 * The base address of the address space managed by this instance.
682 *
683 * \returns the base address of this address space.
684 */
base() const685 Address base() const { return base_; }
686
687 /**
688 * The size of the address space managed by this instance.
689 *
690 * \returns the size of this address space in bytes.
691 */
size() const692 size_t size() const { return size_; }
693
694 /**
695 * The maximum page permissions that pages allocated inside this space can
696 * obtain.
697 *
698 * \returns the maximum page permissions.
699 */
max_page_permissions() const700 PagePermissions max_page_permissions() const { return max_page_permissions_; }
701
702 /**
703 * Sets the random seed so that GetRandomPageAddress() will generate
704 * repeatable sequences of random addresses.
705 *
706 * \param The seed for the PRNG.
707 */
708 virtual void SetRandomSeed(int64_t seed) = 0;
709
710 /**
711 * Returns a random address inside this address space, suitable for page
712 * allocations hints.
713 *
714 * \returns a random address aligned to allocation_granularity().
715 */
716 virtual Address RandomPageAddress() = 0;
717
718 /**
719 * Allocates private memory pages with the given alignment and permissions.
720 *
721 * \param hint If nonzero, the allocation is attempted to be placed at the
722 * given address first. If that fails, the allocation is attempted to be
723 * placed elsewhere, possibly nearby, but that is not guaranteed. Specifying
724 * zero for the hint always causes this function to choose a random address.
725 * The hint, if specified, must be aligned to the specified alignment.
726 *
727 * \param size The size of the allocation in bytes. Must be a multiple of the
728 * allocation_granularity().
729 *
730 * \param alignment The alignment of the allocation in bytes. Must be a
731 * multiple of the allocation_granularity() and should be a power of two.
732 *
733 * \param permissions The page permissions of the newly allocated pages.
734 *
735 * \returns the start address of the allocated pages on success, zero on
736 * failure.
737 */
738 static constexpr Address kNoHint = 0;
739 virtual V8_WARN_UNUSED_RESULT Address
740 AllocatePages(Address hint, size_t size, size_t alignment,
741 PagePermissions permissions) = 0;
742
743 /**
744 * Frees previously allocated pages.
745 *
746 * This function will terminate the process on failure as this implies a bug
747 * in the client. As such, there is no return value.
748 *
749 * \param address The start address of the pages to free. This address must
750 * have been obtained through a call to AllocatePages.
751 *
752 * \param size The size in bytes of the region to free. This must match the
753 * size passed to AllocatePages when the pages were allocated.
754 */
755 virtual void FreePages(Address address, size_t size) = 0;
756
757 /**
758 * Sets permissions of all allocated pages in the given range.
759 *
760 * This operation can fail due to OOM, in which case false is returned. If
761 * the operation fails for a reason other than OOM, this function will
762 * terminate the process as this implies a bug in the client.
763 *
764 * \param address The start address of the range. Must be aligned to
765 * page_size().
766 *
767 * \param size The size in bytes of the range. Must be a multiple
768 * of page_size().
769 *
770 * \param permissions The new permissions for the range.
771 *
772 * \returns true on success, false on OOM.
773 */
774 virtual V8_WARN_UNUSED_RESULT bool SetPagePermissions(
775 Address address, size_t size, PagePermissions permissions) = 0;
776
777 /**
778 * Creates a guard region at the specified address.
779 *
780 * Guard regions are guaranteed to cause a fault when accessed and generally
781 * do not count towards any memory consumption limits. Further, allocating
782 * guard regions can usually not fail in subspaces if the region does not
783 * overlap with another region, subspace, or page allocation.
784 *
785 * \param address The start address of the guard region. Must be aligned to
786 * the allocation_granularity().
787 *
788 * \param size The size of the guard region in bytes. Must be a multiple of
789 * the allocation_granularity().
790 *
791 * \returns true on success, false otherwise.
792 */
793 virtual V8_WARN_UNUSED_RESULT bool AllocateGuardRegion(Address address,
794 size_t size) = 0;
795
796 /**
797 * Frees an existing guard region.
798 *
799 * This function will terminate the process on failure as this implies a bug
800 * in the client. As such, there is no return value.
801 *
802 * \param address The start address of the guard region to free. This address
803 * must have previously been used as address parameter in a successful
804 * invocation of AllocateGuardRegion.
805 *
806 * \param size The size in bytes of the guard region to free. This must match
807 * the size passed to AllocateGuardRegion when the region was created.
808 */
809 virtual void FreeGuardRegion(Address address, size_t size) = 0;
810
811 /**
812 * Allocates shared memory pages with the given permissions.
813 *
814 * \param hint Placement hint. See AllocatePages.
815 *
816 * \param size The size of the allocation in bytes. Must be a multiple of the
817 * allocation_granularity().
818 *
819 * \param permissions The page permissions of the newly allocated pages.
820 *
821 * \param handle A platform-specific handle to a shared memory object. See
822 * the SharedMemoryHandleFromX routines above for ways to obtain these.
823 *
824 * \param offset The offset in the shared memory object at which the mapping
825 * should start. Must be a multiple of the allocation_granularity().
826 *
827 * \returns the start address of the allocated pages on success, zero on
828 * failure.
829 */
830 virtual V8_WARN_UNUSED_RESULT Address
831 AllocateSharedPages(Address hint, size_t size, PagePermissions permissions,
832 PlatformSharedMemoryHandle handle, uint64_t offset) = 0;
833
834 /**
835 * Frees previously allocated shared pages.
836 *
837 * This function will terminate the process on failure as this implies a bug
838 * in the client. As such, there is no return value.
839 *
840 * \param address The start address of the pages to free. This address must
841 * have been obtained through a call to AllocateSharedPages.
842 *
843 * \param size The size in bytes of the region to free. This must match the
844 * size passed to AllocateSharedPages when the pages were allocated.
845 */
846 virtual void FreeSharedPages(Address address, size_t size) = 0;
847
848 /**
849 * Whether this instance can allocate subspaces or not.
850 *
851 * \returns true if subspaces can be allocated, false if not.
852 */
853 virtual bool CanAllocateSubspaces() = 0;
854
855 /*
856 * Allocate a subspace.
857 *
858 * The address space of a subspace stays reserved in the parent space for the
859 * lifetime of the subspace. As such, it is guaranteed that page allocations
860 * on the parent space cannot end up inside a subspace.
861 *
862 * \param hint Hints where the subspace should be allocated. See
863 * AllocatePages() for more details.
864 *
865 * \param size The size in bytes of the subspace. Must be a multiple of the
866 * allocation_granularity().
867 *
868 * \param alignment The alignment of the subspace in bytes. Must be a multiple
869 * of the allocation_granularity() and should be a power of two.
870 *
871 * \param max_page_permissions The maximum permissions that pages allocated in
872 * the subspace can obtain.
873 *
874 * \returns a new subspace or nullptr on failure.
875 */
876 virtual std::unique_ptr<VirtualAddressSpace> AllocateSubspace(
877 Address hint, size_t size, size_t alignment,
878 PagePermissions max_page_permissions) = 0;
879
880 //
881 // TODO(v8) maybe refactor the methods below before stabilizing the API. For
882 // example by combining them into some form of page operation method that
883 // takes a command enum as parameter.
884 //
885
886 /**
887 * Recommits discarded pages in the given range with given permissions.
888 * Discarded pages must be recommitted with their original permissions
889 * before they are used again.
890 *
891 * \param address The start address of the range. Must be aligned to
892 * page_size().
893 *
894 * \param size The size in bytes of the range. Must be a multiple
895 * of page_size().
896 *
897 * \param permissions The permissions for the range that the pages must have.
898 *
899 * \returns true on success, false otherwise.
900 */
901 virtual V8_WARN_UNUSED_RESULT bool RecommitPages(
902 Address address, size_t size, PagePermissions permissions) = 0;
903
904 /**
905 * Frees memory in the given [address, address + size) range. address and
906 * size should be aligned to the page_size(). The next write to this memory
907 * area brings the memory transparently back. This should be treated as a
908 * hint to the OS that the pages are no longer needed. It does not guarantee
909 * that the pages will be discarded immediately or at all.
910 *
911 * \returns true on success, false otherwise. Since this method is only a
912 * hint, a successful invocation does not imply that pages have been removed.
913 */
DiscardSystemPages(Address address, size_t size)914 virtual V8_WARN_UNUSED_RESULT bool DiscardSystemPages(Address address,
915 size_t size) {
916 return true;
917 }
918 /**
919 * Decommits any wired memory pages in the given range, allowing the OS to
920 * reclaim them, and marks the region as inacessible (kNoAccess). The address
921 * range stays reserved and can be accessed again later by changing its
922 * permissions. However, in that case the memory content is guaranteed to be
923 * zero-initialized again. The memory must have been previously allocated by a
924 * call to AllocatePages.
925 *
926 * \returns true on success, false otherwise.
927 */
928 virtual V8_WARN_UNUSED_RESULT bool DecommitPages(Address address,
929 size_t size) = 0;
930
931 private:
932 const size_t page_size_;
933 const size_t allocation_granularity_;
934 const Address base_;
935 const size_t size_;
936 const PagePermissions max_page_permissions_;
937 };
938
939 /**
940 * V8 Allocator used for allocating zone backings.
941 */
942 class ZoneBackingAllocator {
943 public:
944 using MallocFn = void* (*)(size_t);
945 using FreeFn = void (*)(void*);
946
GetMallocFn() const947 virtual MallocFn GetMallocFn() const { return ::malloc; }
GetFreeFn() const948 virtual FreeFn GetFreeFn() const { return ::free; }
949 };
950
951 /**
952 * Observer used by V8 to notify the embedder about entering/leaving sections
953 * with high throughput of malloc/free operations.
954 */
955 class HighAllocationThroughputObserver {
956 public:
EnterSection()957 virtual void EnterSection() {}
LeaveSection()958 virtual void LeaveSection() {}
959 };
960
961 /**
962 * V8 Platform abstraction layer.
963 *
964 * The embedder has to provide an implementation of this interface before
965 * initializing the rest of V8.
966 */
967 class Platform {
968 public:
969 virtual ~Platform() = default;
970
971 /**
972 * Allows the embedder to manage memory page allocations.
973 * Returning nullptr will cause V8 to use the default page allocator.
974 */
975 virtual PageAllocator* GetPageAllocator() = 0;
976
977 /**
978 * Allows the embedder to specify a custom allocator used for zones.
979 */
GetZoneBackingAllocator()980 virtual ZoneBackingAllocator* GetZoneBackingAllocator() {
981 static ZoneBackingAllocator default_allocator;
982 return &default_allocator;
983 }
984
985 /**
986 * Enables the embedder to respond in cases where V8 can't allocate large
987 * blocks of memory. V8 retries the failed allocation once after calling this
988 * method. On success, execution continues; otherwise V8 exits with a fatal
989 * error.
990 * Embedder overrides of this function must NOT call back into V8.
991 */
OnCriticalMemoryPressure()992 virtual void OnCriticalMemoryPressure() {}
993
994 /**
995 * Gets the max number of worker threads that may be used to execute
996 * concurrent work scheduled for any single TaskPriority by
997 * Call(BlockingTask)OnWorkerThread() or PostJob(). This can be used to
998 * estimate the number of tasks a work package should be split into. A return
999 * value of 0 means that there are no worker threads available. Note that a
1000 * value of 0 won't prohibit V8 from posting tasks using |CallOnWorkerThread|.
1001 */
1002 virtual int NumberOfWorkerThreads() = 0;
1003
1004 /**
1005 * Returns a TaskRunner which can be used to post a task on the foreground.
1006 * The TaskRunner's NonNestableTasksEnabled() must be true. This function
1007 * should only be called from a foreground thread.
1008 */
1009 virtual std::shared_ptr<v8::TaskRunner> GetForegroundTaskRunner(
1010 Isolate* isolate) = 0;
1011
1012 /**
1013 * Schedules a task to be invoked on a worker thread.
1014 * Embedders should override PostTaskOnWorkerThreadImpl() instead of
1015 * CallOnWorkerThread().
1016 * TODO(chromium:1424158): Make non-virtual once embedders are migrated to
1017 * PostTaskOnWorkerThreadImpl().
1018 */
CallOnWorkerThread(std::unique_ptr<Task> task)1019 virtual void CallOnWorkerThread(std::unique_ptr<Task> task) {
1020 PostTaskOnWorkerThreadImpl(TaskPriority::kUserVisible, std::move(task),
1021 SourceLocation::Current());
1022 }
1023
1024 /**
1025 * Schedules a task that blocks the main thread to be invoked with
1026 * high-priority on a worker thread.
1027 * Embedders should override PostTaskOnWorkerThreadImpl() instead of
1028 * CallBlockingTaskOnWorkerThread().
1029 * TODO(chromium:1424158): Make non-virtual once embedders are migrated to
1030 * PostTaskOnWorkerThreadImpl().
1031 */
CallBlockingTaskOnWorkerThread(std::unique_ptr<Task> task)1032 virtual void CallBlockingTaskOnWorkerThread(std::unique_ptr<Task> task) {
1033 // Embedders may optionally override this to process these tasks in a high
1034 // priority pool.
1035 CallOnWorkerThread(std::move(task));
1036 }
1037
1038 /**
1039 * Schedules a task to be invoked with low-priority on a worker thread.
1040 * Embedders should override PostTaskOnWorkerThreadImpl() instead of
1041 * CallLowPriorityTaskOnWorkerThread().
1042 * TODO(chromium:1424158): Make non-virtual once embedders are migrated to
1043 * PostTaskOnWorkerThreadImpl().
1044 */
CallLowPriorityTaskOnWorkerThread(std::unique_ptr<Task> task)1045 virtual void CallLowPriorityTaskOnWorkerThread(std::unique_ptr<Task> task) {
1046 // Embedders may optionally override this to process these tasks in a low
1047 // priority pool.
1048 CallOnWorkerThread(std::move(task));
1049 }
1050
1051 /**
1052 * Schedules a task to be invoked on a worker thread after |delay_in_seconds|
1053 * expires.
1054 * Embedders should override PostDelayedTaskOnWorkerThreadImpl() instead of
1055 * CallDelayedOnWorkerThread().
1056 * TODO(chromium:1424158): Make non-virtual once embedders are migrated to
1057 * PostDelayedTaskOnWorkerThreadImpl().
1058 */
CallDelayedOnWorkerThread(std::unique_ptr<Task> task, double delay_in_seconds)1059 virtual void CallDelayedOnWorkerThread(std::unique_ptr<Task> task,
1060 double delay_in_seconds) {
1061 PostDelayedTaskOnWorkerThreadImpl(TaskPriority::kUserVisible,
1062 std::move(task), delay_in_seconds,
1063 SourceLocation::Current());
1064 }
1065
1066 /**
1067 * Returns true if idle tasks are enabled for the given |isolate|.
1068 */
IdleTasksEnabled(Isolate* isolate)1069 virtual bool IdleTasksEnabled(Isolate* isolate) { return false; }
1070
1071 /**
1072 * Posts |job_task| to run in parallel. Returns a JobHandle associated with
1073 * the Job, which can be joined or canceled.
1074 * This avoids degenerate cases:
1075 * - Calling CallOnWorkerThread() for each work item, causing significant
1076 * overhead.
1077 * - Fixed number of CallOnWorkerThread() calls that split the work and might
1078 * run for a long time. This is problematic when many components post
1079 * "num cores" tasks and all expect to use all the cores. In these cases,
1080 * the scheduler lacks context to be fair to multiple same-priority requests
1081 * and/or ability to request lower priority work to yield when high priority
1082 * work comes in.
1083 * A canonical implementation of |job_task| looks like:
1084 * class MyJobTask : public JobTask {
1085 * public:
1086 * MyJobTask(...) : worker_queue_(...) {}
1087 * // JobTask:
1088 * void Run(JobDelegate* delegate) override {
1089 * while (!delegate->ShouldYield()) {
1090 * // Smallest unit of work.
1091 * auto work_item = worker_queue_.TakeWorkItem(); // Thread safe.
1092 * if (!work_item) return;
1093 * ProcessWork(work_item);
1094 * }
1095 * }
1096 *
1097 * size_t GetMaxConcurrency() const override {
1098 * return worker_queue_.GetSize(); // Thread safe.
1099 * }
1100 * };
1101 * auto handle = PostJob(TaskPriority::kUserVisible,
1102 * std::make_unique<MyJobTask>(...));
1103 * handle->Join();
1104 *
1105 * PostJob() and methods of the returned JobHandle/JobDelegate, must never be
1106 * called while holding a lock that could be acquired by JobTask::Run or
1107 * JobTask::GetMaxConcurrency -- that could result in a deadlock. This is
1108 * because [1] JobTask::GetMaxConcurrency may be invoked while holding
1109 * internal lock (A), hence JobTask::GetMaxConcurrency can only use a lock (B)
1110 * if that lock is *never* held while calling back into JobHandle from any
1111 * thread (A=>B/B=>A deadlock) and [2] JobTask::Run or
1112 * JobTask::GetMaxConcurrency may be invoked synchronously from JobHandle
1113 * (B=>JobHandle::foo=>B deadlock).
1114 * Embedders should override CreateJobImpl() instead of PostJob().
1115 * TODO(chromium:1424158): Make non-virtual once embedders are migrated to
1116 * CreateJobImpl().
1117 */
PostJob( TaskPriority priority, std::unique_ptr<JobTask> job_task)1118 virtual std::unique_ptr<JobHandle> PostJob(
1119 TaskPriority priority, std::unique_ptr<JobTask> job_task) {
1120 auto handle = CreateJob(priority, std::move(job_task));
1121 handle->NotifyConcurrencyIncrease();
1122 return handle;
1123 }
1124
1125 /**
1126 * Creates and returns a JobHandle associated with a Job. Unlike PostJob(),
1127 * this doesn't immediately schedules |worker_task| to run; the Job is then
1128 * scheduled by calling either NotifyConcurrencyIncrease() or Join().
1129 *
1130 * A sufficient CreateJob() implementation that uses the default Job provided
1131 * in libplatform looks like:
1132 * std::unique_ptr<JobHandle> CreateJob(
1133 * TaskPriority priority, std::unique_ptr<JobTask> job_task) override {
1134 * return v8::platform::NewDefaultJobHandle(
1135 * this, priority, std::move(job_task), NumberOfWorkerThreads());
1136 * }
1137 *
1138 * Embedders should override CreateJobImpl() instead of CreateJob().
1139 * TODO(chromium:1424158): Make non-virtual once embedders are migrated to
1140 * CreateJobImpl().
1141 */
CreateJob( TaskPriority priority, std::unique_ptr<JobTask> job_task)1142 virtual std::unique_ptr<JobHandle> CreateJob(
1143 TaskPriority priority, std::unique_ptr<JobTask> job_task) {
1144 return CreateJobImpl(priority, std::move(job_task),
1145 SourceLocation::Current());
1146 }
1147
1148 /**
1149 * Instantiates a ScopedBlockingCall to annotate a scope that may/will block.
1150 */
CreateBlockingScope( BlockingType blocking_type)1151 virtual std::unique_ptr<ScopedBlockingCall> CreateBlockingScope(
1152 BlockingType blocking_type) {
1153 return nullptr;
1154 }
1155
1156 /**
1157 * Monotonically increasing time in seconds from an arbitrary fixed point in
1158 * the past. This function is expected to return at least
1159 * millisecond-precision values. For this reason,
1160 * it is recommended that the fixed point be no further in the past than
1161 * the epoch.
1162 **/
1163 virtual double MonotonicallyIncreasingTime() = 0;
1164
1165 /**
1166 * Current wall-clock time in milliseconds since epoch. Use
1167 * CurrentClockTimeMillisHighResolution() when higher precision is
1168 * required.
1169 */
CurrentClockTimeMilliseconds()1170 virtual int64_t CurrentClockTimeMilliseconds() {
1171 return floor(CurrentClockTimeMillis());
1172 }
1173
1174 /**
1175 * This function is deprecated and will be deleted. Use either
1176 * CurrentClockTimeMilliseconds() or
1177 * CurrentClockTimeMillisecondsHighResolution().
1178 */
1179 virtual double CurrentClockTimeMillis() = 0;
1180
1181 /**
1182 * Same as CurrentClockTimeMilliseconds(), but with more precision.
1183 */
CurrentClockTimeMillisecondsHighResolution()1184 virtual double CurrentClockTimeMillisecondsHighResolution() {
1185 return CurrentClockTimeMillis();
1186 }
1187
1188 typedef void (*StackTracePrinter)();
1189
1190 /**
1191 * Returns a function pointer that print a stack trace of the current stack
1192 * on invocation. Disables printing of the stack trace if nullptr.
1193 */
GetStackTracePrinter()1194 virtual StackTracePrinter GetStackTracePrinter() { return nullptr; }
1195
1196 /**
1197 * Returns an instance of a v8::TracingController. This must be non-nullptr.
1198 */
1199 virtual TracingController* GetTracingController() = 0;
1200
1201 /**
1202 * Tells the embedder to generate and upload a crashdump during an unexpected
1203 * but non-critical scenario.
1204 */
DumpWithoutCrashing()1205 virtual void DumpWithoutCrashing() {}
1206
1207 /**
1208 * Allows the embedder to observe sections with high throughput allocation
1209 * operations.
1210 */
1211 virtual HighAllocationThroughputObserver*
GetHighAllocationThroughputObserver()1212 GetHighAllocationThroughputObserver() {
1213 static HighAllocationThroughputObserver default_observer;
1214 return &default_observer;
1215 }
1216
1217 protected:
1218 /**
1219 * Default implementation of current wall-clock time in milliseconds
1220 * since epoch. Useful for implementing |CurrentClockTimeMillis| if
1221 * nothing special needed.
1222 */
1223 V8_EXPORT static double SystemClockTimeMillis();
1224
1225 /**
1226 * Creates and returns a JobHandle associated with a Job.
1227 * TODO(chromium:1424158): Make pure virtual once embedders implement it.
1228 */
CreateJobImpl( TaskPriority priority, std::unique_ptr<JobTask> job_task, const SourceLocation& location)1229 virtual std::unique_ptr<JobHandle> CreateJobImpl(
1230 TaskPriority priority, std::unique_ptr<JobTask> job_task,
1231 const SourceLocation& location) {
1232 return nullptr;
1233 }
1234
1235 /**
1236 * Schedules a task with |priority| to be invoked on a worker thread.
1237 * TODO(chromium:1424158): Make pure virtual once embedders implement it.
1238 */
PostTaskOnWorkerThreadImpl(TaskPriority priority, std::unique_ptr<Task> task, const SourceLocation& location)1239 virtual void PostTaskOnWorkerThreadImpl(TaskPriority priority,
1240 std::unique_ptr<Task> task,
1241 const SourceLocation& location) {}
1242
1243 /**
1244 * Schedules a task with |priority| to be invoked on a worker thread after
1245 * |delay_in_seconds| expires.
1246 * TODO(chromium:1424158): Make pure virtual once embedders implement it.
1247 */
PostDelayedTaskOnWorkerThreadImpl( TaskPriority priority, std::unique_ptr<Task> task, double delay_in_seconds, const SourceLocation& location)1248 virtual void PostDelayedTaskOnWorkerThreadImpl(
1249 TaskPriority priority, std::unique_ptr<Task> task,
1250 double delay_in_seconds, const SourceLocation& location) {}
1251 };
1252
1253 } // namespace v8
1254
1255 #endif // V8_V8_PLATFORM_H_
1256