1 #include <stdlib.h>
2 #include <stdint.h>
3 #include <limits.h>
4 #include <string.h>
5 #include <sys/mman.h>
6 #include <sys/prctl.h>
7 #include <errno.h>
8 
9 #include "meta.h"
10 
11 #ifdef USE_JEMALLOC
12 #ifdef USE_JEMALLOC_DFX_INTF
13 extern void je_malloc_disable();
14 extern void je_malloc_enable();
15 extern int je_iterate(uintptr_t base, size_t size,
16 	void (*callback)(uintptr_t ptr, size_t size, void* arg), void* arg);
17 extern int je_mallopt(int param, int value);
18 #endif
19 #endif
20 
21 #ifdef MALLOC_SECURE_ALL
22 #include <fcntl.h>
23 #define RANDOM_BUFFER_LEN 512
24 static uint8_t buffer[RANDOM_BUFFER_LEN] = { 0 };
25 static size_t ri = RANDOM_BUFFER_LEN;
26 
get_random8null27 static uint8_t get_random8()
28 {
29 	uint8_t num;
30 	if ((ri >= RANDOM_BUFFER_LEN) || (buffer[0] == 0)) {
31 		int fd = open("/dev/urandom", O_RDONLY);
32 		if (fd < 0) {
33 			num = (uint8_t)get_random_secret();
34 			return num;
35 		}
36 
37 		read(fd, buffer, RANDOM_BUFFER_LEN);
38 		close(fd);
39 		ri = 0;
40 	}
41 	num = buffer[ri];
42 	ri++;
43 	return num;
44 }
45 
get_randomIdx(int avail_mask, int last_idx)46 static int get_randomIdx(int avail_mask, int last_idx)
47 {
48 	uint32_t mask;
49 	uint32_t r;
50 	uint32_t cmask;
51 	int idx;
52 
53 	mask = avail_mask;
54 	r = get_random8() % last_idx;
55 	cmask = ~((2u << (last_idx - r)) - 1);
56 
57 	if (mask & cmask) {
58 		idx = 31 - a_clz_32(mask & cmask);
59 	} else {
60 		idx = a_ctz_32(mask);
61 	}
62 
63 	return idx;
64 }
65 #endif
66 
67 LOCK_OBJ_DEF;
68 
69 const uint16_t size_classes[] = {
70 	1, 2, 3, 4, 5, 6, 7, 8,
71 	9, 10, 12, 15,
72 	18, 20, 25, 31,
73 	36, 42, 50, 63,
74 	72, 84, 102, 127,
75 	146, 170, 204, 255,
76 	292, 340, 409, 511,
77 	584, 682, 818, 1023,
78 	1169, 1364, 1637, 2047,
79 	2340, 2730, 3276, 4095,
80 	4680, 5460, 6552, 8191,
81 };
82 
83 static const uint8_t small_cnt_tab[][3] = {
84 	{ 30, 30, 30 },
85 	{ 31, 15, 15 },
86 	{ 20, 10, 10 },
87 	{ 31, 15, 7 },
88 	{ 25, 12, 6 },
89 	{ 21, 10, 5 },
90 	{ 18, 8, 4 },
91 	{ 31, 15, 7 },
92 	{ 28, 14, 6 },
93 };
94 
95 static const uint8_t med_cnt_tab[4] = { 28, 24, 20, 32 };
96 
97 struct malloc_context ctx = { 0 };
98 
alloc_meta(void)99 struct meta *alloc_meta(void)
100 {
101 	struct meta *m;
102 	unsigned char *p;
103 	if (!ctx.init_done) {
104 #ifndef PAGESIZE
105 		ctx.pagesize = get_page_size();
106 #endif
107 		ctx.secret = get_random_secret();
108 		ctx.init_done = 1;
109 	}
110 	size_t pagesize = PGSZ;
111 	if (pagesize < 4096) pagesize = 4096;
112 	if ((m = dequeue_head(&ctx.free_meta_head))) return m;
113 	if (!ctx.avail_meta_count) {
114 		int need_unprotect = 1;
115 		if (!ctx.avail_meta_area_count && ctx.brk!=-1) {
116 			uintptr_t new = ctx.brk + pagesize;
117 			int need_guard = 0;
118 			if (!ctx.brk) {
119 				need_guard = 1;
120 				ctx.brk = brk(0);
121 				// some ancient kernels returned _ebss
122 				// instead of next page as initial brk.
123 				ctx.brk += -ctx.brk & (pagesize-1);
124 				new = ctx.brk + 2*pagesize;
125 			}
126 			if (brk(new) != new) {
127 				ctx.brk = -1;
128 			} else {
129 				prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, ctx.brk, new - ctx.brk, "native_heap:meta");
130 				if (need_guard) mmap((void *)ctx.brk, pagesize,
131 					PROT_NONE, MAP_ANON|MAP_PRIVATE|MAP_FIXED, -1, 0);
132 				ctx.brk = new;
133 				ctx.avail_meta_areas = (void *)(new - pagesize);
134 				ctx.avail_meta_area_count = pagesize>>12;
135 				need_unprotect = 0;
136 			}
137 		}
138 		if (!ctx.avail_meta_area_count) {
139 			size_t n = 2UL << ctx.meta_alloc_shift;
140 			p = mmap(0, n*pagesize, PROT_NONE,
141 				MAP_PRIVATE|MAP_ANON, -1, 0);
142 			if (p==MAP_FAILED) return 0;
143 			ctx.avail_meta_areas = p + pagesize;
144 			ctx.avail_meta_area_count = (n-1)*(pagesize>>12);
145 			ctx.meta_alloc_shift++;
146 		}
147 		p = ctx.avail_meta_areas;
148 		if ((uintptr_t)p & (pagesize-1)) need_unprotect = 0;
149 		if (need_unprotect)
150 			if (mprotect(p, pagesize, PROT_READ|PROT_WRITE)
151 			    && errno != ENOSYS)
152 				return 0;
153 		ctx.avail_meta_area_count--;
154 		ctx.avail_meta_areas = p + 4096;
155 		if (ctx.meta_area_tail) {
156 			ctx.meta_area_tail->next = (void *)p;
157 		} else {
158 			ctx.meta_area_head = (void *)p;
159 		}
160 		ctx.meta_area_tail = (void *)p;
161 		ctx.meta_area_tail->check = ctx.secret;
162 		ctx.avail_meta_count = ctx.meta_area_tail->nslots
163 			= (4096-sizeof(struct meta_area))/sizeof *m;
164 		ctx.avail_meta = ctx.meta_area_tail->slots;
165 	}
166 	ctx.avail_meta_count--;
167 	m = ctx.avail_meta++;
168 	m->prev = m->next = 0;
169 	return m;
170 }
171 
try_avail(struct meta **pm)172 static uint32_t try_avail(struct meta **pm)
173 {
174 	struct meta *m = *pm;
175 	uint32_t first;
176 	if (!m) return 0;
177 	uint32_t mask = m->avail_mask;
178 	if (!mask) {
179 		if (!m) return 0;
180 		if (!m->freed_mask) {
181 			dequeue(pm, m);
182 			m = *pm;
183 			if (!m) return 0;
184 		} else {
185 			m = m->next;
186 			*pm = m;
187 		}
188 
189 		mask = m->freed_mask;
190 
191 		// skip fully-free group unless it's the only one
192 		// or it's a permanently non-freeable group
193 		if (mask == (2u<<m->last_idx)-1 && m->freeable) {
194 			m = m->next;
195 			*pm = m;
196 			mask = m->freed_mask;
197 		}
198 
199 		// activate more slots in a not-fully-active group
200 		// if needed, but only as a last resort. prefer using
201 		// any other group with free slots. this avoids
202 		// touching & dirtying as-yet-unused pages.
203 		if (!(mask & ((2u<<m->mem->active_idx)-1))) {
204 			if (m->next != m) {
205 				m = m->next;
206 				*pm = m;
207 			} else {
208 				int cnt = m->mem->active_idx + 2;
209 				int size = size_classes[m->sizeclass]*UNIT;
210 				int span = UNIT + size*cnt;
211 				// activate up to next 4k boundary
212 				while ((span^(span+size-1)) < 4096) {
213 					cnt++;
214 					span += size;
215 				}
216 				if (cnt > m->last_idx+1)
217 					cnt = m->last_idx+1;
218 				m->mem->active_idx = cnt-1;
219 			}
220 		}
221 		mask = activate_group(m);
222 		assert(mask);
223 		decay_bounces(m->sizeclass);
224 	}
225 
226 #ifdef MALLOC_SECURE_ALL
227 	int idx = get_randomIdx(mask, m->last_idx);
228 	first = 1 << idx;
229 #else
230 	first = mask&-mask;
231 #endif
232 	m->avail_mask = mask-first;
233 	return first;
234 }
235 
236 static int alloc_slot(int, size_t);
237 
alloc_group(int sc, size_t req)238 static struct meta *alloc_group(int sc, size_t req)
239 {
240 	size_t size = UNIT*size_classes[sc];
241 	int i = 0, cnt;
242 	unsigned char *p;
243 	struct meta *m = alloc_meta();
244 	if (!m) return 0;
245 	size_t usage = ctx.usage_by_class[sc];
246 	size_t pagesize = PGSZ;
247 	int active_idx;
248 	if (sc < 9) {
249 		while (i<2 && 4*small_cnt_tab[sc][i] > usage)
250 			i++;
251 		cnt = small_cnt_tab[sc][i];
252 	} else {
253 		// lookup max number of slots fitting in power-of-two size
254 		// from a table, along with number of factors of two we
255 		// can divide out without a remainder or reaching 1.
256 		cnt = med_cnt_tab[sc&3];
257 
258 		// reduce cnt to avoid excessive eagar allocation.
259 		while (!(cnt&1) && 4*cnt > usage)
260 			cnt >>= 1;
261 
262 		// data structures don't support groups whose slot offsets
263 		// in units don't fit in 16 bits.
264 		while (size*cnt >= 65536*UNIT)
265 			cnt >>= 1;
266 	}
267 
268 	// If we selected a count of 1 above but it's not sufficient to use
269 	// mmap, increase to 2. Then it might be; if not it will nest.
270 	if (cnt==1 && size*cnt+UNIT <= pagesize/2) cnt = 2;
271 
272 	// All choices of size*cnt are "just below" a power of two, so anything
273 	// larger than half the page size should be allocated as whole pages.
274 	if (size*cnt+UNIT > pagesize/2) {
275 		// check/update bounce counter to start/increase retention
276 		// of freed maps, and inhibit use of low-count, odd-size
277 		// small mappings and single-slot groups if activated.
278 		int nosmall = is_bouncing(sc);
279 		account_bounce(sc);
280 		step_seq();
281 
282 		// since the following count reduction opportunities have
283 		// an absolute memory usage cost, don't overdo them. count
284 		// coarse usage as part of usage.
285 		if (!(sc&1) && sc<32) usage += ctx.usage_by_class[sc+1];
286 
287 		// try to drop to a lower count if the one found above
288 		// increases usage by more than 25%. these reduced counts
289 		// roughly fill an integral number of pages, just not a
290 		// power of two, limiting amount of unusable space.
291 		if (4*cnt > usage && !nosmall) {
292 			if (0);
293 			else if ((sc&3)==1 && size*cnt>8*pagesize) cnt = 2;
294 			else if ((sc&3)==2 && size*cnt>4*pagesize) cnt = 3;
295 			else if ((sc&3)==0 && size*cnt>8*pagesize) cnt = 3;
296 			else if ((sc&3)==0 && size*cnt>2*pagesize) cnt = 5;
297 		}
298 		size_t needed = size*cnt + UNIT;
299 		needed += -needed & (pagesize-1);
300 
301 		// produce an individually-mmapped allocation if usage is low,
302 		// bounce counter hasn't triggered, and either it saves memory
303 		// or it avoids eagar slot allocation without wasting too much.
304 		if (!nosmall && cnt<=7) {
305 			req += IB + UNIT;
306 			req += -req & (pagesize-1);
307 			if (req<size+UNIT || (req>=4*pagesize && 2*cnt>usage)) {
308 				cnt = 1;
309 				needed = req;
310 			}
311 		}
312 
313 		p = mmap(0, needed, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0);
314 		if (p==MAP_FAILED) {
315 			free_meta(m);
316 			return 0;
317 		}
318 		prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, p, needed, "native_heap:brk");
319 		m->maplen = needed>>12;
320 		ctx.mmap_counter++;
321 		active_idx = (4096-UNIT)/size-1;
322 		if (active_idx > cnt-1) active_idx = cnt-1;
323 		if (active_idx < 0) active_idx = 0;
324 	} else {
325 		int j = size_to_class(UNIT+cnt*size-IB);
326 		int idx = alloc_slot(j, UNIT+cnt*size-IB);
327 		if (idx < 0) {
328 			free_meta(m);
329 			return 0;
330 		}
331 		struct meta *g = ctx.active[j];
332 		p = enframe(g, idx, UNIT*size_classes[j]-IB, ctx.mmap_counter);
333 		m->maplen = 0;
334 		p[-3] = (p[-3]&31) | (6<<5);
335 		for (int i=0; i<=cnt; i++)
336 			p[UNIT+i*size-4] = 0;
337 		active_idx = cnt-1;
338 	}
339 	ctx.usage_by_class[sc] += cnt;
340 	m->avail_mask = (2u<<active_idx)-1;
341 	m->freed_mask = (2u<<(cnt-1))-1 - m->avail_mask;
342 	m->mem = (void *)p;
343 	m->mem->meta = encode_ptr(m, ctx.secret);
344 	m->mem->active_idx = active_idx;
345 	m->last_idx = cnt-1;
346 	m->freeable = 1;
347 	m->sizeclass = sc;
348 	return m;
349 }
350 
alloc_slot(int sc, size_t req)351 static int alloc_slot(int sc, size_t req)
352 {
353 	uint32_t first = try_avail(&ctx.active[sc]);
354 	if (first) return a_ctz_32(first);
355 
356 	struct meta *g = alloc_group(sc, req);
357 	if (!g) return -1;
358 
359 	g->avail_mask--;
360 	queue(&ctx.active[sc], g);
361 	return 0;
362 }
363 
malloc(size_t n)364 void *malloc(size_t n)
365 {
366 	if (size_overflows(n)) return 0;
367 	struct meta *g;
368 	uint32_t mask, first;
369 	int sc;
370 	int idx;
371 	int ctr;
372 
373 	if (n >= MMAP_THRESHOLD) {
374 		size_t needed = n + IB + UNIT;
375 		void *p = mmap(0, needed, PROT_READ|PROT_WRITE,
376 			MAP_PRIVATE|MAP_ANON, -1, 0);
377 		if (p==MAP_FAILED) return 0;
378 		wrlock();
379 		prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, p, needed, "native_heap:mmap");
380 		step_seq();
381 		g = alloc_meta();
382 		if (!g) {
383 			unlock();
384 			munmap(p, needed);
385 			return 0;
386 		}
387 		g->mem = p;
388 		g->mem->meta = encode_ptr(g, ctx.secret);
389 		g->last_idx = 0;
390 		g->freeable = 1;
391 		g->sizeclass = 63;
392 		g->maplen = (needed+4095)/4096;
393 		g->avail_mask = g->freed_mask = 0;
394 		// use a global counter to cycle offset in
395 		// individually-mmapped allocations.
396 		ctx.mmap_counter++;
397 		idx = 0;
398 		goto success;
399 	}
400 
401 	sc = size_to_class(n);
402 
403 	rdlock();
404 	g = ctx.active[sc];
405 
406 	// use coarse size classes initially when there are not yet
407 	// any groups of desired size. this allows counts of 2 or 3
408 	// to be allocated at first rather than having to start with
409 	// 7 or 5, the min counts for even size classes.
410 	if (!g && sc>=4 && sc<32 && sc!=6 && !(sc&1) && !ctx.usage_by_class[sc]) {
411 		size_t usage = ctx.usage_by_class[sc|1];
412 		// if a new group may be allocated, count it toward
413 		// usage in deciding if we can use coarse class.
414 		if (!ctx.active[sc|1] || (!ctx.active[sc|1]->avail_mask
415 		    && !ctx.active[sc|1]->freed_mask))
416 			usage += 3;
417 		if (usage <= 12)
418 			sc |= 1;
419 		g = ctx.active[sc];
420 	}
421 
422 	for (;;) {
423 		mask = g ? g->avail_mask : 0;
424 #ifdef MALLOC_SECURE_ALL
425 		if (!mask) break;
426 		idx = get_randomIdx(mask, g->last_idx);
427 		first = 1u << idx;
428 
429 		if (RDLOCK_IS_EXCLUSIVE || !MT)
430 			g->avail_mask = mask-first;
431 		else if (a_cas(&g->avail_mask, mask, mask-first)!=mask)
432 			continue;
433 #else
434 		first = mask&-mask;
435 		if (!first) break;
436 		if (RDLOCK_IS_EXCLUSIVE || !MT)
437 			g->avail_mask = mask-first;
438 		else if (a_cas(&g->avail_mask, mask, mask-first)!=mask)
439 			continue;
440 		idx = a_ctz_32(first);
441 #endif
442 		goto success;
443 	}
444 	upgradelock();
445 
446 	idx = alloc_slot(sc, n);
447 	if (idx < 0) {
448 		unlock();
449 		return 0;
450 	}
451 	g = ctx.active[sc];
452 
453 success:
454 	ctr = ctx.mmap_counter;
455 	unlock();
456 	return enframe(g, idx, n, ctr);
457 }
458 
is_allzero(void *p)459 int is_allzero(void *p)
460 {
461 	struct meta *g = get_meta(p);
462 	return g->sizeclass >= 48 ||
463 		get_stride(g) < UNIT*size_classes[g->sizeclass];
464 }
465 
mallopt(int param, int value)466 int mallopt(int param, int value)
467 {
468 #ifdef USE_JEMALLOC_DFX_INTF
469 	return je_mallopt(param, value);
470 #endif
471 	return 0;
472 }
473 
malloc_disable(void)474 void malloc_disable(void)
475 {
476 #ifdef USE_JEMALLOC_DFX_INTF
477 	je_malloc_disable();
478 #endif
479 }
480 
malloc_enable(void)481 void malloc_enable(void)
482 {
483 #ifdef USE_JEMALLOC_DFX_INTF
484 	je_malloc_enable();
485 #endif
486 }
487 
malloc_iterate(void* base, size_t size, void (*callback)(void* base, size_t size, void* arg), void* arg)488 int malloc_iterate(void* base, size_t size, void (*callback)(void* base, size_t size, void* arg), void* arg)
489 {
490 #ifdef USE_JEMALLOC_DFX_INTF
491 	return je_iterate(base, size, callback, arg);
492 #endif
493 	return 0;
494 }
495 
malloc_backtrace(void* pointer, uintptr_t* frames, size_t frame_count)496 ssize_t malloc_backtrace(void* pointer, uintptr_t* frames, size_t frame_count)
497 {
498 	return 0;
499 }
500