1 // Copyright 2020 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 /**
6 * This file provides additional API on top of the default one for making
7 * API calls, which come from embedder C++ functions. The functions are being
8 * called directly from optimized code, doing all the necessary typechecks
9 * in the compiler itself, instead of on the embedder side. Hence the "fast"
10 * in the name. Example usage might look like:
11 *
12 * \code
13 * void FastMethod(int param, bool another_param);
14 *
15 * v8::FunctionTemplate::New(isolate, SlowCallback, data,
16 * signature, length, constructor_behavior
17 * side_effect_type,
18 * &v8::CFunction::Make(FastMethod));
19 * \endcode
20 *
21 * By design, fast calls are limited by the following requirements, which
22 * the embedder should enforce themselves:
23 * - they should not allocate on the JS heap;
24 * - they should not trigger JS execution.
25 * To enforce them, the embedder could use the existing
26 * v8::Isolate::DisallowJavascriptExecutionScope and a utility similar to
27 * Blink's NoAllocationScope:
28 * https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/platform/heap/thread_state_scopes.h;l=16
29 *
30 * Due to these limitations, it's not directly possible to report errors by
31 * throwing a JS exception or to otherwise do an allocation. There is an
32 * alternative way of creating fast calls that supports falling back to the
33 * slow call and then performing the necessary allocation. When one creates
34 * the fast method by using CFunction::MakeWithFallbackSupport instead of
35 * CFunction::Make, the fast callback gets as last parameter an output variable,
36 * through which it can request falling back to the slow call. So one might
37 * declare their method like:
38 *
39 * \code
40 * void FastMethodWithFallback(int param, FastApiCallbackOptions& options);
41 * \endcode
42 *
43 * If the callback wants to signal an error condition or to perform an
44 * allocation, it must set options.fallback to true and do an early return from
45 * the fast method. Then V8 checks the value of options.fallback and if it's
46 * true, falls back to executing the SlowCallback, which is capable of reporting
47 * the error (either by throwing a JS exception or logging to the console) or
48 * doing the allocation. It's the embedder's responsibility to ensure that the
49 * fast callback is idempotent up to the point where error and fallback
50 * conditions are checked, because otherwise executing the slow callback might
51 * produce visible side-effects twice.
52 *
53 * An example for custom embedder type support might employ a way to wrap/
54 * unwrap various C++ types in JSObject instances, e.g:
55 *
56 * \code
57 *
58 * // Helper method with a check for field count.
59 * template <typename T, int offset>
60 * inline T* GetInternalField(v8::Local<v8::Object> wrapper) {
61 * assert(offset < wrapper->InternalFieldCount());
62 * return reinterpret_cast<T*>(
63 * wrapper->GetAlignedPointerFromInternalField(offset));
64 * }
65 *
66 * class CustomEmbedderType {
67 * public:
68 * // Returns the raw C object from a wrapper JS object.
69 * static CustomEmbedderType* Unwrap(v8::Local<v8::Object> wrapper) {
70 * return GetInternalField<CustomEmbedderType,
71 * kV8EmbedderWrapperObjectIndex>(wrapper);
72 * }
73 * static void FastMethod(v8::Local<v8::Object> receiver_obj, int param) {
74 * CustomEmbedderType* receiver = static_cast<CustomEmbedderType*>(
75 * receiver_obj->GetAlignedPointerFromInternalField(
76 * kV8EmbedderWrapperObjectIndex));
77 *
78 * // Type checks are already done by the optimized code.
79 * // Then call some performance-critical method like:
80 * // receiver->Method(param);
81 * }
82 *
83 * static void SlowMethod(
84 * const v8::FunctionCallbackInfo<v8::Value>& info) {
85 * v8::Local<v8::Object> instance =
86 * v8::Local<v8::Object>::Cast(info.Holder());
87 * CustomEmbedderType* receiver = Unwrap(instance);
88 * // TODO: Do type checks and extract {param}.
89 * receiver->Method(param);
90 * }
91 * };
92 *
93 * // TODO(mslekova): Clean-up these constants
94 * // The constants kV8EmbedderWrapperTypeIndex and
95 * // kV8EmbedderWrapperObjectIndex describe the offsets for the type info
96 * // struct and the native object, when expressed as internal field indices
97 * // within a JSObject. The existance of this helper function assumes that
98 * // all embedder objects have their JSObject-side type info at the same
99 * // offset, but this is not a limitation of the API itself. For a detailed
100 * // use case, see the third example.
101 * static constexpr int kV8EmbedderWrapperTypeIndex = 0;
102 * static constexpr int kV8EmbedderWrapperObjectIndex = 1;
103 *
104 * // The following setup function can be templatized based on
105 * // the {embedder_object} argument.
106 * void SetupCustomEmbedderObject(v8::Isolate* isolate,
107 * v8::Local<v8::Context> context,
108 * CustomEmbedderType* embedder_object) {
109 * isolate->set_embedder_wrapper_type_index(
110 * kV8EmbedderWrapperTypeIndex);
111 * isolate->set_embedder_wrapper_object_index(
112 * kV8EmbedderWrapperObjectIndex);
113 *
114 * v8::CFunction c_func =
115 * MakeV8CFunction(CustomEmbedderType::FastMethod);
116 *
117 * Local<v8::FunctionTemplate> method_template =
118 * v8::FunctionTemplate::New(
119 * isolate, CustomEmbedderType::SlowMethod, v8::Local<v8::Value>(),
120 * v8::Local<v8::Signature>(), 1, v8::ConstructorBehavior::kAllow,
121 * v8::SideEffectType::kHasSideEffect, &c_func);
122 *
123 * v8::Local<v8::ObjectTemplate> object_template =
124 * v8::ObjectTemplate::New(isolate);
125 * object_template->SetInternalFieldCount(
126 * kV8EmbedderWrapperObjectIndex + 1);
127 * object_template->Set(isolate, "method", method_template);
128 *
129 * // Instantiate the wrapper JS object.
130 * v8::Local<v8::Object> object =
131 * object_template->NewInstance(context).ToLocalChecked();
132 * object->SetAlignedPointerInInternalField(
133 * kV8EmbedderWrapperObjectIndex,
134 * reinterpret_cast<void*>(embedder_object));
135 *
136 * // TODO: Expose {object} where it's necessary.
137 * }
138 * \endcode
139 *
140 * For instance if {object} is exposed via a global "obj" variable,
141 * one could write in JS:
142 * function hot_func() {
143 * obj.method(42);
144 * }
145 * and once {hot_func} gets optimized, CustomEmbedderType::FastMethod
146 * will be called instead of the slow version, with the following arguments:
147 * receiver := the {embedder_object} from above
148 * param := 42
149 *
150 * Currently supported return types:
151 * - void
152 * - bool
153 * - int32_t
154 * - uint32_t
155 * - float32_t
156 * - float64_t
157 * Currently supported argument types:
158 * - pointer to an embedder type
159 * - JavaScript array of primitive types
160 * - bool
161 * - int32_t
162 * - uint32_t
163 * - int64_t
164 * - uint64_t
165 * - float32_t
166 * - float64_t
167 *
168 * The 64-bit integer types currently have the IDL (unsigned) long long
169 * semantics: https://heycam.github.io/webidl/#abstract-opdef-converttoint
170 * In the future we'll extend the API to also provide conversions from/to
171 * BigInt to preserve full precision.
172 * The floating point types currently have the IDL (unrestricted) semantics,
173 * which is the only one used by WebGL. We plan to add support also for
174 * restricted floats/doubles, similarly to the BigInt conversion policies.
175 * We also differ from the specific NaN bit pattern that WebIDL prescribes
176 * (https://heycam.github.io/webidl/#es-unrestricted-float) in that Blink
177 * passes NaN values as-is, i.e. doesn't normalize them.
178 *
179 * To be supported types:
180 * - TypedArrays and ArrayBuffers
181 * - arrays of embedder types
182 *
183 *
184 * The API offers a limited support for function overloads:
185 *
186 * \code
187 * void FastMethod_2Args(int param, bool another_param);
188 * void FastMethod_3Args(int param, bool another_param, int third_param);
189 *
190 * v8::CFunction fast_method_2args_c_func =
191 * MakeV8CFunction(FastMethod_2Args);
192 * v8::CFunction fast_method_3args_c_func =
193 * MakeV8CFunction(FastMethod_3Args);
194 * const v8::CFunction fast_method_overloads[] = {fast_method_2args_c_func,
195 * fast_method_3args_c_func};
196 * Local<v8::FunctionTemplate> method_template =
197 * v8::FunctionTemplate::NewWithCFunctionOverloads(
198 * isolate, SlowCallback, data, signature, length,
199 * constructor_behavior, side_effect_type,
200 * {fast_method_overloads, 2});
201 * \endcode
202 *
203 * In this example a single FunctionTemplate is associated to multiple C++
204 * functions. The overload resolution is currently only based on the number of
205 * arguments passed in a call. For example, if this method_template is
206 * registered with a wrapper JS object as described above, a call with two
207 * arguments:
208 * obj.method(42, true);
209 * will result in a fast call to FastMethod_2Args, while a call with three or
210 * more arguments:
211 * obj.method(42, true, 11);
212 * will result in a fast call to FastMethod_3Args. Instead a call with less than
213 * two arguments, like:
214 * obj.method(42);
215 * would not result in a fast call but would fall back to executing the
216 * associated SlowCallback.
217 */
218
219 #ifndef INCLUDE_V8_FAST_API_CALLS_H_
220 #define INCLUDE_V8_FAST_API_CALLS_H_
221
222 #include <stddef.h>
223 #include <stdint.h>
224
225 #include <tuple>
226 #include <type_traits>
227
228 #include "v8-internal.h" // NOLINT(build/include_directory)
229 #include "v8-local-handle.h" // NOLINT(build/include_directory)
230 #include "v8-typed-array.h" // NOLINT(build/include_directory)
231 #include "v8-value.h" // NOLINT(build/include_directory)
232 #include "v8config.h" // NOLINT(build/include_directory)
233
234 namespace v8 {
235
236 class Isolate;
237
238 class CTypeInfo {
239 public:
240 enum class Type : uint8_t {
241 kVoid,
242 kBool,
243 kInt32,
244 kUint32,
245 kInt64,
246 kUint64,
247 kFloat32,
248 kFloat64,
249 kV8Value,
250 kApiObject, // This will be deprecated once all users have
251 // migrated from v8::ApiObject to v8::Local<v8::Value>.
252 kAny, // This is added to enable untyped representation of fast
253 // call arguments for test purposes. It can represent any of
254 // the other types stored in the same memory as a union (see
255 // the AnyCType struct declared below). This allows for
256 // uniform passing of arguments w.r.t. their location
257 // (in a register or on the stack), independent of their
258 // actual type. It's currently used by the arm64 simulator
259 // and can be added to the other simulators as well when fast
260 // calls having both GP and FP params need to be supported.
261 };
262
263 // kCallbackOptionsType is not part of the Type enum
264 // because it is only used internally. Use value 255 that is larger
265 // than any valid Type enum.
266 static constexpr Type kCallbackOptionsType = Type(255);
267
268 enum class SequenceType : uint8_t {
269 kScalar,
270 kIsSequence, // sequence<T>
271 kIsTypedArray, // TypedArray of T or any ArrayBufferView if T
272 // is void
273 kIsArrayBuffer // ArrayBuffer
274 };
275
276 enum class Flags : uint8_t {
277 kNone = 0,
278 kAllowSharedBit = 1 << 0, // Must be an ArrayBuffer or TypedArray
279 kEnforceRangeBit = 1 << 1, // T must be integral
280 kClampBit = 1 << 2, // T must be integral
281 kIsRestrictedBit = 1 << 3, // T must be float or double
282 };
283
CTypeInfo( Type type, SequenceType sequence_type = SequenceType::kScalar, Flags flags = Flags::kNone)284 explicit constexpr CTypeInfo(
285 Type type, SequenceType sequence_type = SequenceType::kScalar,
286 Flags flags = Flags::kNone)
287 : type_(type), sequence_type_(sequence_type), flags_(flags) {}
288
289 typedef uint32_t Identifier;
CTypeInfo(Identifier identifier)290 explicit constexpr CTypeInfo(Identifier identifier)
291 : CTypeInfo(static_cast<Type>(identifier >> 16),
292 static_cast<SequenceType>((identifier >> 8) & 255),
293 static_cast<Flags>(identifier & 255)) {}
GetId() const294 constexpr Identifier GetId() const {
295 return static_cast<uint8_t>(type_) << 16 |
296 static_cast<uint8_t>(sequence_type_) << 8 |
297 static_cast<uint8_t>(flags_);
298 }
299
GetType() const300 constexpr Type GetType() const { return type_; }
GetSequenceType() const301 constexpr SequenceType GetSequenceType() const { return sequence_type_; }
GetFlags() const302 constexpr Flags GetFlags() const { return flags_; }
303
IsIntegralType(Type type)304 static constexpr bool IsIntegralType(Type type) {
305 return type == Type::kInt32 || type == Type::kUint32 ||
306 type == Type::kInt64 || type == Type::kUint64;
307 }
308
IsFloatingPointType(Type type)309 static constexpr bool IsFloatingPointType(Type type) {
310 return type == Type::kFloat32 || type == Type::kFloat64;
311 }
312
IsPrimitive(Type type)313 static constexpr bool IsPrimitive(Type type) {
314 return IsIntegralType(type) || IsFloatingPointType(type) ||
315 type == Type::kBool;
316 }
317
318 private:
319 Type type_;
320 SequenceType sequence_type_;
321 Flags flags_;
322 };
323
324 struct FastApiTypedArrayBase {
325 public:
326 // Returns the length in number of elements.
lengthv8::FastApiTypedArrayBase327 size_t V8_EXPORT length() const { return length_; }
328 // Checks whether the given index is within the bounds of the collection.
329 void V8_EXPORT ValidateIndex(size_t index) const;
330
331 protected:
332 size_t length_ = 0;
333 };
334
335 template <typename T>
336 struct FastApiTypedArray : public FastApiTypedArrayBase {
337 public:
getv8::FastApiTypedArray338 V8_INLINE T get(size_t index) const {
339 #ifdef DEBUG
340 ValidateIndex(index);
341 #endif // DEBUG
342 T tmp;
343 memcpy(&tmp, reinterpret_cast<T*>(data_) + index, sizeof(T));
344 return tmp;
345 }
346
getStorageIfAlignedv8::FastApiTypedArray347 bool getStorageIfAligned(T** elements) const {
348 if (reinterpret_cast<uintptr_t>(data_) % alignof(T) != 0) {
349 return false;
350 }
351 *elements = reinterpret_cast<T*>(data_);
352 return true;
353 }
354
355 private:
356 // This pointer should include the typed array offset applied.
357 // It's not guaranteed that it's aligned to sizeof(T), it's only
358 // guaranteed that it's 4-byte aligned, so for 8-byte types we need to
359 // provide a special implementation for reading from it, which hides
360 // the possibly unaligned read in the `get` method.
361 void* data_;
362 };
363
364 // Any TypedArray. It uses kTypedArrayBit with base type void
365 // Overloaded args of ArrayBufferView and TypedArray are not supported
366 // (for now) because the generic “any” ArrayBufferView doesn’t have its
367 // own instance type. It could be supported if we specify that
368 // TypedArray<T> always has precedence over the generic ArrayBufferView,
369 // but this complicates overload resolution.
370 struct FastApiArrayBufferView {
371 void* data;
372 size_t byte_length;
373 };
374
375 struct FastApiArrayBuffer {
376 void* data;
377 size_t byte_length;
378 };
379
380 class V8_EXPORT CFunctionInfo {
381 public:
382 // Construct a struct to hold a CFunction's type information.
383 // |return_info| describes the function's return type.
384 // |arg_info| is an array of |arg_count| CTypeInfos describing the
385 // arguments. Only the last argument may be of the special type
386 // CTypeInfo::kCallbackOptionsType.
387 CFunctionInfo(const CTypeInfo& return_info, unsigned int arg_count,
388 const CTypeInfo* arg_info);
389
ReturnInfo() const390 const CTypeInfo& ReturnInfo() const { return return_info_; }
391
392 // The argument count, not including the v8::FastApiCallbackOptions
393 // if present.
ArgumentCount() const394 unsigned int ArgumentCount() const {
395 return HasOptions() ? arg_count_ - 1 : arg_count_;
396 }
397
398 // |index| must be less than ArgumentCount().
399 // Note: if the last argument passed on construction of CFunctionInfo
400 // has type CTypeInfo::kCallbackOptionsType, it is not included in
401 // ArgumentCount().
402 const CTypeInfo& ArgumentInfo(unsigned int index) const;
403
HasOptions() const404 bool HasOptions() const {
405 // The options arg is always the last one.
406 return arg_count_ > 0 && arg_info_[arg_count_ - 1].GetType() ==
407 CTypeInfo::kCallbackOptionsType;
408 }
409
410 private:
411 const CTypeInfo return_info_;
412 const unsigned int arg_count_;
413 const CTypeInfo* arg_info_;
414 };
415
416 struct FastApiCallbackOptions;
417
418 // Provided for testing.
419 struct AnyCType {
AnyCTypev8::AnyCType420 AnyCType() : int64_value(0) {}
421
422 union {
423 bool bool_value;
424 int32_t int32_value;
425 uint32_t uint32_value;
426 int64_t int64_value;
427 uint64_t uint64_value;
428 float float_value;
429 double double_value;
430 Local<Object> object_value;
431 Local<Array> sequence_value;
432 const FastApiTypedArray<int32_t>* int32_ta_value;
433 const FastApiTypedArray<uint32_t>* uint32_ta_value;
434 const FastApiTypedArray<int64_t>* int64_ta_value;
435 const FastApiTypedArray<uint64_t>* uint64_ta_value;
436 const FastApiTypedArray<float>* float_ta_value;
437 const FastApiTypedArray<double>* double_ta_value;
438 FastApiCallbackOptions* options_value;
439 };
440 };
441
442 static_assert(
443 sizeof(AnyCType) == 8,
444 "The AnyCType struct should have size == 64 bits, as this is assumed "
445 "by EffectControlLinearizer.");
446
447 class V8_EXPORT CFunction {
448 public:
CFunction()449 constexpr CFunction() : address_(nullptr), type_info_(nullptr) {}
450
ReturnInfo() const451 const CTypeInfo& ReturnInfo() const { return type_info_->ReturnInfo(); }
452
ArgumentInfo(unsigned int index) const453 const CTypeInfo& ArgumentInfo(unsigned int index) const {
454 return type_info_->ArgumentInfo(index);
455 }
456
ArgumentCount() const457 unsigned int ArgumentCount() const { return type_info_->ArgumentCount(); }
458
GetAddress() const459 const void* GetAddress() const { return address_; }
GetTypeInfo() const460 const CFunctionInfo* GetTypeInfo() const { return type_info_; }
461
462 enum class OverloadResolution { kImpossible, kAtRuntime, kAtCompileTime };
463
464 // Returns whether an overload between this and the given CFunction can
465 // be resolved at runtime by the RTTI available for the arguments or at
466 // compile time for functions with different number of arguments.
GetOverloadResolution(const CFunction* other)467 OverloadResolution GetOverloadResolution(const CFunction* other) {
468 // Runtime overload resolution can only deal with functions with the
469 // same number of arguments. Functions with different arity are handled
470 // by compile time overload resolution though.
471 if (ArgumentCount() != other->ArgumentCount()) {
472 return OverloadResolution::kAtCompileTime;
473 }
474
475 // The functions can only differ by a single argument position.
476 int diff_index = -1;
477 for (unsigned int i = 0; i < ArgumentCount(); ++i) {
478 if (ArgumentInfo(i).GetSequenceType() !=
479 other->ArgumentInfo(i).GetSequenceType()) {
480 if (diff_index >= 0) {
481 return OverloadResolution::kImpossible;
482 }
483 diff_index = i;
484
485 // We only support overload resolution between sequence types.
486 if (ArgumentInfo(i).GetSequenceType() ==
487 CTypeInfo::SequenceType::kScalar ||
488 other->ArgumentInfo(i).GetSequenceType() ==
489 CTypeInfo::SequenceType::kScalar) {
490 return OverloadResolution::kImpossible;
491 }
492 }
493 }
494
495 return OverloadResolution::kAtRuntime;
496 }
497
498 template <typename F>
Make(F* func)499 static CFunction Make(F* func) {
500 return ArgUnwrap<F*>::Make(func);
501 }
502
503 // Provided for testing purposes.
504 template <typename R, typename... Args, typename R_Patch,
505 typename... Args_Patch>
Make(R (func)Args...), R_Patch (*patching_func)(Args_Patch...))506 static CFunction Make(R (*func)(Args...),
507 R_Patch (*patching_func)(Args_Patch...)) {
508 CFunction c_func = ArgUnwrap<R (*)(Args...)>::Make(func);
509 static_assert(
510 sizeof...(Args_Patch) == sizeof...(Args),
511 "The patching function must have the same number of arguments.");
512 c_func.address_ = reinterpret_cast<void*>(patching_func);
513 return c_func;
514 }
515
516 CFunction(const void* address, const CFunctionInfo* type_info);
517
518 private:
519 const void* address_;
520 const CFunctionInfo* type_info_;
521
522 template <typename F>
523 class ArgUnwrap {
524 static_assert(sizeof(F) != sizeof(F),
525 "CFunction must be created from a function pointer.");
526 };
527
528 template <typename R, typename... Args>
529 class ArgUnwrap<R (*)(Args...)> {
530 public:
531 static CFunction Make(R (*func)(Args...));
532 };
533 };
534
535 /**
536 * A struct which may be passed to a fast call callback, like so:
537 * \code
538 * void FastMethodWithOptions(int param, FastApiCallbackOptions& options);
539 * \endcode
540 */
541 struct FastApiCallbackOptions {
542 /**
543 * Creates a new instance of FastApiCallbackOptions for testing purpose. The
544 * returned instance may be filled with mock data.
545 */
CreateForTestingv8::FastApiCallbackOptions546 static FastApiCallbackOptions CreateForTesting(Isolate* isolate) {
547 return {false, {0}};
548 }
549
550 /**
551 * If the callback wants to signal an error condition or to perform an
552 * allocation, it must set options.fallback to true and do an early return
553 * from the fast method. Then V8 checks the value of options.fallback and if
554 * it's true, falls back to executing the SlowCallback, which is capable of
555 * reporting the error (either by throwing a JS exception or logging to the
556 * console) or doing the allocation. It's the embedder's responsibility to
557 * ensure that the fast callback is idempotent up to the point where error and
558 * fallback conditions are checked, because otherwise executing the slow
559 * callback might produce visible side-effects twice.
560 */
561 bool fallback;
562
563 /**
564 * The `data` passed to the FunctionTemplate constructor, or `undefined`.
565 * `data_ptr` allows for default constructing FastApiCallbackOptions.
566 */
567 union {
568 uintptr_t data_ptr;
569 v8::Value data;
570 };
571 };
572
573 namespace internal {
574
575 // Helper to count the number of occurances of `T` in `List`
576 template <typename T, typename... List>
577 struct count : std::integral_constant<int, 0> {};
578 template <typename T, typename... Args>
579 struct count<T, T, Args...>
580 : std::integral_constant<std::size_t, 1 + count<T, Args...>::value> {};
581 template <typename T, typename U, typename... Args>
582 struct count<T, U, Args...> : count<T, Args...> {};
583
584 template <typename RetBuilder, typename... ArgBuilders>
585 class CFunctionInfoImpl : public CFunctionInfo {
586 static constexpr int kOptionsArgCount =
587 count<FastApiCallbackOptions&, ArgBuilders...>();
588 static constexpr int kReceiverCount = 1;
589
590 static_assert(kOptionsArgCount == 0 || kOptionsArgCount == 1,
591 "Only one options parameter is supported.");
592
593 static_assert(sizeof...(ArgBuilders) >= kOptionsArgCount + kReceiverCount,
594 "The receiver or the options argument is missing.");
595
596 public:
CFunctionInfoImpl()597 constexpr CFunctionInfoImpl()
598 : CFunctionInfo(RetBuilder::Build(), sizeof...(ArgBuilders),
599 arg_info_storage_),
600 arg_info_storage_{ArgBuilders::Build()...} {
601 constexpr CTypeInfo::Type kReturnType = RetBuilder::Build().GetType();
602 static_assert(kReturnType == CTypeInfo::Type::kVoid ||
603 kReturnType == CTypeInfo::Type::kBool ||
604 kReturnType == CTypeInfo::Type::kInt32 ||
605 kReturnType == CTypeInfo::Type::kUint32 ||
606 kReturnType == CTypeInfo::Type::kFloat32 ||
607 kReturnType == CTypeInfo::Type::kFloat64 ||
608 kReturnType == CTypeInfo::Type::kAny,
609 "64-bit int and api object values are not currently "
610 "supported return types.");
611 }
612
613 private:
614 const CTypeInfo arg_info_storage_[sizeof...(ArgBuilders)];
615 };
616
617 template <typename T>
618 struct TypeInfoHelper {
619 static_assert(sizeof(T) != sizeof(T), "This type is not supported");
620 };
621
622 #define SPECIALIZE_GET_TYPE_INFO_HELPER_FOR(T, Enum) \
623 template <> \
624 struct TypeInfoHelper<T> { \
625 static constexpr CTypeInfo::Flags Flags() { \
626 return CTypeInfo::Flags::kNone; \
627 } \
628 \
629 static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::Enum; } \
630 static constexpr CTypeInfo::SequenceType SequenceType() { \
631 return CTypeInfo::SequenceType::kScalar; \
632 } \
633 };
634
635 template <CTypeInfo::Type type>
636 struct CTypeInfoTraits {};
637
638 #define DEFINE_TYPE_INFO_TRAITS(CType, Enum) \
639 template <> \
640 struct CTypeInfoTraits<CTypeInfo::Type::Enum> { \
641 using ctype = CType; \
642 };
643
644 #define PRIMITIVE_C_TYPES(V) \
645 V(bool, kBool) \
646 V(int32_t, kInt32) \
647 V(uint32_t, kUint32) \
648 V(int64_t, kInt64) \
649 V(uint64_t, kUint64) \
650 V(float, kFloat32) \
651 V(double, kFloat64)
652
653 // Same as above, but includes deprecated types for compatibility.
654 #define ALL_C_TYPES(V) \
655 PRIMITIVE_C_TYPES(V) \
656 V(void, kVoid) \
657 V(v8::Local<v8::Value>, kV8Value) \
658 V(v8::Local<v8::Object>, kV8Value) \
659 V(AnyCType, kAny)
660
661 // ApiObject was a temporary solution to wrap the pointer to the v8::Value.
662 // Please use v8::Local<v8::Value> in new code for the arguments and
663 // v8::Local<v8::Object> for the receiver, as ApiObject will be deprecated.
664
665 ALL_C_TYPES(SPECIALIZE_GET_TYPE_INFO_HELPER_FOR)
666 PRIMITIVE_C_TYPES(DEFINE_TYPE_INFO_TRAITS)
667
668 #undef PRIMITIVE_C_TYPES
669 #undef ALL_C_TYPES
670
671 #define SPECIALIZE_GET_TYPE_INFO_HELPER_FOR_TA(T, Enum) \
672 template <> \
673 struct TypeInfoHelper<const FastApiTypedArray<T>&> { \
674 static constexpr CTypeInfo::Flags Flags() { \
675 return CTypeInfo::Flags::kNone; \
676 } \
677 \
678 static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::Enum; } \
679 static constexpr CTypeInfo::SequenceType SequenceType() { \
680 return CTypeInfo::SequenceType::kIsTypedArray; \
681 } \
682 };
683
684 #define TYPED_ARRAY_C_TYPES(V) \
685 V(int32_t, kInt32) \
686 V(uint32_t, kUint32) \
687 V(int64_t, kInt64) \
688 V(uint64_t, kUint64) \
689 V(float, kFloat32) \
690 V(double, kFloat64)
691
692 TYPED_ARRAY_C_TYPES(SPECIALIZE_GET_TYPE_INFO_HELPER_FOR_TA)
693
694 #undef TYPED_ARRAY_C_TYPES
695
696 template <>
697 struct TypeInfoHelper<v8::Local<v8::Array>> {
Flagsv8::internal::TypeInfoHelper698 static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
699
Typev8::internal::TypeInfoHelper700 static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::kVoid; }
SequenceTypev8::internal::TypeInfoHelper701 static constexpr CTypeInfo::SequenceType SequenceType() {
702 return CTypeInfo::SequenceType::kIsSequence;
703 }
704 };
705
706 template <>
707 struct TypeInfoHelper<v8::Local<v8::Uint32Array>> {
Flagsv8::internal::TypeInfoHelper708 static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
709
Typev8::internal::TypeInfoHelper710 static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::kUint32; }
SequenceTypev8::internal::TypeInfoHelper711 static constexpr CTypeInfo::SequenceType SequenceType() {
712 return CTypeInfo::SequenceType::kIsTypedArray;
713 }
714 };
715
716 template <>
717 struct TypeInfoHelper<FastApiCallbackOptions&> {
Flagsv8::internal::TypeInfoHelper718 static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
719
Typev8::internal::TypeInfoHelper720 static constexpr CTypeInfo::Type Type() {
721 return CTypeInfo::kCallbackOptionsType;
722 }
SequenceTypev8::internal::TypeInfoHelper723 static constexpr CTypeInfo::SequenceType SequenceType() {
724 return CTypeInfo::SequenceType::kScalar;
725 }
726 };
727
728 #define STATIC_ASSERT_IMPLIES(COND, ASSERTION, MSG) \
729 static_assert(((COND) == 0) || (ASSERTION), MSG)
730
731 } // namespace internal
732
733 template <typename T, CTypeInfo::Flags... Flags>
734 class V8_EXPORT CTypeInfoBuilder {
735 public:
736 using BaseType = T;
737
Build()738 static constexpr CTypeInfo Build() {
739 constexpr CTypeInfo::Flags kFlags =
740 MergeFlags(internal::TypeInfoHelper<T>::Flags(), Flags...);
741 constexpr CTypeInfo::Type kType = internal::TypeInfoHelper<T>::Type();
742 constexpr CTypeInfo::SequenceType kSequenceType =
743 internal::TypeInfoHelper<T>::SequenceType();
744
745 STATIC_ASSERT_IMPLIES(
746 uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kAllowSharedBit),
747 (kSequenceType == CTypeInfo::SequenceType::kIsTypedArray ||
748 kSequenceType == CTypeInfo::SequenceType::kIsArrayBuffer),
749 "kAllowSharedBit is only allowed for TypedArrays and ArrayBuffers.");
750 STATIC_ASSERT_IMPLIES(
751 uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kEnforceRangeBit),
752 CTypeInfo::IsIntegralType(kType),
753 "kEnforceRangeBit is only allowed for integral types.");
754 STATIC_ASSERT_IMPLIES(
755 uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kClampBit),
756 CTypeInfo::IsIntegralType(kType),
757 "kClampBit is only allowed for integral types.");
758 STATIC_ASSERT_IMPLIES(
759 uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kIsRestrictedBit),
760 CTypeInfo::IsFloatingPointType(kType),
761 "kIsRestrictedBit is only allowed for floating point types.");
762 STATIC_ASSERT_IMPLIES(kSequenceType == CTypeInfo::SequenceType::kIsSequence,
763 kType == CTypeInfo::Type::kVoid,
764 "Sequences are only supported from void type.");
765 STATIC_ASSERT_IMPLIES(
766 kSequenceType == CTypeInfo::SequenceType::kIsTypedArray,
767 CTypeInfo::IsPrimitive(kType) || kType == CTypeInfo::Type::kVoid,
768 "TypedArrays are only supported from primitive types or void.");
769
770 // Return the same type with the merged flags.
771 return CTypeInfo(internal::TypeInfoHelper<T>::Type(),
772 internal::TypeInfoHelper<T>::SequenceType(), kFlags);
773 }
774
775 private:
776 template <typename... Rest>
MergeFlags(CTypeInfo::Flags flags, Rest... rest)777 static constexpr CTypeInfo::Flags MergeFlags(CTypeInfo::Flags flags,
778 Rest... rest) {
779 return CTypeInfo::Flags(uint8_t(flags) | uint8_t(MergeFlags(rest...)));
780 }
MergeFlags()781 static constexpr CTypeInfo::Flags MergeFlags() { return CTypeInfo::Flags(0); }
782 };
783
784 namespace internal {
785 template <typename RetBuilder, typename... ArgBuilders>
786 class CFunctionBuilderWithFunction {
787 public:
CFunctionBuilderWithFunction(const void* fn)788 explicit constexpr CFunctionBuilderWithFunction(const void* fn) : fn_(fn) {}
789
790 template <CTypeInfo::Flags... Flags>
Ret()791 constexpr auto Ret() {
792 return CFunctionBuilderWithFunction<
793 CTypeInfoBuilder<typename RetBuilder::BaseType, Flags...>,
794 ArgBuilders...>(fn_);
795 }
796
797 template <unsigned int N, CTypeInfo::Flags... Flags>
Arg()798 constexpr auto Arg() {
799 // Return a copy of the builder with the Nth arg builder merged with
800 // template parameter pack Flags.
801 return ArgImpl<N, Flags...>(
802 std::make_index_sequence<sizeof...(ArgBuilders)>());
803 }
804
Build()805 auto Build() {
806 static CFunctionInfoImpl<RetBuilder, ArgBuilders...> instance;
807 return CFunction(fn_, &instance);
808 }
809
810 private:
811 template <bool Merge, unsigned int N, CTypeInfo::Flags... Flags>
812 struct GetArgBuilder;
813
814 // Returns the same ArgBuilder as the one at index N, including its flags.
815 // Flags in the template parameter pack are ignored.
816 template <unsigned int N, CTypeInfo::Flags... Flags>
817 struct GetArgBuilder<false, N, Flags...> {
818 using type =
819 typename std::tuple_element<N, std::tuple<ArgBuilders...>>::type;
820 };
821
822 // Returns an ArgBuilder with the same base type as the one at index N,
823 // but merges the flags with the flags in the template parameter pack.
824 template <unsigned int N, CTypeInfo::Flags... Flags>
825 struct GetArgBuilder<true, N, Flags...> {
826 using type = CTypeInfoBuilder<
827 typename std::tuple_element<N,
828 std::tuple<ArgBuilders...>>::type::BaseType,
829 std::tuple_element<N, std::tuple<ArgBuilders...>>::type::Build()
830 .GetFlags(),
831 Flags...>;
832 };
833
834 // Return a copy of the CFunctionBuilder, but merges the Flags on
835 // ArgBuilder index N with the new Flags passed in the template parameter
836 // pack.
837 template <unsigned int N, CTypeInfo::Flags... Flags, size_t... I>
ArgImpl(std::index_sequence<I...>)838 constexpr auto ArgImpl(std::index_sequence<I...>) {
839 return CFunctionBuilderWithFunction<
840 RetBuilder, typename GetArgBuilder<N == I, I, Flags...>::type...>(fn_);
841 }
842
843 const void* fn_;
844 };
845
846 class CFunctionBuilder {
847 public:
CFunctionBuilder()848 constexpr CFunctionBuilder() {}
849
850 template <typename R, typename... Args>
Fn(R (fn)Args...))851 constexpr auto Fn(R (*fn)(Args...)) {
852 return CFunctionBuilderWithFunction<CTypeInfoBuilder<R>,
853 CTypeInfoBuilder<Args>...>(
854 reinterpret_cast<const void*>(fn));
855 }
856 };
857
858 } // namespace internal
859
860 // static
861 template <typename R, typename... Args>
Make(R (func)Args...))862 CFunction CFunction::ArgUnwrap<R (*)(Args...)>::Make(R (*func)(Args...)) {
863 return internal::CFunctionBuilder().Fn(func).Build();
864 }
865
866 using CFunctionBuilder = internal::CFunctionBuilder;
867
868 static constexpr CTypeInfo kTypeInfoInt32 = CTypeInfo(CTypeInfo::Type::kInt32);
869 static constexpr CTypeInfo kTypeInfoFloat64 =
870 CTypeInfo(CTypeInfo::Type::kFloat64);
871
872 /**
873 * Copies the contents of this JavaScript array to a C++ buffer with
874 * a given max_length. A CTypeInfo is passed as an argument,
875 * instructing different rules for conversion (e.g. restricted float/double).
876 * The element type T of the destination array must match the C type
877 * corresponding to the CTypeInfo (specified by CTypeInfoTraits).
878 * If the array length is larger than max_length or the array is of
879 * unsupported type, the operation will fail, returning false. Generally, an
880 * array which contains objects, undefined, null or anything not convertible
881 * to the requested destination type, is considered unsupported. The operation
882 * returns true on success. `type_info` will be used for conversions.
883 */
884 template <const CTypeInfo* type_info, typename T>
885 V8_DEPRECATED(
886 "Use TryToCopyAndConvertArrayToCppBuffer<CTypeInfo::Identifier, T>()")
887 bool V8_EXPORT V8_WARN_UNUSED_RESULT
888 TryCopyAndConvertArrayToCppBuffer(Local<Array> src, T* dst,
889 uint32_t max_length);
890
891 template <>
892 V8_DEPRECATED(
893 "Use TryToCopyAndConvertArrayToCppBuffer<CTypeInfo::Identifier, T>()")
894 inline bool V8_WARN_UNUSED_RESULT
TryCopyAndConvertArrayToCppBuffer( Local<Array> src, int32_t* dst, uint32_t max_length)895 TryCopyAndConvertArrayToCppBuffer<&kTypeInfoInt32, int32_t>(
896 Local<Array> src, int32_t* dst, uint32_t max_length) {
897 return false;
898 }
899
900 template <>
901 V8_DEPRECATED(
902 "Use TryToCopyAndConvertArrayToCppBuffer<CTypeInfo::Identifier, T>()")
903 inline bool V8_WARN_UNUSED_RESULT
TryCopyAndConvertArrayToCppBuffer( Local<Array> src, double* dst, uint32_t max_length)904 TryCopyAndConvertArrayToCppBuffer<&kTypeInfoFloat64, double>(
905 Local<Array> src, double* dst, uint32_t max_length) {
906 return false;
907 }
908
909 template <CTypeInfo::Identifier type_info_id, typename T>
910 bool V8_EXPORT V8_WARN_UNUSED_RESULT TryToCopyAndConvertArrayToCppBuffer(
911 Local<Array> src, T* dst, uint32_t max_length);
912
913 template <>
914 bool V8_EXPORT V8_WARN_UNUSED_RESULT
915 TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<int32_t>::Build().GetId(),
916 int32_t>(Local<Array> src, int32_t* dst,
917 uint32_t max_length);
918
919 template <>
920 bool V8_EXPORT V8_WARN_UNUSED_RESULT
921 TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<uint32_t>::Build().GetId(),
922 uint32_t>(Local<Array> src, uint32_t* dst,
923 uint32_t max_length);
924
925 template <>
926 bool V8_EXPORT V8_WARN_UNUSED_RESULT
927 TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<float>::Build().GetId(),
928 float>(Local<Array> src, float* dst,
929 uint32_t max_length);
930
931 template <>
932 bool V8_EXPORT V8_WARN_UNUSED_RESULT
933 TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<double>::Build().GetId(),
934 double>(Local<Array> src, double* dst,
935 uint32_t max_length);
936
937 } // namespace v8
938
939 #endif // INCLUDE_V8_FAST_API_CALLS_H_
940