1/* 2 * Copyright © 2017 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included 12 * in all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 20 * DEALINGS IN THE SOFTWARE. 21 */ 22 23/** 24 * @file iris_state.c 25 * 26 * ============================= GENXML CODE ============================= 27 * [This file is compiled once per generation.] 28 * ======================================================================= 29 * 30 * This is the main state upload code. 31 * 32 * Gallium uses Constant State Objects, or CSOs, for most state. Large, 33 * complex, or highly reusable state can be created once, and bound and 34 * rebound multiple times. This is modeled with the pipe->create_*_state() 35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is 36 * streamed out on the fly, via pipe->set_*_state() hooks. 37 * 38 * OpenGL involves frequently mutating context state, which is mirrored in 39 * core Mesa by highly mutable data structures. However, most applications 40 * typically draw the same things over and over - from frame to frame, most 41 * of the same objects are still visible and need to be redrawn. So, rather 42 * than inventing new state all the time, applications usually mutate to swap 43 * between known states that we've seen before. 44 * 45 * Gallium isolates us from this mutation by tracking API state, and 46 * distilling it into a set of Constant State Objects, or CSOs. Large, 47 * complex, or typically reusable state can be created once, then reused 48 * multiple times. Drivers can create and store their own associated data. 49 * This create/bind model corresponds to the pipe->create_*_state() and 50 * pipe->bind_*_state() driver hooks. 51 * 52 * Some state is cheap to create, or expected to be highly dynamic. Rather 53 * than creating and caching piles of CSOs for these, Gallium simply streams 54 * them out, via the pipe->set_*_state() driver hooks. 55 * 56 * To reduce draw time overhead, we try to compute as much state at create 57 * time as possible. Wherever possible, we translate the Gallium pipe state 58 * to 3DSTATE commands, and store those commands in the CSO. At draw time, 59 * we can simply memcpy them into a batch buffer. 60 * 61 * No hardware matches the abstraction perfectly, so some commands require 62 * information from multiple CSOs. In this case, we can store two copies 63 * of the packet (one in each CSO), and simply | together their DWords at 64 * draw time. Sometimes the second set is trivial (one or two fields), so 65 * we simply pack it at draw time. 66 * 67 * There are two main components in the file below. First, the CSO hooks 68 * create/bind/track state. The second are the draw-time upload functions, 69 * iris_upload_render_state() and iris_upload_compute_state(), which read 70 * the context state and emit the commands into the actual batch. 71 */ 72 73#include <stdio.h> 74#include <errno.h> 75 76#if HAVE_VALGRIND 77#include <valgrind.h> 78#include <memcheck.h> 79#define VG(x) x 80#ifdef DEBUG 81#define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x)) 82#endif 83#else 84#define VG(x) 85#endif 86 87#include "pipe/p_defines.h" 88#include "pipe/p_state.h" 89#include "pipe/p_context.h" 90#include "pipe/p_screen.h" 91#include "util/u_dual_blend.h" 92#include "util/u_inlines.h" 93#include "util/format/u_format.h" 94#include "util/u_framebuffer.h" 95#include "util/u_transfer.h" 96#include "util/u_upload_mgr.h" 97#include "util/u_viewport.h" 98#include "util/u_memory.h" 99#include "util/u_trace_gallium.h" 100#include "drm-uapi/i915_drm.h" 101#include "nir.h" 102#include "intel/compiler/brw_compiler.h" 103#include "intel/common/intel_aux_map.h" 104#include "intel/common/intel_l3_config.h" 105#include "intel/common/intel_sample_positions.h" 106#include "intel/ds/intel_tracepoints.h" 107#include "iris_batch.h" 108#include "iris_context.h" 109#include "iris_defines.h" 110#include "iris_pipe.h" 111#include "iris_resource.h" 112#include "iris_utrace.h" 113 114#include "iris_genx_macros.h" 115#include "intel/common/intel_guardband.h" 116#include "intel/common/intel_pixel_hash.h" 117 118/** 119 * Statically assert that PIPE_* enums match the hardware packets. 120 * (As long as they match, we don't need to translate them.) 121 */ 122UNUSED static void pipe_asserts() 123{ 124#define PIPE_ASSERT(x) STATIC_ASSERT((int)x) 125 126 /* pipe_logicop happens to match the hardware. */ 127 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR); 128 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR); 129 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED); 130 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED); 131 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE); 132 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT); 133 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR); 134 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND); 135 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND); 136 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV); 137 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP); 138 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED); 139 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY); 140 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE); 141 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR); 142 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET); 143 144 /* pipe_blend_func happens to match the hardware. */ 145 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE); 146 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR); 147 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA); 148 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA); 149 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR); 150 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE); 151 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR); 152 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA); 153 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR); 154 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA); 155 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO); 156 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR); 157 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA); 158 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA); 159 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR); 160 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR); 161 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA); 162 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR); 163 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA); 164 165 /* pipe_blend_func happens to match the hardware. */ 166 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD); 167 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT); 168 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT); 169 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN); 170 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX); 171 172 /* pipe_stencil_op happens to match the hardware. */ 173 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP); 174 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO); 175 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE); 176 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT); 177 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT); 178 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR); 179 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR); 180 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT); 181 182 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */ 183 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT); 184 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT); 185#undef PIPE_ASSERT 186} 187 188static unsigned 189translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch) 190{ 191 static const unsigned map[] = { 192 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST, 193 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST, 194 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP, 195 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP, 196 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST, 197 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP, 198 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN, 199 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST, 200 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP, 201 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON, 202 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ, 203 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ, 204 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ, 205 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ, 206 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1, 207 }; 208 209 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0); 210} 211 212static unsigned 213translate_compare_func(enum pipe_compare_func pipe_func) 214{ 215 static const unsigned map[] = { 216 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER, 217 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS, 218 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL, 219 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL, 220 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER, 221 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL, 222 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL, 223 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS, 224 }; 225 return map[pipe_func]; 226} 227 228static unsigned 229translate_shadow_func(enum pipe_compare_func pipe_func) 230{ 231 /* Gallium specifies the result of shadow comparisons as: 232 * 233 * 1 if ref <op> texel, 234 * 0 otherwise. 235 * 236 * The hardware does: 237 * 238 * 0 if texel <op> ref, 239 * 1 otherwise. 240 * 241 * So we need to flip the operator and also negate. 242 */ 243 static const unsigned map[] = { 244 [PIPE_FUNC_NEVER] = PREFILTEROP_ALWAYS, 245 [PIPE_FUNC_LESS] = PREFILTEROP_LEQUAL, 246 [PIPE_FUNC_EQUAL] = PREFILTEROP_NOTEQUAL, 247 [PIPE_FUNC_LEQUAL] = PREFILTEROP_LESS, 248 [PIPE_FUNC_GREATER] = PREFILTEROP_GEQUAL, 249 [PIPE_FUNC_NOTEQUAL] = PREFILTEROP_EQUAL, 250 [PIPE_FUNC_GEQUAL] = PREFILTEROP_GREATER, 251 [PIPE_FUNC_ALWAYS] = PREFILTEROP_NEVER, 252 }; 253 return map[pipe_func]; 254} 255 256static unsigned 257translate_cull_mode(unsigned pipe_face) 258{ 259 static const unsigned map[4] = { 260 [PIPE_FACE_NONE] = CULLMODE_NONE, 261 [PIPE_FACE_FRONT] = CULLMODE_FRONT, 262 [PIPE_FACE_BACK] = CULLMODE_BACK, 263 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH, 264 }; 265 return map[pipe_face]; 266} 267 268static unsigned 269translate_fill_mode(unsigned pipe_polymode) 270{ 271 static const unsigned map[4] = { 272 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID, 273 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME, 274 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT, 275 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID, 276 }; 277 return map[pipe_polymode]; 278} 279 280static unsigned 281translate_mip_filter(enum pipe_tex_mipfilter pipe_mip) 282{ 283 static const unsigned map[] = { 284 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST, 285 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR, 286 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE, 287 }; 288 return map[pipe_mip]; 289} 290 291static uint32_t 292translate_wrap(unsigned pipe_wrap) 293{ 294 static const unsigned map[] = { 295 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP, 296 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER, 297 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP, 298 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER, 299 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR, 300 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE, 301 302 /* These are unsupported. */ 303 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1, 304 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1, 305 }; 306 return map[pipe_wrap]; 307} 308 309/** 310 * Allocate space for some indirect state. 311 * 312 * Return a pointer to the map (to fill it out) and a state ref (for 313 * referring to the state in GPU commands). 314 */ 315static void * 316upload_state(struct u_upload_mgr *uploader, 317 struct iris_state_ref *ref, 318 unsigned size, 319 unsigned alignment) 320{ 321 void *p = NULL; 322 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p); 323 return p; 324} 325 326/** 327 * Stream out temporary/short-lived state. 328 * 329 * This allocates space, pins the BO, and includes the BO address in the 330 * returned offset (which works because all state lives in 32-bit memory 331 * zones). 332 */ 333static uint32_t * 334stream_state(struct iris_batch *batch, 335 struct u_upload_mgr *uploader, 336 struct pipe_resource **out_res, 337 unsigned size, 338 unsigned alignment, 339 uint32_t *out_offset) 340{ 341 void *ptr = NULL; 342 343 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr); 344 345 struct iris_bo *bo = iris_resource_bo(*out_res); 346 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE); 347 348 iris_record_state_size(batch->state_sizes, 349 bo->address + *out_offset, size); 350 351 *out_offset += iris_bo_offset_from_base_address(bo); 352 353 return ptr; 354} 355 356/** 357 * stream_state() + memcpy. 358 */ 359static uint32_t 360emit_state(struct iris_batch *batch, 361 struct u_upload_mgr *uploader, 362 struct pipe_resource **out_res, 363 const void *data, 364 unsigned size, 365 unsigned alignment) 366{ 367 unsigned offset = 0; 368 uint32_t *map = 369 stream_state(batch, uploader, out_res, size, alignment, &offset); 370 371 if (map) 372 memcpy(map, data, size); 373 374 return offset; 375} 376 377/** 378 * Did field 'x' change between 'old_cso' and 'new_cso'? 379 * 380 * (If so, we may want to set some dirty flags.) 381 */ 382#define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x)) 383#define cso_changed_memcmp(x) \ 384 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0) 385 386static void 387flush_before_state_base_change(struct iris_batch *batch) 388{ 389 /* Flush before emitting STATE_BASE_ADDRESS. 390 * 391 * This isn't documented anywhere in the PRM. However, it seems to be 392 * necessary prior to changing the surface state base address. We've 393 * seen issues in Vulkan where we get GPU hangs when using multi-level 394 * command buffers which clear depth, reset state base address, and then 395 * go render stuff. 396 * 397 * Normally, in GL, we would trust the kernel to do sufficient stalls 398 * and flushes prior to executing our batch. However, it doesn't seem 399 * as if the kernel's flushing is always sufficient and we don't want to 400 * rely on it. 401 * 402 * We make this an end-of-pipe sync instead of a normal flush because we 403 * do not know the current status of the GPU. On Haswell at least, 404 * having a fast-clear operation in flight at the same time as a normal 405 * rendering operation can cause hangs. Since the kernel's flushing is 406 * insufficient, we need to ensure that any rendering operations from 407 * other processes are definitely complete before we try to do our own 408 * rendering. It's a bit of a big hammer but it appears to work. 409 */ 410 iris_emit_end_of_pipe_sync(batch, 411 "change STATE_BASE_ADDRESS (flushes)", 412 PIPE_CONTROL_RENDER_TARGET_FLUSH | 413 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 414 PIPE_CONTROL_DATA_CACHE_FLUSH); 415} 416 417static void 418flush_after_state_base_change(struct iris_batch *batch) 419{ 420 /* After re-setting the surface state base address, we have to do some 421 * cache flusing so that the sampler engine will pick up the new 422 * SURFACE_STATE objects and binding tables. From the Broadwell PRM, 423 * Shared Function > 3D Sampler > State > State Caching (page 96): 424 * 425 * Coherency with system memory in the state cache, like the texture 426 * cache is handled partially by software. It is expected that the 427 * command stream or shader will issue Cache Flush operation or 428 * Cache_Flush sampler message to ensure that the L1 cache remains 429 * coherent with system memory. 430 * 431 * [...] 432 * 433 * Whenever the value of the Dynamic_State_Base_Addr, 434 * Surface_State_Base_Addr are altered, the L1 state cache must be 435 * invalidated to ensure the new surface or sampler state is fetched 436 * from system memory. 437 * 438 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit 439 * which, according the PIPE_CONTROL instruction documentation in the 440 * Broadwell PRM: 441 * 442 * Setting this bit is independent of any other bit in this packet. 443 * This bit controls the invalidation of the L1 and L2 state caches 444 * at the top of the pipe i.e. at the parsing time. 445 * 446 * Unfortunately, experimentation seems to indicate that state cache 447 * invalidation through a PIPE_CONTROL does nothing whatsoever in 448 * regards to surface state and binding tables. In stead, it seems that 449 * invalidating the texture cache is what is actually needed. 450 * 451 * XXX: As far as we have been able to determine through 452 * experimentation, shows that flush the texture cache appears to be 453 * sufficient. The theory here is that all of the sampling/rendering 454 * units cache the binding table in the texture cache. However, we have 455 * yet to be able to actually confirm this. 456 * 457 * Wa_14013910100: 458 * 459 * "DG2 128/256/512-A/B: S/W must program STATE_BASE_ADDRESS command twice 460 * or program pipe control with Instruction cache invalidate post 461 * STATE_BASE_ADDRESS command" 462 */ 463 iris_emit_end_of_pipe_sync(batch, 464 "change STATE_BASE_ADDRESS (invalidates)", 465 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE | 466 PIPE_CONTROL_CONST_CACHE_INVALIDATE | 467 PIPE_CONTROL_STATE_CACHE_INVALIDATE | 468 (GFX_VERx10 != 125 ? 0 : 469 PIPE_CONTROL_INSTRUCTION_INVALIDATE)); 470} 471 472static void 473iris_load_register_reg32(struct iris_batch *batch, uint32_t dst, 474 uint32_t src) 475{ 476 struct mi_builder b; 477 mi_builder_init(&b, &batch->screen->devinfo, batch); 478 mi_store(&b, mi_reg32(dst), mi_reg32(src)); 479} 480 481static void 482iris_load_register_reg64(struct iris_batch *batch, uint32_t dst, 483 uint32_t src) 484{ 485 struct mi_builder b; 486 mi_builder_init(&b, &batch->screen->devinfo, batch); 487 mi_store(&b, mi_reg64(dst), mi_reg64(src)); 488} 489 490static void 491iris_load_register_imm32(struct iris_batch *batch, uint32_t reg, 492 uint32_t val) 493{ 494 struct mi_builder b; 495 mi_builder_init(&b, &batch->screen->devinfo, batch); 496 mi_store(&b, mi_reg32(reg), mi_imm(val)); 497} 498 499static void 500iris_load_register_imm64(struct iris_batch *batch, uint32_t reg, 501 uint64_t val) 502{ 503 struct mi_builder b; 504 mi_builder_init(&b, &batch->screen->devinfo, batch); 505 mi_store(&b, mi_reg64(reg), mi_imm(val)); 506} 507 508/** 509 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer. 510 */ 511static void 512iris_load_register_mem32(struct iris_batch *batch, uint32_t reg, 513 struct iris_bo *bo, uint32_t offset) 514{ 515 iris_batch_sync_region_start(batch); 516 struct mi_builder b; 517 mi_builder_init(&b, &batch->screen->devinfo, batch); 518 struct mi_value src = mi_mem32(ro_bo(bo, offset)); 519 mi_store(&b, mi_reg32(reg), src); 520 iris_batch_sync_region_end(batch); 521} 522 523/** 524 * Load a 64-bit value from a buffer into a MMIO register via 525 * two MI_LOAD_REGISTER_MEM commands. 526 */ 527static void 528iris_load_register_mem64(struct iris_batch *batch, uint32_t reg, 529 struct iris_bo *bo, uint32_t offset) 530{ 531 iris_batch_sync_region_start(batch); 532 struct mi_builder b; 533 mi_builder_init(&b, &batch->screen->devinfo, batch); 534 struct mi_value src = mi_mem64(ro_bo(bo, offset)); 535 mi_store(&b, mi_reg64(reg), src); 536 iris_batch_sync_region_end(batch); 537} 538 539static void 540iris_store_register_mem32(struct iris_batch *batch, uint32_t reg, 541 struct iris_bo *bo, uint32_t offset, 542 bool predicated) 543{ 544 iris_batch_sync_region_start(batch); 545 struct mi_builder b; 546 mi_builder_init(&b, &batch->screen->devinfo, batch); 547 struct mi_value dst = mi_mem32(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE)); 548 struct mi_value src = mi_reg32(reg); 549 if (predicated) 550 mi_store_if(&b, dst, src); 551 else 552 mi_store(&b, dst, src); 553 iris_batch_sync_region_end(batch); 554} 555 556static void 557iris_store_register_mem64(struct iris_batch *batch, uint32_t reg, 558 struct iris_bo *bo, uint32_t offset, 559 bool predicated) 560{ 561 iris_batch_sync_region_start(batch); 562 struct mi_builder b; 563 mi_builder_init(&b, &batch->screen->devinfo, batch); 564 struct mi_value dst = mi_mem64(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE)); 565 struct mi_value src = mi_reg64(reg); 566 if (predicated) 567 mi_store_if(&b, dst, src); 568 else 569 mi_store(&b, dst, src); 570 iris_batch_sync_region_end(batch); 571} 572 573static void 574iris_store_data_imm32(struct iris_batch *batch, 575 struct iris_bo *bo, uint32_t offset, 576 uint32_t imm) 577{ 578 iris_batch_sync_region_start(batch); 579 struct mi_builder b; 580 mi_builder_init(&b, &batch->screen->devinfo, batch); 581 struct mi_value dst = mi_mem32(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE)); 582 struct mi_value src = mi_imm(imm); 583 mi_store(&b, dst, src); 584 iris_batch_sync_region_end(batch); 585} 586 587static void 588iris_store_data_imm64(struct iris_batch *batch, 589 struct iris_bo *bo, uint32_t offset, 590 uint64_t imm) 591{ 592 iris_batch_sync_region_start(batch); 593 struct mi_builder b; 594 mi_builder_init(&b, &batch->screen->devinfo, batch); 595 struct mi_value dst = mi_mem64(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE)); 596 struct mi_value src = mi_imm(imm); 597 mi_store(&b, dst, src); 598 iris_batch_sync_region_end(batch); 599} 600 601static void 602iris_copy_mem_mem(struct iris_batch *batch, 603 struct iris_bo *dst_bo, uint32_t dst_offset, 604 struct iris_bo *src_bo, uint32_t src_offset, 605 unsigned bytes) 606{ 607 /* MI_COPY_MEM_MEM operates on DWords. */ 608 assert(bytes % 4 == 0); 609 assert(dst_offset % 4 == 0); 610 assert(src_offset % 4 == 0); 611 iris_batch_sync_region_start(batch); 612 613 for (unsigned i = 0; i < bytes; i += 4) { 614 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) { 615 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i, 616 IRIS_DOMAIN_OTHER_WRITE); 617 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i); 618 } 619 } 620 621 iris_batch_sync_region_end(batch); 622} 623 624static void 625emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline) 626{ 627#if GFX_VER >= 8 && GFX_VER < 10 628 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT: 629 * 630 * Software must clear the COLOR_CALC_STATE Valid field in 631 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT 632 * with Pipeline Select set to GPGPU. 633 * 634 * The internal hardware docs recommend the same workaround for Gfx9 635 * hardware too. 636 */ 637 if (pipeline == GPGPU) 638 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t); 639#endif 640 641 642 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction] 643 * PIPELINE_SELECT [DevBWR+]": 644 * 645 * "Project: DEVSNB+ 646 * 647 * Software must ensure all the write caches are flushed through a 648 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL 649 * command to invalidate read only caches prior to programming 650 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode." 651 */ 652 iris_emit_pipe_control_flush(batch, 653 "workaround: PIPELINE_SELECT flushes (1/2)", 654 PIPE_CONTROL_RENDER_TARGET_FLUSH | 655 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 656 PIPE_CONTROL_DATA_CACHE_FLUSH | 657 PIPE_CONTROL_CS_STALL); 658 659 iris_emit_pipe_control_flush(batch, 660 "workaround: PIPELINE_SELECT flushes (2/2)", 661 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE | 662 PIPE_CONTROL_CONST_CACHE_INVALIDATE | 663 PIPE_CONTROL_STATE_CACHE_INVALIDATE | 664 PIPE_CONTROL_INSTRUCTION_INVALIDATE); 665 666 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) { 667#if GFX_VER >= 9 668 sel.MaskBits = GFX_VER >= 12 ? 0x13 : 3; 669 sel.MediaSamplerDOPClockGateEnable = GFX_VER >= 12; 670#endif 671 sel.PipelineSelection = pipeline; 672 } 673} 674 675UNUSED static void 676init_glk_barrier_mode(struct iris_batch *batch, uint32_t value) 677{ 678#if GFX_VER == 9 679 /* Project: DevGLK 680 * 681 * "This chicken bit works around a hardware issue with barrier 682 * logic encountered when switching between GPGPU and 3D pipelines. 683 * To workaround the issue, this mode bit should be set after a 684 * pipeline is selected." 685 */ 686 iris_emit_reg(batch, GENX(SLICE_COMMON_ECO_CHICKEN1), reg) { 687 reg.GLKBarrierMode = value; 688 reg.GLKBarrierModeMask = 1; 689 } 690#endif 691} 692 693static void 694init_state_base_address(struct iris_batch *batch) 695{ 696 struct isl_device *isl_dev = &batch->screen->isl_dev; 697 uint32_t mocs = isl_mocs(isl_dev, 0, false); 698 flush_before_state_base_change(batch); 699 700 /* We program most base addresses once at context initialization time. 701 * Each base address points at a 4GB memory zone, and never needs to 702 * change. See iris_bufmgr.h for a description of the memory zones. 703 * 704 * The one exception is Surface State Base Address, which needs to be 705 * updated occasionally. See iris_binder.c for the details there. 706 */ 707 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) { 708 sba.GeneralStateMOCS = mocs; 709 sba.StatelessDataPortAccessMOCS = mocs; 710 sba.DynamicStateMOCS = mocs; 711 sba.IndirectObjectMOCS = mocs; 712 sba.InstructionMOCS = mocs; 713 sba.SurfaceStateMOCS = mocs; 714 715 sba.GeneralStateBaseAddressModifyEnable = true; 716 sba.DynamicStateBaseAddressModifyEnable = true; 717 sba.IndirectObjectBaseAddressModifyEnable = true; 718 sba.InstructionBaseAddressModifyEnable = true; 719 sba.GeneralStateBufferSizeModifyEnable = true; 720 sba.DynamicStateBufferSizeModifyEnable = true; 721 sba.SurfaceStateBaseAddressModifyEnable = true; 722#if GFX_VER >= 9 723 sba.BindlessSurfaceStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_BINDLESS_START); 724 sba.BindlessSurfaceStateSize = (IRIS_BINDLESS_SIZE >> 12) - 1; 725 sba.BindlessSurfaceStateBaseAddressModifyEnable = true; 726 sba.BindlessSurfaceStateMOCS = mocs; 727#endif 728#if GFX_VER >= 11 729 sba.BindlessSamplerStateMOCS = mocs; 730#endif 731 sba.IndirectObjectBufferSizeModifyEnable = true; 732 sba.InstructionBuffersizeModifyEnable = true; 733 734 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START); 735 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START); 736 sba.SurfaceStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_BINDER_START); 737 738 sba.GeneralStateBufferSize = 0xfffff; 739 sba.IndirectObjectBufferSize = 0xfffff; 740 sba.InstructionBufferSize = 0xfffff; 741 sba.DynamicStateBufferSize = 0xfffff; 742 } 743 744 flush_after_state_base_change(batch); 745} 746 747static void 748iris_emit_l3_config(struct iris_batch *batch, 749 const struct intel_l3_config *cfg) 750{ 751 assert(cfg || GFX_VER >= 12); 752 753#if GFX_VER >= 12 754#define L3_ALLOCATION_REG GENX(L3ALLOC) 755#define L3_ALLOCATION_REG_num GENX(L3ALLOC_num) 756#else 757#define L3_ALLOCATION_REG GENX(L3CNTLREG) 758#define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num) 759#endif 760 761 iris_emit_reg(batch, L3_ALLOCATION_REG, reg) { 762#if GFX_VER < 11 763 reg.SLMEnable = cfg->n[INTEL_L3P_SLM] > 0; 764#endif 765#if GFX_VER == 11 766 /* Wa_1406697149: Bit 9 "Error Detection Behavior Control" must be set 767 * in L3CNTLREG register. The default setting of the bit is not the 768 * desirable behavior. 769 */ 770 reg.ErrorDetectionBehaviorControl = true; 771 reg.UseFullWays = true; 772#endif 773 if (GFX_VER < 12 || cfg) { 774 reg.URBAllocation = cfg->n[INTEL_L3P_URB]; 775 reg.ROAllocation = cfg->n[INTEL_L3P_RO]; 776 reg.DCAllocation = cfg->n[INTEL_L3P_DC]; 777 reg.AllAllocation = cfg->n[INTEL_L3P_ALL]; 778 } else { 779#if GFX_VER >= 12 780 reg.L3FullWayAllocationEnable = true; 781#endif 782 } 783 } 784} 785 786#if GFX_VER == 9 787static void 788iris_enable_obj_preemption(struct iris_batch *batch, bool enable) 789{ 790 /* A fixed function pipe flush is required before modifying this field */ 791 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption" 792 : "disable preemption", 793 PIPE_CONTROL_RENDER_TARGET_FLUSH); 794 795 /* enable object level preemption */ 796 iris_emit_reg(batch, GENX(CS_CHICKEN1), reg) { 797 reg.ReplayMode = enable; 798 reg.ReplayModeMask = true; 799 } 800} 801#endif 802 803static void 804upload_pixel_hashing_tables(struct iris_batch *batch) 805{ 806 UNUSED const struct intel_device_info *devinfo = &batch->screen->devinfo; 807 UNUSED struct iris_context *ice = batch->ice; 808 assert(&ice->batches[IRIS_BATCH_RENDER] == batch); 809 810#if GFX_VER == 11 811 /* Gfx11 hardware has two pixel pipes at most. */ 812 for (unsigned i = 2; i < ARRAY_SIZE(devinfo->ppipe_subslices); i++) 813 assert(devinfo->ppipe_subslices[i] == 0); 814 815 if (devinfo->ppipe_subslices[0] == devinfo->ppipe_subslices[1]) 816 return; 817 818 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4; 819 uint32_t hash_address; 820 struct pipe_resource *tmp = NULL; 821 uint32_t *map = 822 stream_state(batch, ice->state.dynamic_uploader, &tmp, 823 size, 64, &hash_address); 824 pipe_resource_reference(&tmp, NULL); 825 826 const bool flip = devinfo->ppipe_subslices[0] < devinfo->ppipe_subslices[1]; 827 struct GENX(SLICE_HASH_TABLE) table; 828 intel_compute_pixel_hash_table_3way(16, 16, 3, 3, flip, table.Entry[0]); 829 830 GENX(SLICE_HASH_TABLE_pack)(NULL, map, &table); 831 832 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) { 833 ptr.SliceHashStatePointerValid = true; 834 ptr.SliceHashTableStatePointer = hash_address; 835 } 836 837 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) { 838 mode.SliceHashingTableEnable = true; 839 } 840 841#elif GFX_VERx10 == 120 842 /* For each n calculate ppipes_of[n], equal to the number of pixel pipes 843 * present with n active dual subslices. 844 */ 845 unsigned ppipes_of[3] = {}; 846 847 for (unsigned n = 0; n < ARRAY_SIZE(ppipes_of); n++) { 848 for (unsigned p = 0; p < 3; p++) 849 ppipes_of[n] += (devinfo->ppipe_subslices[p] == n); 850 } 851 852 /* Gfx12 has three pixel pipes. */ 853 for (unsigned p = 3; p < ARRAY_SIZE(devinfo->ppipe_subslices); p++) 854 assert(devinfo->ppipe_subslices[p] == 0); 855 856 if (ppipes_of[2] == 3 || ppipes_of[0] == 2) { 857 /* All three pixel pipes have the maximum number of active dual 858 * subslices, or there is only one active pixel pipe: Nothing to do. 859 */ 860 return; 861 } 862 863 iris_emit_cmd(batch, GENX(3DSTATE_SUBSLICE_HASH_TABLE), p) { 864 p.SliceHashControl[0] = TABLE_0; 865 866 if (ppipes_of[2] == 2 && ppipes_of[0] == 1) 867 intel_compute_pixel_hash_table_3way(8, 16, 2, 2, 0, p.TwoWayTableEntry[0]); 868 else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1) 869 intel_compute_pixel_hash_table_3way(8, 16, 3, 3, 0, p.TwoWayTableEntry[0]); 870 871 if (ppipes_of[2] == 2 && ppipes_of[1] == 1) 872 intel_compute_pixel_hash_table_3way(8, 16, 5, 4, 0, p.ThreeWayTableEntry[0]); 873 else if (ppipes_of[2] == 2 && ppipes_of[0] == 1) 874 intel_compute_pixel_hash_table_3way(8, 16, 2, 2, 0, p.ThreeWayTableEntry[0]); 875 else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1) 876 intel_compute_pixel_hash_table_3way(8, 16, 3, 3, 0, p.ThreeWayTableEntry[0]); 877 else 878 unreachable("Illegal fusing."); 879 } 880 881 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), p) { 882 p.SubsliceHashingTableEnable = true; 883 p.SubsliceHashingTableEnableMask = true; 884 } 885 886#elif GFX_VERx10 == 125 887 struct pipe_screen *pscreen = &batch->screen->base; 888 const unsigned size = GENX(SLICE_HASH_TABLE_length) * 4; 889 const struct pipe_resource tmpl = { 890 .target = PIPE_BUFFER, 891 .format = PIPE_FORMAT_R8_UNORM, 892 .bind = PIPE_BIND_CUSTOM, 893 .usage = PIPE_USAGE_IMMUTABLE, 894 .flags = IRIS_RESOURCE_FLAG_DYNAMIC_MEMZONE, 895 .width0 = size, 896 .height0 = 1, 897 .depth0 = 1, 898 .array_size = 1 899 }; 900 901 pipe_resource_reference(&ice->state.pixel_hashing_tables, NULL); 902 ice->state.pixel_hashing_tables = pscreen->resource_create(pscreen, &tmpl); 903 904 struct iris_resource *res = (struct iris_resource *)ice->state.pixel_hashing_tables; 905 struct pipe_transfer *transfer = NULL; 906 uint32_t *map = pipe_buffer_map_range(&ice->ctx, ice->state.pixel_hashing_tables, 907 0, size, PIPE_MAP_WRITE, 908 &transfer); 909 910 uint32_t ppipe_mask = 0; 911 for (unsigned p = 0; p < ARRAY_SIZE(devinfo->ppipe_subslices); p++) { 912 if (devinfo->ppipe_subslices[p]) 913 ppipe_mask |= (1u << p); 914 } 915 assert(ppipe_mask); 916 917 struct GENX(SLICE_HASH_TABLE) table; 918 919 /* Note that the hardware expects an array with 7 tables, each 920 * table is intended to specify the pixel pipe hashing behavior for 921 * every possible slice count between 2 and 8, however that doesn't 922 * actually work, among other reasons due to hardware bugs that 923 * will cause the GPU to erroneously access the table at the wrong 924 * index in some cases, so in practice all 7 tables need to be 925 * initialized to the same value. 926 */ 927 for (unsigned i = 0; i < 7; i++) 928 intel_compute_pixel_hash_table_nway(16, 16, ppipe_mask, table.Entry[i][0]); 929 930 GENX(SLICE_HASH_TABLE_pack)(NULL, map, &table); 931 932 pipe_buffer_unmap(&ice->ctx, transfer); 933 934 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_NONE); 935 iris_record_state_size(batch->state_sizes, res->bo->address + res->offset, size); 936 937 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) { 938 ptr.SliceHashStatePointerValid = true; 939 ptr.SliceHashTableStatePointer = iris_bo_offset_from_base_address(res->bo) + 940 res->offset; 941 } 942 943 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) { 944 mode.SliceHashingTableEnable = true; 945 mode.SliceHashingTableEnableMask = true; 946 mode.CrossSliceHashingMode = (util_bitcount(ppipe_mask) > 1 ? 947 hashing32x32 : NormalMode); 948 mode.CrossSliceHashingModeMask = -1; 949 } 950#endif 951} 952 953static void 954iris_alloc_push_constants(struct iris_batch *batch) 955{ 956 const struct intel_device_info *devinfo = &batch->screen->devinfo; 957 958 /* For now, we set a static partitioning of the push constant area, 959 * assuming that all stages could be in use. 960 * 961 * TODO: Try lazily allocating the HS/DS/GS sections as needed, and 962 * see if that improves performance by offering more space to 963 * the VS/FS when those aren't in use. Also, try dynamically 964 * enabling/disabling it like i965 does. This would be more 965 * stalls and may not actually help; we don't know yet. 966 */ 967 968 /* Divide as equally as possible with any remainder given to FRAGMENT. */ 969 const unsigned push_constant_kb = devinfo->max_constant_urb_size_kb; 970 const unsigned stage_size = push_constant_kb / 5; 971 const unsigned frag_size = push_constant_kb - 4 * stage_size; 972 973 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) { 974 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) { 975 alloc._3DCommandSubOpcode = 18 + i; 976 alloc.ConstantBufferOffset = stage_size * i; 977 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? frag_size : stage_size; 978 } 979 } 980 981#if GFX_VERx10 == 125 982 /* Wa_22011440098 983 * 984 * In 3D mode, after programming push constant alloc command immediately 985 * program push constant command(ZERO length) without any commit between 986 * them. 987 */ 988 if (intel_device_info_is_dg2(devinfo)) { 989 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), c) { 990 /* Update empty push constants for all stages (bitmask = 11111b) */ 991 c.ShaderUpdateEnable = 0x1f; 992 c.MOCS = iris_mocs(NULL, &batch->screen->isl_dev, 0); 993 } 994 } 995#endif 996} 997 998#if GFX_VER >= 12 999static void 1000init_aux_map_state(struct iris_batch *batch); 1001#endif 1002 1003/* This updates a register. Caller should stall the pipeline as needed. */ 1004static void 1005iris_disable_rhwo_optimization(struct iris_batch *batch, bool disable) 1006{ 1007#if GFX_VERx10 == 120 1008 iris_emit_reg(batch, GENX(COMMON_SLICE_CHICKEN1), c1) { 1009 c1.RCCRHWOOptimizationDisable = disable; 1010 c1.RCCRHWOOptimizationDisableMask = true; 1011 }; 1012#endif 1013} 1014 1015/** 1016 * Upload initial GPU state for any kind of context. 1017 * 1018 * These need to happen for both render and compute. 1019 */ 1020static void 1021iris_init_common_context(struct iris_batch *batch) 1022{ 1023#if GFX_VER == 11 1024 iris_emit_reg(batch, GENX(SAMPLER_MODE), reg) { 1025 reg.HeaderlessMessageforPreemptableContexts = 1; 1026 reg.HeaderlessMessageforPreemptableContextsMask = 1; 1027 } 1028 1029 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */ 1030 iris_emit_reg(batch, GENX(HALF_SLICE_CHICKEN7), reg) { 1031 reg.EnabledTexelOffsetPrecisionFix = 1; 1032 reg.EnabledTexelOffsetPrecisionFixMask = 1; 1033 } 1034#endif 1035 1036 /* Select 256B-aligned binding table mode on Icelake through Tigerlake, 1037 * which gives us larger binding table pointers, at the cost of higher 1038 * alignment requirements (bits 18:8 are valid instead of 15:5). When 1039 * using this mode, we have to shift binding table pointers by 3 bits, 1040 * as they're still stored in the same bit-location in the field. 1041 */ 1042#if GFX_VER >= 11 && GFX_VERx10 < 125 1043 iris_emit_reg(batch, GENX(GT_MODE), reg) { 1044 reg.BindingTableAlignment = BTP_18_8; 1045 reg.BindingTableAlignmentMask = true; 1046 } 1047#define IRIS_BT_OFFSET_SHIFT 3 1048#else 1049#define IRIS_BT_OFFSET_SHIFT 0 1050#endif 1051} 1052 1053/** 1054 * Upload the initial GPU state for a render context. 1055 * 1056 * This sets some invariant state that needs to be programmed a particular 1057 * way, but we never actually change. 1058 */ 1059static void 1060iris_init_render_context(struct iris_batch *batch) 1061{ 1062 UNUSED const struct intel_device_info *devinfo = &batch->screen->devinfo; 1063 1064 iris_batch_sync_region_start(batch); 1065 1066 emit_pipeline_select(batch, _3D); 1067 1068 iris_emit_l3_config(batch, batch->screen->l3_config_3d); 1069 1070 init_state_base_address(batch); 1071 1072 iris_init_common_context(batch); 1073 1074#if GFX_VER >= 9 1075 iris_emit_reg(batch, GENX(CS_DEBUG_MODE2), reg) { 1076 reg.CONSTANT_BUFFERAddressOffsetDisable = true; 1077 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true; 1078 } 1079#else 1080 iris_emit_reg(batch, GENX(INSTPM), reg) { 1081 reg.CONSTANT_BUFFERAddressOffsetDisable = true; 1082 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true; 1083 } 1084#endif 1085 1086#if GFX_VER == 9 1087 iris_emit_reg(batch, GENX(CACHE_MODE_1), reg) { 1088 reg.FloatBlendOptimizationEnable = true; 1089 reg.FloatBlendOptimizationEnableMask = true; 1090 reg.MSCRAWHazardAvoidanceBit = true; 1091 reg.MSCRAWHazardAvoidanceBitMask = true; 1092 reg.PartialResolveDisableInVC = true; 1093 reg.PartialResolveDisableInVCMask = true; 1094 } 1095 1096 if (devinfo->platform == INTEL_PLATFORM_GLK) 1097 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL); 1098#endif 1099 1100#if GFX_VER == 11 1101 iris_emit_reg(batch, GENX(TCCNTLREG), reg) { 1102 reg.L3DataPartialWriteMergingEnable = true; 1103 reg.ColorZPartialWriteMergingEnable = true; 1104 reg.URBPartialWriteMergingEnable = true; 1105 reg.TCDisable = true; 1106 } 1107 1108 /* Hardware specification recommends disabling repacking for the 1109 * compatibility with decompression mechanism in display controller. 1110 */ 1111 if (devinfo->disable_ccs_repack) { 1112 iris_emit_reg(batch, GENX(CACHE_MODE_0), reg) { 1113 reg.DisableRepackingforCompression = true; 1114 reg.DisableRepackingforCompressionMask = true; 1115 } 1116 } 1117#endif 1118 1119#if GFX_VERx10 == 120 1120 /* Wa_1508744258 1121 * 1122 * Disable RHWO by setting 0x7010[14] by default except during resolve 1123 * pass. 1124 * 1125 * We implement global disabling of the optimization here and we toggle it 1126 * in iris_resolve_color. 1127 * 1128 * iris_init_compute_context is unmodified because we don't expect to 1129 * access the RCC in the compute context. iris_mcs_partial_resolve is 1130 * unmodified because that pass doesn't use a HW bit to perform the 1131 * resolve (related HSDs specifically call out the RenderTargetResolveType 1132 * field in the 3DSTATE_PS instruction). 1133 */ 1134 iris_disable_rhwo_optimization(batch, true); 1135 1136 /* Wa_1806527549 says to disable the following HiZ optimization when the 1137 * depth buffer is D16_UNORM. We've found the WA to help with more depth 1138 * buffer configurations however, so we always disable it just to be safe. 1139 */ 1140 iris_emit_reg(batch, GENX(HIZ_CHICKEN), reg) { 1141 reg.HZDepthTestLEGEOptimizationDisable = true; 1142 reg.HZDepthTestLEGEOptimizationDisableMask = true; 1143 } 1144#endif 1145 1146 upload_pixel_hashing_tables(batch); 1147 1148 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid 1149 * changing it dynamically. We set it to the maximum size here, and 1150 * instead include the render target dimensions in the viewport, so 1151 * viewport extents clipping takes care of pruning stray geometry. 1152 */ 1153 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) { 1154 rect.ClippedDrawingRectangleXMax = UINT16_MAX; 1155 rect.ClippedDrawingRectangleYMax = UINT16_MAX; 1156 } 1157 1158 /* Set the initial MSAA sample positions. */ 1159 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) { 1160 INTEL_SAMPLE_POS_1X(pat._1xSample); 1161 INTEL_SAMPLE_POS_2X(pat._2xSample); 1162 INTEL_SAMPLE_POS_4X(pat._4xSample); 1163 INTEL_SAMPLE_POS_8X(pat._8xSample); 1164#if GFX_VER >= 9 1165 INTEL_SAMPLE_POS_16X(pat._16xSample); 1166#endif 1167 } 1168 1169 /* Use the legacy AA line coverage computation. */ 1170 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo); 1171 1172 /* Disable chromakeying (it's for media) */ 1173 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo); 1174 1175 /* We want regular rendering, not special HiZ operations. */ 1176 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo); 1177 1178 /* No polygon stippling offsets are necessary. */ 1179 /* TODO: may need to set an offset for origin-UL framebuffers */ 1180 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo); 1181 1182 iris_alloc_push_constants(batch); 1183 1184 1185#if GFX_VER >= 12 1186 init_aux_map_state(batch); 1187#endif 1188 1189 iris_batch_sync_region_end(batch); 1190} 1191 1192static void 1193iris_init_compute_context(struct iris_batch *batch) 1194{ 1195 UNUSED const struct intel_device_info *devinfo = &batch->screen->devinfo; 1196 1197 iris_batch_sync_region_start(batch); 1198 1199 /* Wa_1607854226: 1200 * 1201 * Start with pipeline in 3D mode to set the STATE_BASE_ADDRESS. 1202 */ 1203#if GFX_VERx10 == 120 1204 emit_pipeline_select(batch, _3D); 1205#else 1206 emit_pipeline_select(batch, GPGPU); 1207#endif 1208 1209 iris_emit_l3_config(batch, batch->screen->l3_config_cs); 1210 1211 init_state_base_address(batch); 1212 1213 iris_init_common_context(batch); 1214 1215#if GFX_VERx10 == 120 1216 emit_pipeline_select(batch, GPGPU); 1217#endif 1218 1219#if GFX_VER == 9 1220 if (devinfo->platform == INTEL_PLATFORM_GLK) 1221 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU); 1222#endif 1223 1224#if GFX_VER >= 12 1225 init_aux_map_state(batch); 1226#endif 1227 1228 iris_batch_sync_region_end(batch); 1229} 1230 1231struct iris_vertex_buffer_state { 1232 /** The VERTEX_BUFFER_STATE hardware structure. */ 1233 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)]; 1234 1235 /** The resource to source vertex data from. */ 1236 struct pipe_resource *resource; 1237 1238 int offset; 1239}; 1240 1241struct iris_depth_buffer_state { 1242 /* Depth/HiZ/Stencil related hardware packets. */ 1243 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) + 1244 GENX(3DSTATE_STENCIL_BUFFER_length) + 1245 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) + 1246 GENX(3DSTATE_CLEAR_PARAMS_length)]; 1247}; 1248 1249#if GFX_VERx10 == 120 1250enum iris_depth_reg_mode { 1251 IRIS_DEPTH_REG_MODE_HW_DEFAULT = 0, 1252 IRIS_DEPTH_REG_MODE_D16_1X_MSAA, 1253 IRIS_DEPTH_REG_MODE_UNKNOWN, 1254}; 1255#endif 1256 1257/** 1258 * Generation-specific context state (ice->state.genx->...). 1259 * 1260 * Most state can go in iris_context directly, but these encode hardware 1261 * packets which vary by generation. 1262 */ 1263struct iris_genx_state { 1264 struct iris_vertex_buffer_state vertex_buffers[33]; 1265 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)]; 1266 1267 struct iris_depth_buffer_state depth_buffer; 1268 1269 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)]; 1270 1271#if GFX_VER == 8 1272 bool pma_fix_enabled; 1273#endif 1274 1275#if GFX_VER == 9 1276 /* Is object level preemption enabled? */ 1277 bool object_preemption; 1278#endif 1279 1280#if GFX_VERx10 == 120 1281 enum iris_depth_reg_mode depth_reg_mode; 1282#endif 1283 1284 struct { 1285#if GFX_VER == 8 1286 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES]; 1287#endif 1288 } shaders[MESA_SHADER_STAGES]; 1289}; 1290 1291/** 1292 * The pipe->set_blend_color() driver hook. 1293 * 1294 * This corresponds to our COLOR_CALC_STATE. 1295 */ 1296static void 1297iris_set_blend_color(struct pipe_context *ctx, 1298 const struct pipe_blend_color *state) 1299{ 1300 struct iris_context *ice = (struct iris_context *) ctx; 1301 1302 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */ 1303 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color)); 1304 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE; 1305} 1306 1307/** 1308 * Gallium CSO for blend state (see pipe_blend_state). 1309 */ 1310struct iris_blend_state { 1311 /** Partial 3DSTATE_PS_BLEND */ 1312 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)]; 1313 1314 /** Partial BLEND_STATE */ 1315 uint32_t blend_state[GENX(BLEND_STATE_length) + 1316 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)]; 1317 1318 bool alpha_to_coverage; /* for shader key */ 1319 1320 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */ 1321 uint8_t blend_enables; 1322 1323 /** Bitfield of whether color writes are enabled for RT[i] */ 1324 uint8_t color_write_enables; 1325 1326 /** Does RT[0] use dual color blending? */ 1327 bool dual_color_blending; 1328}; 1329 1330static enum pipe_blendfactor 1331fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one) 1332{ 1333 if (alpha_to_one) { 1334 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA) 1335 return PIPE_BLENDFACTOR_ONE; 1336 1337 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA) 1338 return PIPE_BLENDFACTOR_ZERO; 1339 } 1340 1341 return f; 1342} 1343 1344/** 1345 * The pipe->create_blend_state() driver hook. 1346 * 1347 * Translates a pipe_blend_state into iris_blend_state. 1348 */ 1349static void * 1350iris_create_blend_state(struct pipe_context *ctx, 1351 const struct pipe_blend_state *state) 1352{ 1353 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state)); 1354 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length); 1355 1356 cso->blend_enables = 0; 1357 cso->color_write_enables = 0; 1358 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8); 1359 1360 cso->alpha_to_coverage = state->alpha_to_coverage; 1361 1362 bool indep_alpha_blend = false; 1363 1364 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) { 1365 const struct pipe_rt_blend_state *rt = 1366 &state->rt[state->independent_blend_enable ? i : 0]; 1367 1368 enum pipe_blendfactor src_rgb = 1369 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one); 1370 enum pipe_blendfactor src_alpha = 1371 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one); 1372 enum pipe_blendfactor dst_rgb = 1373 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one); 1374 enum pipe_blendfactor dst_alpha = 1375 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one); 1376 1377 if (rt->rgb_func != rt->alpha_func || 1378 src_rgb != src_alpha || dst_rgb != dst_alpha) 1379 indep_alpha_blend = true; 1380 1381 if (rt->blend_enable) 1382 cso->blend_enables |= 1u << i; 1383 1384 if (rt->colormask) 1385 cso->color_write_enables |= 1u << i; 1386 1387 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) { 1388 be.LogicOpEnable = state->logicop_enable; 1389 be.LogicOpFunction = state->logicop_func; 1390 1391 be.PreBlendSourceOnlyClampEnable = false; 1392 be.ColorClampRange = COLORCLAMP_RTFORMAT; 1393 be.PreBlendColorClampEnable = true; 1394 be.PostBlendColorClampEnable = true; 1395 1396 be.ColorBufferBlendEnable = rt->blend_enable; 1397 1398 be.ColorBlendFunction = rt->rgb_func; 1399 be.AlphaBlendFunction = rt->alpha_func; 1400 1401 /* The casts prevent warnings about implicit enum type conversions. */ 1402 be.SourceBlendFactor = (int) src_rgb; 1403 be.SourceAlphaBlendFactor = (int) src_alpha; 1404 be.DestinationBlendFactor = (int) dst_rgb; 1405 be.DestinationAlphaBlendFactor = (int) dst_alpha; 1406 1407 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R); 1408 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G); 1409 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B); 1410 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A); 1411 } 1412 blend_entry += GENX(BLEND_STATE_ENTRY_length); 1413 } 1414 1415 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) { 1416 /* pb.HasWriteableRT is filled in at draw time. 1417 * pb.AlphaTestEnable is filled in at draw time. 1418 * 1419 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid 1420 * setting it when dual color blending without an appropriate shader. 1421 */ 1422 1423 pb.AlphaToCoverageEnable = state->alpha_to_coverage; 1424 pb.IndependentAlphaBlendEnable = indep_alpha_blend; 1425 1426 /* The casts prevent warnings about implicit enum type conversions. */ 1427 pb.SourceBlendFactor = 1428 (int) fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one); 1429 pb.SourceAlphaBlendFactor = 1430 (int) fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one); 1431 pb.DestinationBlendFactor = 1432 (int) fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one); 1433 pb.DestinationAlphaBlendFactor = 1434 (int) fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one); 1435 } 1436 1437 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) { 1438 bs.AlphaToCoverageEnable = state->alpha_to_coverage; 1439 bs.IndependentAlphaBlendEnable = indep_alpha_blend; 1440 bs.AlphaToOneEnable = state->alpha_to_one; 1441 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage; 1442 bs.ColorDitherEnable = state->dither; 1443 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */ 1444 } 1445 1446 cso->dual_color_blending = util_blend_state_is_dual(state, 0); 1447 1448 return cso; 1449} 1450 1451/** 1452 * The pipe->bind_blend_state() driver hook. 1453 * 1454 * Bind a blending CSO and flag related dirty bits. 1455 */ 1456static void 1457iris_bind_blend_state(struct pipe_context *ctx, void *state) 1458{ 1459 struct iris_context *ice = (struct iris_context *) ctx; 1460 struct iris_blend_state *cso = state; 1461 1462 ice->state.cso_blend = cso; 1463 1464 ice->state.dirty |= IRIS_DIRTY_PS_BLEND; 1465 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE; 1466 ice->state.stage_dirty |= ice->state.stage_dirty_for_nos[IRIS_NOS_BLEND]; 1467 1468 if (GFX_VER == 8) 1469 ice->state.dirty |= IRIS_DIRTY_PMA_FIX; 1470} 1471 1472/** 1473 * Return true if the FS writes to any color outputs which are not disabled 1474 * via color masking. 1475 */ 1476static bool 1477has_writeable_rt(const struct iris_blend_state *cso_blend, 1478 const struct shader_info *fs_info) 1479{ 1480 if (!fs_info) 1481 return false; 1482 1483 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0; 1484 1485 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR)) 1486 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1; 1487 1488 return cso_blend->color_write_enables & rt_outputs; 1489} 1490 1491/** 1492 * Gallium CSO for depth, stencil, and alpha testing state. 1493 */ 1494struct iris_depth_stencil_alpha_state { 1495 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */ 1496 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)]; 1497 1498#if GFX_VER >= 12 1499 uint32_t depth_bounds[GENX(3DSTATE_DEPTH_BOUNDS_length)]; 1500#endif 1501 1502 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */ 1503 unsigned alpha_enabled:1; 1504 unsigned alpha_func:3; /**< PIPE_FUNC_x */ 1505 float alpha_ref_value; /**< reference value */ 1506 1507 /** Outbound to resolve and cache set tracking. */ 1508 bool depth_writes_enabled; 1509 bool stencil_writes_enabled; 1510 1511 /** Outbound to Gfx8-9 PMA stall equations */ 1512 bool depth_test_enabled; 1513}; 1514 1515/** 1516 * The pipe->create_depth_stencil_alpha_state() driver hook. 1517 * 1518 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha 1519 * testing state since we need pieces of it in a variety of places. 1520 */ 1521static void * 1522iris_create_zsa_state(struct pipe_context *ctx, 1523 const struct pipe_depth_stencil_alpha_state *state) 1524{ 1525 struct iris_depth_stencil_alpha_state *cso = 1526 malloc(sizeof(struct iris_depth_stencil_alpha_state)); 1527 1528 bool two_sided_stencil = state->stencil[1].enabled; 1529 1530 cso->alpha_enabled = state->alpha_enabled; 1531 cso->alpha_func = state->alpha_func; 1532 cso->alpha_ref_value = state->alpha_ref_value; 1533 cso->depth_writes_enabled = state->depth_writemask; 1534 cso->depth_test_enabled = state->depth_enabled; 1535 cso->stencil_writes_enabled = 1536 state->stencil[0].writemask != 0 || 1537 (two_sided_stencil && state->stencil[1].writemask != 0); 1538 1539 /* gallium frontends need to optimize away EQUAL writes for us. */ 1540 assert(!(state->depth_func == PIPE_FUNC_EQUAL && state->depth_writemask)); 1541 1542 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) { 1543 wmds.StencilFailOp = state->stencil[0].fail_op; 1544 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op; 1545 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op; 1546 wmds.StencilTestFunction = 1547 translate_compare_func(state->stencil[0].func); 1548 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op; 1549 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op; 1550 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op; 1551 wmds.BackfaceStencilTestFunction = 1552 translate_compare_func(state->stencil[1].func); 1553 wmds.DepthTestFunction = translate_compare_func(state->depth_func); 1554 wmds.DoubleSidedStencilEnable = two_sided_stencil; 1555 wmds.StencilTestEnable = state->stencil[0].enabled; 1556 wmds.StencilBufferWriteEnable = 1557 state->stencil[0].writemask != 0 || 1558 (two_sided_stencil && state->stencil[1].writemask != 0); 1559 wmds.DepthTestEnable = state->depth_enabled; 1560 wmds.DepthBufferWriteEnable = state->depth_writemask; 1561 wmds.StencilTestMask = state->stencil[0].valuemask; 1562 wmds.StencilWriteMask = state->stencil[0].writemask; 1563 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask; 1564 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask; 1565 /* wmds.[Backface]StencilReferenceValue are merged later */ 1566#if GFX_VER >= 12 1567 wmds.StencilReferenceValueModifyDisable = true; 1568#endif 1569 } 1570 1571#if GFX_VER >= 12 1572 iris_pack_command(GENX(3DSTATE_DEPTH_BOUNDS), cso->depth_bounds, depth_bounds) { 1573 depth_bounds.DepthBoundsTestValueModifyDisable = false; 1574 depth_bounds.DepthBoundsTestEnableModifyDisable = false; 1575 depth_bounds.DepthBoundsTestEnable = state->depth_bounds_test; 1576 depth_bounds.DepthBoundsTestMinValue = state->depth_bounds_min; 1577 depth_bounds.DepthBoundsTestMaxValue = state->depth_bounds_max; 1578 } 1579#endif 1580 1581 return cso; 1582} 1583 1584/** 1585 * The pipe->bind_depth_stencil_alpha_state() driver hook. 1586 * 1587 * Bind a depth/stencil/alpha CSO and flag related dirty bits. 1588 */ 1589static void 1590iris_bind_zsa_state(struct pipe_context *ctx, void *state) 1591{ 1592 struct iris_context *ice = (struct iris_context *) ctx; 1593 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa; 1594 struct iris_depth_stencil_alpha_state *new_cso = state; 1595 1596 if (new_cso) { 1597 if (cso_changed(alpha_ref_value)) 1598 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE; 1599 1600 if (cso_changed(alpha_enabled)) 1601 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE; 1602 1603 if (cso_changed(alpha_func)) 1604 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE; 1605 1606 if (cso_changed(depth_writes_enabled) || cso_changed(stencil_writes_enabled)) 1607 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES; 1608 1609 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled; 1610 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled; 1611 1612#if GFX_VER >= 12 1613 if (cso_changed(depth_bounds)) 1614 ice->state.dirty |= IRIS_DIRTY_DEPTH_BOUNDS; 1615#endif 1616 } 1617 1618 ice->state.cso_zsa = new_cso; 1619 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT; 1620 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL; 1621 ice->state.stage_dirty |= 1622 ice->state.stage_dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA]; 1623 1624 if (GFX_VER == 8) 1625 ice->state.dirty |= IRIS_DIRTY_PMA_FIX; 1626} 1627 1628#if GFX_VER == 8 1629static bool 1630want_pma_fix(struct iris_context *ice) 1631{ 1632 UNUSED struct iris_screen *screen = (void *) ice->ctx.screen; 1633 UNUSED const struct intel_device_info *devinfo = &screen->devinfo; 1634 const struct brw_wm_prog_data *wm_prog_data = (void *) 1635 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data; 1636 const struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; 1637 const struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa; 1638 const struct iris_blend_state *cso_blend = ice->state.cso_blend; 1639 1640 /* In very specific combinations of state, we can instruct Gfx8-9 hardware 1641 * to avoid stalling at the pixel mask array. The state equations are 1642 * documented in these places: 1643 * 1644 * - Gfx8 Depth PMA Fix: CACHE_MODE_1::NP_PMA_FIX_ENABLE 1645 * - Gfx9 Stencil PMA Fix: CACHE_MODE_0::STC PMA Optimization Enable 1646 * 1647 * Both equations share some common elements: 1648 * 1649 * no_hiz_op = 1650 * !(3DSTATE_WM_HZ_OP::DepthBufferClear || 1651 * 3DSTATE_WM_HZ_OP::DepthBufferResolve || 1652 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable || 1653 * 3DSTATE_WM_HZ_OP::StencilBufferClear) && 1654 * 1655 * killpixels = 1656 * 3DSTATE_WM::ForceKillPix != ForceOff && 1657 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels || 1658 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget || 1659 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable || 1660 * 3DSTATE_PS_BLEND::AlphaTestEnable || 1661 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable) 1662 * 1663 * (Technically the stencil PMA treats ForceKillPix differently, 1664 * but I think this is a documentation oversight, and we don't 1665 * ever use it in this way, so it doesn't matter). 1666 * 1667 * common_pma_fix = 1668 * 3DSTATE_WM::ForceThreadDispatch != 1 && 1669 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 && 1670 * 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL && 1671 * 3DSTATE_DEPTH_BUFFER::HIZ Enable && 1672 * 3DSTATE_WM::EDSC_Mode != EDSC_PREPS && 1673 * 3DSTATE_PS_EXTRA::PixelShaderValid && 1674 * no_hiz_op 1675 * 1676 * These are always true: 1677 * 1678 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 1679 * 3DSTATE_PS_EXTRA::PixelShaderValid 1680 * 1681 * Also, we never use the normal drawing path for HiZ ops; these are true: 1682 * 1683 * !(3DSTATE_WM_HZ_OP::DepthBufferClear || 1684 * 3DSTATE_WM_HZ_OP::DepthBufferResolve || 1685 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable || 1686 * 3DSTATE_WM_HZ_OP::StencilBufferClear) 1687 * 1688 * This happens sometimes: 1689 * 1690 * 3DSTATE_WM::ForceThreadDispatch != 1 1691 * 1692 * However, we choose to ignore it as it either agrees with the signal 1693 * (dispatch was already enabled, so nothing out of the ordinary), or 1694 * there are no framebuffer attachments (so no depth or HiZ anyway, 1695 * meaning the PMA signal will already be disabled). 1696 */ 1697 1698 if (!cso_fb->zsbuf) 1699 return false; 1700 1701 struct iris_resource *zres, *sres; 1702 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture, &zres, &sres); 1703 1704 /* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL && 1705 * 3DSTATE_DEPTH_BUFFER::HIZ Enable && 1706 */ 1707 if (!zres || !iris_resource_level_has_hiz(zres, cso_fb->zsbuf->u.tex.level)) 1708 return false; 1709 1710 /* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS */ 1711 if (wm_prog_data->early_fragment_tests) 1712 return false; 1713 1714 /* 3DSTATE_WM::ForceKillPix != ForceOff && 1715 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels || 1716 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget || 1717 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable || 1718 * 3DSTATE_PS_BLEND::AlphaTestEnable || 1719 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable) 1720 */ 1721 bool killpixels = wm_prog_data->uses_kill || wm_prog_data->uses_omask || 1722 cso_blend->alpha_to_coverage || cso_zsa->alpha_enabled; 1723 1724 /* The Gfx8 depth PMA equation becomes: 1725 * 1726 * depth_writes = 1727 * 3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable && 1728 * 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE 1729 * 1730 * stencil_writes = 1731 * 3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable && 1732 * 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE && 1733 * 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE 1734 * 1735 * Z_PMA_OPT = 1736 * common_pma_fix && 1737 * 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable && 1738 * ((killpixels && (depth_writes || stencil_writes)) || 1739 * 3DSTATE_PS_EXTRA::PixelShaderComputedDepthMode != PSCDEPTH_OFF) 1740 * 1741 */ 1742 if (!cso_zsa->depth_test_enabled) 1743 return false; 1744 1745 return wm_prog_data->computed_depth_mode != PSCDEPTH_OFF || 1746 (killpixels && (cso_zsa->depth_writes_enabled || 1747 (sres && cso_zsa->stencil_writes_enabled))); 1748} 1749#endif 1750 1751void 1752genX(update_pma_fix)(struct iris_context *ice, 1753 struct iris_batch *batch, 1754 bool enable) 1755{ 1756#if GFX_VER == 8 1757 struct iris_genx_state *genx = ice->state.genx; 1758 1759 if (genx->pma_fix_enabled == enable) 1760 return; 1761 1762 genx->pma_fix_enabled = enable; 1763 1764 /* According to the Broadwell PIPE_CONTROL documentation, software should 1765 * emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set 1766 * prior to the LRI. If stencil buffer writes are enabled, then a Render * Cache Flush is also necessary. 1767 * 1768 * The Gfx9 docs say to use a depth stall rather than a command streamer 1769 * stall. However, the hardware seems to violently disagree. A full 1770 * command streamer stall seems to be needed in both cases. 1771 */ 1772 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)", 1773 PIPE_CONTROL_CS_STALL | 1774 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 1775 PIPE_CONTROL_RENDER_TARGET_FLUSH); 1776 1777 iris_emit_reg(batch, GENX(CACHE_MODE_1), reg) { 1778 reg.NPPMAFixEnable = enable; 1779 reg.NPEarlyZFailsDisable = enable; 1780 reg.NPPMAFixEnableMask = true; 1781 reg.NPEarlyZFailsDisableMask = true; 1782 } 1783 1784 /* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache 1785 * Flush bits is often necessary. We do it regardless because it's easier. 1786 * The render cache flush is also necessary if stencil writes are enabled. 1787 * 1788 * Again, the Gfx9 docs give a different set of flushes but the Broadwell 1789 * flushes seem to work just as well. 1790 */ 1791 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)", 1792 PIPE_CONTROL_DEPTH_STALL | 1793 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 1794 PIPE_CONTROL_RENDER_TARGET_FLUSH); 1795#endif 1796} 1797 1798/** 1799 * Gallium CSO for rasterizer state. 1800 */ 1801struct iris_rasterizer_state { 1802 uint32_t sf[GENX(3DSTATE_SF_length)]; 1803 uint32_t clip[GENX(3DSTATE_CLIP_length)]; 1804 uint32_t raster[GENX(3DSTATE_RASTER_length)]; 1805 uint32_t wm[GENX(3DSTATE_WM_length)]; 1806 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)]; 1807 1808 uint8_t num_clip_plane_consts; 1809 bool clip_halfz; /* for CC_VIEWPORT */ 1810 bool depth_clip_near; /* for CC_VIEWPORT */ 1811 bool depth_clip_far; /* for CC_VIEWPORT */ 1812 bool flatshade; /* for shader state */ 1813 bool flatshade_first; /* for stream output */ 1814 bool clamp_fragment_color; /* for shader state */ 1815 bool light_twoside; /* for shader state */ 1816 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */ 1817 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */ 1818 bool line_stipple_enable; 1819 bool poly_stipple_enable; 1820 bool multisample; 1821 bool force_persample_interp; 1822 bool conservative_rasterization; 1823 bool fill_mode_point; 1824 bool fill_mode_line; 1825 bool fill_mode_point_or_line; 1826 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */ 1827 uint16_t sprite_coord_enable; 1828}; 1829 1830static float 1831get_line_width(const struct pipe_rasterizer_state *state) 1832{ 1833 float line_width = state->line_width; 1834 1835 /* From the OpenGL 4.4 spec: 1836 * 1837 * "The actual width of non-antialiased lines is determined by rounding 1838 * the supplied width to the nearest integer, then clamping it to the 1839 * implementation-dependent maximum non-antialiased line width." 1840 */ 1841 if (!state->multisample && !state->line_smooth) 1842 line_width = roundf(state->line_width); 1843 1844 if (!state->multisample && state->line_smooth && line_width < 1.5f) { 1845 /* For 1 pixel line thickness or less, the general anti-aliasing 1846 * algorithm gives up, and a garbage line is generated. Setting a 1847 * Line Width of 0.0 specifies the rasterization of the "thinnest" 1848 * (one-pixel-wide), non-antialiased lines. 1849 * 1850 * Lines rendered with zero Line Width are rasterized using the 1851 * "Grid Intersection Quantization" rules as specified by the 1852 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs. 1853 */ 1854 line_width = 0.0f; 1855 } 1856 1857 return line_width; 1858} 1859 1860/** 1861 * The pipe->create_rasterizer_state() driver hook. 1862 */ 1863static void * 1864iris_create_rasterizer_state(struct pipe_context *ctx, 1865 const struct pipe_rasterizer_state *state) 1866{ 1867 struct iris_rasterizer_state *cso = 1868 malloc(sizeof(struct iris_rasterizer_state)); 1869 1870 cso->multisample = state->multisample; 1871 cso->force_persample_interp = state->force_persample_interp; 1872 cso->clip_halfz = state->clip_halfz; 1873 cso->depth_clip_near = state->depth_clip_near; 1874 cso->depth_clip_far = state->depth_clip_far; 1875 cso->flatshade = state->flatshade; 1876 cso->flatshade_first = state->flatshade_first; 1877 cso->clamp_fragment_color = state->clamp_fragment_color; 1878 cso->light_twoside = state->light_twoside; 1879 cso->rasterizer_discard = state->rasterizer_discard; 1880 cso->half_pixel_center = state->half_pixel_center; 1881 cso->sprite_coord_mode = state->sprite_coord_mode; 1882 cso->sprite_coord_enable = state->sprite_coord_enable; 1883 cso->line_stipple_enable = state->line_stipple_enable; 1884 cso->poly_stipple_enable = state->poly_stipple_enable; 1885 cso->conservative_rasterization = 1886 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP; 1887 1888 cso->fill_mode_point = 1889 state->fill_front == PIPE_POLYGON_MODE_POINT || 1890 state->fill_back == PIPE_POLYGON_MODE_POINT; 1891 cso->fill_mode_line = 1892 state->fill_front == PIPE_POLYGON_MODE_LINE || 1893 state->fill_back == PIPE_POLYGON_MODE_LINE; 1894 cso->fill_mode_point_or_line = 1895 cso->fill_mode_point || 1896 cso->fill_mode_line; 1897 1898 if (state->clip_plane_enable != 0) 1899 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1; 1900 else 1901 cso->num_clip_plane_consts = 0; 1902 1903 float line_width = get_line_width(state); 1904 1905 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) { 1906 sf.StatisticsEnable = true; 1907 sf.AALineDistanceMode = AALINEDISTANCE_TRUE; 1908 sf.LineEndCapAntialiasingRegionWidth = 1909 state->line_smooth ? _10pixels : _05pixels; 1910 sf.LastPixelEnable = state->line_last_pixel; 1911 sf.LineWidth = line_width; 1912 sf.SmoothPointEnable = (state->point_smooth || state->multisample) && 1913 !state->point_quad_rasterization; 1914 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State; 1915 sf.PointWidth = CLAMP(state->point_size, 0.125f, 255.875f); 1916 1917 if (state->flatshade_first) { 1918 sf.TriangleFanProvokingVertexSelect = 1; 1919 } else { 1920 sf.TriangleStripListProvokingVertexSelect = 2; 1921 sf.TriangleFanProvokingVertexSelect = 2; 1922 sf.LineStripListProvokingVertexSelect = 1; 1923 } 1924 } 1925 1926 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) { 1927 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise; 1928 rr.CullMode = translate_cull_mode(state->cull_face); 1929 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front); 1930 rr.BackFaceFillMode = translate_fill_mode(state->fill_back); 1931 rr.DXMultisampleRasterizationEnable = state->multisample; 1932 rr.GlobalDepthOffsetEnableSolid = state->offset_tri; 1933 rr.GlobalDepthOffsetEnableWireframe = state->offset_line; 1934 rr.GlobalDepthOffsetEnablePoint = state->offset_point; 1935 rr.GlobalDepthOffsetConstant = state->offset_units * 2; 1936 rr.GlobalDepthOffsetScale = state->offset_scale; 1937 rr.GlobalDepthOffsetClamp = state->offset_clamp; 1938 rr.SmoothPointEnable = state->point_smooth; 1939 rr.AntialiasingEnable = state->line_smooth; 1940 rr.ScissorRectangleEnable = state->scissor; 1941#if GFX_VER >= 9 1942 rr.ViewportZNearClipTestEnable = state->depth_clip_near; 1943 rr.ViewportZFarClipTestEnable = state->depth_clip_far; 1944 rr.ConservativeRasterizationEnable = 1945 cso->conservative_rasterization; 1946#else 1947 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far); 1948#endif 1949 } 1950 1951 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) { 1952 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from 1953 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB. 1954 */ 1955 cl.EarlyCullEnable = true; 1956 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable; 1957 cl.ForceUserClipDistanceClipTestEnableBitmask = true; 1958 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL; 1959 cl.GuardbandClipTestEnable = true; 1960 cl.ClipEnable = true; 1961 cl.MinimumPointWidth = 0.125; 1962 cl.MaximumPointWidth = 255.875; 1963 1964 if (state->flatshade_first) { 1965 cl.TriangleFanProvokingVertexSelect = 1; 1966 } else { 1967 cl.TriangleStripListProvokingVertexSelect = 2; 1968 cl.TriangleFanProvokingVertexSelect = 2; 1969 cl.LineStripListProvokingVertexSelect = 1; 1970 } 1971 } 1972 1973 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) { 1974 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are 1975 * filled in at draw time from the FS program. 1976 */ 1977 wm.LineAntialiasingRegionWidth = _10pixels; 1978 wm.LineEndCapAntialiasingRegionWidth = _05pixels; 1979 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT; 1980 wm.LineStippleEnable = state->line_stipple_enable; 1981 wm.PolygonStippleEnable = state->poly_stipple_enable; 1982 } 1983 1984 /* Remap from 0..255 back to 1..256 */ 1985 const unsigned line_stipple_factor = state->line_stipple_factor + 1; 1986 1987 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) { 1988 if (state->line_stipple_enable) { 1989 line.LineStipplePattern = state->line_stipple_pattern; 1990 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor; 1991 line.LineStippleRepeatCount = line_stipple_factor; 1992 } 1993 } 1994 1995 return cso; 1996} 1997 1998/** 1999 * The pipe->bind_rasterizer_state() driver hook. 2000 * 2001 * Bind a rasterizer CSO and flag related dirty bits. 2002 */ 2003static void 2004iris_bind_rasterizer_state(struct pipe_context *ctx, void *state) 2005{ 2006 struct iris_context *ice = (struct iris_context *) ctx; 2007 struct iris_rasterizer_state *old_cso = ice->state.cso_rast; 2008 struct iris_rasterizer_state *new_cso = state; 2009 2010 if (new_cso) { 2011 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */ 2012 if (cso_changed_memcmp(line_stipple)) 2013 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE; 2014 2015 if (cso_changed(half_pixel_center)) 2016 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE; 2017 2018 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable)) 2019 ice->state.dirty |= IRIS_DIRTY_WM; 2020 2021 if (cso_changed(rasterizer_discard)) 2022 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP; 2023 2024 if (cso_changed(flatshade_first)) 2025 ice->state.dirty |= IRIS_DIRTY_STREAMOUT; 2026 2027 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) || 2028 cso_changed(clip_halfz)) 2029 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT; 2030 2031 if (cso_changed(sprite_coord_enable) || 2032 cso_changed(sprite_coord_mode) || 2033 cso_changed(light_twoside)) 2034 ice->state.dirty |= IRIS_DIRTY_SBE; 2035 2036 if (cso_changed(conservative_rasterization)) 2037 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS; 2038 } 2039 2040 ice->state.cso_rast = new_cso; 2041 ice->state.dirty |= IRIS_DIRTY_RASTER; 2042 ice->state.dirty |= IRIS_DIRTY_CLIP; 2043 ice->state.stage_dirty |= 2044 ice->state.stage_dirty_for_nos[IRIS_NOS_RASTERIZER]; 2045} 2046 2047/** 2048 * Return true if the given wrap mode requires the border color to exist. 2049 * 2050 * (We can skip uploading it if the sampler isn't going to use it.) 2051 */ 2052static bool 2053wrap_mode_needs_border_color(unsigned wrap_mode) 2054{ 2055 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER; 2056} 2057 2058/** 2059 * Gallium CSO for sampler state. 2060 */ 2061struct iris_sampler_state { 2062 union pipe_color_union border_color; 2063 bool needs_border_color; 2064 2065 uint32_t sampler_state[GENX(SAMPLER_STATE_length)]; 2066 2067#if GFX_VERx10 == 125 2068 /* Sampler state structure to use for 3D textures in order to 2069 * implement Wa_14014414195. 2070 */ 2071 uint32_t sampler_state_3d[GENX(SAMPLER_STATE_length)]; 2072#endif 2073}; 2074 2075static void 2076fill_sampler_state(uint32_t *sampler_state, 2077 const struct pipe_sampler_state *state, 2078 unsigned max_anisotropy) 2079{ 2080 float min_lod = state->min_lod; 2081 unsigned mag_img_filter = state->mag_img_filter; 2082 2083 // XXX: explain this code ported from ilo...I don't get it at all... 2084 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE && 2085 state->min_lod > 0.0f) { 2086 min_lod = 0.0f; 2087 mag_img_filter = state->min_img_filter; 2088 } 2089 2090 iris_pack_state(GENX(SAMPLER_STATE), sampler_state, samp) { 2091 samp.TCXAddressControlMode = translate_wrap(state->wrap_s); 2092 samp.TCYAddressControlMode = translate_wrap(state->wrap_t); 2093 samp.TCZAddressControlMode = translate_wrap(state->wrap_r); 2094 samp.CubeSurfaceControlMode = state->seamless_cube_map; 2095 samp.NonnormalizedCoordinateEnable = !state->normalized_coords; 2096 samp.MinModeFilter = state->min_img_filter; 2097 samp.MagModeFilter = mag_img_filter; 2098 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter); 2099 samp.MaximumAnisotropy = RATIO21; 2100 2101 if (max_anisotropy >= 2) { 2102 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) { 2103 samp.MinModeFilter = MAPFILTER_ANISOTROPIC; 2104 samp.AnisotropicAlgorithm = EWAApproximation; 2105 } 2106 2107 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR) 2108 samp.MagModeFilter = MAPFILTER_ANISOTROPIC; 2109 2110 samp.MaximumAnisotropy = 2111 MIN2((max_anisotropy - 2) / 2, RATIO161); 2112 } 2113 2114 /* Set address rounding bits if not using nearest filtering. */ 2115 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) { 2116 samp.UAddressMinFilterRoundingEnable = true; 2117 samp.VAddressMinFilterRoundingEnable = true; 2118 samp.RAddressMinFilterRoundingEnable = true; 2119 } 2120 2121 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) { 2122 samp.UAddressMagFilterRoundingEnable = true; 2123 samp.VAddressMagFilterRoundingEnable = true; 2124 samp.RAddressMagFilterRoundingEnable = true; 2125 } 2126 2127 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) 2128 samp.ShadowFunction = translate_shadow_func(state->compare_func); 2129 2130 const float hw_max_lod = GFX_VER >= 7 ? 14 : 13; 2131 2132 samp.LODPreClampMode = CLAMP_MODE_OGL; 2133 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod); 2134 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod); 2135 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15); 2136 2137 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */ 2138 } 2139} 2140 2141/** 2142 * The pipe->create_sampler_state() driver hook. 2143 * 2144 * We fill out SAMPLER_STATE (except for the border color pointer), and 2145 * store that on the CPU. It doesn't make sense to upload it to a GPU 2146 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires 2147 * all bound sampler states to be in contiguous memor. 2148 */ 2149static void * 2150iris_create_sampler_state(struct pipe_context *ctx, 2151 const struct pipe_sampler_state *state) 2152{ 2153 UNUSED struct iris_screen *screen = (void *)ctx->screen; 2154 UNUSED const struct intel_device_info *devinfo = &screen->devinfo; 2155 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state); 2156 2157 if (!cso) 2158 return NULL; 2159 2160 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST); 2161 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR); 2162 2163 unsigned wrap_s = translate_wrap(state->wrap_s); 2164 unsigned wrap_t = translate_wrap(state->wrap_t); 2165 unsigned wrap_r = translate_wrap(state->wrap_r); 2166 2167 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color)); 2168 2169 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) || 2170 wrap_mode_needs_border_color(wrap_t) || 2171 wrap_mode_needs_border_color(wrap_r); 2172 2173 fill_sampler_state(cso->sampler_state, state, state->max_anisotropy); 2174 2175#if GFX_VERx10 == 125 2176 /* Fill an extra sampler state structure with anisotropic filtering 2177 * disabled used to implement Wa_14014414195. 2178 */ 2179 fill_sampler_state(cso->sampler_state_3d, state, 0); 2180#endif 2181 2182 return cso; 2183} 2184 2185/** 2186 * The pipe->bind_sampler_states() driver hook. 2187 */ 2188static void 2189iris_bind_sampler_states(struct pipe_context *ctx, 2190 enum pipe_shader_type p_stage, 2191 unsigned start, unsigned count, 2192 void **states) 2193{ 2194 struct iris_context *ice = (struct iris_context *) ctx; 2195 gl_shader_stage stage = stage_from_pipe(p_stage); 2196 struct iris_shader_state *shs = &ice->state.shaders[stage]; 2197 2198 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS); 2199 2200 bool dirty = false; 2201 2202 for (int i = 0; i < count; i++) { 2203 struct iris_sampler_state *state = states ? states[i] : NULL; 2204 if (shs->samplers[start + i] != state) { 2205 shs->samplers[start + i] = state; 2206 dirty = true; 2207 } 2208 } 2209 2210 if (dirty) 2211 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage; 2212} 2213 2214/** 2215 * Upload the sampler states into a contiguous area of GPU memory, for 2216 * for 3DSTATE_SAMPLER_STATE_POINTERS_*. 2217 * 2218 * Also fill out the border color state pointers. 2219 */ 2220static void 2221iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage) 2222{ 2223 struct iris_screen *screen = (struct iris_screen *) ice->ctx.screen; 2224 struct iris_shader_state *shs = &ice->state.shaders[stage]; 2225 const struct shader_info *info = iris_get_shader_info(ice, stage); 2226 struct iris_border_color_pool *border_color_pool = 2227 iris_bufmgr_get_border_color_pool(screen->bufmgr); 2228 2229 /* We assume gallium frontends will call pipe->bind_sampler_states() 2230 * if the program's number of textures changes. 2231 */ 2232 unsigned count = info ? BITSET_LAST_BIT(info->textures_used) : 0; 2233 2234 if (!count) 2235 return; 2236 2237 /* Assemble the SAMPLER_STATEs into a contiguous table that lives 2238 * in the dynamic state memory zone, so we can point to it via the 2239 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands. 2240 */ 2241 unsigned size = count * 4 * GENX(SAMPLER_STATE_length); 2242 uint32_t *map = 2243 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32); 2244 if (unlikely(!map)) 2245 return; 2246 2247 struct pipe_resource *res = shs->sampler_table.res; 2248 struct iris_bo *bo = iris_resource_bo(res); 2249 2250 iris_record_state_size(ice->state.sizes, 2251 bo->address + shs->sampler_table.offset, size); 2252 2253 shs->sampler_table.offset += iris_bo_offset_from_base_address(bo); 2254 2255 ice->state.need_border_colors &= ~(1 << stage); 2256 2257 for (int i = 0; i < count; i++) { 2258 struct iris_sampler_state *state = shs->samplers[i]; 2259 struct iris_sampler_view *tex = shs->textures[i]; 2260 2261 if (!state) { 2262 memset(map, 0, 4 * GENX(SAMPLER_STATE_length)); 2263 } else { 2264 const uint32_t *sampler_state = state->sampler_state; 2265#if GFX_VERx10 == 125 2266 if (tex && tex->res->base.b.target == PIPE_TEXTURE_3D) 2267 sampler_state = state->sampler_state_3d; 2268#endif 2269 2270 if (!state->needs_border_color) { 2271 memcpy(map, sampler_state, 4 * GENX(SAMPLER_STATE_length)); 2272 } else { 2273 ice->state.need_border_colors |= 1 << stage; 2274 2275 /* We may need to swizzle the border color for format faking. 2276 * A/LA formats are faked as R/RG with 000R or R00G swizzles. 2277 * This means we need to move the border color's A channel into 2278 * the R or G channels so that those read swizzles will move it 2279 * back into A. 2280 */ 2281 union pipe_color_union *color = &state->border_color; 2282 union pipe_color_union tmp; 2283 if (tex) { 2284 enum pipe_format internal_format = tex->res->internal_format; 2285 2286 if (util_format_is_alpha(internal_format)) { 2287 unsigned char swz[4] = { 2288 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0, 2289 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0 2290 }; 2291 util_format_apply_color_swizzle(&tmp, color, swz, true); 2292 color = &tmp; 2293 } else if (util_format_is_luminance_alpha(internal_format) && 2294 internal_format != PIPE_FORMAT_L8A8_SRGB) { 2295 unsigned char swz[4] = { 2296 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W, 2297 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0 2298 }; 2299 util_format_apply_color_swizzle(&tmp, color, swz, true); 2300 color = &tmp; 2301 } 2302 } 2303 2304 /* Stream out the border color and merge the pointer. */ 2305 uint32_t offset = iris_upload_border_color(border_color_pool, 2306 color); 2307 2308 uint32_t dynamic[GENX(SAMPLER_STATE_length)]; 2309 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) { 2310 dyns.BorderColorPointer = offset; 2311 } 2312 2313 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++) 2314 map[j] = sampler_state[j] | dynamic[j]; 2315 } 2316 } 2317 2318 map += GENX(SAMPLER_STATE_length); 2319 } 2320} 2321 2322static enum isl_channel_select 2323fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz) 2324{ 2325 switch (swz) { 2326 case PIPE_SWIZZLE_X: return fmt->swizzle.r; 2327 case PIPE_SWIZZLE_Y: return fmt->swizzle.g; 2328 case PIPE_SWIZZLE_Z: return fmt->swizzle.b; 2329 case PIPE_SWIZZLE_W: return fmt->swizzle.a; 2330 case PIPE_SWIZZLE_1: return ISL_CHANNEL_SELECT_ONE; 2331 case PIPE_SWIZZLE_0: return ISL_CHANNEL_SELECT_ZERO; 2332 default: unreachable("invalid swizzle"); 2333 } 2334} 2335 2336static void 2337fill_buffer_surface_state(struct isl_device *isl_dev, 2338 struct iris_resource *res, 2339 void *map, 2340 enum isl_format format, 2341 struct isl_swizzle swizzle, 2342 unsigned offset, 2343 unsigned size, 2344 isl_surf_usage_flags_t usage) 2345{ 2346 const struct isl_format_layout *fmtl = isl_format_get_layout(format); 2347 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8; 2348 2349 /* The ARB_texture_buffer_specification says: 2350 * 2351 * "The number of texels in the buffer texture's texel array is given by 2352 * 2353 * floor(<buffer_size> / (<components> * sizeof(<base_type>)), 2354 * 2355 * where <buffer_size> is the size of the buffer object, in basic 2356 * machine units and <components> and <base_type> are the element count 2357 * and base data type for elements, as specified in Table X.1. The 2358 * number of texels in the texel array is then clamped to the 2359 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB." 2360 * 2361 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride, 2362 * so that when ISL divides by stride to obtain the number of texels, that 2363 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE. 2364 */ 2365 unsigned final_size = 2366 MIN3(size, res->bo->size - res->offset - offset, 2367 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp); 2368 2369 isl_buffer_fill_state(isl_dev, map, 2370 .address = res->bo->address + res->offset + offset, 2371 .size_B = final_size, 2372 .format = format, 2373 .swizzle = swizzle, 2374 .stride_B = cpp, 2375 .mocs = iris_mocs(res->bo, isl_dev, usage)); 2376} 2377 2378#define SURFACE_STATE_ALIGNMENT 64 2379 2380/** 2381 * Allocate several contiguous SURFACE_STATE structures, one for each 2382 * supported auxiliary surface mode. This only allocates the CPU-side 2383 * copy, they will need to be uploaded later after they're filled in. 2384 */ 2385static void 2386alloc_surface_states(struct iris_surface_state *surf_state, 2387 unsigned aux_usages) 2388{ 2389 enum { surf_size = 4 * GENX(RENDER_SURFACE_STATE_length) }; 2390 2391 /* If this changes, update this to explicitly align pointers */ 2392 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT); 2393 2394 assert(aux_usages != 0); 2395 2396 /* In case we're re-allocating them... */ 2397 free(surf_state->cpu); 2398 2399 surf_state->aux_usages = aux_usages; 2400 surf_state->num_states = util_bitcount(aux_usages); 2401 surf_state->cpu = calloc(surf_state->num_states, surf_size); 2402 surf_state->ref.offset = 0; 2403 pipe_resource_reference(&surf_state->ref.res, NULL); 2404 2405 assert(surf_state->cpu); 2406} 2407 2408/** 2409 * Upload the CPU side SURFACE_STATEs into a GPU buffer. 2410 */ 2411static void 2412upload_surface_states(struct u_upload_mgr *mgr, 2413 struct iris_surface_state *surf_state) 2414{ 2415 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length); 2416 const unsigned bytes = surf_state->num_states * surf_size; 2417 2418 void *map = 2419 upload_state(mgr, &surf_state->ref, bytes, SURFACE_STATE_ALIGNMENT); 2420 2421 surf_state->ref.offset += 2422 iris_bo_offset_from_base_address(iris_resource_bo(surf_state->ref.res)); 2423 2424 if (map) 2425 memcpy(map, surf_state->cpu, bytes); 2426} 2427 2428/** 2429 * Update resource addresses in a set of SURFACE_STATE descriptors, 2430 * and re-upload them if necessary. 2431 */ 2432static bool 2433update_surface_state_addrs(struct u_upload_mgr *mgr, 2434 struct iris_surface_state *surf_state, 2435 struct iris_bo *bo) 2436{ 2437 if (surf_state->bo_address == bo->address) 2438 return false; 2439 2440 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) % 64 == 0); 2441 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_bits) == 64); 2442 2443 uint64_t *ss_addr = (uint64_t *) &surf_state->cpu[GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) / 32]; 2444 2445 /* First, update the CPU copies. We assume no other fields exist in 2446 * the QWord containing Surface Base Address. 2447 */ 2448 for (unsigned i = 0; i < surf_state->num_states; i++) { 2449 *ss_addr = *ss_addr - surf_state->bo_address + bo->address; 2450 ss_addr = ((void *) ss_addr) + SURFACE_STATE_ALIGNMENT; 2451 } 2452 2453 /* Next, upload the updated copies to a GPU buffer. */ 2454 upload_surface_states(mgr, surf_state); 2455 2456 surf_state->bo_address = bo->address; 2457 2458 return true; 2459} 2460 2461static void 2462fill_surface_state(struct isl_device *isl_dev, 2463 void *map, 2464 struct iris_resource *res, 2465 struct isl_surf *surf, 2466 struct isl_view *view, 2467 unsigned aux_usage, 2468 uint32_t extra_main_offset, 2469 uint32_t tile_x_sa, 2470 uint32_t tile_y_sa) 2471{ 2472 struct isl_surf_fill_state_info f = { 2473 .surf = surf, 2474 .view = view, 2475 .mocs = iris_mocs(res->bo, isl_dev, view->usage), 2476 .address = res->bo->address + res->offset + extra_main_offset, 2477 .x_offset_sa = tile_x_sa, 2478 .y_offset_sa = tile_y_sa, 2479 }; 2480 2481 if (aux_usage != ISL_AUX_USAGE_NONE) { 2482 f.aux_surf = &res->aux.surf; 2483 f.aux_usage = aux_usage; 2484 f.clear_color = res->aux.clear_color; 2485 2486 if (aux_usage == ISL_AUX_USAGE_MC) 2487 f.mc_format = iris_format_for_usage(isl_dev->info, 2488 res->external_format, 2489 surf->usage).fmt; 2490 2491 if (res->aux.bo) 2492 f.aux_address = res->aux.bo->address + res->aux.offset; 2493 2494 if (res->aux.clear_color_bo) { 2495 f.clear_address = res->aux.clear_color_bo->address + 2496 res->aux.clear_color_offset; 2497 f.use_clear_address = isl_dev->info->ver > 9; 2498 } 2499 } 2500 2501 isl_surf_fill_state_s(isl_dev, map, &f); 2502} 2503 2504static void 2505fill_surface_states(struct isl_device *isl_dev, 2506 struct iris_surface_state *surf_state, 2507 struct iris_resource *res, 2508 struct isl_surf *surf, 2509 struct isl_view *view, 2510 uint64_t extra_main_offset, 2511 uint32_t tile_x_sa, 2512 uint32_t tile_y_sa) 2513{ 2514 void *map = surf_state->cpu; 2515 unsigned aux_modes = surf_state->aux_usages; 2516 2517 while (aux_modes) { 2518 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes); 2519 2520 fill_surface_state(isl_dev, map, res, surf, view, aux_usage, 2521 extra_main_offset, tile_x_sa, tile_y_sa); 2522 2523 map += SURFACE_STATE_ALIGNMENT; 2524 } 2525} 2526 2527/** 2528 * The pipe->create_sampler_view() driver hook. 2529 */ 2530static struct pipe_sampler_view * 2531iris_create_sampler_view(struct pipe_context *ctx, 2532 struct pipe_resource *tex, 2533 const struct pipe_sampler_view *tmpl) 2534{ 2535 struct iris_screen *screen = (struct iris_screen *)ctx->screen; 2536 const struct intel_device_info *devinfo = &screen->devinfo; 2537 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view)); 2538 2539 if (!isv) 2540 return NULL; 2541 2542 /* initialize base object */ 2543 isv->base = *tmpl; 2544 isv->base.context = ctx; 2545 isv->base.texture = NULL; 2546 pipe_reference_init(&isv->base.reference, 1); 2547 pipe_resource_reference(&isv->base.texture, tex); 2548 2549 if (util_format_is_depth_or_stencil(tmpl->format)) { 2550 struct iris_resource *zres, *sres; 2551 const struct util_format_description *desc = 2552 util_format_description(tmpl->format); 2553 2554 iris_get_depth_stencil_resources(tex, &zres, &sres); 2555 2556 tex = util_format_has_depth(desc) ? &zres->base.b : &sres->base.b; 2557 } 2558 2559 isv->res = (struct iris_resource *) tex; 2560 2561 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT; 2562 2563 if (isv->base.target == PIPE_TEXTURE_CUBE || 2564 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY) 2565 usage |= ISL_SURF_USAGE_CUBE_BIT; 2566 2567 const struct iris_format_info fmt = 2568 iris_format_for_usage(devinfo, tmpl->format, usage); 2569 2570 isv->clear_color = isv->res->aux.clear_color; 2571 2572 isv->view = (struct isl_view) { 2573 .format = fmt.fmt, 2574 .swizzle = (struct isl_swizzle) { 2575 .r = fmt_swizzle(&fmt, tmpl->swizzle_r), 2576 .g = fmt_swizzle(&fmt, tmpl->swizzle_g), 2577 .b = fmt_swizzle(&fmt, tmpl->swizzle_b), 2578 .a = fmt_swizzle(&fmt, tmpl->swizzle_a), 2579 }, 2580 .usage = usage, 2581 }; 2582 2583 unsigned aux_usages = 0; 2584 2585 if ((isv->res->aux.usage == ISL_AUX_USAGE_CCS_D || 2586 isv->res->aux.usage == ISL_AUX_USAGE_CCS_E || 2587 isv->res->aux.usage == ISL_AUX_USAGE_GFX12_CCS_E) && 2588 !isl_format_supports_ccs_e(devinfo, isv->view.format)) { 2589 aux_usages = 1 << ISL_AUX_USAGE_NONE; 2590 } else if (isl_aux_usage_has_hiz(isv->res->aux.usage) && 2591 !iris_sample_with_depth_aux(devinfo, isv->res)) { 2592 aux_usages = 1 << ISL_AUX_USAGE_NONE; 2593 } else { 2594 aux_usages = 1 << ISL_AUX_USAGE_NONE | 2595 1 << isv->res->aux.usage; 2596 } 2597 2598 alloc_surface_states(&isv->surface_state, aux_usages); 2599 isv->surface_state.bo_address = isv->res->bo->address; 2600 2601 /* Fill out SURFACE_STATE for this view. */ 2602 if (tmpl->target != PIPE_BUFFER) { 2603 isv->view.base_level = tmpl->u.tex.first_level; 2604 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1; 2605 2606 if (tmpl->target == PIPE_TEXTURE_3D) { 2607 isv->view.base_array_layer = 0; 2608 isv->view.array_len = 1; 2609 } else { 2610#if GFX_VER < 9 2611 /* Hardware older than skylake ignores this value */ 2612 assert(tex->target != PIPE_TEXTURE_3D || !tmpl->u.tex.first_layer); 2613#endif 2614 isv->view.base_array_layer = tmpl->u.tex.first_layer; 2615 isv->view.array_len = 2616 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1; 2617 } 2618 2619 fill_surface_states(&screen->isl_dev, &isv->surface_state, isv->res, 2620 &isv->res->surf, &isv->view, 0, 0, 0); 2621 } else { 2622 fill_buffer_surface_state(&screen->isl_dev, isv->res, 2623 isv->surface_state.cpu, 2624 isv->view.format, isv->view.swizzle, 2625 tmpl->u.buf.offset, tmpl->u.buf.size, 2626 ISL_SURF_USAGE_TEXTURE_BIT); 2627 } 2628 2629 return &isv->base; 2630} 2631 2632static void 2633iris_sampler_view_destroy(struct pipe_context *ctx, 2634 struct pipe_sampler_view *state) 2635{ 2636 struct iris_sampler_view *isv = (void *) state; 2637 pipe_resource_reference(&state->texture, NULL); 2638 pipe_resource_reference(&isv->surface_state.ref.res, NULL); 2639 free(isv->surface_state.cpu); 2640 free(isv); 2641} 2642 2643/** 2644 * The pipe->create_surface() driver hook. 2645 * 2646 * In Gallium nomenclature, "surfaces" are a view of a resource that 2647 * can be bound as a render target or depth/stencil buffer. 2648 */ 2649static struct pipe_surface * 2650iris_create_surface(struct pipe_context *ctx, 2651 struct pipe_resource *tex, 2652 const struct pipe_surface *tmpl) 2653{ 2654 struct iris_screen *screen = (struct iris_screen *)ctx->screen; 2655 const struct intel_device_info *devinfo = &screen->devinfo; 2656 2657 isl_surf_usage_flags_t usage = 0; 2658 if (tmpl->writable) 2659 usage = ISL_SURF_USAGE_STORAGE_BIT; 2660 else if (util_format_is_depth_or_stencil(tmpl->format)) 2661 usage = ISL_SURF_USAGE_DEPTH_BIT; 2662 else 2663 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT; 2664 2665 const struct iris_format_info fmt = 2666 iris_format_for_usage(devinfo, tmpl->format, usage); 2667 2668 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) && 2669 !isl_format_supports_rendering(devinfo, fmt.fmt)) { 2670 /* Framebuffer validation will reject this invalid case, but it 2671 * hasn't had the opportunity yet. In the meantime, we need to 2672 * avoid hitting ISL asserts about unsupported formats below. 2673 */ 2674 return NULL; 2675 } 2676 2677 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface)); 2678 struct iris_resource *res = (struct iris_resource *) tex; 2679 2680 if (!surf) 2681 return NULL; 2682 2683 uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1; 2684 2685 struct isl_view *view = &surf->view; 2686 *view = (struct isl_view) { 2687 .format = fmt.fmt, 2688 .base_level = tmpl->u.tex.level, 2689 .levels = 1, 2690 .base_array_layer = tmpl->u.tex.first_layer, 2691 .array_len = array_len, 2692 .swizzle = ISL_SWIZZLE_IDENTITY, 2693 .usage = usage, 2694 }; 2695 2696#if GFX_VER == 8 2697 struct isl_view *read_view = &surf->read_view; 2698 *read_view = (struct isl_view) { 2699 .format = fmt.fmt, 2700 .base_level = tmpl->u.tex.level, 2701 .levels = 1, 2702 .base_array_layer = tmpl->u.tex.first_layer, 2703 .array_len = array_len, 2704 .swizzle = ISL_SWIZZLE_IDENTITY, 2705 .usage = ISL_SURF_USAGE_TEXTURE_BIT, 2706 }; 2707 2708 struct isl_surf read_surf = res->surf; 2709 uint64_t read_surf_offset_B = 0; 2710 uint32_t read_surf_tile_x_sa = 0, read_surf_tile_y_sa = 0; 2711 if (tex->target == PIPE_TEXTURE_3D && array_len == 1) { 2712 /* The minimum array element field of the surface state structure is 2713 * ignored by the sampler unit for 3D textures on some hardware. If the 2714 * render buffer is a single slice of a 3D texture, create a 2D texture 2715 * covering that slice. 2716 * 2717 * TODO: This only handles the case where we're rendering to a single 2718 * slice of an array texture. If we have layered rendering combined 2719 * with non-coherent FB fetch and a non-zero base_array_layer, then 2720 * we're going to run into problems. 2721 * 2722 * See https://gitlab.freedesktop.org/mesa/mesa/-/issues/4904 2723 */ 2724 isl_surf_get_image_surf(&screen->isl_dev, &res->surf, 2725 read_view->base_level, 2726 0, read_view->base_array_layer, 2727 &read_surf, &read_surf_offset_B, 2728 &read_surf_tile_x_sa, &read_surf_tile_y_sa); 2729 read_view->base_level = 0; 2730 read_view->base_array_layer = 0; 2731 assert(read_view->array_len == 1); 2732 } else if (tex->target == PIPE_TEXTURE_1D_ARRAY) { 2733 /* Convert 1D array textures to 2D arrays because shaders always provide 2734 * the array index coordinate at the Z component to avoid recompiles 2735 * when changing the texture target of the framebuffer. 2736 */ 2737 assert(read_surf.dim_layout == ISL_DIM_LAYOUT_GFX4_2D); 2738 read_surf.dim = ISL_SURF_DIM_2D; 2739 } 2740#endif 2741 2742 struct isl_surf isl_surf = res->surf; 2743 uint64_t offset_B = 0; 2744 uint32_t tile_x_el = 0, tile_y_el = 0; 2745 if (isl_format_is_compressed(res->surf.format)) { 2746 /* The resource has a compressed format, which is not renderable, but we 2747 * have a renderable view format. We must be attempting to upload 2748 * blocks of compressed data via an uncompressed view. 2749 * 2750 * In this case, we can assume there are no auxiliary buffers, a single 2751 * miplevel, and that the resource is single-sampled. Gallium may try 2752 * and create an uncompressed view with multiple layers, however. 2753 */ 2754 assert(res->aux.usage == ISL_AUX_USAGE_NONE); 2755 assert(res->surf.samples == 1); 2756 assert(view->levels == 1); 2757 2758 bool ok = isl_surf_get_uncompressed_surf(&screen->isl_dev, 2759 &res->surf, view, 2760 &isl_surf, view, &offset_B, 2761 &tile_x_el, &tile_y_el); 2762 if (!ok) { 2763 free(surf); 2764 return NULL; 2765 } 2766 } 2767 2768 surf->clear_color = res->aux.clear_color; 2769 2770 struct pipe_surface *psurf = &surf->base; 2771 pipe_reference_init(&psurf->reference, 1); 2772 pipe_resource_reference(&psurf->texture, tex); 2773 psurf->context = ctx; 2774 psurf->format = tmpl->format; 2775 psurf->width = isl_surf.logical_level0_px.width; 2776 psurf->height = isl_surf.logical_level0_px.height; 2777 psurf->texture = tex; 2778 psurf->u.tex.first_layer = tmpl->u.tex.first_layer; 2779 psurf->u.tex.last_layer = tmpl->u.tex.last_layer; 2780 psurf->u.tex.level = tmpl->u.tex.level; 2781 2782 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */ 2783 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT | 2784 ISL_SURF_USAGE_STENCIL_BIT)) 2785 return psurf; 2786 2787 /* Fill out a SURFACE_STATE for each possible auxiliary surface mode and 2788 * return the pipe_surface. 2789 */ 2790 unsigned aux_usages = 0; 2791 2792 if ((res->aux.usage == ISL_AUX_USAGE_CCS_E || 2793 res->aux.usage == ISL_AUX_USAGE_GFX12_CCS_E) && 2794 !isl_format_supports_ccs_e(devinfo, view->format)) { 2795 aux_usages = 1 << ISL_AUX_USAGE_NONE; 2796 } else { 2797 aux_usages = 1 << ISL_AUX_USAGE_NONE | 2798 1 << res->aux.usage; 2799 } 2800 2801 alloc_surface_states(&surf->surface_state, aux_usages); 2802 surf->surface_state.bo_address = res->bo->address; 2803 fill_surface_states(&screen->isl_dev, &surf->surface_state, res, 2804 &isl_surf, view, offset_B, tile_x_el, tile_y_el); 2805 2806#if GFX_VER == 8 2807 alloc_surface_states(&surf->surface_state_read, aux_usages); 2808 surf->surface_state_read.bo_address = res->bo->address; 2809 fill_surface_states(&screen->isl_dev, &surf->surface_state_read, res, 2810 &read_surf, read_view, read_surf_offset_B, 2811 read_surf_tile_x_sa, read_surf_tile_y_sa); 2812#endif 2813 2814 return psurf; 2815} 2816 2817#if GFX_VER < 9 2818static void 2819fill_default_image_param(struct brw_image_param *param) 2820{ 2821 memset(param, 0, sizeof(*param)); 2822 /* Set the swizzling shifts to all-ones to effectively disable swizzling -- 2823 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more 2824 * detailed explanation of these parameters. 2825 */ 2826 param->swizzling[0] = 0xff; 2827 param->swizzling[1] = 0xff; 2828} 2829 2830static void 2831fill_buffer_image_param(struct brw_image_param *param, 2832 enum pipe_format pfmt, 2833 unsigned size) 2834{ 2835 const unsigned cpp = util_format_get_blocksize(pfmt); 2836 2837 fill_default_image_param(param); 2838 param->size[0] = size / cpp; 2839 param->stride[0] = cpp; 2840} 2841#else 2842#define isl_surf_fill_image_param(x, ...) 2843#define fill_default_image_param(x, ...) 2844#define fill_buffer_image_param(x, ...) 2845#endif 2846 2847/** 2848 * The pipe->set_shader_images() driver hook. 2849 */ 2850static void 2851iris_set_shader_images(struct pipe_context *ctx, 2852 enum pipe_shader_type p_stage, 2853 unsigned start_slot, unsigned count, 2854 unsigned unbind_num_trailing_slots, 2855 const struct pipe_image_view *p_images) 2856{ 2857 struct iris_context *ice = (struct iris_context *) ctx; 2858 struct iris_screen *screen = (struct iris_screen *)ctx->screen; 2859 gl_shader_stage stage = stage_from_pipe(p_stage); 2860 struct iris_shader_state *shs = &ice->state.shaders[stage]; 2861#if GFX_VER == 8 2862 struct iris_genx_state *genx = ice->state.genx; 2863 struct brw_image_param *image_params = genx->shaders[stage].image_param; 2864#endif 2865 2866 shs->bound_image_views &= 2867 ~u_bit_consecutive(start_slot, count + unbind_num_trailing_slots); 2868 2869 for (unsigned i = 0; i < count; i++) { 2870 struct iris_image_view *iv = &shs->image[start_slot + i]; 2871 2872 if (p_images && p_images[i].resource) { 2873 const struct pipe_image_view *img = &p_images[i]; 2874 struct iris_resource *res = (void *) img->resource; 2875 2876 util_copy_image_view(&iv->base, img); 2877 2878 shs->bound_image_views |= 1 << (start_slot + i); 2879 2880 res->bind_history |= PIPE_BIND_SHADER_IMAGE; 2881 res->bind_stages |= 1 << stage; 2882 2883 enum isl_format isl_fmt = iris_image_view_get_format(ice, img); 2884 2885 unsigned aux_usages = 1 << ISL_AUX_USAGE_NONE; 2886 2887 /* Gfx12+ supports render compression for images */ 2888 if (GFX_VER >= 12) 2889 aux_usages |= 1 << res->aux.usage; 2890 2891 alloc_surface_states(&iv->surface_state, aux_usages); 2892 iv->surface_state.bo_address = res->bo->address; 2893 2894 if (res->base.b.target != PIPE_BUFFER) { 2895 struct isl_view view = { 2896 .format = isl_fmt, 2897 .base_level = img->u.tex.level, 2898 .levels = 1, 2899 .base_array_layer = img->u.tex.first_layer, 2900 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1, 2901 .swizzle = ISL_SWIZZLE_IDENTITY, 2902 .usage = ISL_SURF_USAGE_STORAGE_BIT, 2903 }; 2904 2905 /* If using untyped fallback. */ 2906 if (isl_fmt == ISL_FORMAT_RAW) { 2907 fill_buffer_surface_state(&screen->isl_dev, res, 2908 iv->surface_state.cpu, 2909 isl_fmt, ISL_SWIZZLE_IDENTITY, 2910 0, res->bo->size, 2911 ISL_SURF_USAGE_STORAGE_BIT); 2912 } else { 2913 fill_surface_states(&screen->isl_dev, &iv->surface_state, res, 2914 &res->surf, &view, 0, 0, 0); 2915 } 2916 2917 isl_surf_fill_image_param(&screen->isl_dev, 2918 &image_params[start_slot + i], 2919 &res->surf, &view); 2920 } else { 2921 util_range_add(&res->base.b, &res->valid_buffer_range, img->u.buf.offset, 2922 img->u.buf.offset + img->u.buf.size); 2923 2924 fill_buffer_surface_state(&screen->isl_dev, res, 2925 iv->surface_state.cpu, 2926 isl_fmt, ISL_SWIZZLE_IDENTITY, 2927 img->u.buf.offset, img->u.buf.size, 2928 ISL_SURF_USAGE_STORAGE_BIT); 2929 fill_buffer_image_param(&image_params[start_slot + i], 2930 img->format, img->u.buf.size); 2931 } 2932 2933 upload_surface_states(ice->state.surface_uploader, &iv->surface_state); 2934 } else { 2935 pipe_resource_reference(&iv->base.resource, NULL); 2936 pipe_resource_reference(&iv->surface_state.ref.res, NULL); 2937 fill_default_image_param(&image_params[start_slot + i]); 2938 } 2939 } 2940 2941 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage; 2942 ice->state.dirty |= 2943 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES 2944 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES; 2945 2946 /* Broadwell also needs brw_image_params re-uploaded */ 2947 if (GFX_VER < 9) { 2948 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage; 2949 shs->sysvals_need_upload = true; 2950 } 2951 2952 if (unbind_num_trailing_slots) { 2953 iris_set_shader_images(ctx, p_stage, start_slot + count, 2954 unbind_num_trailing_slots, 0, NULL); 2955 } 2956} 2957 2958UNUSED static bool 2959is_sampler_view_3d(const struct iris_sampler_view *view) 2960{ 2961 return view && view->res->base.b.target == PIPE_TEXTURE_3D; 2962} 2963 2964/** 2965 * The pipe->set_sampler_views() driver hook. 2966 */ 2967static void 2968iris_set_sampler_views(struct pipe_context *ctx, 2969 enum pipe_shader_type p_stage, 2970 unsigned start, unsigned count, 2971 unsigned unbind_num_trailing_slots, 2972 bool take_ownership, 2973 struct pipe_sampler_view **views) 2974{ 2975 struct iris_context *ice = (struct iris_context *) ctx; 2976 UNUSED struct iris_screen *screen = (void *) ctx->screen; 2977 UNUSED const struct intel_device_info *devinfo = &screen->devinfo; 2978 gl_shader_stage stage = stage_from_pipe(p_stage); 2979 struct iris_shader_state *shs = &ice->state.shaders[stage]; 2980 unsigned i; 2981 2982 shs->bound_sampler_views &= 2983 ~u_bit_consecutive(start, count + unbind_num_trailing_slots); 2984 2985 for (i = 0; i < count; i++) { 2986 struct pipe_sampler_view *pview = views ? views[i] : NULL; 2987 struct iris_sampler_view *view = (void *) pview; 2988 2989#if GFX_VERx10 == 125 2990 if (is_sampler_view_3d(shs->textures[start + i]) != 2991 is_sampler_view_3d(view)) 2992 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage; 2993#endif 2994 2995 if (take_ownership) { 2996 pipe_sampler_view_reference((struct pipe_sampler_view **) 2997 &shs->textures[start + i], NULL); 2998 shs->textures[start + i] = (struct iris_sampler_view *)pview; 2999 } else { 3000 pipe_sampler_view_reference((struct pipe_sampler_view **) 3001 &shs->textures[start + i], pview); 3002 } 3003 if (view) { 3004 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW; 3005 view->res->bind_stages |= 1 << stage; 3006 3007 shs->bound_sampler_views |= 1 << (start + i); 3008 3009 update_surface_state_addrs(ice->state.surface_uploader, 3010 &view->surface_state, view->res->bo); 3011 } 3012 } 3013 for (; i < count + unbind_num_trailing_slots; i++) { 3014 pipe_sampler_view_reference((struct pipe_sampler_view **) 3015 &shs->textures[start + i], NULL); 3016 } 3017 3018 ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_BINDINGS_VS << stage); 3019 ice->state.dirty |= 3020 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES 3021 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES; 3022} 3023 3024static void 3025iris_set_compute_resources(struct pipe_context *ctx, 3026 unsigned start, unsigned count, 3027 struct pipe_surface **resources) 3028{ 3029 assert(count == 0); 3030} 3031 3032static void 3033iris_set_global_binding(struct pipe_context *ctx, 3034 unsigned start_slot, unsigned count, 3035 struct pipe_resource **resources, 3036 uint32_t **handles) 3037{ 3038 struct iris_context *ice = (struct iris_context *) ctx; 3039 3040 assert(start_slot + count <= IRIS_MAX_GLOBAL_BINDINGS); 3041 for (unsigned i = 0; i < count; i++) { 3042 if (resources && resources[i]) { 3043 pipe_resource_reference(&ice->state.global_bindings[start_slot + i], 3044 resources[i]); 3045 3046 struct iris_resource *res = (void *) resources[i]; 3047 assert(res->base.b.target == PIPE_BUFFER); 3048 util_range_add(&res->base.b, &res->valid_buffer_range, 3049 0, res->base.b.width0); 3050 3051 uint64_t addr = 0; 3052 memcpy(&addr, handles[i], sizeof(addr)); 3053 addr += res->bo->address + res->offset; 3054 memcpy(handles[i], &addr, sizeof(addr)); 3055 } else { 3056 pipe_resource_reference(&ice->state.global_bindings[start_slot + i], 3057 NULL); 3058 } 3059 } 3060 3061 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_CS; 3062} 3063 3064/** 3065 * The pipe->set_tess_state() driver hook. 3066 */ 3067static void 3068iris_set_tess_state(struct pipe_context *ctx, 3069 const float default_outer_level[4], 3070 const float default_inner_level[2]) 3071{ 3072 struct iris_context *ice = (struct iris_context *) ctx; 3073 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL]; 3074 3075 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float)); 3076 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float)); 3077 3078 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_TCS; 3079 shs->sysvals_need_upload = true; 3080} 3081 3082static void 3083iris_set_patch_vertices(struct pipe_context *ctx, uint8_t patch_vertices) 3084{ 3085 struct iris_context *ice = (struct iris_context *) ctx; 3086 3087 ice->state.patch_vertices = patch_vertices; 3088} 3089 3090static void 3091iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf) 3092{ 3093 struct iris_surface *surf = (void *) p_surf; 3094 pipe_resource_reference(&p_surf->texture, NULL); 3095 pipe_resource_reference(&surf->surface_state.ref.res, NULL); 3096 pipe_resource_reference(&surf->surface_state_read.ref.res, NULL); 3097 free(surf->surface_state.cpu); 3098 free(surf->surface_state_read.cpu); 3099 free(surf); 3100} 3101 3102static void 3103iris_set_clip_state(struct pipe_context *ctx, 3104 const struct pipe_clip_state *state) 3105{ 3106 struct iris_context *ice = (struct iris_context *) ctx; 3107 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX]; 3108 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY]; 3109 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL]; 3110 3111 memcpy(&ice->state.clip_planes, state, sizeof(*state)); 3112 3113 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS | 3114 IRIS_STAGE_DIRTY_CONSTANTS_GS | 3115 IRIS_STAGE_DIRTY_CONSTANTS_TES; 3116 shs->sysvals_need_upload = true; 3117 gshs->sysvals_need_upload = true; 3118 tshs->sysvals_need_upload = true; 3119} 3120 3121/** 3122 * The pipe->set_polygon_stipple() driver hook. 3123 */ 3124static void 3125iris_set_polygon_stipple(struct pipe_context *ctx, 3126 const struct pipe_poly_stipple *state) 3127{ 3128 struct iris_context *ice = (struct iris_context *) ctx; 3129 memcpy(&ice->state.poly_stipple, state, sizeof(*state)); 3130 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE; 3131} 3132 3133/** 3134 * The pipe->set_sample_mask() driver hook. 3135 */ 3136static void 3137iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask) 3138{ 3139 struct iris_context *ice = (struct iris_context *) ctx; 3140 3141 /* We only support 16x MSAA, so we have 16 bits of sample maks. 3142 * st/mesa may pass us 0xffffffff though, meaning "enable all samples". 3143 */ 3144 ice->state.sample_mask = sample_mask & 0xffff; 3145 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK; 3146} 3147 3148/** 3149 * The pipe->set_scissor_states() driver hook. 3150 * 3151 * This corresponds to our SCISSOR_RECT state structures. It's an 3152 * exact match, so we just store them, and memcpy them out later. 3153 */ 3154static void 3155iris_set_scissor_states(struct pipe_context *ctx, 3156 unsigned start_slot, 3157 unsigned num_scissors, 3158 const struct pipe_scissor_state *rects) 3159{ 3160 struct iris_context *ice = (struct iris_context *) ctx; 3161 3162 for (unsigned i = 0; i < num_scissors; i++) { 3163 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) { 3164 /* If the scissor was out of bounds and got clamped to 0 width/height 3165 * at the bounds, the subtraction of 1 from maximums could produce a 3166 * negative number and thus not clip anything. Instead, just provide 3167 * a min > max scissor inside the bounds, which produces the expected 3168 * no rendering. 3169 */ 3170 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) { 3171 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0, 3172 }; 3173 } else { 3174 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) { 3175 .minx = rects[i].minx, .miny = rects[i].miny, 3176 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1, 3177 }; 3178 } 3179 } 3180 3181 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT; 3182} 3183 3184/** 3185 * The pipe->set_stencil_ref() driver hook. 3186 * 3187 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time. 3188 */ 3189static void 3190iris_set_stencil_ref(struct pipe_context *ctx, 3191 const struct pipe_stencil_ref state) 3192{ 3193 struct iris_context *ice = (struct iris_context *) ctx; 3194 memcpy(&ice->state.stencil_ref, &state, sizeof(state)); 3195 if (GFX_VER >= 12) 3196 ice->state.dirty |= IRIS_DIRTY_STENCIL_REF; 3197 else if (GFX_VER >= 9) 3198 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL; 3199 else 3200 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE; 3201} 3202 3203static float 3204viewport_extent(const struct pipe_viewport_state *state, int axis, float sign) 3205{ 3206 return copysignf(state->scale[axis], sign) + state->translate[axis]; 3207} 3208 3209/** 3210 * The pipe->set_viewport_states() driver hook. 3211 * 3212 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate 3213 * the guardband yet, as we need the framebuffer dimensions, but we can 3214 * at least fill out the rest. 3215 */ 3216static void 3217iris_set_viewport_states(struct pipe_context *ctx, 3218 unsigned start_slot, 3219 unsigned count, 3220 const struct pipe_viewport_state *states) 3221{ 3222 struct iris_context *ice = (struct iris_context *) ctx; 3223 3224 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count); 3225 3226 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT; 3227 3228 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near || 3229 !ice->state.cso_rast->depth_clip_far)) 3230 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT; 3231} 3232 3233/** 3234 * The pipe->set_framebuffer_state() driver hook. 3235 * 3236 * Sets the current draw FBO, including color render targets, depth, 3237 * and stencil buffers. 3238 */ 3239static void 3240iris_set_framebuffer_state(struct pipe_context *ctx, 3241 const struct pipe_framebuffer_state *state) 3242{ 3243 struct iris_context *ice = (struct iris_context *) ctx; 3244 struct iris_screen *screen = (struct iris_screen *)ctx->screen; 3245 struct isl_device *isl_dev = &screen->isl_dev; 3246 struct pipe_framebuffer_state *cso = &ice->state.framebuffer; 3247 struct iris_resource *zres; 3248 struct iris_resource *stencil_res; 3249 3250 unsigned samples = util_framebuffer_get_num_samples(state); 3251 unsigned layers = util_framebuffer_get_num_layers(state); 3252 3253 if (cso->samples != samples) { 3254 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE; 3255 3256 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */ 3257 if (GFX_VER >= 9 && (cso->samples == 16 || samples == 16)) 3258 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS; 3259 } 3260 3261 if (cso->nr_cbufs != state->nr_cbufs) { 3262 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE; 3263 } 3264 3265 if ((cso->layers == 0) != (layers == 0)) { 3266 ice->state.dirty |= IRIS_DIRTY_CLIP; 3267 } 3268 3269 if (cso->width != state->width || cso->height != state->height) { 3270 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT; 3271 } 3272 3273 if (cso->zsbuf || state->zsbuf) { 3274 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER; 3275 } 3276 3277 util_copy_framebuffer_state(cso, state); 3278 cso->samples = samples; 3279 cso->layers = layers; 3280 3281 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer; 3282 3283 struct isl_view view = { 3284 .base_level = 0, 3285 .levels = 1, 3286 .base_array_layer = 0, 3287 .array_len = 1, 3288 .swizzle = ISL_SWIZZLE_IDENTITY, 3289 }; 3290 3291 struct isl_depth_stencil_hiz_emit_info info = { 3292 .view = &view, 3293 .mocs = iris_mocs(NULL, isl_dev, ISL_SURF_USAGE_DEPTH_BIT), 3294 }; 3295 3296 if (cso->zsbuf) { 3297 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres, 3298 &stencil_res); 3299 3300 view.base_level = cso->zsbuf->u.tex.level; 3301 view.base_array_layer = cso->zsbuf->u.tex.first_layer; 3302 view.array_len = 3303 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1; 3304 3305 if (zres) { 3306 view.usage |= ISL_SURF_USAGE_DEPTH_BIT; 3307 3308 info.depth_surf = &zres->surf; 3309 info.depth_address = zres->bo->address + zres->offset; 3310 info.mocs = iris_mocs(zres->bo, isl_dev, view.usage); 3311 3312 view.format = zres->surf.format; 3313 3314 if (iris_resource_level_has_hiz(zres, view.base_level)) { 3315 info.hiz_usage = zres->aux.usage; 3316 info.hiz_surf = &zres->aux.surf; 3317 info.hiz_address = zres->aux.bo->address + zres->aux.offset; 3318 } 3319 3320 ice->state.hiz_usage = info.hiz_usage; 3321 } 3322 3323 if (stencil_res) { 3324 view.usage |= ISL_SURF_USAGE_STENCIL_BIT; 3325 info.stencil_aux_usage = stencil_res->aux.usage; 3326 info.stencil_surf = &stencil_res->surf; 3327 info.stencil_address = stencil_res->bo->address + stencil_res->offset; 3328 if (!zres) { 3329 view.format = stencil_res->surf.format; 3330 info.mocs = iris_mocs(stencil_res->bo, isl_dev, view.usage); 3331 } 3332 } 3333 } 3334 3335 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info); 3336 3337 /* Make a null surface for unbound buffers */ 3338 void *null_surf_map = 3339 upload_state(ice->state.surface_uploader, &ice->state.null_fb, 3340 4 * GENX(RENDER_SURFACE_STATE_length), 64); 3341 isl_null_fill_state(&screen->isl_dev, null_surf_map, 3342 .size = isl_extent3d(MAX2(cso->width, 1), 3343 MAX2(cso->height, 1), 3344 cso->layers ? cso->layers : 1)); 3345 ice->state.null_fb.offset += 3346 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res)); 3347 3348 /* Render target change */ 3349 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_FS; 3350 3351 ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER; 3352 3353 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES; 3354 3355 ice->state.stage_dirty |= 3356 ice->state.stage_dirty_for_nos[IRIS_NOS_FRAMEBUFFER]; 3357 3358 if (GFX_VER == 8) 3359 ice->state.dirty |= IRIS_DIRTY_PMA_FIX; 3360} 3361 3362/** 3363 * The pipe->set_constant_buffer() driver hook. 3364 * 3365 * This uploads any constant data in user buffers, and references 3366 * any UBO resources containing constant data. 3367 */ 3368static void 3369iris_set_constant_buffer(struct pipe_context *ctx, 3370 enum pipe_shader_type p_stage, unsigned index, 3371 bool take_ownership, 3372 const struct pipe_constant_buffer *input) 3373{ 3374 struct iris_context *ice = (struct iris_context *) ctx; 3375 gl_shader_stage stage = stage_from_pipe(p_stage); 3376 struct iris_shader_state *shs = &ice->state.shaders[stage]; 3377 struct pipe_shader_buffer *cbuf = &shs->constbuf[index]; 3378 3379 /* TODO: Only do this if the buffer changes? */ 3380 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL); 3381 3382 if (input && input->buffer_size && (input->buffer || input->user_buffer)) { 3383 shs->bound_cbufs |= 1u << index; 3384 3385 if (input->user_buffer) { 3386 void *map = NULL; 3387 pipe_resource_reference(&cbuf->buffer, NULL); 3388 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64, 3389 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map); 3390 3391 if (!cbuf->buffer) { 3392 /* Allocation was unsuccessful - just unbind */ 3393 iris_set_constant_buffer(ctx, p_stage, index, false, NULL); 3394 return; 3395 } 3396 3397 assert(map); 3398 memcpy(map, input->user_buffer, input->buffer_size); 3399 } else if (input->buffer) { 3400 if (cbuf->buffer != input->buffer) { 3401 ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES | 3402 IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES); 3403 shs->dirty_cbufs |= 1u << index; 3404 } 3405 3406 if (take_ownership) { 3407 pipe_resource_reference(&cbuf->buffer, NULL); 3408 cbuf->buffer = input->buffer; 3409 } else { 3410 pipe_resource_reference(&cbuf->buffer, input->buffer); 3411 } 3412 3413 cbuf->buffer_offset = input->buffer_offset; 3414 } 3415 3416 cbuf->buffer_size = 3417 MIN2(input->buffer_size, 3418 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset); 3419 3420 struct iris_resource *res = (void *) cbuf->buffer; 3421 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER; 3422 res->bind_stages |= 1 << stage; 3423 } else { 3424 shs->bound_cbufs &= ~(1u << index); 3425 pipe_resource_reference(&cbuf->buffer, NULL); 3426 } 3427 3428 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage; 3429} 3430 3431static void 3432upload_sysvals(struct iris_context *ice, 3433 gl_shader_stage stage, 3434 const struct pipe_grid_info *grid) 3435{ 3436 UNUSED struct iris_genx_state *genx = ice->state.genx; 3437 struct iris_shader_state *shs = &ice->state.shaders[stage]; 3438 3439 struct iris_compiled_shader *shader = ice->shaders.prog[stage]; 3440 if (!shader || (shader->num_system_values == 0 && 3441 shader->kernel_input_size == 0)) 3442 return; 3443 3444 assert(shader->num_cbufs > 0); 3445 3446 unsigned sysval_cbuf_index = shader->num_cbufs - 1; 3447 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index]; 3448 unsigned system_values_start = 3449 ALIGN(shader->kernel_input_size, sizeof(uint32_t)); 3450 unsigned upload_size = system_values_start + 3451 shader->num_system_values * sizeof(uint32_t); 3452 void *map = NULL; 3453 3454 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS); 3455 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64, 3456 &cbuf->buffer_offset, &cbuf->buffer, &map); 3457 3458 if (shader->kernel_input_size > 0) 3459 memcpy(map, grid->input, shader->kernel_input_size); 3460 3461 uint32_t *sysval_map = map + system_values_start; 3462 for (int i = 0; i < shader->num_system_values; i++) { 3463 uint32_t sysval = shader->system_values[i]; 3464 uint32_t value = 0; 3465 3466 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) { 3467#if GFX_VER == 8 3468 unsigned img = BRW_PARAM_IMAGE_IDX(sysval); 3469 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval); 3470 struct brw_image_param *param = 3471 &genx->shaders[stage].image_param[img]; 3472 3473 assert(offset < sizeof(struct brw_image_param)); 3474 value = ((uint32_t *) param)[offset]; 3475#endif 3476 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) { 3477 value = 0; 3478 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) { 3479 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval); 3480 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval); 3481 value = fui(ice->state.clip_planes.ucp[plane][comp]); 3482 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) { 3483 if (stage == MESA_SHADER_TESS_CTRL) { 3484 value = ice->state.vertices_per_patch; 3485 } else { 3486 assert(stage == MESA_SHADER_TESS_EVAL); 3487 const struct shader_info *tcs_info = 3488 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL); 3489 if (tcs_info) 3490 value = tcs_info->tess.tcs_vertices_out; 3491 else 3492 value = ice->state.vertices_per_patch; 3493 } 3494 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X && 3495 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) { 3496 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X; 3497 value = fui(ice->state.default_outer_level[i]); 3498 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) { 3499 value = fui(ice->state.default_inner_level[0]); 3500 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) { 3501 value = fui(ice->state.default_inner_level[1]); 3502 } else if (sysval >= BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X && 3503 sysval <= BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z) { 3504 unsigned i = sysval - BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X; 3505 value = ice->state.last_block[i]; 3506 } else if (sysval == BRW_PARAM_BUILTIN_WORK_DIM) { 3507 value = grid->work_dim; 3508 } else { 3509 assert(!"unhandled system value"); 3510 } 3511 3512 *sysval_map++ = value; 3513 } 3514 3515 cbuf->buffer_size = upload_size; 3516 iris_upload_ubo_ssbo_surf_state(ice, cbuf, 3517 &shs->constbuf_surf_state[sysval_cbuf_index], 3518 ISL_SURF_USAGE_CONSTANT_BUFFER_BIT); 3519 3520 shs->sysvals_need_upload = false; 3521} 3522 3523/** 3524 * The pipe->set_shader_buffers() driver hook. 3525 * 3526 * This binds SSBOs and ABOs. Unfortunately, we need to stream out 3527 * SURFACE_STATE here, as the buffer offset may change each time. 3528 */ 3529static void 3530iris_set_shader_buffers(struct pipe_context *ctx, 3531 enum pipe_shader_type p_stage, 3532 unsigned start_slot, unsigned count, 3533 const struct pipe_shader_buffer *buffers, 3534 unsigned writable_bitmask) 3535{ 3536 struct iris_context *ice = (struct iris_context *) ctx; 3537 gl_shader_stage stage = stage_from_pipe(p_stage); 3538 struct iris_shader_state *shs = &ice->state.shaders[stage]; 3539 3540 unsigned modified_bits = u_bit_consecutive(start_slot, count); 3541 3542 shs->bound_ssbos &= ~modified_bits; 3543 shs->writable_ssbos &= ~modified_bits; 3544 shs->writable_ssbos |= writable_bitmask << start_slot; 3545 3546 for (unsigned i = 0; i < count; i++) { 3547 if (buffers && buffers[i].buffer) { 3548 struct iris_resource *res = (void *) buffers[i].buffer; 3549 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i]; 3550 struct iris_state_ref *surf_state = 3551 &shs->ssbo_surf_state[start_slot + i]; 3552 pipe_resource_reference(&ssbo->buffer, &res->base.b); 3553 ssbo->buffer_offset = buffers[i].buffer_offset; 3554 ssbo->buffer_size = 3555 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset); 3556 3557 shs->bound_ssbos |= 1 << (start_slot + i); 3558 3559 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT; 3560 3561 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, usage); 3562 3563 res->bind_history |= PIPE_BIND_SHADER_BUFFER; 3564 res->bind_stages |= 1 << stage; 3565 3566 util_range_add(&res->base.b, &res->valid_buffer_range, ssbo->buffer_offset, 3567 ssbo->buffer_offset + ssbo->buffer_size); 3568 } else { 3569 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL); 3570 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res, 3571 NULL); 3572 } 3573 } 3574 3575 ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES | 3576 IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES); 3577 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage; 3578} 3579 3580static void 3581iris_delete_state(struct pipe_context *ctx, void *state) 3582{ 3583 free(state); 3584} 3585 3586/** 3587 * The pipe->set_vertex_buffers() driver hook. 3588 * 3589 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet. 3590 */ 3591static void 3592iris_set_vertex_buffers(struct pipe_context *ctx, 3593 unsigned start_slot, unsigned count, 3594 unsigned unbind_num_trailing_slots, 3595 bool take_ownership, 3596 const struct pipe_vertex_buffer *buffers) 3597{ 3598 struct iris_context *ice = (struct iris_context *) ctx; 3599 struct iris_screen *screen = (struct iris_screen *)ctx->screen; 3600 struct iris_genx_state *genx = ice->state.genx; 3601 3602 ice->state.bound_vertex_buffers &= 3603 ~u_bit_consecutive64(start_slot, count + unbind_num_trailing_slots); 3604 3605 for (unsigned i = 0; i < count; i++) { 3606 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL; 3607 struct iris_vertex_buffer_state *state = 3608 &genx->vertex_buffers[start_slot + i]; 3609 3610 if (!buffer) { 3611 pipe_resource_reference(&state->resource, NULL); 3612 continue; 3613 } 3614 3615 /* We may see user buffers that are NULL bindings. */ 3616 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL)); 3617 3618 if (buffer->buffer.resource && 3619 state->resource != buffer->buffer.resource) 3620 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFER_FLUSHES; 3621 3622 if (take_ownership) { 3623 pipe_resource_reference(&state->resource, NULL); 3624 state->resource = buffer->buffer.resource; 3625 } else { 3626 pipe_resource_reference(&state->resource, buffer->buffer.resource); 3627 } 3628 struct iris_resource *res = (void *) state->resource; 3629 3630 state->offset = (int) buffer->buffer_offset; 3631 3632 if (res) { 3633 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i); 3634 res->bind_history |= PIPE_BIND_VERTEX_BUFFER; 3635 } 3636 3637 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) { 3638 vb.VertexBufferIndex = start_slot + i; 3639 vb.AddressModifyEnable = true; 3640 vb.BufferPitch = buffer->stride; 3641 if (res) { 3642 vb.BufferSize = res->base.b.width0 - (int) buffer->buffer_offset; 3643 vb.BufferStartingAddress = 3644 ro_bo(NULL, res->bo->address + (int) buffer->buffer_offset); 3645 vb.MOCS = iris_mocs(res->bo, &screen->isl_dev, 3646 ISL_SURF_USAGE_VERTEX_BUFFER_BIT); 3647#if GFX_VER >= 12 3648 vb.L3BypassDisable = true; 3649#endif 3650 } else { 3651 vb.NullVertexBuffer = true; 3652 vb.MOCS = iris_mocs(NULL, &screen->isl_dev, 3653 ISL_SURF_USAGE_VERTEX_BUFFER_BIT); 3654 } 3655 } 3656 } 3657 3658 for (unsigned i = 0; i < unbind_num_trailing_slots; i++) { 3659 struct iris_vertex_buffer_state *state = 3660 &genx->vertex_buffers[start_slot + count + i]; 3661 3662 pipe_resource_reference(&state->resource, NULL); 3663 } 3664 3665 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS; 3666} 3667 3668/** 3669 * Gallium CSO for vertex elements. 3670 */ 3671struct iris_vertex_element_state { 3672 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)]; 3673 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)]; 3674 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)]; 3675 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)]; 3676 unsigned count; 3677}; 3678 3679/** 3680 * The pipe->create_vertex_elements() driver hook. 3681 * 3682 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS 3683 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing 3684 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are 3685 * needed. In these cases we will need information available at draw time. 3686 * We setup edgeflag_ve and edgeflag_vfi as alternatives last 3687 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at 3688 * draw time if we detect that EdgeFlag is needed by the Vertex Shader. 3689 */ 3690static void * 3691iris_create_vertex_elements(struct pipe_context *ctx, 3692 unsigned count, 3693 const struct pipe_vertex_element *state) 3694{ 3695 struct iris_screen *screen = (struct iris_screen *)ctx->screen; 3696 const struct intel_device_info *devinfo = &screen->devinfo; 3697 struct iris_vertex_element_state *cso = 3698 malloc(sizeof(struct iris_vertex_element_state)); 3699 3700 cso->count = count; 3701 3702 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) { 3703 ve.DWordLength = 3704 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2; 3705 } 3706 3707 uint32_t *ve_pack_dest = &cso->vertex_elements[1]; 3708 uint32_t *vfi_pack_dest = cso->vf_instancing; 3709 3710 if (count == 0) { 3711 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) { 3712 ve.Valid = true; 3713 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT; 3714 ve.Component0Control = VFCOMP_STORE_0; 3715 ve.Component1Control = VFCOMP_STORE_0; 3716 ve.Component2Control = VFCOMP_STORE_0; 3717 ve.Component3Control = VFCOMP_STORE_1_FP; 3718 } 3719 3720 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) { 3721 } 3722 } 3723 3724 for (int i = 0; i < count; i++) { 3725 const struct iris_format_info fmt = 3726 iris_format_for_usage(devinfo, state[i].src_format, 0); 3727 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC, 3728 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC }; 3729 3730 switch (isl_format_get_num_channels(fmt.fmt)) { 3731 case 0: comp[0] = VFCOMP_STORE_0; FALLTHROUGH; 3732 case 1: comp[1] = VFCOMP_STORE_0; FALLTHROUGH; 3733 case 2: comp[2] = VFCOMP_STORE_0; FALLTHROUGH; 3734 case 3: 3735 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT 3736 : VFCOMP_STORE_1_FP; 3737 break; 3738 } 3739 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) { 3740 ve.EdgeFlagEnable = false; 3741 ve.VertexBufferIndex = state[i].vertex_buffer_index; 3742 ve.Valid = true; 3743 ve.SourceElementOffset = state[i].src_offset; 3744 ve.SourceElementFormat = fmt.fmt; 3745 ve.Component0Control = comp[0]; 3746 ve.Component1Control = comp[1]; 3747 ve.Component2Control = comp[2]; 3748 ve.Component3Control = comp[3]; 3749 } 3750 3751 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) { 3752 vi.VertexElementIndex = i; 3753 vi.InstancingEnable = state[i].instance_divisor > 0; 3754 vi.InstanceDataStepRate = state[i].instance_divisor; 3755 } 3756 3757 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length); 3758 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length); 3759 } 3760 3761 /* An alternative version of the last VE and VFI is stored so it 3762 * can be used at draw time in case Vertex Shader uses EdgeFlag 3763 */ 3764 if (count) { 3765 const unsigned edgeflag_index = count - 1; 3766 const struct iris_format_info fmt = 3767 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0); 3768 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) { 3769 ve.EdgeFlagEnable = true ; 3770 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index; 3771 ve.Valid = true; 3772 ve.SourceElementOffset = state[edgeflag_index].src_offset; 3773 ve.SourceElementFormat = fmt.fmt; 3774 ve.Component0Control = VFCOMP_STORE_SRC; 3775 ve.Component1Control = VFCOMP_STORE_0; 3776 ve.Component2Control = VFCOMP_STORE_0; 3777 ve.Component3Control = VFCOMP_STORE_0; 3778 } 3779 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) { 3780 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled 3781 * at draw time, as it should change if SGVs are emitted. 3782 */ 3783 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0; 3784 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor; 3785 } 3786 } 3787 3788 return cso; 3789} 3790 3791/** 3792 * The pipe->bind_vertex_elements_state() driver hook. 3793 */ 3794static void 3795iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state) 3796{ 3797 struct iris_context *ice = (struct iris_context *) ctx; 3798 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements; 3799 struct iris_vertex_element_state *new_cso = state; 3800 3801 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing, 3802 * we need to re-emit it to ensure we're overriding the right one. 3803 */ 3804 if (new_cso && cso_changed(count)) 3805 ice->state.dirty |= IRIS_DIRTY_VF_SGVS; 3806 3807 ice->state.cso_vertex_elements = state; 3808 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS; 3809} 3810 3811/** 3812 * The pipe->create_stream_output_target() driver hook. 3813 * 3814 * "Target" here refers to a destination buffer. We translate this into 3815 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet 3816 * know which buffer this represents, or whether we ought to zero the 3817 * write-offsets, or append. Those are handled in the set() hook. 3818 */ 3819static struct pipe_stream_output_target * 3820iris_create_stream_output_target(struct pipe_context *ctx, 3821 struct pipe_resource *p_res, 3822 unsigned buffer_offset, 3823 unsigned buffer_size) 3824{ 3825 struct iris_resource *res = (void *) p_res; 3826 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso)); 3827 if (!cso) 3828 return NULL; 3829 3830 res->bind_history |= PIPE_BIND_STREAM_OUTPUT; 3831 3832 pipe_reference_init(&cso->base.reference, 1); 3833 pipe_resource_reference(&cso->base.buffer, p_res); 3834 cso->base.buffer_offset = buffer_offset; 3835 cso->base.buffer_size = buffer_size; 3836 cso->base.context = ctx; 3837 3838 util_range_add(&res->base.b, &res->valid_buffer_range, buffer_offset, 3839 buffer_offset + buffer_size); 3840 3841 return &cso->base; 3842} 3843 3844static void 3845iris_stream_output_target_destroy(struct pipe_context *ctx, 3846 struct pipe_stream_output_target *state) 3847{ 3848 struct iris_stream_output_target *cso = (void *) state; 3849 3850 pipe_resource_reference(&cso->base.buffer, NULL); 3851 pipe_resource_reference(&cso->offset.res, NULL); 3852 3853 free(cso); 3854} 3855 3856/** 3857 * The pipe->set_stream_output_targets() driver hook. 3858 * 3859 * At this point, we know which targets are bound to a particular index, 3860 * and also whether we want to append or start over. We can finish the 3861 * 3DSTATE_SO_BUFFER packets we started earlier. 3862 */ 3863static void 3864iris_set_stream_output_targets(struct pipe_context *ctx, 3865 unsigned num_targets, 3866 struct pipe_stream_output_target **targets, 3867 const unsigned *offsets) 3868{ 3869 struct iris_context *ice = (struct iris_context *) ctx; 3870 struct iris_genx_state *genx = ice->state.genx; 3871 uint32_t *so_buffers = genx->so_buffers; 3872 struct iris_screen *screen = (struct iris_screen *)ctx->screen; 3873 3874 const bool active = num_targets > 0; 3875 if (ice->state.streamout_active != active) { 3876 ice->state.streamout_active = active; 3877 ice->state.dirty |= IRIS_DIRTY_STREAMOUT; 3878 3879 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because 3880 * it's a non-pipelined command. If we're switching streamout on, we 3881 * may have missed emitting it earlier, so do so now. (We're already 3882 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...) 3883 */ 3884 if (active) { 3885 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST; 3886 } else { 3887 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) { 3888 struct iris_stream_output_target *tgt = 3889 (void *) ice->state.so_target[i]; 3890 3891 if (tgt) 3892 iris_dirty_for_history(ice, (void *)tgt->base.buffer); 3893 } 3894 } 3895 } 3896 3897 for (int i = 0; i < 4; i++) { 3898 pipe_so_target_reference(&ice->state.so_target[i], 3899 i < num_targets ? targets[i] : NULL); 3900 } 3901 3902 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */ 3903 if (!active) 3904 return; 3905 3906 for (unsigned i = 0; i < 4; i++, 3907 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) { 3908 3909 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i]; 3910 unsigned offset = offsets[i]; 3911 3912 if (!tgt) { 3913 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) { 3914#if GFX_VER < 12 3915 sob.SOBufferIndex = i; 3916#else 3917 sob._3DCommandOpcode = 0; 3918 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i; 3919#endif 3920 sob.MOCS = iris_mocs(NULL, &screen->isl_dev, 0); 3921 } 3922 continue; 3923 } 3924 3925 if (!tgt->offset.res) 3926 upload_state(ctx->const_uploader, &tgt->offset, sizeof(uint32_t), 4); 3927 3928 struct iris_resource *res = (void *) tgt->base.buffer; 3929 3930 /* Note that offsets[i] will either be 0, causing us to zero 3931 * the value in the buffer, or 0xFFFFFFFF, which happens to mean 3932 * "continue appending at the existing offset." 3933 */ 3934 assert(offset == 0 || offset == 0xFFFFFFFF); 3935 3936 /* When we're first called with an offset of 0, we want the next 3937 * 3DSTATE_SO_BUFFER packets to reset the offset to the beginning. 3938 * Any further times we emit those packets, we want to use 0xFFFFFFFF 3939 * to continue appending from the current offset. 3940 * 3941 * Note that we might be called by Begin (offset = 0), Pause, then 3942 * Resume (offset = 0xFFFFFFFF) before ever drawing (where these 3943 * commands will actually be sent to the GPU). In this case, we 3944 * don't want to append - we still want to do our initial zeroing. 3945 */ 3946 if (offset == 0) 3947 tgt->zero_offset = true; 3948 3949 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) { 3950#if GFX_VER < 12 3951 sob.SOBufferIndex = i; 3952#else 3953 sob._3DCommandOpcode = 0; 3954 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i; 3955#endif 3956 sob.SurfaceBaseAddress = 3957 rw_bo(NULL, res->bo->address + tgt->base.buffer_offset, 3958 IRIS_DOMAIN_OTHER_WRITE); 3959 sob.SOBufferEnable = true; 3960 sob.StreamOffsetWriteEnable = true; 3961 sob.StreamOutputBufferOffsetAddressEnable = true; 3962 sob.MOCS = iris_mocs(res->bo, &screen->isl_dev, 0); 3963 3964 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1; 3965 sob.StreamOutputBufferOffsetAddress = 3966 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->address + 3967 tgt->offset.offset, IRIS_DOMAIN_OTHER_WRITE); 3968 sob.StreamOffset = 0xFFFFFFFF; /* not offset, see above */ 3969 } 3970 } 3971 3972 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS; 3973} 3974 3975/** 3976 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and 3977 * 3DSTATE_STREAMOUT packets. 3978 * 3979 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout 3980 * hardware to record. We can create it entirely based on the shader, with 3981 * no dynamic state dependencies. 3982 * 3983 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and 3984 * state-based settings. We capture the shader-related ones here, and merge 3985 * the rest in at draw time. 3986 */ 3987static uint32_t * 3988iris_create_so_decl_list(const struct pipe_stream_output_info *info, 3989 const struct brw_vue_map *vue_map) 3990{ 3991 struct GENX(SO_DECL) so_decl[PIPE_MAX_VERTEX_STREAMS][128]; 3992 int buffer_mask[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0}; 3993 int next_offset[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0}; 3994 int decls[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0}; 3995 int max_decls = 0; 3996 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= PIPE_MAX_SO_OUTPUTS); 3997 3998 memset(so_decl, 0, sizeof(so_decl)); 3999 4000 /* Construct the list of SO_DECLs to be emitted. The formatting of the 4001 * command feels strange -- each dword pair contains a SO_DECL per stream. 4002 */ 4003 for (unsigned i = 0; i < info->num_outputs; i++) { 4004 const struct pipe_stream_output *output = &info->output[i]; 4005 const int buffer = output->output_buffer; 4006 const int varying = output->register_index; 4007 const unsigned stream_id = output->stream; 4008 assert(stream_id < PIPE_MAX_VERTEX_STREAMS); 4009 4010 buffer_mask[stream_id] |= 1 << buffer; 4011 4012 assert(vue_map->varying_to_slot[varying] >= 0); 4013 4014 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[] 4015 * array. Instead, it simply increments DstOffset for the following 4016 * input by the number of components that should be skipped. 4017 * 4018 * Our hardware is unusual in that it requires us to program SO_DECLs 4019 * for fake "hole" components, rather than simply taking the offset 4020 * for each real varying. Each hole can have size 1, 2, 3, or 4; we 4021 * program as many size = 4 holes as we can, then a final hole to 4022 * accommodate the final 1, 2, or 3 remaining. 4023 */ 4024 int skip_components = output->dst_offset - next_offset[buffer]; 4025 4026 while (skip_components > 0) { 4027 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) { 4028 .HoleFlag = 1, 4029 .OutputBufferSlot = output->output_buffer, 4030 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1, 4031 }; 4032 skip_components -= 4; 4033 } 4034 4035 next_offset[buffer] = output->dst_offset + output->num_components; 4036 4037 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) { 4038 .OutputBufferSlot = output->output_buffer, 4039 .RegisterIndex = vue_map->varying_to_slot[varying], 4040 .ComponentMask = 4041 ((1 << output->num_components) - 1) << output->start_component, 4042 }; 4043 4044 if (decls[stream_id] > max_decls) 4045 max_decls = decls[stream_id]; 4046 } 4047 4048 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls); 4049 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords); 4050 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length); 4051 4052 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) { 4053 int urb_entry_read_offset = 0; 4054 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 - 4055 urb_entry_read_offset; 4056 4057 /* We always read the whole vertex. This could be reduced at some 4058 * point by reading less and offsetting the register index in the 4059 * SO_DECLs. 4060 */ 4061 sol.Stream0VertexReadOffset = urb_entry_read_offset; 4062 sol.Stream0VertexReadLength = urb_entry_read_length - 1; 4063 sol.Stream1VertexReadOffset = urb_entry_read_offset; 4064 sol.Stream1VertexReadLength = urb_entry_read_length - 1; 4065 sol.Stream2VertexReadOffset = urb_entry_read_offset; 4066 sol.Stream2VertexReadLength = urb_entry_read_length - 1; 4067 sol.Stream3VertexReadOffset = urb_entry_read_offset; 4068 sol.Stream3VertexReadLength = urb_entry_read_length - 1; 4069 4070 /* Set buffer pitches; 0 means unbound. */ 4071 sol.Buffer0SurfacePitch = 4 * info->stride[0]; 4072 sol.Buffer1SurfacePitch = 4 * info->stride[1]; 4073 sol.Buffer2SurfacePitch = 4 * info->stride[2]; 4074 sol.Buffer3SurfacePitch = 4 * info->stride[3]; 4075 } 4076 4077 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) { 4078 list.DWordLength = 3 + 2 * max_decls - 2; 4079 list.StreamtoBufferSelects0 = buffer_mask[0]; 4080 list.StreamtoBufferSelects1 = buffer_mask[1]; 4081 list.StreamtoBufferSelects2 = buffer_mask[2]; 4082 list.StreamtoBufferSelects3 = buffer_mask[3]; 4083 list.NumEntries0 = decls[0]; 4084 list.NumEntries1 = decls[1]; 4085 list.NumEntries2 = decls[2]; 4086 list.NumEntries3 = decls[3]; 4087 } 4088 4089 for (int i = 0; i < max_decls; i++) { 4090 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) { 4091 entry.Stream0Decl = so_decl[0][i]; 4092 entry.Stream1Decl = so_decl[1][i]; 4093 entry.Stream2Decl = so_decl[2][i]; 4094 entry.Stream3Decl = so_decl[3][i]; 4095 } 4096 } 4097 4098 return map; 4099} 4100 4101static void 4102iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots, 4103 const struct brw_vue_map *last_vue_map, 4104 bool two_sided_color, 4105 unsigned *out_offset, 4106 unsigned *out_length) 4107{ 4108 /* The compiler computes the first URB slot without considering COL/BFC 4109 * swizzling (because it doesn't know whether it's enabled), so we need 4110 * to do that here too. This may result in a smaller offset, which 4111 * should be safe. 4112 */ 4113 const unsigned first_slot = 4114 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map); 4115 4116 /* This becomes the URB read offset (counted in pairs of slots). */ 4117 assert(first_slot % 2 == 0); 4118 *out_offset = first_slot / 2; 4119 4120 /* We need to adjust the inputs read to account for front/back color 4121 * swizzling, as it can make the URB length longer. 4122 */ 4123 for (int c = 0; c <= 1; c++) { 4124 if (fs_input_slots & (VARYING_BIT_COL0 << c)) { 4125 /* If two sided color is enabled, the fragment shader's gl_Color 4126 * (COL0) input comes from either the gl_FrontColor (COL0) or 4127 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too. 4128 */ 4129 if (two_sided_color) 4130 fs_input_slots |= (VARYING_BIT_BFC0 << c); 4131 4132 /* If front color isn't written, we opt to give them back color 4133 * instead of an undefined value. Switch from COL to BFC. 4134 */ 4135 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) { 4136 fs_input_slots &= ~(VARYING_BIT_COL0 << c); 4137 fs_input_slots |= (VARYING_BIT_BFC0 << c); 4138 } 4139 } 4140 } 4141 4142 /* Compute the minimum URB Read Length necessary for the FS inputs. 4143 * 4144 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for 4145 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length": 4146 * 4147 * "This field should be set to the minimum length required to read the 4148 * maximum source attribute. The maximum source attribute is indicated 4149 * by the maximum value of the enabled Attribute # Source Attribute if 4150 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if 4151 * enable is not set. 4152 * read_length = ceiling((max_source_attr + 1) / 2) 4153 * 4154 * [errata] Corruption/Hang possible if length programmed larger than 4155 * recommended" 4156 * 4157 * Similar text exists for Ivy Bridge. 4158 * 4159 * We find the last URB slot that's actually read by the FS. 4160 */ 4161 unsigned last_read_slot = last_vue_map->num_slots - 1; 4162 while (last_read_slot > first_slot && !(fs_input_slots & 4163 (1ull << last_vue_map->slot_to_varying[last_read_slot]))) 4164 --last_read_slot; 4165 4166 /* The URB read length is the difference of the two, counted in pairs. */ 4167 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2); 4168} 4169 4170static void 4171iris_emit_sbe_swiz(struct iris_batch *batch, 4172 const struct iris_context *ice, 4173 const struct brw_vue_map *vue_map, 4174 unsigned urb_read_offset, 4175 unsigned sprite_coord_enables) 4176{ 4177 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {}; 4178 const struct brw_wm_prog_data *wm_prog_data = (void *) 4179 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data; 4180 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast; 4181 4182 /* XXX: this should be generated when putting programs in place */ 4183 4184 for (uint8_t idx = 0; idx < wm_prog_data->urb_setup_attribs_count; idx++) { 4185 const uint8_t fs_attr = wm_prog_data->urb_setup_attribs[idx]; 4186 const int input_index = wm_prog_data->urb_setup[fs_attr]; 4187 if (input_index < 0 || input_index >= 16) 4188 continue; 4189 4190 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr = 4191 &attr_overrides[input_index]; 4192 int slot = vue_map->varying_to_slot[fs_attr]; 4193 4194 /* Viewport and Layer are stored in the VUE header. We need to override 4195 * them to zero if earlier stages didn't write them, as GL requires that 4196 * they read back as zero when not explicitly set. 4197 */ 4198 switch (fs_attr) { 4199 case VARYING_SLOT_VIEWPORT: 4200 case VARYING_SLOT_LAYER: 4201 attr->ComponentOverrideX = true; 4202 attr->ComponentOverrideW = true; 4203 attr->ConstantSource = CONST_0000; 4204 4205 if (!(vue_map->slots_valid & VARYING_BIT_LAYER)) 4206 attr->ComponentOverrideY = true; 4207 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT)) 4208 attr->ComponentOverrideZ = true; 4209 continue; 4210 4211 default: 4212 break; 4213 } 4214 4215 if (sprite_coord_enables & (1 << input_index)) 4216 continue; 4217 4218 /* If there was only a back color written but not front, use back 4219 * as the color instead of undefined. 4220 */ 4221 if (slot == -1 && fs_attr == VARYING_SLOT_COL0) 4222 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0]; 4223 if (slot == -1 && fs_attr == VARYING_SLOT_COL1) 4224 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1]; 4225 4226 /* Not written by the previous stage - undefined. */ 4227 if (slot == -1) { 4228 attr->ComponentOverrideX = true; 4229 attr->ComponentOverrideY = true; 4230 attr->ComponentOverrideZ = true; 4231 attr->ComponentOverrideW = true; 4232 attr->ConstantSource = CONST_0001_FLOAT; 4233 continue; 4234 } 4235 4236 /* Compute the location of the attribute relative to the read offset, 4237 * which is counted in 256-bit increments (two 128-bit VUE slots). 4238 */ 4239 const int source_attr = slot - 2 * urb_read_offset; 4240 assert(source_attr >= 0 && source_attr <= 32); 4241 attr->SourceAttribute = source_attr; 4242 4243 /* If we are doing two-sided color, and the VUE slot following this one 4244 * represents a back-facing color, then we need to instruct the SF unit 4245 * to do back-facing swizzling. 4246 */ 4247 if (cso_rast->light_twoside && 4248 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 && 4249 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) || 4250 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 && 4251 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1))) 4252 attr->SwizzleSelect = INPUTATTR_FACING; 4253 } 4254 4255 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) { 4256 for (int i = 0; i < 16; i++) 4257 sbes.Attribute[i] = attr_overrides[i]; 4258 } 4259} 4260 4261static bool 4262iris_is_drawing_points(const struct iris_context *ice) 4263{ 4264 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast; 4265 4266 if (cso_rast->fill_mode_point) { 4267 return true; 4268 } 4269 4270 if (ice->shaders.prog[MESA_SHADER_GEOMETRY]) { 4271 const struct brw_gs_prog_data *gs_prog_data = 4272 (void *) ice->shaders.prog[MESA_SHADER_GEOMETRY]->prog_data; 4273 return gs_prog_data->output_topology == _3DPRIM_POINTLIST; 4274 } else if (ice->shaders.prog[MESA_SHADER_TESS_EVAL]) { 4275 const struct brw_tes_prog_data *tes_data = 4276 (void *) ice->shaders.prog[MESA_SHADER_TESS_EVAL]->prog_data; 4277 return tes_data->output_topology == BRW_TESS_OUTPUT_TOPOLOGY_POINT; 4278 } else { 4279 return ice->state.prim_mode == PIPE_PRIM_POINTS; 4280 } 4281} 4282 4283static unsigned 4284iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data, 4285 const struct iris_rasterizer_state *cso) 4286{ 4287 unsigned overrides = 0; 4288 4289 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1) 4290 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC]; 4291 4292 for (int i = 0; i < 8; i++) { 4293 if ((cso->sprite_coord_enable & (1 << i)) && 4294 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1) 4295 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i]; 4296 } 4297 4298 return overrides; 4299} 4300 4301static void 4302iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice) 4303{ 4304 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast; 4305 const struct brw_wm_prog_data *wm_prog_data = (void *) 4306 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data; 4307 const struct brw_vue_map *last_vue_map = 4308 &brw_vue_prog_data(ice->shaders.last_vue_shader->prog_data)->vue_map; 4309 4310 unsigned urb_read_offset, urb_read_length; 4311 iris_compute_sbe_urb_read_interval(wm_prog_data->inputs, 4312 last_vue_map, 4313 cso_rast->light_twoside, 4314 &urb_read_offset, &urb_read_length); 4315 4316 unsigned sprite_coord_overrides = 4317 iris_is_drawing_points(ice) ? 4318 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast) : 0; 4319 4320 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) { 4321 sbe.AttributeSwizzleEnable = true; 4322 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs; 4323 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode; 4324 sbe.VertexURBEntryReadOffset = urb_read_offset; 4325 sbe.VertexURBEntryReadLength = urb_read_length; 4326 sbe.ForceVertexURBEntryReadOffset = true; 4327 sbe.ForceVertexURBEntryReadLength = true; 4328 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs; 4329 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides; 4330#if GFX_VER >= 9 4331 for (int i = 0; i < 32; i++) { 4332 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW; 4333 } 4334#endif 4335 4336 /* Ask the hardware to supply PrimitiveID if the fragment shader 4337 * reads it but a previous stage didn't write one. 4338 */ 4339 if ((wm_prog_data->inputs & VARYING_BIT_PRIMITIVE_ID) && 4340 last_vue_map->varying_to_slot[VARYING_SLOT_PRIMITIVE_ID] == -1) { 4341 sbe.PrimitiveIDOverrideAttributeSelect = 4342 wm_prog_data->urb_setup[VARYING_SLOT_PRIMITIVE_ID]; 4343 sbe.PrimitiveIDOverrideComponentX = true; 4344 sbe.PrimitiveIDOverrideComponentY = true; 4345 sbe.PrimitiveIDOverrideComponentZ = true; 4346 sbe.PrimitiveIDOverrideComponentW = true; 4347 } 4348 } 4349 4350 iris_emit_sbe_swiz(batch, ice, last_vue_map, urb_read_offset, 4351 sprite_coord_overrides); 4352} 4353 4354/* ------------------------------------------------------------------- */ 4355 4356/** 4357 * Populate VS program key fields based on the current state. 4358 */ 4359static void 4360iris_populate_vs_key(const struct iris_context *ice, 4361 const struct shader_info *info, 4362 gl_shader_stage last_stage, 4363 struct iris_vs_prog_key *key) 4364{ 4365 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast; 4366 4367 if (info->clip_distance_array_size == 0 && 4368 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) && 4369 last_stage == MESA_SHADER_VERTEX) 4370 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts; 4371} 4372 4373/** 4374 * Populate TCS program key fields based on the current state. 4375 */ 4376static void 4377iris_populate_tcs_key(const struct iris_context *ice, 4378 struct iris_tcs_prog_key *key) 4379{ 4380} 4381 4382/** 4383 * Populate TES program key fields based on the current state. 4384 */ 4385static void 4386iris_populate_tes_key(const struct iris_context *ice, 4387 const struct shader_info *info, 4388 gl_shader_stage last_stage, 4389 struct iris_tes_prog_key *key) 4390{ 4391 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast; 4392 4393 if (info->clip_distance_array_size == 0 && 4394 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) && 4395 last_stage == MESA_SHADER_TESS_EVAL) 4396 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts; 4397} 4398 4399/** 4400 * Populate GS program key fields based on the current state. 4401 */ 4402static void 4403iris_populate_gs_key(const struct iris_context *ice, 4404 const struct shader_info *info, 4405 gl_shader_stage last_stage, 4406 struct iris_gs_prog_key *key) 4407{ 4408 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast; 4409 4410 if (info->clip_distance_array_size == 0 && 4411 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) && 4412 last_stage == MESA_SHADER_GEOMETRY) 4413 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts; 4414} 4415 4416/** 4417 * Populate FS program key fields based on the current state. 4418 */ 4419static void 4420iris_populate_fs_key(const struct iris_context *ice, 4421 const struct shader_info *info, 4422 struct iris_fs_prog_key *key) 4423{ 4424 struct iris_screen *screen = (void *) ice->ctx.screen; 4425 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer; 4426 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa; 4427 const struct iris_rasterizer_state *rast = ice->state.cso_rast; 4428 const struct iris_blend_state *blend = ice->state.cso_blend; 4429 4430 key->nr_color_regions = fb->nr_cbufs; 4431 4432 key->clamp_fragment_color = rast->clamp_fragment_color; 4433 4434 key->alpha_to_coverage = blend->alpha_to_coverage; 4435 4436 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha_enabled; 4437 4438 key->flat_shade = rast->flatshade && 4439 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1)); 4440 4441 key->persample_interp = rast->force_persample_interp; 4442 key->multisample_fbo = rast->multisample && fb->samples > 1; 4443 4444 key->coherent_fb_fetch = GFX_VER >= 9; 4445 4446 key->force_dual_color_blend = 4447 screen->driconf.dual_color_blend_by_location && 4448 (blend->blend_enables & 1) && blend->dual_color_blending; 4449} 4450 4451static void 4452iris_populate_cs_key(const struct iris_context *ice, 4453 struct iris_cs_prog_key *key) 4454{ 4455} 4456 4457static uint64_t 4458KSP(const struct iris_compiled_shader *shader) 4459{ 4460 struct iris_resource *res = (void *) shader->assembly.res; 4461 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset; 4462} 4463 4464#define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \ 4465 pkt.KernelStartPointer = KSP(shader); \ 4466 pkt.BindingTableEntryCount = shader->bt.size_bytes / 4; \ 4467 pkt.FloatingPointMode = prog_data->use_alt_mode; \ 4468 \ 4469 pkt.DispatchGRFStartRegisterForURBData = \ 4470 prog_data->dispatch_grf_start_reg; \ 4471 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \ 4472 pkt.prefix##URBEntryReadOffset = 0; \ 4473 \ 4474 pkt.StatisticsEnable = true; \ 4475 pkt.Enable = true; \ 4476 \ 4477 if (prog_data->total_scratch) { \ 4478 INIT_THREAD_SCRATCH_SIZE(pkt) \ 4479 } 4480 4481#if GFX_VERx10 >= 125 4482#define INIT_THREAD_SCRATCH_SIZE(pkt) 4483#define MERGE_SCRATCH_ADDR(name) \ 4484{ \ 4485 uint32_t pkt2[GENX(name##_length)] = {0}; \ 4486 _iris_pack_command(batch, GENX(name), pkt2, p) { \ 4487 p.ScratchSpaceBuffer = scratch_addr >> 4; \ 4488 } \ 4489 iris_emit_merge(batch, pkt, pkt2, GENX(name##_length)); \ 4490} 4491#else 4492#define INIT_THREAD_SCRATCH_SIZE(pkt) \ 4493 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; 4494#define MERGE_SCRATCH_ADDR(name) \ 4495{ \ 4496 uint32_t pkt2[GENX(name##_length)] = {0}; \ 4497 _iris_pack_command(batch, GENX(name), pkt2, p) { \ 4498 p.ScratchSpaceBasePointer = \ 4499 rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE); \ 4500 } \ 4501 iris_emit_merge(batch, pkt, pkt2, GENX(name##_length)); \ 4502} 4503#endif 4504 4505 4506/** 4507 * Encode most of 3DSTATE_VS based on the compiled shader. 4508 */ 4509static void 4510iris_store_vs_state(const struct intel_device_info *devinfo, 4511 struct iris_compiled_shader *shader) 4512{ 4513 struct brw_stage_prog_data *prog_data = shader->prog_data; 4514 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data; 4515 4516 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) { 4517 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX); 4518 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1; 4519 vs.SIMD8DispatchEnable = true; 4520 vs.UserClipDistanceCullTestEnableBitmask = 4521 vue_prog_data->cull_distance_mask; 4522 } 4523} 4524 4525/** 4526 * Encode most of 3DSTATE_HS based on the compiled shader. 4527 */ 4528static void 4529iris_store_tcs_state(const struct intel_device_info *devinfo, 4530 struct iris_compiled_shader *shader) 4531{ 4532 struct brw_stage_prog_data *prog_data = shader->prog_data; 4533 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data; 4534 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data; 4535 4536 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) { 4537 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL); 4538 4539#if GFX_VER >= 12 4540 /* Wa_1604578095: 4541 * 4542 * Hang occurs when the number of max threads is less than 2 times 4543 * the number of instance count. The number of max threads must be 4544 * more than 2 times the number of instance count. 4545 */ 4546 assert((devinfo->max_tcs_threads / 2) > tcs_prog_data->instances); 4547 hs.DispatchGRFStartRegisterForURBData = prog_data->dispatch_grf_start_reg & 0x1f; 4548 hs.DispatchGRFStartRegisterForURBData5 = prog_data->dispatch_grf_start_reg >> 5; 4549#endif 4550 4551 hs.InstanceCount = tcs_prog_data->instances - 1; 4552 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1; 4553 hs.IncludeVertexHandles = true; 4554 4555#if GFX_VER == 12 4556 /* Patch Count threshold specifies the maximum number of patches that 4557 * will be accumulated before a thread dispatch is forced. 4558 */ 4559 hs.PatchCountThreshold = tcs_prog_data->patch_count_threshold; 4560#endif 4561 4562#if GFX_VER >= 9 4563 hs.DispatchMode = vue_prog_data->dispatch_mode; 4564 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id; 4565#endif 4566 } 4567} 4568 4569/** 4570 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader. 4571 */ 4572static void 4573iris_store_tes_state(const struct intel_device_info *devinfo, 4574 struct iris_compiled_shader *shader) 4575{ 4576 struct brw_stage_prog_data *prog_data = shader->prog_data; 4577 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data; 4578 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data; 4579 4580 uint32_t *ds_state = (void *) shader->derived_data; 4581 uint32_t *te_state = ds_state + GENX(3DSTATE_DS_length); 4582 4583 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) { 4584 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL); 4585 4586 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH; 4587 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1; 4588 ds.ComputeWCoordinateEnable = 4589 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI; 4590 4591#if GFX_VER >= 12 4592 ds.PrimitiveIDNotRequired = !tes_prog_data->include_primitive_id; 4593#endif 4594 ds.UserClipDistanceCullTestEnableBitmask = 4595 vue_prog_data->cull_distance_mask; 4596 } 4597 4598 iris_pack_command(GENX(3DSTATE_TE), te_state, te) { 4599 te.Partitioning = tes_prog_data->partitioning; 4600 te.OutputTopology = tes_prog_data->output_topology; 4601 te.TEDomain = tes_prog_data->domain; 4602 te.TEEnable = true; 4603 te.MaximumTessellationFactorOdd = 63.0; 4604 te.MaximumTessellationFactorNotOdd = 64.0; 4605#if GFX_VERx10 >= 125 4606 te.TessellationDistributionMode = TEDMODE_RR_FREE; 4607 te.TessellationDistributionLevel = TEDLEVEL_PATCH; 4608 /* 64_TRIANGLES */ 4609 te.SmallPatchThreshold = 3; 4610 /* 1K_TRIANGLES */ 4611 te.TargetBlockSize = 8; 4612 /* 1K_TRIANGLES */ 4613 te.LocalBOPAccumulatorThreshold = 1; 4614#endif 4615 } 4616} 4617 4618/** 4619 * Encode most of 3DSTATE_GS based on the compiled shader. 4620 */ 4621static void 4622iris_store_gs_state(const struct intel_device_info *devinfo, 4623 struct iris_compiled_shader *shader) 4624{ 4625 struct brw_stage_prog_data *prog_data = shader->prog_data; 4626 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data; 4627 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data; 4628 4629 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) { 4630 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY); 4631 4632 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1; 4633 gs.OutputTopology = gs_prog_data->output_topology; 4634 gs.ControlDataHeaderSize = 4635 gs_prog_data->control_data_header_size_hwords; 4636 gs.InstanceControl = gs_prog_data->invocations - 1; 4637 gs.DispatchMode = DISPATCH_MODE_SIMD8; 4638 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id; 4639 gs.ControlDataFormat = gs_prog_data->control_data_format; 4640 gs.ReorderMode = TRAILING; 4641 gs.ExpectedVertexCount = gs_prog_data->vertices_in; 4642 gs.MaximumNumberofThreads = 4643 GFX_VER == 8 ? (devinfo->max_gs_threads / 2 - 1) 4644 : (devinfo->max_gs_threads - 1); 4645 4646 if (gs_prog_data->static_vertex_count != -1) { 4647 gs.StaticOutput = true; 4648 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count; 4649 } 4650 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles; 4651 4652 gs.UserClipDistanceCullTestEnableBitmask = 4653 vue_prog_data->cull_distance_mask; 4654 4655 const int urb_entry_write_offset = 1; 4656 const uint32_t urb_entry_output_length = 4657 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) - 4658 urb_entry_write_offset; 4659 4660 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset; 4661 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1); 4662 } 4663} 4664 4665/** 4666 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader. 4667 */ 4668static void 4669iris_store_fs_state(const struct intel_device_info *devinfo, 4670 struct iris_compiled_shader *shader) 4671{ 4672 struct brw_stage_prog_data *prog_data = shader->prog_data; 4673 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data; 4674 4675 uint32_t *ps_state = (void *) shader->derived_data; 4676 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length); 4677 4678 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) { 4679 ps.VectorMaskEnable = wm_prog_data->uses_vmask; 4680 ps.BindingTableEntryCount = shader->bt.size_bytes / 4; 4681 ps.FloatingPointMode = prog_data->use_alt_mode; 4682 ps.MaximumNumberofThreadsPerPSD = 4683 devinfo->max_threads_per_psd - (GFX_VER == 8 ? 2 : 1); 4684 4685 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0; 4686 4687 /* From the documentation for this packet: 4688 * "If the PS kernel does not need the Position XY Offsets to 4689 * compute a Position Value, then this field should be programmed 4690 * to POSOFFSET_NONE." 4691 * 4692 * "SW Recommendation: If the PS kernel needs the Position Offsets 4693 * to compute a Position XY value, this field should match Position 4694 * ZW Interpolation Mode to ensure a consistent position.xyzw 4695 * computation." 4696 * 4697 * We only require XY sample offsets. So, this recommendation doesn't 4698 * look useful at the moment. We might need this in future. 4699 */ 4700 ps.PositionXYOffsetSelect = 4701 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE; 4702 4703 if (prog_data->total_scratch) { 4704 INIT_THREAD_SCRATCH_SIZE(ps); 4705 } 4706 } 4707 4708 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) { 4709 psx.PixelShaderValid = true; 4710 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode; 4711 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill; 4712 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0; 4713 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth; 4714 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w; 4715 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch; 4716 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask; 4717 4718#if GFX_VER >= 9 4719 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary; 4720 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil; 4721#endif 4722 } 4723} 4724 4725/** 4726 * Compute the size of the derived data (shader command packets). 4727 * 4728 * This must match the data written by the iris_store_xs_state() functions. 4729 */ 4730static void 4731iris_store_cs_state(const struct intel_device_info *devinfo, 4732 struct iris_compiled_shader *shader) 4733{ 4734 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data; 4735 void *map = shader->derived_data; 4736 4737 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) { 4738#if GFX_VERx10 < 125 4739 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs; 4740 desc.CrossThreadConstantDataReadLength = 4741 cs_prog_data->push.cross_thread.regs; 4742#else 4743 assert(cs_prog_data->push.per_thread.regs == 0); 4744 assert(cs_prog_data->push.cross_thread.regs == 0); 4745#endif 4746 desc.BarrierEnable = cs_prog_data->uses_barrier; 4747 desc.BindingTableEntryCount = MIN2(shader->bt.size_bytes / 4, 31); 4748#if GFX_VER >= 12 4749 /* TODO: Check if we are missing workarounds and enable mid-thread 4750 * preemption. 4751 * 4752 * We still have issues with mid-thread preemption (it was already 4753 * disabled by the kernel on gfx11, due to missing workarounds). It's 4754 * possible that we are just missing some workarounds, and could enable 4755 * it later, but for now let's disable it to fix a GPU in compute in Car 4756 * Chase (and possibly more). 4757 */ 4758 desc.ThreadPreemptionDisable = true; 4759#endif 4760 } 4761} 4762 4763static unsigned 4764iris_derived_program_state_size(enum iris_program_cache_id cache_id) 4765{ 4766 assert(cache_id <= IRIS_CACHE_BLORP); 4767 4768 static const unsigned dwords[] = { 4769 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length), 4770 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length), 4771 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length), 4772 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length), 4773 [IRIS_CACHE_FS] = 4774 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length), 4775 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length), 4776 [IRIS_CACHE_BLORP] = 0, 4777 }; 4778 4779 return sizeof(uint32_t) * dwords[cache_id]; 4780} 4781 4782/** 4783 * Create any state packets corresponding to the given shader stage 4784 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant. 4785 * This means that we can look up a program in the in-memory cache and 4786 * get most of the state packet without having to reconstruct it. 4787 */ 4788static void 4789iris_store_derived_program_state(const struct intel_device_info *devinfo, 4790 enum iris_program_cache_id cache_id, 4791 struct iris_compiled_shader *shader) 4792{ 4793 switch (cache_id) { 4794 case IRIS_CACHE_VS: 4795 iris_store_vs_state(devinfo, shader); 4796 break; 4797 case IRIS_CACHE_TCS: 4798 iris_store_tcs_state(devinfo, shader); 4799 break; 4800 case IRIS_CACHE_TES: 4801 iris_store_tes_state(devinfo, shader); 4802 break; 4803 case IRIS_CACHE_GS: 4804 iris_store_gs_state(devinfo, shader); 4805 break; 4806 case IRIS_CACHE_FS: 4807 iris_store_fs_state(devinfo, shader); 4808 break; 4809 case IRIS_CACHE_CS: 4810 iris_store_cs_state(devinfo, shader); 4811 break; 4812 case IRIS_CACHE_BLORP: 4813 break; 4814 } 4815} 4816 4817/* ------------------------------------------------------------------- */ 4818 4819static const uint32_t push_constant_opcodes[] = { 4820 [MESA_SHADER_VERTEX] = 21, 4821 [MESA_SHADER_TESS_CTRL] = 25, /* HS */ 4822 [MESA_SHADER_TESS_EVAL] = 26, /* DS */ 4823 [MESA_SHADER_GEOMETRY] = 22, 4824 [MESA_SHADER_FRAGMENT] = 23, 4825 [MESA_SHADER_COMPUTE] = 0, 4826}; 4827 4828static uint32_t 4829use_null_surface(struct iris_batch *batch, struct iris_context *ice) 4830{ 4831 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res); 4832 4833 iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE); 4834 4835 return ice->state.unbound_tex.offset; 4836} 4837 4838static uint32_t 4839use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice) 4840{ 4841 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */ 4842 if (!ice->state.null_fb.res) 4843 return use_null_surface(batch, ice); 4844 4845 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res); 4846 4847 iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE); 4848 4849 return ice->state.null_fb.offset; 4850} 4851 4852static uint32_t 4853surf_state_offset_for_aux(unsigned aux_modes, 4854 enum isl_aux_usage aux_usage) 4855{ 4856 assert(aux_modes & (1 << aux_usage)); 4857 return SURFACE_STATE_ALIGNMENT * 4858 util_bitcount(aux_modes & ((1 << aux_usage) - 1)); 4859} 4860 4861#if GFX_VER == 9 4862static void 4863surf_state_update_clear_value(struct iris_batch *batch, 4864 struct iris_resource *res, 4865 struct iris_surface_state *surf_state, 4866 enum isl_aux_usage aux_usage) 4867{ 4868 struct isl_device *isl_dev = &batch->screen->isl_dev; 4869 struct iris_bo *state_bo = iris_resource_bo(surf_state->ref.res); 4870 uint64_t real_offset = surf_state->ref.offset + IRIS_MEMZONE_BINDER_START; 4871 uint32_t offset_into_bo = real_offset - state_bo->address; 4872 uint32_t clear_offset = offset_into_bo + 4873 isl_dev->ss.clear_value_offset + 4874 surf_state_offset_for_aux(surf_state->aux_usages, aux_usage); 4875 uint32_t *color = res->aux.clear_color.u32; 4876 4877 assert(isl_dev->ss.clear_value_size == 16); 4878 4879 if (aux_usage == ISL_AUX_USAGE_HIZ) { 4880 iris_emit_pipe_control_write(batch, "update fast clear value (Z)", 4881 PIPE_CONTROL_WRITE_IMMEDIATE, 4882 state_bo, clear_offset, color[0]); 4883 } else { 4884 iris_emit_pipe_control_write(batch, "update fast clear color (RG__)", 4885 PIPE_CONTROL_WRITE_IMMEDIATE, 4886 state_bo, clear_offset, 4887 (uint64_t) color[0] | 4888 (uint64_t) color[1] << 32); 4889 iris_emit_pipe_control_write(batch, "update fast clear color (__BA)", 4890 PIPE_CONTROL_WRITE_IMMEDIATE, 4891 state_bo, clear_offset + 8, 4892 (uint64_t) color[2] | 4893 (uint64_t) color[3] << 32); 4894 } 4895 4896 iris_emit_pipe_control_flush(batch, 4897 "update fast clear: state cache invalidate", 4898 PIPE_CONTROL_FLUSH_ENABLE | 4899 PIPE_CONTROL_STATE_CACHE_INVALIDATE); 4900} 4901#endif 4902 4903static void 4904update_clear_value(struct iris_context *ice, 4905 struct iris_batch *batch, 4906 struct iris_resource *res, 4907 struct iris_surface_state *surf_state, 4908 struct isl_view *view) 4909{ 4910 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev; 4911 UNUSED unsigned aux_modes = surf_state->aux_usages; 4912 4913 /* We only need to update the clear color in the surface state for gfx8 and 4914 * gfx9. Newer gens can read it directly from the clear color state buffer. 4915 */ 4916#if GFX_VER == 9 4917 /* Skip updating the ISL_AUX_USAGE_NONE surface state */ 4918 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE); 4919 4920 while (aux_modes) { 4921 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes); 4922 4923 surf_state_update_clear_value(batch, res, surf_state, aux_usage); 4924 } 4925#elif GFX_VER == 8 4926 /* TODO: Could update rather than re-filling */ 4927 alloc_surface_states(surf_state, surf_state->aux_usages); 4928 4929 fill_surface_states(isl_dev, surf_state, res, &res->surf, view, 0, 0, 0); 4930 4931 upload_surface_states(ice->state.surface_uploader, surf_state); 4932#endif 4933} 4934 4935static uint32_t 4936use_surface_state(struct iris_batch *batch, 4937 struct iris_surface_state *surf_state, 4938 enum isl_aux_usage aux_usage) 4939{ 4940 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->ref.res), false, 4941 IRIS_DOMAIN_NONE); 4942 4943 return surf_state->ref.offset + 4944 surf_state_offset_for_aux(surf_state->aux_usages, aux_usage); 4945} 4946 4947/** 4948 * Add a surface to the validation list, as well as the buffer containing 4949 * the corresponding SURFACE_STATE. 4950 * 4951 * Returns the binding table entry (offset to SURFACE_STATE). 4952 */ 4953static uint32_t 4954use_surface(struct iris_context *ice, 4955 struct iris_batch *batch, 4956 struct pipe_surface *p_surf, 4957 bool writeable, 4958 enum isl_aux_usage aux_usage, 4959 bool is_read_surface, 4960 enum iris_domain access) 4961{ 4962 struct iris_surface *surf = (void *) p_surf; 4963 struct iris_resource *res = (void *) p_surf->texture; 4964 4965 if (GFX_VER == 8 && is_read_surface && !surf->surface_state_read.ref.res) { 4966 upload_surface_states(ice->state.surface_uploader, 4967 &surf->surface_state_read); 4968 } 4969 4970 if (!surf->surface_state.ref.res) { 4971 upload_surface_states(ice->state.surface_uploader, 4972 &surf->surface_state); 4973 } 4974 4975 if (memcmp(&res->aux.clear_color, &surf->clear_color, 4976 sizeof(surf->clear_color)) != 0) { 4977 update_clear_value(ice, batch, res, &surf->surface_state, &surf->view); 4978 if (GFX_VER == 8) { 4979 update_clear_value(ice, batch, res, &surf->surface_state_read, 4980 &surf->read_view); 4981 } 4982 surf->clear_color = res->aux.clear_color; 4983 } 4984 4985 if (res->aux.clear_color_bo) 4986 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false, access); 4987 4988 if (res->aux.bo) 4989 iris_use_pinned_bo(batch, res->aux.bo, writeable, access); 4990 4991 iris_use_pinned_bo(batch, res->bo, writeable, access); 4992 4993 if (GFX_VER == 8 && is_read_surface) { 4994 return use_surface_state(batch, &surf->surface_state_read, aux_usage); 4995 } else { 4996 return use_surface_state(batch, &surf->surface_state, aux_usage); 4997 } 4998} 4999 5000static uint32_t 5001use_sampler_view(struct iris_context *ice, 5002 struct iris_batch *batch, 5003 struct iris_sampler_view *isv) 5004{ 5005 enum isl_aux_usage aux_usage = 5006 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format); 5007 5008 if (!isv->surface_state.ref.res) 5009 upload_surface_states(ice->state.surface_uploader, &isv->surface_state); 5010 5011 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color, 5012 sizeof(isv->clear_color)) != 0) { 5013 update_clear_value(ice, batch, isv->res, &isv->surface_state, 5014 &isv->view); 5015 isv->clear_color = isv->res->aux.clear_color; 5016 } 5017 5018 if (isv->res->aux.clear_color_bo) { 5019 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, 5020 false, IRIS_DOMAIN_SAMPLER_READ); 5021 } 5022 5023 if (isv->res->aux.bo) { 5024 iris_use_pinned_bo(batch, isv->res->aux.bo, 5025 false, IRIS_DOMAIN_SAMPLER_READ); 5026 } 5027 5028 iris_use_pinned_bo(batch, isv->res->bo, false, IRIS_DOMAIN_SAMPLER_READ); 5029 5030 return use_surface_state(batch, &isv->surface_state, aux_usage); 5031} 5032 5033static uint32_t 5034use_ubo_ssbo(struct iris_batch *batch, 5035 struct iris_context *ice, 5036 struct pipe_shader_buffer *buf, 5037 struct iris_state_ref *surf_state, 5038 bool writable, enum iris_domain access) 5039{ 5040 if (!buf->buffer || !surf_state->res) 5041 return use_null_surface(batch, ice); 5042 5043 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable, access); 5044 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false, 5045 IRIS_DOMAIN_NONE); 5046 5047 return surf_state->offset; 5048} 5049 5050static uint32_t 5051use_image(struct iris_batch *batch, struct iris_context *ice, 5052 struct iris_shader_state *shs, const struct shader_info *info, 5053 int i) 5054{ 5055 struct iris_image_view *iv = &shs->image[i]; 5056 struct iris_resource *res = (void *) iv->base.resource; 5057 5058 if (!res) 5059 return use_null_surface(batch, ice); 5060 5061 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE; 5062 5063 iris_use_pinned_bo(batch, res->bo, write, IRIS_DOMAIN_NONE); 5064 5065 if (res->aux.bo) 5066 iris_use_pinned_bo(batch, res->aux.bo, write, IRIS_DOMAIN_NONE); 5067 5068 enum isl_aux_usage aux_usage = 5069 iris_image_view_aux_usage(ice, &iv->base, info); 5070 5071 return use_surface_state(batch, &iv->surface_state, aux_usage); 5072} 5073 5074#define push_bt_entry(addr) \ 5075 assert(addr >= surf_base_offset); \ 5076 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \ 5077 if (!pin_only) bt_map[s++] = (addr) - surf_base_offset; 5078 5079#define bt_assert(section) \ 5080 if (!pin_only && shader->bt.used_mask[section] != 0) \ 5081 assert(shader->bt.offsets[section] == s); 5082 5083/** 5084 * Populate the binding table for a given shader stage. 5085 * 5086 * This fills out the table of pointers to surfaces required by the shader, 5087 * and also adds those buffers to the validation list so the kernel can make 5088 * resident before running our batch. 5089 */ 5090static void 5091iris_populate_binding_table(struct iris_context *ice, 5092 struct iris_batch *batch, 5093 gl_shader_stage stage, 5094 bool pin_only) 5095{ 5096 const struct iris_binder *binder = &ice->state.binder; 5097 struct iris_compiled_shader *shader = ice->shaders.prog[stage]; 5098 if (!shader) 5099 return; 5100 5101 struct iris_binding_table *bt = &shader->bt; 5102 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data; 5103 struct iris_shader_state *shs = &ice->state.shaders[stage]; 5104 uint32_t surf_base_offset = GFX_VER < 11 ? binder->bo->address : 0; 5105 5106 uint32_t *bt_map = binder->map + binder->bt_offset[stage]; 5107 int s = 0; 5108 5109 const struct shader_info *info = iris_get_shader_info(ice, stage); 5110 if (!info) { 5111 /* TCS passthrough doesn't need a binding table. */ 5112 assert(stage == MESA_SHADER_TESS_CTRL); 5113 return; 5114 } 5115 5116 if (stage == MESA_SHADER_COMPUTE && 5117 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) { 5118 /* surface for gl_NumWorkGroups */ 5119 struct iris_state_ref *grid_data = &ice->state.grid_size; 5120 struct iris_state_ref *grid_state = &ice->state.grid_surf_state; 5121 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false, 5122 IRIS_DOMAIN_PULL_CONSTANT_READ); 5123 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false, 5124 IRIS_DOMAIN_NONE); 5125 push_bt_entry(grid_state->offset); 5126 } 5127 5128 if (stage == MESA_SHADER_FRAGMENT) { 5129 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; 5130 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */ 5131 if (cso_fb->nr_cbufs) { 5132 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) { 5133 uint32_t addr; 5134 if (cso_fb->cbufs[i]) { 5135 addr = use_surface(ice, batch, cso_fb->cbufs[i], true, 5136 ice->state.draw_aux_usage[i], false, 5137 IRIS_DOMAIN_RENDER_WRITE); 5138 } else { 5139 addr = use_null_fb_surface(batch, ice); 5140 } 5141 push_bt_entry(addr); 5142 } 5143 } else if (GFX_VER < 11) { 5144 uint32_t addr = use_null_fb_surface(batch, ice); 5145 push_bt_entry(addr); 5146 } 5147 } 5148 5149#define foreach_surface_used(index, group) \ 5150 bt_assert(group); \ 5151 for (int index = 0; index < bt->sizes[group]; index++) \ 5152 if (iris_group_index_to_bti(bt, group, index) != \ 5153 IRIS_SURFACE_NOT_USED) 5154 5155 foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) { 5156 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; 5157 uint32_t addr; 5158 if (cso_fb->cbufs[i]) { 5159 addr = use_surface(ice, batch, cso_fb->cbufs[i], 5160 false, ice->state.draw_aux_usage[i], true, 5161 IRIS_DOMAIN_SAMPLER_READ); 5162 push_bt_entry(addr); 5163 } 5164 } 5165 5166 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) { 5167 struct iris_sampler_view *view = shs->textures[i]; 5168 uint32_t addr = view ? use_sampler_view(ice, batch, view) 5169 : use_null_surface(batch, ice); 5170 push_bt_entry(addr); 5171 } 5172 5173 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) { 5174 uint32_t addr = use_image(batch, ice, shs, info, i); 5175 push_bt_entry(addr); 5176 } 5177 5178 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) { 5179 uint32_t addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i], 5180 &shs->constbuf_surf_state[i], false, 5181 IRIS_DOMAIN_PULL_CONSTANT_READ); 5182 push_bt_entry(addr); 5183 } 5184 5185 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) { 5186 uint32_t addr = 5187 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i], 5188 shs->writable_ssbos & (1u << i), IRIS_DOMAIN_NONE); 5189 push_bt_entry(addr); 5190 } 5191 5192#if 0 5193 /* XXX: YUV surfaces not implemented yet */ 5194 bt_assert(plane_start[1], ...); 5195 bt_assert(plane_start[2], ...); 5196#endif 5197} 5198 5199static void 5200iris_use_optional_res(struct iris_batch *batch, 5201 struct pipe_resource *res, 5202 bool writeable, 5203 enum iris_domain access) 5204{ 5205 if (res) { 5206 struct iris_bo *bo = iris_resource_bo(res); 5207 iris_use_pinned_bo(batch, bo, writeable, access); 5208 } 5209} 5210 5211static void 5212pin_depth_and_stencil_buffers(struct iris_batch *batch, 5213 struct pipe_surface *zsbuf, 5214 struct iris_depth_stencil_alpha_state *cso_zsa) 5215{ 5216 if (!zsbuf) 5217 return; 5218 5219 struct iris_resource *zres, *sres; 5220 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres); 5221 5222 if (zres) { 5223 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled, 5224 IRIS_DOMAIN_DEPTH_WRITE); 5225 if (zres->aux.bo) { 5226 iris_use_pinned_bo(batch, zres->aux.bo, 5227 cso_zsa->depth_writes_enabled, 5228 IRIS_DOMAIN_DEPTH_WRITE); 5229 } 5230 } 5231 5232 if (sres) { 5233 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled, 5234 IRIS_DOMAIN_DEPTH_WRITE); 5235 } 5236} 5237 5238static uint32_t 5239pin_scratch_space(struct iris_context *ice, 5240 struct iris_batch *batch, 5241 const struct brw_stage_prog_data *prog_data, 5242 gl_shader_stage stage) 5243{ 5244 uint32_t scratch_addr = 0; 5245 5246 if (prog_data->total_scratch > 0) { 5247 struct iris_bo *scratch_bo = 5248 iris_get_scratch_space(ice, prog_data->total_scratch, stage); 5249 iris_use_pinned_bo(batch, scratch_bo, true, IRIS_DOMAIN_NONE); 5250 5251#if GFX_VERx10 >= 125 5252 const struct iris_state_ref *ref = 5253 iris_get_scratch_surf(ice, prog_data->total_scratch); 5254 iris_use_pinned_bo(batch, iris_resource_bo(ref->res), 5255 false, IRIS_DOMAIN_NONE); 5256 scratch_addr = ref->offset + 5257 iris_resource_bo(ref->res)->address - 5258 IRIS_MEMZONE_BINDLESS_START; 5259 assert((scratch_addr & 0x3f) == 0 && scratch_addr < (1 << 26)); 5260#else 5261 scratch_addr = scratch_bo->address; 5262#endif 5263 } 5264 5265 return scratch_addr; 5266} 5267 5268/* ------------------------------------------------------------------- */ 5269 5270/** 5271 * Pin any BOs which were installed by a previous batch, and restored 5272 * via the hardware logical context mechanism. 5273 * 5274 * We don't need to re-emit all state every batch - the hardware context 5275 * mechanism will save and restore it for us. This includes pointers to 5276 * various BOs...which won't exist unless we ask the kernel to pin them 5277 * by adding them to the validation list. 5278 * 5279 * We can skip buffers if we've re-emitted those packets, as we're 5280 * overwriting those stale pointers with new ones, and don't actually 5281 * refer to the old BOs. 5282 */ 5283static void 5284iris_restore_render_saved_bos(struct iris_context *ice, 5285 struct iris_batch *batch, 5286 const struct pipe_draw_info *draw) 5287{ 5288 struct iris_genx_state *genx = ice->state.genx; 5289 5290 const uint64_t clean = ~ice->state.dirty; 5291 const uint64_t stage_clean = ~ice->state.stage_dirty; 5292 5293 if (clean & IRIS_DIRTY_CC_VIEWPORT) { 5294 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false, 5295 IRIS_DOMAIN_NONE); 5296 } 5297 5298 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) { 5299 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false, 5300 IRIS_DOMAIN_NONE); 5301 } 5302 5303 if (clean & IRIS_DIRTY_BLEND_STATE) { 5304 iris_use_optional_res(batch, ice->state.last_res.blend, false, 5305 IRIS_DOMAIN_NONE); 5306 } 5307 5308 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) { 5309 iris_use_optional_res(batch, ice->state.last_res.color_calc, false, 5310 IRIS_DOMAIN_NONE); 5311 } 5312 5313 if (clean & IRIS_DIRTY_SCISSOR_RECT) { 5314 iris_use_optional_res(batch, ice->state.last_res.scissor, false, 5315 IRIS_DOMAIN_NONE); 5316 } 5317 5318 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) { 5319 for (int i = 0; i < 4; i++) { 5320 struct iris_stream_output_target *tgt = 5321 (void *) ice->state.so_target[i]; 5322 if (tgt) { 5323 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer), 5324 true, IRIS_DOMAIN_OTHER_WRITE); 5325 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res), 5326 true, IRIS_DOMAIN_OTHER_WRITE); 5327 } 5328 } 5329 } 5330 5331 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) { 5332 if (!(stage_clean & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage))) 5333 continue; 5334 5335 struct iris_shader_state *shs = &ice->state.shaders[stage]; 5336 struct iris_compiled_shader *shader = ice->shaders.prog[stage]; 5337 5338 if (!shader) 5339 continue; 5340 5341 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data; 5342 5343 for (int i = 0; i < 4; i++) { 5344 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i]; 5345 5346 if (range->length == 0) 5347 continue; 5348 5349 /* Range block is a binding table index, map back to UBO index. */ 5350 unsigned block_index = iris_bti_to_group_index( 5351 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block); 5352 assert(block_index != IRIS_SURFACE_NOT_USED); 5353 5354 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index]; 5355 struct iris_resource *res = (void *) cbuf->buffer; 5356 5357 if (res) 5358 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ); 5359 else 5360 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false, 5361 IRIS_DOMAIN_OTHER_READ); 5362 } 5363 } 5364 5365 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) { 5366 if (stage_clean & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) { 5367 /* Re-pin any buffers referred to by the binding table. */ 5368 iris_populate_binding_table(ice, batch, stage, true); 5369 } 5370 } 5371 5372 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) { 5373 struct iris_shader_state *shs = &ice->state.shaders[stage]; 5374 struct pipe_resource *res = shs->sampler_table.res; 5375 if (res) 5376 iris_use_pinned_bo(batch, iris_resource_bo(res), false, 5377 IRIS_DOMAIN_NONE); 5378 } 5379 5380 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) { 5381 if (stage_clean & (IRIS_STAGE_DIRTY_VS << stage)) { 5382 struct iris_compiled_shader *shader = ice->shaders.prog[stage]; 5383 5384 if (shader) { 5385 struct iris_bo *bo = iris_resource_bo(shader->assembly.res); 5386 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE); 5387 5388 pin_scratch_space(ice, batch, shader->prog_data, stage); 5389 } 5390 } 5391 } 5392 5393 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) && 5394 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) { 5395 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; 5396 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa); 5397 } 5398 5399 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false, 5400 IRIS_DOMAIN_VF_READ); 5401 5402 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) { 5403 uint64_t bound = ice->state.bound_vertex_buffers; 5404 while (bound) { 5405 const int i = u_bit_scan64(&bound); 5406 struct pipe_resource *res = genx->vertex_buffers[i].resource; 5407 iris_use_pinned_bo(batch, iris_resource_bo(res), false, 5408 IRIS_DOMAIN_VF_READ); 5409 } 5410 } 5411 5412#if GFX_VERx10 == 125 5413 iris_use_pinned_bo(batch, iris_resource_bo(ice->state.pixel_hashing_tables), 5414 false, IRIS_DOMAIN_NONE); 5415#else 5416 assert(!ice->state.pixel_hashing_tables); 5417#endif 5418} 5419 5420static void 5421iris_restore_compute_saved_bos(struct iris_context *ice, 5422 struct iris_batch *batch, 5423 const struct pipe_grid_info *grid) 5424{ 5425 const uint64_t stage_clean = ~ice->state.stage_dirty; 5426 5427 const int stage = MESA_SHADER_COMPUTE; 5428 struct iris_shader_state *shs = &ice->state.shaders[stage]; 5429 5430 if (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) { 5431 /* Re-pin any buffers referred to by the binding table. */ 5432 iris_populate_binding_table(ice, batch, stage, true); 5433 } 5434 5435 struct pipe_resource *sampler_res = shs->sampler_table.res; 5436 if (sampler_res) 5437 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false, 5438 IRIS_DOMAIN_NONE); 5439 5440 if ((stage_clean & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS) && 5441 (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) && 5442 (stage_clean & IRIS_STAGE_DIRTY_CONSTANTS_CS) && 5443 (stage_clean & IRIS_STAGE_DIRTY_CS)) { 5444 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false, 5445 IRIS_DOMAIN_NONE); 5446 } 5447 5448 if (stage_clean & IRIS_STAGE_DIRTY_CS) { 5449 struct iris_compiled_shader *shader = ice->shaders.prog[stage]; 5450 5451 if (shader) { 5452 struct iris_bo *bo = iris_resource_bo(shader->assembly.res); 5453 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE); 5454 5455 if (GFX_VERx10 < 125) { 5456 struct iris_bo *curbe_bo = 5457 iris_resource_bo(ice->state.last_res.cs_thread_ids); 5458 iris_use_pinned_bo(batch, curbe_bo, false, IRIS_DOMAIN_NONE); 5459 } 5460 5461 pin_scratch_space(ice, batch, shader->prog_data, stage); 5462 } 5463 } 5464} 5465 5466/** 5467 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address. 5468 */ 5469static void 5470iris_update_binder_address(struct iris_batch *batch, 5471 struct iris_binder *binder) 5472{ 5473 if (batch->last_binder_address == binder->bo->address) 5474 return; 5475 5476 struct isl_device *isl_dev = &batch->screen->isl_dev; 5477 uint32_t mocs = isl_mocs(isl_dev, 0, false); 5478 5479 iris_batch_sync_region_start(batch); 5480 5481#if GFX_VER >= 11 5482 /* Use 3DSTATE_BINDING_TABLE_POOL_ALLOC on Icelake and later */ 5483 5484#if GFX_VERx10 == 120 5485 /* Wa_1607854226: 5486 * 5487 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline 5488 * mode by putting the pipeline temporarily in 3D mode.. 5489 */ 5490 if (batch->name == IRIS_BATCH_COMPUTE) 5491 emit_pipeline_select(batch, _3D); 5492#endif 5493 5494 iris_emit_pipe_control_flush(batch, "Stall for binder realloc", 5495 PIPE_CONTROL_CS_STALL); 5496 5497 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POOL_ALLOC), btpa) { 5498 btpa.BindingTablePoolBaseAddress = ro_bo(binder->bo, 0); 5499 btpa.BindingTablePoolBufferSize = binder->size / 4096; 5500#if GFX_VERx10 < 125 5501 btpa.BindingTablePoolEnable = true; 5502#endif 5503 btpa.MOCS = mocs; 5504 } 5505 5506#if GFX_VERx10 == 120 5507 /* Wa_1607854226: 5508 * 5509 * Put the pipeline back into compute mode. 5510 */ 5511 if (batch->name == IRIS_BATCH_COMPUTE) 5512 emit_pipeline_select(batch, GPGPU); 5513#endif 5514#else 5515 /* Use STATE_BASE_ADDRESS on older platforms */ 5516 flush_before_state_base_change(batch); 5517 5518 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) { 5519 sba.SurfaceStateBaseAddressModifyEnable = true; 5520 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0); 5521 5522 /* The hardware appears to pay attention to the MOCS fields even 5523 * if you don't set the "Address Modify Enable" bit for the base. 5524 */ 5525 sba.GeneralStateMOCS = mocs; 5526 sba.StatelessDataPortAccessMOCS = mocs; 5527 sba.DynamicStateMOCS = mocs; 5528 sba.IndirectObjectMOCS = mocs; 5529 sba.InstructionMOCS = mocs; 5530 sba.SurfaceStateMOCS = mocs; 5531#if GFX_VER >= 9 5532 sba.BindlessSurfaceStateMOCS = mocs; 5533#endif 5534 } 5535#endif 5536 5537 flush_after_state_base_change(batch); 5538 iris_batch_sync_region_end(batch); 5539 5540 batch->last_binder_address = binder->bo->address; 5541} 5542 5543static inline void 5544iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz, 5545 bool window_space_position, float *zmin, float *zmax) 5546{ 5547 if (window_space_position) { 5548 *zmin = 0.f; 5549 *zmax = 1.f; 5550 return; 5551 } 5552 util_viewport_zmin_zmax(vp, halfz, zmin, zmax); 5553} 5554 5555#if GFX_VER >= 12 5556void 5557genX(invalidate_aux_map_state)(struct iris_batch *batch) 5558{ 5559 struct iris_screen *screen = batch->screen; 5560 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr); 5561 if (!aux_map_ctx) 5562 return; 5563 uint32_t aux_map_state_num = intel_aux_map_get_state_num(aux_map_ctx); 5564 if (batch->last_aux_map_state != aux_map_state_num) { 5565 /* HSD 1209978178: docs say that before programming the aux table: 5566 * 5567 * "Driver must ensure that the engine is IDLE but ensure it doesn't 5568 * add extra flushes in the case it knows that the engine is already 5569 * IDLE." 5570 * 5571 * An end of pipe sync is needed here, otherwise we see GPU hangs in 5572 * dEQP-GLES31.functional.copy_image.* tests. 5573 */ 5574 iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table", 5575 PIPE_CONTROL_CS_STALL); 5576 5577 /* If the aux-map state number increased, then we need to rewrite the 5578 * register. Rewriting the register is used to both set the aux-map 5579 * translation table address, and also to invalidate any previously 5580 * cached translations. 5581 */ 5582 iris_load_register_imm32(batch, GENX(GFX_CCS_AUX_INV_num), 1); 5583 batch->last_aux_map_state = aux_map_state_num; 5584 } 5585} 5586 5587static void 5588init_aux_map_state(struct iris_batch *batch) 5589{ 5590 struct iris_screen *screen = batch->screen; 5591 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr); 5592 if (!aux_map_ctx) 5593 return; 5594 5595 uint64_t base_addr = intel_aux_map_get_base(aux_map_ctx); 5596 assert(base_addr != 0 && align64(base_addr, 32 * 1024) == base_addr); 5597 iris_load_register_imm64(batch, GENX(GFX_AUX_TABLE_BASE_ADDR_num), 5598 base_addr); 5599} 5600#endif 5601 5602struct push_bos { 5603 struct { 5604 struct iris_address addr; 5605 uint32_t length; 5606 } buffers[4]; 5607 int buffer_count; 5608 uint32_t max_length; 5609}; 5610 5611static void 5612setup_constant_buffers(struct iris_context *ice, 5613 struct iris_batch *batch, 5614 int stage, 5615 struct push_bos *push_bos) 5616{ 5617 struct iris_shader_state *shs = &ice->state.shaders[stage]; 5618 struct iris_compiled_shader *shader = ice->shaders.prog[stage]; 5619 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data; 5620 5621 uint32_t push_range_sum = 0; 5622 5623 int n = 0; 5624 for (int i = 0; i < 4; i++) { 5625 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i]; 5626 5627 if (range->length == 0) 5628 continue; 5629 5630 push_range_sum += range->length; 5631 5632 if (range->length > push_bos->max_length) 5633 push_bos->max_length = range->length; 5634 5635 /* Range block is a binding table index, map back to UBO index. */ 5636 unsigned block_index = iris_bti_to_group_index( 5637 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block); 5638 assert(block_index != IRIS_SURFACE_NOT_USED); 5639 5640 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index]; 5641 struct iris_resource *res = (void *) cbuf->buffer; 5642 5643 assert(cbuf->buffer_offset % 32 == 0); 5644 5645 if (res) 5646 iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_OTHER_READ); 5647 5648 push_bos->buffers[n].length = range->length; 5649 push_bos->buffers[n].addr = 5650 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset) 5651 : batch->screen->workaround_address; 5652 n++; 5653 } 5654 5655 /* From the 3DSTATE_CONSTANT_XS and 3DSTATE_CONSTANT_ALL programming notes: 5656 * 5657 * "The sum of all four read length fields must be less than or 5658 * equal to the size of 64." 5659 */ 5660 assert(push_range_sum <= 64); 5661 5662 push_bos->buffer_count = n; 5663} 5664 5665static void 5666emit_push_constant_packets(struct iris_context *ice, 5667 struct iris_batch *batch, 5668 int stage, 5669 const struct push_bos *push_bos) 5670{ 5671 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev; 5672 struct iris_compiled_shader *shader = ice->shaders.prog[stage]; 5673 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data; 5674 5675 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) { 5676 pkt._3DCommandSubOpcode = push_constant_opcodes[stage]; 5677 5678#if GFX_VER >= 9 5679 pkt.MOCS = isl_mocs(isl_dev, 0, false); 5680#endif 5681 5682 if (prog_data) { 5683 /* The Skylake PRM contains the following restriction: 5684 * 5685 * "The driver must ensure The following case does not occur 5686 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with 5687 * buffer 3 read length equal to zero committed followed by a 5688 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to 5689 * zero committed." 5690 * 5691 * To avoid this, we program the buffers in the highest slots. 5692 * This way, slot 0 is only used if slot 3 is also used. 5693 */ 5694 int n = push_bos->buffer_count; 5695 assert(n <= 4); 5696 const unsigned shift = 4 - n; 5697 for (int i = 0; i < n; i++) { 5698 pkt.ConstantBody.ReadLength[i + shift] = 5699 push_bos->buffers[i].length; 5700 pkt.ConstantBody.Buffer[i + shift] = push_bos->buffers[i].addr; 5701 } 5702 } 5703 } 5704} 5705 5706#if GFX_VER >= 12 5707static void 5708emit_push_constant_packet_all(struct iris_context *ice, 5709 struct iris_batch *batch, 5710 uint32_t shader_mask, 5711 const struct push_bos *push_bos) 5712{ 5713 struct isl_device *isl_dev = &batch->screen->isl_dev; 5714 5715 if (!push_bos) { 5716 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), pc) { 5717 pc.ShaderUpdateEnable = shader_mask; 5718 pc.MOCS = iris_mocs(NULL, isl_dev, 0); 5719 } 5720 return; 5721 } 5722 5723 const uint32_t n = push_bos->buffer_count; 5724 const uint32_t max_pointers = 4; 5725 const uint32_t num_dwords = 2 + 2 * n; 5726 uint32_t const_all[2 + 2 * max_pointers]; 5727 uint32_t *dw = &const_all[0]; 5728 5729 assert(n <= max_pointers); 5730 iris_pack_command(GENX(3DSTATE_CONSTANT_ALL), dw, all) { 5731 all.DWordLength = num_dwords - 2; 5732 all.MOCS = isl_mocs(isl_dev, 0, false); 5733 all.ShaderUpdateEnable = shader_mask; 5734 all.PointerBufferMask = (1 << n) - 1; 5735 } 5736 dw += 2; 5737 5738 for (int i = 0; i < n; i++) { 5739 _iris_pack_state(batch, GENX(3DSTATE_CONSTANT_ALL_DATA), 5740 dw + i * 2, data) { 5741 data.PointerToConstantBuffer = push_bos->buffers[i].addr; 5742 data.ConstantBufferReadLength = push_bos->buffers[i].length; 5743 } 5744 } 5745 iris_batch_emit(batch, const_all, sizeof(uint32_t) * num_dwords); 5746} 5747#endif 5748 5749void 5750genX(emit_depth_state_workarounds)(struct iris_context *ice, 5751 struct iris_batch *batch, 5752 const struct isl_surf *surf) 5753{ 5754#if GFX_VERx10 == 120 5755 const bool is_d16_1x_msaa = surf->format == ISL_FORMAT_R16_UNORM && 5756 surf->samples == 1; 5757 5758 switch (ice->state.genx->depth_reg_mode) { 5759 case IRIS_DEPTH_REG_MODE_HW_DEFAULT: 5760 if (!is_d16_1x_msaa) 5761 return; 5762 break; 5763 case IRIS_DEPTH_REG_MODE_D16_1X_MSAA: 5764 if (is_d16_1x_msaa) 5765 return; 5766 break; 5767 case IRIS_DEPTH_REG_MODE_UNKNOWN: 5768 break; 5769 } 5770 5771 /* We'll change some CHICKEN registers depending on the depth surface 5772 * format. Do a depth flush and stall so the pipeline is not using these 5773 * settings while we change the registers. 5774 */ 5775 iris_emit_end_of_pipe_sync(batch, 5776 "Workaround: Stop pipeline for 14010455700", 5777 PIPE_CONTROL_DEPTH_STALL | 5778 PIPE_CONTROL_DEPTH_CACHE_FLUSH); 5779 5780 /* Wa_14010455700 5781 * 5782 * To avoid sporadic corruptions “Set 0x7010[9] when Depth Buffer 5783 * Surface Format is D16_UNORM , surface type is not NULL & 1X_MSAA”. 5784 */ 5785 iris_emit_reg(batch, GENX(COMMON_SLICE_CHICKEN1), reg) { 5786 reg.HIZPlaneOptimizationdisablebit = is_d16_1x_msaa; 5787 reg.HIZPlaneOptimizationdisablebitMask = true; 5788 } 5789 5790 ice->state.genx->depth_reg_mode = 5791 is_d16_1x_msaa ? IRIS_DEPTH_REG_MODE_D16_1X_MSAA : 5792 IRIS_DEPTH_REG_MODE_HW_DEFAULT; 5793#endif 5794} 5795 5796static void 5797iris_upload_dirty_render_state(struct iris_context *ice, 5798 struct iris_batch *batch, 5799 const struct pipe_draw_info *draw) 5800{ 5801 struct iris_screen *screen = batch->screen; 5802 struct iris_border_color_pool *border_color_pool = 5803 iris_bufmgr_get_border_color_pool(screen->bufmgr); 5804 const uint64_t dirty = ice->state.dirty; 5805 const uint64_t stage_dirty = ice->state.stage_dirty; 5806 5807 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER) && 5808 !(stage_dirty & IRIS_ALL_STAGE_DIRTY_FOR_RENDER)) 5809 return; 5810 5811 struct iris_genx_state *genx = ice->state.genx; 5812 struct iris_binder *binder = &ice->state.binder; 5813 struct brw_wm_prog_data *wm_prog_data = (void *) 5814 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data; 5815 5816 if (dirty & IRIS_DIRTY_CC_VIEWPORT) { 5817 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast; 5818 uint32_t cc_vp_address; 5819 5820 /* XXX: could avoid streaming for depth_clip [0,1] case. */ 5821 uint32_t *cc_vp_map = 5822 stream_state(batch, ice->state.dynamic_uploader, 5823 &ice->state.last_res.cc_vp, 5824 4 * ice->state.num_viewports * 5825 GENX(CC_VIEWPORT_length), 32, &cc_vp_address); 5826 for (int i = 0; i < ice->state.num_viewports; i++) { 5827 float zmin, zmax; 5828 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz, 5829 ice->state.window_space_position, 5830 &zmin, &zmax); 5831 if (cso_rast->depth_clip_near) 5832 zmin = 0.0; 5833 if (cso_rast->depth_clip_far) 5834 zmax = 1.0; 5835 5836 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) { 5837 ccv.MinimumDepth = zmin; 5838 ccv.MaximumDepth = zmax; 5839 } 5840 5841 cc_vp_map += GENX(CC_VIEWPORT_length); 5842 } 5843 5844 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) { 5845 ptr.CCViewportPointer = cc_vp_address; 5846 } 5847 } 5848 5849 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) { 5850 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; 5851 uint32_t sf_cl_vp_address; 5852 uint32_t *vp_map = 5853 stream_state(batch, ice->state.dynamic_uploader, 5854 &ice->state.last_res.sf_cl_vp, 5855 4 * ice->state.num_viewports * 5856 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address); 5857 5858 for (unsigned i = 0; i < ice->state.num_viewports; i++) { 5859 const struct pipe_viewport_state *state = &ice->state.viewports[i]; 5860 float gb_xmin, gb_xmax, gb_ymin, gb_ymax; 5861 5862 float vp_xmin = viewport_extent(state, 0, -1.0f); 5863 float vp_xmax = viewport_extent(state, 0, 1.0f); 5864 float vp_ymin = viewport_extent(state, 1, -1.0f); 5865 float vp_ymax = viewport_extent(state, 1, 1.0f); 5866 5867 intel_calculate_guardband_size(0, cso_fb->width, 0, cso_fb->height, 5868 state->scale[0], state->scale[1], 5869 state->translate[0], state->translate[1], 5870 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax); 5871 5872 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) { 5873 vp.ViewportMatrixElementm00 = state->scale[0]; 5874 vp.ViewportMatrixElementm11 = state->scale[1]; 5875 vp.ViewportMatrixElementm22 = state->scale[2]; 5876 vp.ViewportMatrixElementm30 = state->translate[0]; 5877 vp.ViewportMatrixElementm31 = state->translate[1]; 5878 vp.ViewportMatrixElementm32 = state->translate[2]; 5879 vp.XMinClipGuardband = gb_xmin; 5880 vp.XMaxClipGuardband = gb_xmax; 5881 vp.YMinClipGuardband = gb_ymin; 5882 vp.YMaxClipGuardband = gb_ymax; 5883 vp.XMinViewPort = MAX2(vp_xmin, 0); 5884 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1; 5885 vp.YMinViewPort = MAX2(vp_ymin, 0); 5886 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1; 5887 } 5888 5889 vp_map += GENX(SF_CLIP_VIEWPORT_length); 5890 } 5891 5892 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) { 5893 ptr.SFClipViewportPointer = sf_cl_vp_address; 5894 } 5895 } 5896 5897 if (dirty & IRIS_DIRTY_URB) { 5898 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { 5899 if (!ice->shaders.prog[i]) { 5900 ice->shaders.urb.size[i] = 1; 5901 } else { 5902 struct brw_vue_prog_data *vue_prog_data = 5903 (void *) ice->shaders.prog[i]->prog_data; 5904 ice->shaders.urb.size[i] = vue_prog_data->urb_entry_size; 5905 } 5906 assert(ice->shaders.urb.size[i] != 0); 5907 } 5908 5909 intel_get_urb_config(&screen->devinfo, 5910 screen->l3_config_3d, 5911 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL, 5912 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL, 5913 ice->shaders.urb.size, 5914 ice->shaders.urb.entries, 5915 ice->shaders.urb.start, 5916 &ice->state.urb_deref_block_size, 5917 &ice->shaders.urb.constrained); 5918 5919 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { 5920 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) { 5921 urb._3DCommandSubOpcode += i; 5922 urb.VSURBStartingAddress = ice->shaders.urb.start[i]; 5923 urb.VSURBEntryAllocationSize = ice->shaders.urb.size[i] - 1; 5924 urb.VSNumberofURBEntries = ice->shaders.urb.entries[i]; 5925 } 5926 } 5927 } 5928 5929 if (dirty & IRIS_DIRTY_BLEND_STATE) { 5930 struct iris_blend_state *cso_blend = ice->state.cso_blend; 5931 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; 5932 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa; 5933 const int header_dwords = GENX(BLEND_STATE_length); 5934 5935 /* Always write at least one BLEND_STATE - the final RT message will 5936 * reference BLEND_STATE[0] even if there aren't color writes. There 5937 * may still be alpha testing, computed depth, and so on. 5938 */ 5939 const int rt_dwords = 5940 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length); 5941 5942 uint32_t blend_offset; 5943 uint32_t *blend_map = 5944 stream_state(batch, ice->state.dynamic_uploader, 5945 &ice->state.last_res.blend, 5946 4 * (header_dwords + rt_dwords), 64, &blend_offset); 5947 5948 uint32_t blend_state_header; 5949 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) { 5950 bs.AlphaTestEnable = cso_zsa->alpha_enabled; 5951 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha_func); 5952 } 5953 5954 blend_map[0] = blend_state_header | cso_blend->blend_state[0]; 5955 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords); 5956 5957 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) { 5958 ptr.BlendStatePointer = blend_offset; 5959 ptr.BlendStatePointerValid = true; 5960 } 5961 } 5962 5963 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) { 5964 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa; 5965#if GFX_VER == 8 5966 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref; 5967#endif 5968 uint32_t cc_offset; 5969 void *cc_map = 5970 stream_state(batch, ice->state.dynamic_uploader, 5971 &ice->state.last_res.color_calc, 5972 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length), 5973 64, &cc_offset); 5974 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) { 5975 cc.AlphaTestFormat = ALPHATEST_FLOAT32; 5976 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha_ref_value; 5977 cc.BlendConstantColorRed = ice->state.blend_color.color[0]; 5978 cc.BlendConstantColorGreen = ice->state.blend_color.color[1]; 5979 cc.BlendConstantColorBlue = ice->state.blend_color.color[2]; 5980 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3]; 5981#if GFX_VER == 8 5982 cc.StencilReferenceValue = p_stencil_refs->ref_value[0]; 5983 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1]; 5984#endif 5985 } 5986 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) { 5987 ptr.ColorCalcStatePointer = cc_offset; 5988 ptr.ColorCalcStatePointerValid = true; 5989 } 5990 } 5991 5992 /* Wa_1604061319 5993 * 5994 * 3DSTATE_CONSTANT_* needs to be programmed before BTP_* 5995 * 5996 * Testing shows that all the 3DSTATE_CONSTANT_XS need to be emitted if 5997 * any stage has a dirty binding table. 5998 */ 5999 const bool emit_const_wa = GFX_VER >= 11 && 6000 ((dirty & IRIS_DIRTY_RENDER_BUFFER) || 6001 (stage_dirty & IRIS_ALL_STAGE_DIRTY_BINDINGS_FOR_RENDER)); 6002 6003#if GFX_VER >= 12 6004 uint32_t nobuffer_stages = 0; 6005#endif 6006 6007 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) { 6008 if (!(stage_dirty & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)) && 6009 !emit_const_wa) 6010 continue; 6011 6012 struct iris_shader_state *shs = &ice->state.shaders[stage]; 6013 struct iris_compiled_shader *shader = ice->shaders.prog[stage]; 6014 6015 if (!shader) 6016 continue; 6017 6018 if (shs->sysvals_need_upload) 6019 upload_sysvals(ice, stage, NULL); 6020 6021 struct push_bos push_bos = {}; 6022 setup_constant_buffers(ice, batch, stage, &push_bos); 6023 6024#if GFX_VER >= 12 6025 /* If this stage doesn't have any push constants, emit it later in a 6026 * single CONSTANT_ALL packet with all the other stages. 6027 */ 6028 if (push_bos.buffer_count == 0) { 6029 nobuffer_stages |= 1 << stage; 6030 continue; 6031 } 6032 6033 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL 6034 * contains only 5 bits, so we can only use it for buffers smaller than 6035 * 32. 6036 */ 6037 if (push_bos.max_length < 32) { 6038 emit_push_constant_packet_all(ice, batch, 1 << stage, &push_bos); 6039 continue; 6040 } 6041#endif 6042 emit_push_constant_packets(ice, batch, stage, &push_bos); 6043 } 6044 6045#if GFX_VER >= 12 6046 if (nobuffer_stages) 6047 emit_push_constant_packet_all(ice, batch, nobuffer_stages, NULL); 6048#endif 6049 6050 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) { 6051 /* Gfx9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted 6052 * in order to commit constants. TODO: Investigate "Disable Gather 6053 * at Set Shader" to go back to legacy mode... 6054 */ 6055 if (stage_dirty & ((IRIS_STAGE_DIRTY_BINDINGS_VS | 6056 (GFX_VER == 9 ? IRIS_STAGE_DIRTY_CONSTANTS_VS : 0)) 6057 << stage)) { 6058 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) { 6059 ptr._3DCommandSubOpcode = 38 + stage; 6060 ptr.PointertoVSBindingTable = 6061 binder->bt_offset[stage] >> IRIS_BT_OFFSET_SHIFT; 6062 } 6063 } 6064 } 6065 6066 if (GFX_VER >= 11 && (dirty & IRIS_DIRTY_RENDER_BUFFER)) { 6067 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?) 6068 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6 6069 6070 /* The PIPE_CONTROL command description says: 6071 * 6072 * "Whenever a Binding Table Index (BTI) used by a Render Target 6073 * Message points to a different RENDER_SURFACE_STATE, SW must issue a 6074 * Render Target Cache Flush by enabling this bit. When render target 6075 * flush is set due to new association of BTI, PS Scoreboard Stall bit 6076 * must be set in this packet." 6077 */ 6078 // XXX: does this need to happen at 3DSTATE_BTP_PS time? 6079 iris_emit_pipe_control_flush(batch, "workaround: RT BTI change [draw]", 6080 PIPE_CONTROL_RENDER_TARGET_FLUSH | 6081 PIPE_CONTROL_STALL_AT_SCOREBOARD); 6082 } 6083 6084 if (dirty & IRIS_DIRTY_RENDER_BUFFER) 6085 trace_framebuffer_state(&batch->trace, NULL, &ice->state.framebuffer); 6086 6087 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) { 6088 if (stage_dirty & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) { 6089 iris_populate_binding_table(ice, batch, stage, false); 6090 } 6091 } 6092 6093 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) { 6094 if (!(stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage)) || 6095 !ice->shaders.prog[stage]) 6096 continue; 6097 6098 iris_upload_sampler_states(ice, stage); 6099 6100 struct iris_shader_state *shs = &ice->state.shaders[stage]; 6101 struct pipe_resource *res = shs->sampler_table.res; 6102 if (res) 6103 iris_use_pinned_bo(batch, iris_resource_bo(res), false, 6104 IRIS_DOMAIN_NONE); 6105 6106 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) { 6107 ptr._3DCommandSubOpcode = 43 + stage; 6108 ptr.PointertoVSSamplerState = shs->sampler_table.offset; 6109 } 6110 } 6111 6112 if (ice->state.need_border_colors) 6113 iris_use_pinned_bo(batch, border_color_pool->bo, false, IRIS_DOMAIN_NONE); 6114 6115 if (dirty & IRIS_DIRTY_MULTISAMPLE) { 6116 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) { 6117 ms.PixelLocation = 6118 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER; 6119 if (ice->state.framebuffer.samples > 0) 6120 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1; 6121 } 6122 } 6123 6124 if (dirty & IRIS_DIRTY_SAMPLE_MASK) { 6125 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) { 6126 ms.SampleMask = ice->state.sample_mask; 6127 } 6128 } 6129 6130 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) { 6131 if (!(stage_dirty & (IRIS_STAGE_DIRTY_VS << stage))) 6132 continue; 6133 6134 struct iris_compiled_shader *shader = ice->shaders.prog[stage]; 6135 6136 if (shader) { 6137 struct brw_stage_prog_data *prog_data = shader->prog_data; 6138 struct iris_resource *cache = (void *) shader->assembly.res; 6139 iris_use_pinned_bo(batch, cache->bo, false, IRIS_DOMAIN_NONE); 6140 6141 uint32_t scratch_addr = 6142 pin_scratch_space(ice, batch, prog_data, stage); 6143 6144 if (stage == MESA_SHADER_FRAGMENT) { 6145 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast; 6146 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; 6147 6148 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0}; 6149 _iris_pack_command(batch, GENX(3DSTATE_PS), ps_state, ps) { 6150 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8; 6151 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16; 6152 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32; 6153 6154 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say: 6155 * 6156 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, 6157 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch 6158 * mode." 6159 * 6160 * 16x MSAA only exists on Gfx9+, so we can skip this on Gfx8. 6161 */ 6162 if (GFX_VER >= 9 && cso_fb->samples == 16 && 6163 !wm_prog_data->persample_dispatch) { 6164 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable); 6165 ps._32PixelDispatchEnable = false; 6166 } 6167 6168 ps.DispatchGRFStartRegisterForConstantSetupData0 = 6169 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0); 6170 ps.DispatchGRFStartRegisterForConstantSetupData1 = 6171 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1); 6172 ps.DispatchGRFStartRegisterForConstantSetupData2 = 6173 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2); 6174 6175 ps.KernelStartPointer0 = KSP(shader) + 6176 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0); 6177 ps.KernelStartPointer1 = KSP(shader) + 6178 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1); 6179 ps.KernelStartPointer2 = KSP(shader) + 6180 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2); 6181 6182#if GFX_VERx10 >= 125 6183 ps.ScratchSpaceBuffer = scratch_addr >> 4; 6184#else 6185 ps.ScratchSpaceBasePointer = 6186 rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE); 6187#endif 6188 } 6189 6190 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0}; 6191 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) { 6192#if GFX_VER >= 9 6193 if (!wm_prog_data->uses_sample_mask) 6194 psx.InputCoverageMaskState = ICMS_NONE; 6195 else if (wm_prog_data->post_depth_coverage) 6196 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE; 6197 else if (wm_prog_data->inner_coverage && 6198 cso->conservative_rasterization) 6199 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE; 6200 else 6201 psx.InputCoverageMaskState = ICMS_NORMAL; 6202#else 6203 psx.PixelShaderUsesInputCoverageMask = 6204 wm_prog_data->uses_sample_mask; 6205#endif 6206 } 6207 6208 uint32_t *shader_ps = (uint32_t *) shader->derived_data; 6209 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length); 6210 iris_emit_merge(batch, shader_ps, ps_state, 6211 GENX(3DSTATE_PS_length)); 6212 iris_emit_merge(batch, shader_psx, psx_state, 6213 GENX(3DSTATE_PS_EXTRA_length)); 6214 } else if (scratch_addr) { 6215 uint32_t *pkt = (uint32_t *) shader->derived_data; 6216 switch (stage) { 6217 case MESA_SHADER_VERTEX: MERGE_SCRATCH_ADDR(3DSTATE_VS); break; 6218 case MESA_SHADER_TESS_CTRL: MERGE_SCRATCH_ADDR(3DSTATE_HS); break; 6219 case MESA_SHADER_TESS_EVAL: MERGE_SCRATCH_ADDR(3DSTATE_DS); break; 6220 case MESA_SHADER_GEOMETRY: MERGE_SCRATCH_ADDR(3DSTATE_GS); break; 6221 } 6222 } else { 6223 iris_batch_emit(batch, shader->derived_data, 6224 iris_derived_program_state_size(stage)); 6225 } 6226 } else { 6227 if (stage == MESA_SHADER_TESS_EVAL) { 6228 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs); 6229 iris_emit_cmd(batch, GENX(3DSTATE_TE), te); 6230 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds); 6231 } else if (stage == MESA_SHADER_GEOMETRY) { 6232 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs); 6233 } 6234 } 6235 } 6236 6237 if (ice->state.streamout_active) { 6238 if (dirty & IRIS_DIRTY_SO_BUFFERS) { 6239 /* Wa_16011411144 6240 * SW must insert a PIPE_CONTROL cmd before and after the 6241 * 3dstate_so_buffer_index_0/1/2/3 states to ensure so_buffer_index_* state is 6242 * not combined with other state changes. 6243 */ 6244 if (intel_device_info_is_dg2(&batch->screen->devinfo)) { 6245 iris_emit_pipe_control_flush(batch, 6246 "SO pre change stall WA", 6247 PIPE_CONTROL_CS_STALL); 6248 } 6249 6250 for (int i = 0; i < 4; i++) { 6251 struct iris_stream_output_target *tgt = 6252 (void *) ice->state.so_target[i]; 6253 enum { dwords = GENX(3DSTATE_SO_BUFFER_length) }; 6254 uint32_t *so_buffers = genx->so_buffers + i * dwords; 6255 bool zero_offset = false; 6256 6257 if (tgt) { 6258 zero_offset = tgt->zero_offset; 6259 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer), 6260 true, IRIS_DOMAIN_OTHER_WRITE); 6261 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res), 6262 true, IRIS_DOMAIN_OTHER_WRITE); 6263 } 6264 6265 if (zero_offset) { 6266 /* Skip the last DWord which contains "Stream Offset" of 6267 * 0xFFFFFFFF and instead emit a dword of zero directly. 6268 */ 6269 STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_StreamOffset_start) == 6270 32 * (dwords - 1)); 6271 const uint32_t zero = 0; 6272 iris_batch_emit(batch, so_buffers, 4 * (dwords - 1)); 6273 iris_batch_emit(batch, &zero, sizeof(zero)); 6274 tgt->zero_offset = false; 6275 } else { 6276 iris_batch_emit(batch, so_buffers, 4 * dwords); 6277 } 6278 } 6279 6280 /* Wa_16011411144 */ 6281 if (intel_device_info_is_dg2(&batch->screen->devinfo)) { 6282 iris_emit_pipe_control_flush(batch, 6283 "SO post change stall WA", 6284 PIPE_CONTROL_CS_STALL); 6285 } 6286 } 6287 6288 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) { 6289 /* Wa_16011773973: 6290 * If SOL is enabled and SO_DECL state has to be programmed, 6291 * 1. Send 3D State SOL state with SOL disabled 6292 * 2. Send SO_DECL NP state 6293 * 3. Send 3D State SOL with SOL Enabled 6294 */ 6295 if (intel_device_info_is_dg2(&batch->screen->devinfo)) 6296 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol); 6297 6298 uint32_t *decl_list = 6299 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length); 6300 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2)); 6301 } 6302 6303 if (dirty & IRIS_DIRTY_STREAMOUT) { 6304 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast; 6305 6306 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)]; 6307 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) { 6308 sol.SOFunctionEnable = true; 6309 sol.SOStatisticsEnable = true; 6310 6311 sol.RenderingDisable = cso_rast->rasterizer_discard && 6312 !ice->state.prims_generated_query_active; 6313 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING; 6314 } 6315 6316 assert(ice->state.streamout); 6317 6318 iris_emit_merge(batch, ice->state.streamout, dynamic_sol, 6319 GENX(3DSTATE_STREAMOUT_length)); 6320 } 6321 } else { 6322 if (dirty & IRIS_DIRTY_STREAMOUT) { 6323 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol); 6324 } 6325 } 6326 6327 if (dirty & IRIS_DIRTY_CLIP) { 6328 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast; 6329 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; 6330 6331 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] || 6332 ice->shaders.prog[MESA_SHADER_TESS_EVAL]; 6333 bool points_or_lines = cso_rast->fill_mode_point_or_line || 6334 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines 6335 : ice->state.prim_is_points_or_lines); 6336 6337 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)]; 6338 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) { 6339 cl.StatisticsEnable = ice->state.statistics_counters_enabled; 6340 if (cso_rast->rasterizer_discard) 6341 cl.ClipMode = CLIPMODE_REJECT_ALL; 6342 else if (ice->state.window_space_position) 6343 cl.ClipMode = CLIPMODE_ACCEPT_ALL; 6344 else 6345 cl.ClipMode = CLIPMODE_NORMAL; 6346 6347 cl.PerspectiveDivideDisable = ice->state.window_space_position; 6348 cl.ViewportXYClipTestEnable = !points_or_lines; 6349 6350 cl.NonPerspectiveBarycentricEnable = wm_prog_data->uses_nonperspective_interp_modes; 6351 6352 cl.ForceZeroRTAIndexEnable = cso_fb->layers <= 1; 6353 cl.MaximumVPIndex = ice->state.num_viewports - 1; 6354 } 6355 iris_emit_merge(batch, cso_rast->clip, dynamic_clip, 6356 ARRAY_SIZE(cso_rast->clip)); 6357 } 6358 6359 if (dirty & (IRIS_DIRTY_RASTER | IRIS_DIRTY_URB)) { 6360 struct iris_rasterizer_state *cso = ice->state.cso_rast; 6361 iris_batch_emit(batch, cso->raster, sizeof(cso->raster)); 6362 6363 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)]; 6364 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) { 6365 sf.ViewportTransformEnable = !ice->state.window_space_position; 6366 6367#if GFX_VER >= 12 6368 sf.DerefBlockSize = ice->state.urb_deref_block_size; 6369#endif 6370 } 6371 iris_emit_merge(batch, cso->sf, dynamic_sf, 6372 ARRAY_SIZE(dynamic_sf)); 6373 } 6374 6375 if (dirty & IRIS_DIRTY_WM) { 6376 struct iris_rasterizer_state *cso = ice->state.cso_rast; 6377 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)]; 6378 6379 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) { 6380 wm.StatisticsEnable = ice->state.statistics_counters_enabled; 6381 6382 wm.BarycentricInterpolationMode = 6383 wm_prog_data->barycentric_interp_modes; 6384 6385 if (wm_prog_data->early_fragment_tests) 6386 wm.EarlyDepthStencilControl = EDSC_PREPS; 6387 else if (wm_prog_data->has_side_effects) 6388 wm.EarlyDepthStencilControl = EDSC_PSEXEC; 6389 else 6390 wm.EarlyDepthStencilControl = EDSC_NORMAL; 6391 6392 /* We could skip this bit if color writes are enabled. */ 6393 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill) 6394 wm.ForceThreadDispatchEnable = ForceON; 6395 } 6396 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm)); 6397 } 6398 6399 if (dirty & IRIS_DIRTY_SBE) { 6400 iris_emit_sbe(batch, ice); 6401 } 6402 6403 if (dirty & IRIS_DIRTY_PS_BLEND) { 6404 struct iris_blend_state *cso_blend = ice->state.cso_blend; 6405 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa; 6406 const struct shader_info *fs_info = 6407 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT); 6408 6409 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)]; 6410 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) { 6411 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info); 6412 pb.AlphaTestEnable = cso_zsa->alpha_enabled; 6413 6414 /* The dual source blending docs caution against using SRC1 factors 6415 * when the shader doesn't use a dual source render target write. 6416 * Empirically, this can lead to GPU hangs, and the results are 6417 * undefined anyway, so simply disable blending to avoid the hang. 6418 */ 6419 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) && 6420 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend); 6421 } 6422 6423 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb, 6424 ARRAY_SIZE(cso_blend->ps_blend)); 6425 } 6426 6427 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) { 6428 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa; 6429#if GFX_VER >= 9 && GFX_VER < 12 6430 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref; 6431 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)]; 6432 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) { 6433 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0]; 6434 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1]; 6435 } 6436 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds)); 6437#else 6438 /* Use modify disable fields which allow us to emit packets 6439 * directly instead of merging them later. 6440 */ 6441 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds)); 6442#endif 6443 6444#if GFX_VER >= 12 6445 iris_batch_emit(batch, cso->depth_bounds, sizeof(cso->depth_bounds)); 6446#endif 6447 } 6448 6449 if (dirty & IRIS_DIRTY_STENCIL_REF) { 6450#if GFX_VER >= 12 6451 /* Use modify disable fields which allow us to emit packets 6452 * directly instead of merging them later. 6453 */ 6454 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref; 6455 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)]; 6456 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) { 6457 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0]; 6458 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1]; 6459 wmds.StencilTestMaskModifyDisable = true; 6460 wmds.StencilWriteMaskModifyDisable = true; 6461 wmds.StencilStateModifyDisable = true; 6462 wmds.DepthStateModifyDisable = true; 6463 } 6464 iris_batch_emit(batch, stencil_refs, sizeof(stencil_refs)); 6465#endif 6466 } 6467 6468 if (dirty & IRIS_DIRTY_SCISSOR_RECT) { 6469 /* Wa_1409725701: 6470 * "The viewport-specific state used by the SF unit (SCISSOR_RECT) is 6471 * stored as an array of up to 16 elements. The location of first 6472 * element of the array, as specified by Pointer to SCISSOR_RECT, 6473 * should be aligned to a 64-byte boundary. 6474 */ 6475 uint32_t alignment = 64; 6476 uint32_t scissor_offset = 6477 emit_state(batch, ice->state.dynamic_uploader, 6478 &ice->state.last_res.scissor, 6479 ice->state.scissors, 6480 sizeof(struct pipe_scissor_state) * 6481 ice->state.num_viewports, alignment); 6482 6483 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) { 6484 ptr.ScissorRectPointer = scissor_offset; 6485 } 6486 } 6487 6488 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) { 6489 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer; 6490 6491 /* Do not emit the cso yet. We may need to update clear params first. */ 6492 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; 6493 struct iris_resource *zres = NULL, *sres = NULL; 6494 if (cso_fb->zsbuf) { 6495 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture, 6496 &zres, &sres); 6497 } 6498 6499 if (zres && ice->state.hiz_usage != ISL_AUX_USAGE_NONE) { 6500 uint32_t *clear_params = 6501 cso_z->packets + ARRAY_SIZE(cso_z->packets) - 6502 GENX(3DSTATE_CLEAR_PARAMS_length); 6503 6504 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) { 6505 clear.DepthClearValueValid = true; 6506 clear.DepthClearValue = zres->aux.clear_color.f32[0]; 6507 } 6508 } 6509 6510 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets)); 6511 6512 if (zres) 6513 genX(emit_depth_state_workarounds)(ice, batch, &zres->surf); 6514 6515 if (GFX_VER >= 12) { 6516 /* Wa_1408224581 6517 * 6518 * Workaround: Gfx12LP Astep only An additional pipe control with 6519 * post-sync = store dword operation would be required.( w/a is to 6520 * have an additional pipe control after the stencil state whenever 6521 * the surface state bits of this state is changing). 6522 * 6523 * This also seems sufficient to handle Wa_14014148106. 6524 */ 6525 iris_emit_pipe_control_write(batch, "WA for stencil state", 6526 PIPE_CONTROL_WRITE_IMMEDIATE, 6527 screen->workaround_address.bo, 6528 screen->workaround_address.offset, 0); 6529 } 6530 } 6531 6532 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) { 6533 /* Listen for buffer changes, and also write enable changes. */ 6534 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer; 6535 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa); 6536 } 6537 6538 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) { 6539 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) { 6540 for (int i = 0; i < 32; i++) { 6541 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i]; 6542 } 6543 } 6544 } 6545 6546 if (dirty & IRIS_DIRTY_LINE_STIPPLE) { 6547 struct iris_rasterizer_state *cso = ice->state.cso_rast; 6548 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple)); 6549 } 6550 6551 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) { 6552 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) { 6553 topo.PrimitiveTopologyType = 6554 translate_prim_type(draw->mode, ice->state.vertices_per_patch); 6555 } 6556 } 6557 6558 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) { 6559 int count = util_bitcount64(ice->state.bound_vertex_buffers); 6560 uint64_t dynamic_bound = ice->state.bound_vertex_buffers; 6561 6562 if (ice->state.vs_uses_draw_params) { 6563 assert(ice->draw.draw_params.res); 6564 6565 struct iris_vertex_buffer_state *state = 6566 &(ice->state.genx->vertex_buffers[count]); 6567 pipe_resource_reference(&state->resource, ice->draw.draw_params.res); 6568 struct iris_resource *res = (void *) state->resource; 6569 6570 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) { 6571 vb.VertexBufferIndex = count; 6572 vb.AddressModifyEnable = true; 6573 vb.BufferPitch = 0; 6574 vb.BufferSize = res->bo->size - ice->draw.draw_params.offset; 6575 vb.BufferStartingAddress = 6576 ro_bo(NULL, res->bo->address + 6577 (int) ice->draw.draw_params.offset); 6578 vb.MOCS = iris_mocs(res->bo, &screen->isl_dev, 6579 ISL_SURF_USAGE_VERTEX_BUFFER_BIT); 6580#if GFX_VER >= 12 6581 vb.L3BypassDisable = true; 6582#endif 6583 } 6584 dynamic_bound |= 1ull << count; 6585 count++; 6586 } 6587 6588 if (ice->state.vs_uses_derived_draw_params) { 6589 struct iris_vertex_buffer_state *state = 6590 &(ice->state.genx->vertex_buffers[count]); 6591 pipe_resource_reference(&state->resource, 6592 ice->draw.derived_draw_params.res); 6593 struct iris_resource *res = (void *) ice->draw.derived_draw_params.res; 6594 6595 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) { 6596 vb.VertexBufferIndex = count; 6597 vb.AddressModifyEnable = true; 6598 vb.BufferPitch = 0; 6599 vb.BufferSize = 6600 res->bo->size - ice->draw.derived_draw_params.offset; 6601 vb.BufferStartingAddress = 6602 ro_bo(NULL, res->bo->address + 6603 (int) ice->draw.derived_draw_params.offset); 6604 vb.MOCS = iris_mocs(res->bo, &screen->isl_dev, 6605 ISL_SURF_USAGE_VERTEX_BUFFER_BIT); 6606#if GFX_VER >= 12 6607 vb.L3BypassDisable = true; 6608#endif 6609 } 6610 dynamic_bound |= 1ull << count; 6611 count++; 6612 } 6613 6614 if (count) { 6615#if GFX_VER >= 11 6616 /* Gfx11+ doesn't need the cache workaround below */ 6617 uint64_t bound = dynamic_bound; 6618 while (bound) { 6619 const int i = u_bit_scan64(&bound); 6620 iris_use_optional_res(batch, genx->vertex_buffers[i].resource, 6621 false, IRIS_DOMAIN_VF_READ); 6622 } 6623#else 6624 /* The VF cache designers cut corners, and made the cache key's 6625 * <VertexBufferIndex, Memory Address> tuple only consider the bottom 6626 * 32 bits of the address. If you have two vertex buffers which get 6627 * placed exactly 4 GiB apart and use them in back-to-back draw calls, 6628 * you can get collisions (even within a single batch). 6629 * 6630 * So, we need to do a VF cache invalidate if the buffer for a VB 6631 * slot slot changes [48:32] address bits from the previous time. 6632 */ 6633 unsigned flush_flags = 0; 6634 6635 uint64_t bound = dynamic_bound; 6636 while (bound) { 6637 const int i = u_bit_scan64(&bound); 6638 uint16_t high_bits = 0; 6639 6640 struct iris_resource *res = 6641 (void *) genx->vertex_buffers[i].resource; 6642 if (res) { 6643 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_VF_READ); 6644 6645 high_bits = res->bo->address >> 32ull; 6646 if (high_bits != ice->state.last_vbo_high_bits[i]) { 6647 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE | 6648 PIPE_CONTROL_CS_STALL; 6649 ice->state.last_vbo_high_bits[i] = high_bits; 6650 } 6651 } 6652 } 6653 6654 if (flush_flags) { 6655 iris_emit_pipe_control_flush(batch, 6656 "workaround: VF cache 32-bit key [VB]", 6657 flush_flags); 6658 } 6659#endif 6660 6661 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length); 6662 6663 uint32_t *map = 6664 iris_get_command_space(batch, 4 * (1 + vb_dwords * count)); 6665 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) { 6666 vb.DWordLength = (vb_dwords * count + 1) - 2; 6667 } 6668 map += 1; 6669 6670 bound = dynamic_bound; 6671 while (bound) { 6672 const int i = u_bit_scan64(&bound); 6673 memcpy(map, genx->vertex_buffers[i].state, 6674 sizeof(uint32_t) * vb_dwords); 6675 map += vb_dwords; 6676 } 6677 } 6678 } 6679 6680 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) { 6681 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements; 6682 const unsigned entries = MAX2(cso->count, 1); 6683 if (!(ice->state.vs_needs_sgvs_element || 6684 ice->state.vs_uses_derived_draw_params || 6685 ice->state.vs_needs_edge_flag)) { 6686 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) * 6687 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length))); 6688 } else { 6689 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)]; 6690 const unsigned dyn_count = cso->count + 6691 ice->state.vs_needs_sgvs_element + 6692 ice->state.vs_uses_derived_draw_params; 6693 6694 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), 6695 &dynamic_ves, ve) { 6696 ve.DWordLength = 6697 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2; 6698 } 6699 memcpy(&dynamic_ves[1], &cso->vertex_elements[1], 6700 (cso->count - ice->state.vs_needs_edge_flag) * 6701 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t)); 6702 uint32_t *ve_pack_dest = 6703 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) * 6704 GENX(VERTEX_ELEMENT_STATE_length)]; 6705 6706 if (ice->state.vs_needs_sgvs_element) { 6707 uint32_t base_ctrl = ice->state.vs_uses_draw_params ? 6708 VFCOMP_STORE_SRC : VFCOMP_STORE_0; 6709 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) { 6710 ve.Valid = true; 6711 ve.VertexBufferIndex = 6712 util_bitcount64(ice->state.bound_vertex_buffers); 6713 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT; 6714 ve.Component0Control = base_ctrl; 6715 ve.Component1Control = base_ctrl; 6716 ve.Component2Control = VFCOMP_STORE_0; 6717 ve.Component3Control = VFCOMP_STORE_0; 6718 } 6719 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length); 6720 } 6721 if (ice->state.vs_uses_derived_draw_params) { 6722 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) { 6723 ve.Valid = true; 6724 ve.VertexBufferIndex = 6725 util_bitcount64(ice->state.bound_vertex_buffers) + 6726 ice->state.vs_uses_draw_params; 6727 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT; 6728 ve.Component0Control = VFCOMP_STORE_SRC; 6729 ve.Component1Control = VFCOMP_STORE_SRC; 6730 ve.Component2Control = VFCOMP_STORE_0; 6731 ve.Component3Control = VFCOMP_STORE_0; 6732 } 6733 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length); 6734 } 6735 if (ice->state.vs_needs_edge_flag) { 6736 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++) 6737 ve_pack_dest[i] = cso->edgeflag_ve[i]; 6738 } 6739 6740 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) * 6741 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length))); 6742 } 6743 6744 if (!ice->state.vs_needs_edge_flag) { 6745 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) * 6746 entries * GENX(3DSTATE_VF_INSTANCING_length)); 6747 } else { 6748 assert(cso->count > 0); 6749 const unsigned edgeflag_index = cso->count - 1; 6750 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)]; 6751 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index * 6752 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t)); 6753 6754 uint32_t *vfi_pack_dest = &dynamic_vfi[0] + 6755 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length); 6756 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) { 6757 vi.VertexElementIndex = edgeflag_index + 6758 ice->state.vs_needs_sgvs_element + 6759 ice->state.vs_uses_derived_draw_params; 6760 } 6761 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++) 6762 vfi_pack_dest[i] |= cso->edgeflag_vfi[i]; 6763 6764 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) * 6765 entries * GENX(3DSTATE_VF_INSTANCING_length)); 6766 } 6767 } 6768 6769 if (dirty & IRIS_DIRTY_VF_SGVS) { 6770 const struct brw_vs_prog_data *vs_prog_data = (void *) 6771 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data; 6772 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements; 6773 6774 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) { 6775 if (vs_prog_data->uses_vertexid) { 6776 sgv.VertexIDEnable = true; 6777 sgv.VertexIDComponentNumber = 2; 6778 sgv.VertexIDElementOffset = 6779 cso->count - ice->state.vs_needs_edge_flag; 6780 } 6781 6782 if (vs_prog_data->uses_instanceid) { 6783 sgv.InstanceIDEnable = true; 6784 sgv.InstanceIDComponentNumber = 3; 6785 sgv.InstanceIDElementOffset = 6786 cso->count - ice->state.vs_needs_edge_flag; 6787 } 6788 } 6789 } 6790 6791 if (dirty & IRIS_DIRTY_VF) { 6792 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) { 6793#if GFX_VERx10 >= 125 6794 vf.GeometryDistributionEnable = true; 6795#endif 6796 if (draw->primitive_restart) { 6797 vf.IndexedDrawCutIndexEnable = true; 6798 vf.CutIndex = draw->restart_index; 6799 } 6800 } 6801 } 6802 6803#if GFX_VERx10 >= 125 6804 if (dirty & IRIS_DIRTY_VFG) { 6805 iris_emit_cmd(batch, GENX(3DSTATE_VFG), vfg) { 6806 /* If 3DSTATE_TE: TE Enable == 1 then RR_STRICT else RR_FREE*/ 6807 vfg.DistributionMode = 6808 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL ? RR_STRICT : 6809 RR_FREE; 6810 vfg.DistributionGranularity = BatchLevelGranularity; 6811 /* Wa_14014890652 */ 6812 if (intel_device_info_is_dg2(&batch->screen->devinfo)) 6813 vfg.GranularityThresholdDisable = 1; 6814 vfg.ListCutIndexEnable = draw->primitive_restart; 6815 /* 192 vertices for TRILIST_ADJ */ 6816 vfg.ListNBatchSizeScale = 0; 6817 /* Batch size of 384 vertices */ 6818 vfg.List3BatchSizeScale = 2; 6819 /* Batch size of 128 vertices */ 6820 vfg.List2BatchSizeScale = 1; 6821 /* Batch size of 128 vertices */ 6822 vfg.List1BatchSizeScale = 2; 6823 /* Batch size of 256 vertices for STRIP topologies */ 6824 vfg.StripBatchSizeScale = 3; 6825 /* 192 control points for PATCHLIST_3 */ 6826 vfg.PatchBatchSizeScale = 1; 6827 /* 192 control points for PATCHLIST_3 */ 6828 vfg.PatchBatchSizeMultiplier = 31; 6829 } 6830 } 6831#endif 6832 6833 if (dirty & IRIS_DIRTY_VF_STATISTICS) { 6834 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) { 6835 vf.StatisticsEnable = true; 6836 } 6837 } 6838 6839#if GFX_VER == 8 6840 if (dirty & IRIS_DIRTY_PMA_FIX) { 6841 bool enable = want_pma_fix(ice); 6842 genX(update_pma_fix)(ice, batch, enable); 6843 } 6844#endif 6845 6846 if (ice->state.current_hash_scale != 1) 6847 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1); 6848 6849#if GFX_VER >= 12 6850 genX(invalidate_aux_map_state)(batch); 6851#endif 6852} 6853 6854static void 6855flush_vbos(struct iris_context *ice, struct iris_batch *batch) 6856{ 6857 struct iris_genx_state *genx = ice->state.genx; 6858 uint64_t bound = ice->state.bound_vertex_buffers; 6859 while (bound) { 6860 const int i = u_bit_scan64(&bound); 6861 struct iris_bo *bo = iris_resource_bo(genx->vertex_buffers[i].resource); 6862 iris_emit_buffer_barrier_for(batch, bo, IRIS_DOMAIN_VF_READ); 6863 } 6864} 6865 6866static void 6867iris_upload_render_state(struct iris_context *ice, 6868 struct iris_batch *batch, 6869 const struct pipe_draw_info *draw, 6870 unsigned drawid_offset, 6871 const struct pipe_draw_indirect_info *indirect, 6872 const struct pipe_draw_start_count_bias *sc) 6873{ 6874 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT; 6875 6876 trace_intel_begin_draw(&batch->trace); 6877 6878 if (ice->state.dirty & IRIS_DIRTY_VERTEX_BUFFER_FLUSHES) 6879 flush_vbos(ice, batch); 6880 6881 iris_batch_sync_region_start(batch); 6882 6883 /* Always pin the binder. If we're emitting new binding table pointers, 6884 * we need it. If not, we're probably inheriting old tables via the 6885 * context, and need it anyway. Since true zero-bindings cases are 6886 * practically non-existent, just pin it and avoid last_res tracking. 6887 */ 6888 iris_use_pinned_bo(batch, ice->state.binder.bo, false, 6889 IRIS_DOMAIN_NONE); 6890 6891 if (!batch->contains_draw) { 6892 if (GFX_VER == 12) { 6893 /* Re-emit constants when starting a new batch buffer in order to 6894 * work around push constant corruption on context switch. 6895 * 6896 * XXX - Provide hardware spec quotation when available. 6897 */ 6898 ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_CONSTANTS_VS | 6899 IRIS_STAGE_DIRTY_CONSTANTS_TCS | 6900 IRIS_STAGE_DIRTY_CONSTANTS_TES | 6901 IRIS_STAGE_DIRTY_CONSTANTS_GS | 6902 IRIS_STAGE_DIRTY_CONSTANTS_FS); 6903 } 6904 batch->contains_draw = true; 6905 } 6906 6907 if (!batch->contains_draw_with_next_seqno) { 6908 iris_restore_render_saved_bos(ice, batch, draw); 6909 batch->contains_draw_with_next_seqno = true; 6910 } 6911 6912 iris_upload_dirty_render_state(ice, batch, draw); 6913 6914 if (draw->index_size > 0) { 6915 unsigned offset; 6916 6917 if (draw->has_user_indices) { 6918 unsigned start_offset = draw->index_size * sc->start; 6919 6920 u_upload_data(ice->ctx.const_uploader, start_offset, 6921 sc->count * draw->index_size, 4, 6922 (char*)draw->index.user + start_offset, 6923 &offset, &ice->state.last_res.index_buffer); 6924 offset -= start_offset; 6925 } else { 6926 struct iris_resource *res = (void *) draw->index.resource; 6927 res->bind_history |= PIPE_BIND_INDEX_BUFFER; 6928 6929 pipe_resource_reference(&ice->state.last_res.index_buffer, 6930 draw->index.resource); 6931 offset = 0; 6932 6933 iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_VF_READ); 6934 } 6935 6936 struct iris_genx_state *genx = ice->state.genx; 6937 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer); 6938 6939 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)]; 6940 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) { 6941 ib.IndexFormat = draw->index_size >> 1; 6942 ib.MOCS = iris_mocs(bo, &batch->screen->isl_dev, 6943 ISL_SURF_USAGE_INDEX_BUFFER_BIT); 6944 ib.BufferSize = bo->size - offset; 6945 ib.BufferStartingAddress = ro_bo(NULL, bo->address + offset); 6946#if GFX_VER >= 12 6947 ib.L3BypassDisable = true; 6948#endif 6949 } 6950 6951 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) { 6952 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet)); 6953 iris_batch_emit(batch, ib_packet, sizeof(ib_packet)); 6954 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_VF_READ); 6955 } 6956 6957#if GFX_VER < 11 6958 /* The VF cache key only uses 32-bits, see vertex buffer comment above */ 6959 uint16_t high_bits = bo->address >> 32ull; 6960 if (high_bits != ice->state.last_index_bo_high_bits) { 6961 iris_emit_pipe_control_flush(batch, 6962 "workaround: VF cache 32-bit key [IB]", 6963 PIPE_CONTROL_VF_CACHE_INVALIDATE | 6964 PIPE_CONTROL_CS_STALL); 6965 ice->state.last_index_bo_high_bits = high_bits; 6966 } 6967#endif 6968 } 6969 6970#define _3DPRIM_END_OFFSET 0x2420 6971#define _3DPRIM_START_VERTEX 0x2430 6972#define _3DPRIM_VERTEX_COUNT 0x2434 6973#define _3DPRIM_INSTANCE_COUNT 0x2438 6974#define _3DPRIM_START_INSTANCE 0x243C 6975#define _3DPRIM_BASE_VERTEX 0x2440 6976 6977 struct mi_builder b; 6978 mi_builder_init(&b, &batch->screen->devinfo, batch); 6979 6980 if (indirect && !indirect->count_from_stream_output) { 6981 if (indirect->indirect_draw_count) { 6982 use_predicate = true; 6983 6984 struct iris_bo *draw_count_bo = 6985 iris_resource_bo(indirect->indirect_draw_count); 6986 unsigned draw_count_offset = 6987 indirect->indirect_draw_count_offset; 6988 6989 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) { 6990 /* comparison = draw id < draw count */ 6991 struct mi_value comparison = 6992 mi_ult(&b, mi_imm(drawid_offset), 6993 mi_mem32(ro_bo(draw_count_bo, draw_count_offset))); 6994 6995 /* predicate = comparison & conditional rendering predicate */ 6996 mi_store(&b, mi_reg32(MI_PREDICATE_RESULT), 6997 mi_iand(&b, comparison, mi_reg32(CS_GPR(15)))); 6998 } else { 6999 uint32_t mi_predicate; 7000 7001 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */ 7002 mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(drawid_offset)); 7003 /* Upload the current draw count from the draw parameters buffer 7004 * to MI_PREDICATE_SRC0. Zero the top 32-bits of 7005 * MI_PREDICATE_SRC0. 7006 */ 7007 mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), 7008 mi_mem32(ro_bo(draw_count_bo, draw_count_offset))); 7009 7010 if (drawid_offset == 0) { 7011 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV | 7012 MI_PREDICATE_COMBINEOP_SET | 7013 MI_PREDICATE_COMPAREOP_SRCS_EQUAL; 7014 } else { 7015 /* While draw_index < draw_count the predicate's result will be 7016 * (draw_index == draw_count) ^ TRUE = TRUE 7017 * When draw_index == draw_count the result is 7018 * (TRUE) ^ TRUE = FALSE 7019 * After this all results will be: 7020 * (FALSE) ^ FALSE = FALSE 7021 */ 7022 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD | 7023 MI_PREDICATE_COMBINEOP_XOR | 7024 MI_PREDICATE_COMPAREOP_SRCS_EQUAL; 7025 } 7026 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t)); 7027 } 7028 } 7029 struct iris_bo *bo = iris_resource_bo(indirect->buffer); 7030 assert(bo); 7031 7032 mi_store(&b, mi_reg32(_3DPRIM_VERTEX_COUNT), 7033 mi_mem32(ro_bo(bo, indirect->offset + 0))); 7034 mi_store(&b, mi_reg32(_3DPRIM_INSTANCE_COUNT), 7035 mi_mem32(ro_bo(bo, indirect->offset + 4))); 7036 mi_store(&b, mi_reg32(_3DPRIM_START_VERTEX), 7037 mi_mem32(ro_bo(bo, indirect->offset + 8))); 7038 if (draw->index_size) { 7039 mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX), 7040 mi_mem32(ro_bo(bo, indirect->offset + 12))); 7041 mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE), 7042 mi_mem32(ro_bo(bo, indirect->offset + 16))); 7043 } else { 7044 mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE), 7045 mi_mem32(ro_bo(bo, indirect->offset + 12))); 7046 mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX), mi_imm(0)); 7047 } 7048 } else if (indirect && indirect->count_from_stream_output) { 7049 struct iris_stream_output_target *so = 7050 (void *) indirect->count_from_stream_output; 7051 struct iris_bo *so_bo = iris_resource_bo(so->offset.res); 7052 7053 iris_emit_buffer_barrier_for(batch, so_bo, IRIS_DOMAIN_OTHER_READ); 7054 7055 struct iris_address addr = ro_bo(so_bo, so->offset.offset); 7056 struct mi_value offset = 7057 mi_iadd_imm(&b, mi_mem32(addr), -so->base.buffer_offset); 7058 mi_store(&b, mi_reg32(_3DPRIM_VERTEX_COUNT), 7059 mi_udiv32_imm(&b, offset, so->stride)); 7060 mi_store(&b, mi_reg32(_3DPRIM_START_VERTEX), mi_imm(0)); 7061 mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX), mi_imm(0)); 7062 mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE), mi_imm(0)); 7063 mi_store(&b, mi_reg32(_3DPRIM_INSTANCE_COUNT), 7064 mi_imm(draw->instance_count)); 7065 } 7066 7067 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_DRAW, draw, indirect, sc); 7068 7069 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) { 7070 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL; 7071 prim.PredicateEnable = use_predicate; 7072 7073 if (indirect) { 7074 prim.IndirectParameterEnable = true; 7075 } else { 7076 prim.StartInstanceLocation = draw->start_instance; 7077 prim.InstanceCount = draw->instance_count; 7078 prim.VertexCountPerInstance = sc->count; 7079 7080 prim.StartVertexLocation = sc->start; 7081 7082 if (draw->index_size) { 7083 prim.BaseVertexLocation += sc->index_bias; 7084 } 7085 } 7086 } 7087 7088 iris_batch_sync_region_end(batch); 7089 7090 trace_intel_end_draw(&batch->trace, 0); 7091} 7092 7093static void 7094iris_load_indirect_location(struct iris_context *ice, 7095 struct iris_batch *batch, 7096 const struct pipe_grid_info *grid) 7097{ 7098#define GPGPU_DISPATCHDIMX 0x2500 7099#define GPGPU_DISPATCHDIMY 0x2504 7100#define GPGPU_DISPATCHDIMZ 0x2508 7101 7102 assert(grid->indirect); 7103 7104 struct iris_state_ref *grid_size = &ice->state.grid_size; 7105 struct iris_bo *bo = iris_resource_bo(grid_size->res); 7106 struct mi_builder b; 7107 mi_builder_init(&b, &batch->screen->devinfo, batch); 7108 struct mi_value size_x = mi_mem32(ro_bo(bo, grid_size->offset + 0)); 7109 struct mi_value size_y = mi_mem32(ro_bo(bo, grid_size->offset + 4)); 7110 struct mi_value size_z = mi_mem32(ro_bo(bo, grid_size->offset + 8)); 7111 mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMX), size_x); 7112 mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMY), size_y); 7113 mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMZ), size_z); 7114} 7115 7116#if GFX_VERx10 >= 125 7117 7118static void 7119iris_upload_compute_walker(struct iris_context *ice, 7120 struct iris_batch *batch, 7121 const struct pipe_grid_info *grid) 7122{ 7123 const uint64_t stage_dirty = ice->state.stage_dirty; 7124 struct iris_screen *screen = batch->screen; 7125 const struct intel_device_info *devinfo = &screen->devinfo; 7126 struct iris_binder *binder = &ice->state.binder; 7127 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE]; 7128 struct iris_compiled_shader *shader = 7129 ice->shaders.prog[MESA_SHADER_COMPUTE]; 7130 struct brw_stage_prog_data *prog_data = shader->prog_data; 7131 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data; 7132 const struct brw_cs_dispatch_info dispatch = 7133 brw_cs_get_dispatch_info(devinfo, cs_prog_data, grid->block); 7134 7135 trace_intel_begin_compute(&batch->trace); 7136 7137 if (stage_dirty & IRIS_STAGE_DIRTY_CS) { 7138 iris_emit_cmd(batch, GENX(CFE_STATE), cfe) { 7139 cfe.MaximumNumberofThreads = 7140 devinfo->max_cs_threads * devinfo->subslice_total; 7141 uint32_t scratch_addr = pin_scratch_space(ice, batch, prog_data, 7142 MESA_SHADER_COMPUTE); 7143 cfe.ScratchSpaceBuffer = scratch_addr >> 4; 7144 } 7145 } 7146 7147 if (grid->indirect) 7148 iris_load_indirect_location(ice, batch, grid); 7149 7150 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL); 7151 7152 iris_emit_cmd(batch, GENX(COMPUTE_WALKER), cw) { 7153 cw.IndirectParameterEnable = grid->indirect; 7154 cw.SIMDSize = dispatch.simd_size / 16; 7155 cw.LocalXMaximum = grid->block[0] - 1; 7156 cw.LocalYMaximum = grid->block[1] - 1; 7157 cw.LocalZMaximum = grid->block[2] - 1; 7158 cw.ThreadGroupIDXDimension = grid->grid[0]; 7159 cw.ThreadGroupIDYDimension = grid->grid[1]; 7160 cw.ThreadGroupIDZDimension = grid->grid[2]; 7161 cw.ExecutionMask = dispatch.right_mask; 7162 cw.PostSync.MOCS = iris_mocs(NULL, &screen->isl_dev, 0); 7163 7164 cw.InterfaceDescriptor = (struct GENX(INTERFACE_DESCRIPTOR_DATA)) { 7165 .KernelStartPointer = KSP(shader), 7166 .NumberofThreadsinGPGPUThreadGroup = dispatch.threads, 7167 .SharedLocalMemorySize = 7168 encode_slm_size(GFX_VER, prog_data->total_shared), 7169 .NumberOfBarriers = cs_prog_data->uses_barrier, 7170 .SamplerStatePointer = shs->sampler_table.offset, 7171 .BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE], 7172 .BindingTableEntryCount = MIN2(shader->bt.size_bytes / 4, 31), 7173 }; 7174 7175 assert(brw_cs_push_const_total_size(cs_prog_data, dispatch.threads) == 0); 7176 } 7177 7178 trace_intel_end_compute(&batch->trace, grid->grid[0], grid->grid[1], grid->grid[2]); 7179} 7180 7181#else /* #if GFX_VERx10 >= 125 */ 7182 7183static void 7184iris_upload_gpgpu_walker(struct iris_context *ice, 7185 struct iris_batch *batch, 7186 const struct pipe_grid_info *grid) 7187{ 7188 const uint64_t stage_dirty = ice->state.stage_dirty; 7189 struct iris_screen *screen = batch->screen; 7190 const struct intel_device_info *devinfo = &screen->devinfo; 7191 struct iris_binder *binder = &ice->state.binder; 7192 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE]; 7193 struct iris_uncompiled_shader *ish = 7194 ice->shaders.uncompiled[MESA_SHADER_COMPUTE]; 7195 struct iris_compiled_shader *shader = 7196 ice->shaders.prog[MESA_SHADER_COMPUTE]; 7197 struct brw_stage_prog_data *prog_data = shader->prog_data; 7198 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data; 7199 const struct brw_cs_dispatch_info dispatch = 7200 brw_cs_get_dispatch_info(devinfo, cs_prog_data, grid->block); 7201 7202 trace_intel_begin_compute(&batch->trace); 7203 7204 if ((stage_dirty & IRIS_STAGE_DIRTY_CS) || 7205 cs_prog_data->local_size[0] == 0 /* Variable local group size */) { 7206 /* The MEDIA_VFE_STATE documentation for Gfx8+ says: 7207 * 7208 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless 7209 * the only bits that are changed are scoreboard related: Scoreboard 7210 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For 7211 * these scoreboard related states, a MEDIA_STATE_FLUSH is 7212 * sufficient." 7213 */ 7214 iris_emit_pipe_control_flush(batch, 7215 "workaround: stall before MEDIA_VFE_STATE", 7216 PIPE_CONTROL_CS_STALL); 7217 7218 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) { 7219 if (prog_data->total_scratch) { 7220 uint32_t scratch_addr = 7221 pin_scratch_space(ice, batch, prog_data, MESA_SHADER_COMPUTE); 7222 7223 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; 7224 vfe.ScratchSpaceBasePointer = 7225 rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE); 7226 } 7227 7228 vfe.MaximumNumberofThreads = 7229 devinfo->max_cs_threads * devinfo->subslice_total - 1; 7230#if GFX_VER < 11 7231 vfe.ResetGatewayTimer = 7232 Resettingrelativetimerandlatchingtheglobaltimestamp; 7233#endif 7234#if GFX_VER == 8 7235 vfe.BypassGatewayControl = true; 7236#endif 7237 vfe.NumberofURBEntries = 2; 7238 vfe.URBEntryAllocationSize = 2; 7239 7240 vfe.CURBEAllocationSize = 7241 ALIGN(cs_prog_data->push.per_thread.regs * dispatch.threads + 7242 cs_prog_data->push.cross_thread.regs, 2); 7243 } 7244 } 7245 7246 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */ 7247 if ((stage_dirty & IRIS_STAGE_DIRTY_CS) || 7248 cs_prog_data->local_size[0] == 0 /* Variable local group size */) { 7249 uint32_t curbe_data_offset = 0; 7250 assert(cs_prog_data->push.cross_thread.dwords == 0 && 7251 cs_prog_data->push.per_thread.dwords == 1 && 7252 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID); 7253 const unsigned push_const_size = 7254 brw_cs_push_const_total_size(cs_prog_data, dispatch.threads); 7255 uint32_t *curbe_data_map = 7256 stream_state(batch, ice->state.dynamic_uploader, 7257 &ice->state.last_res.cs_thread_ids, 7258 ALIGN(push_const_size, 64), 64, 7259 &curbe_data_offset); 7260 assert(curbe_data_map); 7261 memset(curbe_data_map, 0x5a, ALIGN(push_const_size, 64)); 7262 iris_fill_cs_push_const_buffer(cs_prog_data, dispatch.threads, 7263 curbe_data_map); 7264 7265 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) { 7266 curbe.CURBETotalDataLength = ALIGN(push_const_size, 64); 7267 curbe.CURBEDataStartAddress = curbe_data_offset; 7268 } 7269 } 7270 7271 for (unsigned i = 0; i < IRIS_MAX_GLOBAL_BINDINGS; i++) { 7272 struct pipe_resource *res = ice->state.global_bindings[i]; 7273 if (!res) 7274 continue; 7275 7276 iris_use_pinned_bo(batch, iris_resource_bo(res), 7277 true, IRIS_DOMAIN_NONE); 7278 } 7279 7280 if (stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_CS | 7281 IRIS_STAGE_DIRTY_BINDINGS_CS | 7282 IRIS_STAGE_DIRTY_CONSTANTS_CS | 7283 IRIS_STAGE_DIRTY_CS)) { 7284 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)]; 7285 7286 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) { 7287 idd.SharedLocalMemorySize = 7288 encode_slm_size(GFX_VER, ish->kernel_shared_size); 7289 idd.KernelStartPointer = 7290 KSP(shader) + brw_cs_prog_data_prog_offset(cs_prog_data, 7291 dispatch.simd_size); 7292 idd.SamplerStatePointer = shs->sampler_table.offset; 7293 idd.BindingTablePointer = 7294 binder->bt_offset[MESA_SHADER_COMPUTE] >> IRIS_BT_OFFSET_SHIFT; 7295 idd.NumberofThreadsinGPGPUThreadGroup = dispatch.threads; 7296 } 7297 7298 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++) 7299 desc[i] |= ((uint32_t *) shader->derived_data)[i]; 7300 7301 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) { 7302 load.InterfaceDescriptorTotalLength = 7303 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t); 7304 load.InterfaceDescriptorDataStartAddress = 7305 emit_state(batch, ice->state.dynamic_uploader, 7306 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64); 7307 } 7308 } 7309 7310 if (grid->indirect) 7311 iris_load_indirect_location(ice, batch, grid); 7312 7313 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL); 7314 7315 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) { 7316 ggw.IndirectParameterEnable = grid->indirect != NULL; 7317 ggw.SIMDSize = dispatch.simd_size / 16; 7318 ggw.ThreadDepthCounterMaximum = 0; 7319 ggw.ThreadHeightCounterMaximum = 0; 7320 ggw.ThreadWidthCounterMaximum = dispatch.threads - 1; 7321 ggw.ThreadGroupIDXDimension = grid->grid[0]; 7322 ggw.ThreadGroupIDYDimension = grid->grid[1]; 7323 ggw.ThreadGroupIDZDimension = grid->grid[2]; 7324 ggw.RightExecutionMask = dispatch.right_mask; 7325 ggw.BottomExecutionMask = 0xffffffff; 7326 } 7327 7328 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf); 7329 7330 trace_intel_end_compute(&batch->trace, grid->grid[0], grid->grid[1], grid->grid[2]); 7331} 7332 7333#endif /* #if GFX_VERx10 >= 125 */ 7334 7335static void 7336iris_upload_compute_state(struct iris_context *ice, 7337 struct iris_batch *batch, 7338 const struct pipe_grid_info *grid) 7339{ 7340 struct iris_screen *screen = batch->screen; 7341 const uint64_t stage_dirty = ice->state.stage_dirty; 7342 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE]; 7343 struct iris_compiled_shader *shader = 7344 ice->shaders.prog[MESA_SHADER_COMPUTE]; 7345 struct iris_border_color_pool *border_color_pool = 7346 iris_bufmgr_get_border_color_pool(screen->bufmgr); 7347 7348 iris_batch_sync_region_start(batch); 7349 7350 /* Always pin the binder. If we're emitting new binding table pointers, 7351 * we need it. If not, we're probably inheriting old tables via the 7352 * context, and need it anyway. Since true zero-bindings cases are 7353 * practically non-existent, just pin it and avoid last_res tracking. 7354 */ 7355 iris_use_pinned_bo(batch, ice->state.binder.bo, false, IRIS_DOMAIN_NONE); 7356 7357 if (((stage_dirty & IRIS_STAGE_DIRTY_CONSTANTS_CS) && 7358 shs->sysvals_need_upload) || 7359 shader->kernel_input_size > 0) 7360 upload_sysvals(ice, MESA_SHADER_COMPUTE, grid); 7361 7362 if (stage_dirty & IRIS_STAGE_DIRTY_BINDINGS_CS) 7363 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false); 7364 7365 if (stage_dirty & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS) 7366 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE); 7367 7368 iris_use_optional_res(batch, shs->sampler_table.res, false, 7369 IRIS_DOMAIN_NONE); 7370 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false, 7371 IRIS_DOMAIN_NONE); 7372 7373 if (ice->state.need_border_colors) 7374 iris_use_pinned_bo(batch, border_color_pool->bo, false, 7375 IRIS_DOMAIN_NONE); 7376 7377#if GFX_VER >= 12 7378 genX(invalidate_aux_map_state)(batch); 7379#endif 7380 7381#if GFX_VERx10 >= 125 7382 iris_upload_compute_walker(ice, batch, grid); 7383#else 7384 iris_upload_gpgpu_walker(ice, batch, grid); 7385#endif 7386 7387 if (!batch->contains_draw_with_next_seqno) { 7388 iris_restore_compute_saved_bos(ice, batch, grid); 7389 batch->contains_draw_with_next_seqno = batch->contains_draw = true; 7390 } 7391 7392 iris_batch_sync_region_end(batch); 7393} 7394 7395/** 7396 * State module teardown. 7397 */ 7398static void 7399iris_destroy_state(struct iris_context *ice) 7400{ 7401 struct iris_genx_state *genx = ice->state.genx; 7402 7403 pipe_resource_reference(&ice->state.pixel_hashing_tables, NULL); 7404 7405 pipe_resource_reference(&ice->draw.draw_params.res, NULL); 7406 pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL); 7407 7408 /* Loop over all VBOs, including ones for draw parameters */ 7409 for (unsigned i = 0; i < ARRAY_SIZE(genx->vertex_buffers); i++) { 7410 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL); 7411 } 7412 7413 free(ice->state.genx); 7414 7415 for (int i = 0; i < 4; i++) { 7416 pipe_so_target_reference(&ice->state.so_target[i], NULL); 7417 } 7418 7419 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) { 7420 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL); 7421 } 7422 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL); 7423 7424 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) { 7425 struct iris_shader_state *shs = &ice->state.shaders[stage]; 7426 pipe_resource_reference(&shs->sampler_table.res, NULL); 7427 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) { 7428 pipe_resource_reference(&shs->constbuf[i].buffer, NULL); 7429 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL); 7430 } 7431 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) { 7432 pipe_resource_reference(&shs->image[i].base.resource, NULL); 7433 pipe_resource_reference(&shs->image[i].surface_state.ref.res, NULL); 7434 free(shs->image[i].surface_state.cpu); 7435 } 7436 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) { 7437 pipe_resource_reference(&shs->ssbo[i].buffer, NULL); 7438 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL); 7439 } 7440 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) { 7441 pipe_sampler_view_reference((struct pipe_sampler_view **) 7442 &shs->textures[i], NULL); 7443 } 7444 } 7445 7446 pipe_resource_reference(&ice->state.grid_size.res, NULL); 7447 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL); 7448 7449 pipe_resource_reference(&ice->state.null_fb.res, NULL); 7450 pipe_resource_reference(&ice->state.unbound_tex.res, NULL); 7451 7452 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL); 7453 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL); 7454 pipe_resource_reference(&ice->state.last_res.color_calc, NULL); 7455 pipe_resource_reference(&ice->state.last_res.scissor, NULL); 7456 pipe_resource_reference(&ice->state.last_res.blend, NULL); 7457 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL); 7458 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL); 7459 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL); 7460} 7461 7462/* ------------------------------------------------------------------- */ 7463 7464static void 7465iris_rebind_buffer(struct iris_context *ice, 7466 struct iris_resource *res) 7467{ 7468 struct pipe_context *ctx = &ice->ctx; 7469 struct iris_genx_state *genx = ice->state.genx; 7470 7471 assert(res->base.b.target == PIPE_BUFFER); 7472 7473 /* Buffers can't be framebuffer attachments, nor display related, 7474 * and we don't have upstream Clover support. 7475 */ 7476 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL | 7477 PIPE_BIND_RENDER_TARGET | 7478 PIPE_BIND_BLENDABLE | 7479 PIPE_BIND_DISPLAY_TARGET | 7480 PIPE_BIND_CURSOR | 7481 PIPE_BIND_COMPUTE_RESOURCE | 7482 PIPE_BIND_GLOBAL))); 7483 7484 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) { 7485 uint64_t bound_vbs = ice->state.bound_vertex_buffers; 7486 while (bound_vbs) { 7487 const int i = u_bit_scan64(&bound_vbs); 7488 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i]; 7489 7490 /* Update the CPU struct */ 7491 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32); 7492 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64); 7493 uint64_t *addr = (uint64_t *) &state->state[1]; 7494 struct iris_bo *bo = iris_resource_bo(state->resource); 7495 7496 if (*addr != bo->address + state->offset) { 7497 *addr = bo->address + state->offset; 7498 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS | 7499 IRIS_DIRTY_VERTEX_BUFFER_FLUSHES; 7500 } 7501 } 7502 } 7503 7504 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit 7505 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes. 7506 * 7507 * There is also no need to handle these: 7508 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw) 7509 * - PIPE_BIND_QUERY_BUFFER (no persistent state references) 7510 */ 7511 7512 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) { 7513 uint32_t *so_buffers = genx->so_buffers; 7514 for (unsigned i = 0; i < 4; i++, 7515 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) { 7516 7517 /* There are no other fields in bits 127:64 */ 7518 uint64_t *addr = (uint64_t *) &so_buffers[2]; 7519 STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_SurfaceBaseAddress_start) == 66); 7520 STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_SurfaceBaseAddress_bits) == 46); 7521 7522 struct pipe_stream_output_target *tgt = ice->state.so_target[i]; 7523 if (tgt) { 7524 struct iris_bo *bo = iris_resource_bo(tgt->buffer); 7525 if (*addr != bo->address + tgt->buffer_offset) { 7526 *addr = bo->address + tgt->buffer_offset; 7527 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS; 7528 } 7529 } 7530 } 7531 } 7532 7533 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) { 7534 struct iris_shader_state *shs = &ice->state.shaders[s]; 7535 enum pipe_shader_type p_stage = stage_to_pipe(s); 7536 7537 if (!(res->bind_stages & (1 << s))) 7538 continue; 7539 7540 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) { 7541 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */ 7542 uint32_t bound_cbufs = shs->bound_cbufs & ~1u; 7543 while (bound_cbufs) { 7544 const int i = u_bit_scan(&bound_cbufs); 7545 struct pipe_shader_buffer *cbuf = &shs->constbuf[i]; 7546 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i]; 7547 7548 if (res->bo == iris_resource_bo(cbuf->buffer)) { 7549 pipe_resource_reference(&surf_state->res, NULL); 7550 shs->dirty_cbufs |= 1u << i; 7551 ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES | 7552 IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES); 7553 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << s; 7554 } 7555 } 7556 } 7557 7558 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) { 7559 uint32_t bound_ssbos = shs->bound_ssbos; 7560 while (bound_ssbos) { 7561 const int i = u_bit_scan(&bound_ssbos); 7562 struct pipe_shader_buffer *ssbo = &shs->ssbo[i]; 7563 7564 if (res->bo == iris_resource_bo(ssbo->buffer)) { 7565 struct pipe_shader_buffer buf = { 7566 .buffer = &res->base.b, 7567 .buffer_offset = ssbo->buffer_offset, 7568 .buffer_size = ssbo->buffer_size, 7569 }; 7570 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf, 7571 (shs->writable_ssbos >> i) & 1); 7572 } 7573 } 7574 } 7575 7576 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) { 7577 uint32_t bound_sampler_views = shs->bound_sampler_views; 7578 while (bound_sampler_views) { 7579 const int i = u_bit_scan(&bound_sampler_views); 7580 struct iris_sampler_view *isv = shs->textures[i]; 7581 struct iris_bo *bo = isv->res->bo; 7582 7583 if (update_surface_state_addrs(ice->state.surface_uploader, 7584 &isv->surface_state, bo)) { 7585 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s; 7586 } 7587 } 7588 } 7589 7590 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) { 7591 uint32_t bound_image_views = shs->bound_image_views; 7592 while (bound_image_views) { 7593 const int i = u_bit_scan(&bound_image_views); 7594 struct iris_image_view *iv = &shs->image[i]; 7595 struct iris_bo *bo = iris_resource_bo(iv->base.resource); 7596 7597 if (update_surface_state_addrs(ice->state.surface_uploader, 7598 &iv->surface_state, bo)) { 7599 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s; 7600 } 7601 } 7602 } 7603 } 7604} 7605 7606/* ------------------------------------------------------------------- */ 7607 7608/** 7609 * Introduce a batch synchronization boundary, and update its cache coherency 7610 * status to reflect the execution of a PIPE_CONTROL command with the 7611 * specified flags. 7612 */ 7613static void 7614batch_mark_sync_for_pipe_control(struct iris_batch *batch, uint32_t flags) 7615{ 7616 const struct intel_device_info *devinfo = &batch->screen->devinfo; 7617 7618 iris_batch_sync_boundary(batch); 7619 7620 if ((flags & PIPE_CONTROL_CS_STALL)) { 7621 if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) 7622 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_RENDER_WRITE); 7623 7624 if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH)) 7625 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DEPTH_WRITE); 7626 7627 if ((flags & PIPE_CONTROL_TILE_CACHE_FLUSH)) { 7628 /* A tile cache flush makes any C/Z data in L3 visible to memory. */ 7629 const unsigned c = IRIS_DOMAIN_RENDER_WRITE; 7630 const unsigned z = IRIS_DOMAIN_DEPTH_WRITE; 7631 batch->coherent_seqnos[c][c] = batch->l3_coherent_seqnos[c]; 7632 batch->coherent_seqnos[z][z] = batch->l3_coherent_seqnos[z]; 7633 } 7634 7635 if (flags & (PIPE_CONTROL_FLUSH_HDC | PIPE_CONTROL_DATA_CACHE_FLUSH)) { 7636 /* HDC and DC flushes both flush the data cache out to L3 */ 7637 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DATA_WRITE); 7638 } 7639 7640 if ((flags & PIPE_CONTROL_DATA_CACHE_FLUSH)) { 7641 /* A DC flush also flushes L3 data cache lines out to memory. */ 7642 const unsigned i = IRIS_DOMAIN_DATA_WRITE; 7643 batch->coherent_seqnos[i][i] = batch->l3_coherent_seqnos[i]; 7644 } 7645 7646 if ((flags & PIPE_CONTROL_FLUSH_ENABLE)) 7647 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_WRITE); 7648 7649 if ((flags & (PIPE_CONTROL_CACHE_FLUSH_BITS | 7650 PIPE_CONTROL_STALL_AT_SCOREBOARD))) { 7651 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_VF_READ); 7652 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_SAMPLER_READ); 7653 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_PULL_CONSTANT_READ); 7654 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_READ); 7655 } 7656 } 7657 7658 if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) 7659 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_RENDER_WRITE); 7660 7661 if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH)) 7662 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DEPTH_WRITE); 7663 7664 if (flags & (PIPE_CONTROL_FLUSH_HDC | PIPE_CONTROL_DATA_CACHE_FLUSH)) 7665 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DATA_WRITE); 7666 7667 if ((flags & PIPE_CONTROL_FLUSH_ENABLE)) 7668 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_WRITE); 7669 7670 if ((flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) 7671 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_VF_READ); 7672 7673 if ((flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) 7674 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_SAMPLER_READ); 7675 7676 /* Technically, to invalidate IRIS_DOMAIN_PULL_CONSTANT_READ, we need 7677 * both "Constant Cache Invalidate" and either "Texture Cache Invalidate" 7678 * or "Data Cache Flush" set, depending on the setting of 7679 * compiler->indirect_ubos_use_sampler. 7680 * 7681 * However, "Data Cache Flush" and "Constant Cache Invalidate" will never 7682 * appear in the same PIPE_CONTROL command, because one is bottom-of-pipe 7683 * while the other is top-of-pipe. Because we only look at one flush at 7684 * a time, we won't see both together. 7685 * 7686 * To deal with this, we mark it as invalidated when the constant cache 7687 * is invalidated, and trust the callers to also flush the other related 7688 * cache correctly at the same time. 7689 */ 7690 if ((flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE)) 7691 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_PULL_CONSTANT_READ); 7692 7693 /* IRIS_DOMAIN_OTHER_READ no longer uses any caches. */ 7694 7695 if ((flags & PIPE_CONTROL_L3_RO_INVALIDATE_BITS) == PIPE_CONTROL_L3_RO_INVALIDATE_BITS) { 7696 /* If we just invalidated the read-only lines of L3, then writes from non-L3-coherent 7697 * domains will now be visible to those L3 clients. 7698 */ 7699 for (unsigned i = 0; i < NUM_IRIS_DOMAINS; i++) { 7700 if (!iris_domain_is_l3_coherent(devinfo, i)) 7701 batch->l3_coherent_seqnos[i] = batch->coherent_seqnos[i][i]; 7702 } 7703 } 7704} 7705 7706static unsigned 7707flags_to_post_sync_op(uint32_t flags) 7708{ 7709 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE) 7710 return WriteImmediateData; 7711 7712 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) 7713 return WritePSDepthCount; 7714 7715 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP) 7716 return WriteTimestamp; 7717 7718 return 0; 7719} 7720 7721/** 7722 * Do the given flags have a Post Sync or LRI Post Sync operation? 7723 */ 7724static enum pipe_control_flags 7725get_post_sync_flags(enum pipe_control_flags flags) 7726{ 7727 flags &= PIPE_CONTROL_WRITE_IMMEDIATE | 7728 PIPE_CONTROL_WRITE_DEPTH_COUNT | 7729 PIPE_CONTROL_WRITE_TIMESTAMP | 7730 PIPE_CONTROL_LRI_POST_SYNC_OP; 7731 7732 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with 7733 * "LRI Post Sync Operation". So more than one bit set would be illegal. 7734 */ 7735 assert(util_bitcount(flags) <= 1); 7736 7737 return flags; 7738} 7739 7740#define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE) 7741 7742/** 7743 * Emit a series of PIPE_CONTROL commands, taking into account any 7744 * workarounds necessary to actually accomplish the caller's request. 7745 * 7746 * Unless otherwise noted, spec quotations in this function come from: 7747 * 7748 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming 7749 * Restrictions for PIPE_CONTROL. 7750 * 7751 * You should not use this function directly. Use the helpers in 7752 * iris_pipe_control.c instead, which may split the pipe control further. 7753 */ 7754static void 7755iris_emit_raw_pipe_control(struct iris_batch *batch, 7756 const char *reason, 7757 uint32_t flags, 7758 struct iris_bo *bo, 7759 uint32_t offset, 7760 uint64_t imm) 7761{ 7762 UNUSED const struct intel_device_info *devinfo = &batch->screen->devinfo; 7763 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags); 7764 enum pipe_control_flags non_lri_post_sync_flags = 7765 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP; 7766 7767#if GFX_VER >= 12 7768 if (batch->name == IRIS_BATCH_BLITTER) { 7769 batch_mark_sync_for_pipe_control(batch, flags); 7770 iris_batch_sync_region_start(batch); 7771 7772 assert(!(flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)); 7773 7774 /* The blitter doesn't actually use PIPE_CONTROL; rather it uses the 7775 * MI_FLUSH_DW command. However, all of our code is set up to flush 7776 * via emitting a pipe control, so we just translate it at this point, 7777 * even if it is a bit hacky. 7778 */ 7779 iris_emit_cmd(batch, GENX(MI_FLUSH_DW), fd) { 7780 fd.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE); 7781 fd.ImmediateData = imm; 7782 fd.PostSyncOperation = flags_to_post_sync_op(flags); 7783#if GFX_VERx10 >= 125 7784 /* TODO: This may not always be necessary */ 7785 fd.FlushCCS = true; 7786#endif 7787 } 7788 iris_batch_sync_region_end(batch); 7789 return; 7790 } 7791#endif 7792 7793 /* The "L3 Read Only Cache Invalidation Bit" docs say it "controls the 7794 * invalidation of the Geometry streams cached in L3 cache at the top 7795 * of the pipe". In other words, index & vertex data that gets cached 7796 * in L3 when VERTEX_BUFFER_STATE::L3BypassDisable is set. 7797 * 7798 * Normally, invalidating L1/L2 read-only caches also invalidate their 7799 * related L3 cachelines, but this isn't the case for the VF cache. 7800 * Emulate it by setting the L3 Read Only bit when doing a VF invalidate. 7801 */ 7802 if (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) 7803 flags |= PIPE_CONTROL_L3_READ_ONLY_CACHE_INVALIDATE; 7804 7805 /* Recursive PIPE_CONTROL workarounds -------------------------------- 7806 * (http://knowyourmeme.com/memes/xzibit-yo-dawg) 7807 * 7808 * We do these first because we want to look at the original operation, 7809 * rather than any workarounds we set. 7810 */ 7811 if (GFX_VER == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) { 7812 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description 7813 * lists several workarounds: 7814 * 7815 * "Project: SKL, KBL, BXT 7816 * 7817 * If the VF Cache Invalidation Enable is set to a 1 in a 7818 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields 7819 * sets to 0, with the VF Cache Invalidation Enable set to 0 7820 * needs to be sent prior to the PIPE_CONTROL with VF Cache 7821 * Invalidation Enable set to a 1." 7822 */ 7823 iris_emit_raw_pipe_control(batch, 7824 "workaround: recursive VF cache invalidate", 7825 0, NULL, 0, 0); 7826 } 7827 7828 if (GFX_VER == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) { 7829 /* Project: SKL / Argument: LRI Post Sync Operation [23] 7830 * 7831 * "PIPECONTROL command with “Command Streamer Stall Enable” must be 7832 * programmed prior to programming a PIPECONTROL command with "LRI 7833 * Post Sync Operation" in GPGPU mode of operation (i.e when 7834 * PIPELINE_SELECT command is set to GPGPU mode of operation)." 7835 * 7836 * The same text exists a few rows below for Post Sync Op. 7837 */ 7838 iris_emit_raw_pipe_control(batch, 7839 "workaround: CS stall before gpgpu post-sync", 7840 PIPE_CONTROL_CS_STALL, bo, offset, imm); 7841 } 7842 7843 /* "Flush Types" workarounds --------------------------------------------- 7844 * We do these now because they may add post-sync operations or CS stalls. 7845 */ 7846 7847 if (GFX_VER < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) { 7848 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate 7849 * 7850 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or 7851 * 'Write PS Depth Count' or 'Write Timestamp'." 7852 */ 7853 if (!bo) { 7854 flags |= PIPE_CONTROL_WRITE_IMMEDIATE; 7855 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE; 7856 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE; 7857 bo = batch->screen->workaround_address.bo; 7858 offset = batch->screen->workaround_address.offset; 7859 } 7860 } 7861 7862 if (flags & PIPE_CONTROL_DEPTH_STALL) { 7863 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable): 7864 * 7865 * "This bit must be DISABLED for operations other than writing 7866 * PS_DEPTH_COUNT." 7867 * 7868 * This seems like nonsense. An Ivybridge workaround requires us to 7869 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync 7870 * operation. Gfx8+ requires us to emit depth stalls and depth cache 7871 * flushes together. So, it's hard to imagine this means anything other 7872 * than "we originally intended this to be used for PS_DEPTH_COUNT". 7873 * 7874 * We ignore the supposed restriction and do nothing. 7875 */ 7876 } 7877 7878 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH | 7879 PIPE_CONTROL_STALL_AT_SCOREBOARD)) { 7880 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1: 7881 * 7882 * "This bit must be DISABLED for End-of-pipe (Read) fences, 7883 * PS_DEPTH_COUNT or TIMESTAMP queries." 7884 * 7885 * TODO: Implement end-of-pipe checking. 7886 */ 7887 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT | 7888 PIPE_CONTROL_WRITE_TIMESTAMP))); 7889 } 7890 7891 if (GFX_VER < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) { 7892 /* From the PIPE_CONTROL instruction table, bit 1: 7893 * 7894 * "This bit is ignored if Depth Stall Enable is set. 7895 * Further, the render cache is not flushed even if Write Cache 7896 * Flush Enable bit is set." 7897 * 7898 * We assert that the caller doesn't do this combination, to try and 7899 * prevent mistakes. It shouldn't hurt the GPU, though. 7900 * 7901 * We skip this check on Gfx11+ as the "Stall at Pixel Scoreboard" 7902 * and "Render Target Flush" combo is explicitly required for BTI 7903 * update workarounds. 7904 */ 7905 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL | 7906 PIPE_CONTROL_RENDER_TARGET_FLUSH))); 7907 } 7908 7909 /* PIPE_CONTROL page workarounds ------------------------------------- */ 7910 7911 if (GFX_VER <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) { 7912 /* From the PIPE_CONTROL page itself: 7913 * 7914 * "IVB, HSW, BDW 7915 * Restriction: Pipe_control with CS-stall bit set must be issued 7916 * before a pipe-control command that has the State Cache 7917 * Invalidate bit set." 7918 */ 7919 flags |= PIPE_CONTROL_CS_STALL; 7920 } 7921 7922 if (flags & PIPE_CONTROL_FLUSH_LLC) { 7923 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC): 7924 * 7925 * "Project: ALL 7926 * SW must always program Post-Sync Operation to "Write Immediate 7927 * Data" when Flush LLC is set." 7928 * 7929 * For now, we just require the caller to do it. 7930 */ 7931 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE); 7932 } 7933 7934 /* "Post-Sync Operation" workarounds -------------------------------- */ 7935 7936 /* Project: All / Argument: Global Snapshot Count Reset [19] 7937 * 7938 * "This bit must not be exercised on any product. 7939 * Requires stall bit ([20] of DW1) set." 7940 * 7941 * We don't use this, so we just assert that it isn't used. The 7942 * PIPE_CONTROL instruction page indicates that they intended this 7943 * as a debug feature and don't think it is useful in production, 7944 * but it may actually be usable, should we ever want to. 7945 */ 7946 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0); 7947 7948 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR | 7949 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) { 7950 /* Project: All / Arguments: 7951 * 7952 * - Generic Media State Clear [16] 7953 * - Indirect State Pointers Disable [16] 7954 * 7955 * "Requires stall bit ([20] of DW1) set." 7956 * 7957 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media 7958 * State Clear) says: 7959 * 7960 * "PIPECONTROL command with “Command Streamer Stall Enable” must be 7961 * programmed prior to programming a PIPECONTROL command with "Media 7962 * State Clear" set in GPGPU mode of operation" 7963 * 7964 * This is a subset of the earlier rule, so there's nothing to do. 7965 */ 7966 flags |= PIPE_CONTROL_CS_STALL; 7967 } 7968 7969 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) { 7970 /* Project: All / Argument: Store Data Index 7971 * 7972 * "Post-Sync Operation ([15:14] of DW1) must be set to something other 7973 * than '0'." 7974 * 7975 * For now, we just assert that the caller does this. We might want to 7976 * automatically add a write to the workaround BO... 7977 */ 7978 assert(non_lri_post_sync_flags != 0); 7979 } 7980 7981 if (flags & PIPE_CONTROL_SYNC_GFDT) { 7982 /* Project: All / Argument: Sync GFDT 7983 * 7984 * "Post-Sync Operation ([15:14] of DW1) must be set to something other 7985 * than '0' or 0x2520[13] must be set." 7986 * 7987 * For now, we just assert that the caller does this. 7988 */ 7989 assert(non_lri_post_sync_flags != 0); 7990 } 7991 7992 if (flags & PIPE_CONTROL_TLB_INVALIDATE) { 7993 /* Project: IVB+ / Argument: TLB inv 7994 * 7995 * "Requires stall bit ([20] of DW1) set." 7996 * 7997 * Also, from the PIPE_CONTROL instruction table: 7998 * 7999 * "Project: SKL+ 8000 * Post Sync Operation or CS stall must be set to ensure a TLB 8001 * invalidation occurs. Otherwise no cycle will occur to the TLB 8002 * cache to invalidate." 8003 * 8004 * This is not a subset of the earlier rule, so there's nothing to do. 8005 */ 8006 flags |= PIPE_CONTROL_CS_STALL; 8007 } 8008 8009 if (GFX_VER == 9 && devinfo->gt == 4) { 8010 /* TODO: The big Skylake GT4 post sync op workaround */ 8011 } 8012 8013 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */ 8014 8015 if (IS_COMPUTE_PIPELINE(batch)) { 8016 if (GFX_VER >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) { 8017 /* Project: SKL+ / Argument: Tex Invalidate 8018 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads." 8019 */ 8020 flags |= PIPE_CONTROL_CS_STALL; 8021 } 8022 8023 if (GFX_VER == 8 && (post_sync_flags || 8024 (flags & (PIPE_CONTROL_NOTIFY_ENABLE | 8025 PIPE_CONTROL_DEPTH_STALL | 8026 PIPE_CONTROL_RENDER_TARGET_FLUSH | 8027 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 8028 PIPE_CONTROL_DATA_CACHE_FLUSH)))) { 8029 /* Project: BDW / Arguments: 8030 * 8031 * - LRI Post Sync Operation [23] 8032 * - Post Sync Op [15:14] 8033 * - Notify En [8] 8034 * - Depth Stall [13] 8035 * - Render Target Cache Flush [12] 8036 * - Depth Cache Flush [0] 8037 * - DC Flush Enable [5] 8038 * 8039 * "Requires stall bit ([20] of DW) set for all GPGPU and Media 8040 * Workloads." 8041 */ 8042 flags |= PIPE_CONTROL_CS_STALL; 8043 8044 /* Also, from the PIPE_CONTROL instruction table, bit 20: 8045 * 8046 * "Project: BDW 8047 * This bit must be always set when PIPE_CONTROL command is 8048 * programmed by GPGPU and MEDIA workloads, except for the cases 8049 * when only Read Only Cache Invalidation bits are set (State 8050 * Cache Invalidation Enable, Instruction cache Invalidation 8051 * Enable, Texture Cache Invalidation Enable, Constant Cache 8052 * Invalidation Enable). This is to WA FFDOP CG issue, this WA 8053 * need not implemented when FF_DOP_CG is disable via "Fixed 8054 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register." 8055 * 8056 * It sounds like we could avoid CS stalls in some cases, but we 8057 * don't currently bother. This list isn't exactly the list above, 8058 * either... 8059 */ 8060 } 8061 } 8062 8063 /* "Stall" workarounds ---------------------------------------------- 8064 * These have to come after the earlier ones because we may have added 8065 * some additional CS stalls above. 8066 */ 8067 8068 if (GFX_VER < 9 && (flags & PIPE_CONTROL_CS_STALL)) { 8069 /* Project: PRE-SKL, VLV, CHV 8070 * 8071 * "[All Stepping][All SKUs]: 8072 * 8073 * One of the following must also be set: 8074 * 8075 * - Render Target Cache Flush Enable ([12] of DW1) 8076 * - Depth Cache Flush Enable ([0] of DW1) 8077 * - Stall at Pixel Scoreboard ([1] of DW1) 8078 * - Depth Stall ([13] of DW1) 8079 * - Post-Sync Operation ([13] of DW1) 8080 * - DC Flush Enable ([5] of DW1)" 8081 * 8082 * If we don't already have one of those bits set, we choose to add 8083 * "Stall at Pixel Scoreboard". Some of the other bits require a 8084 * CS stall as a workaround (see above), which would send us into 8085 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard" 8086 * appears to be safe, so we choose that. 8087 */ 8088 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH | 8089 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 8090 PIPE_CONTROL_WRITE_IMMEDIATE | 8091 PIPE_CONTROL_WRITE_DEPTH_COUNT | 8092 PIPE_CONTROL_WRITE_TIMESTAMP | 8093 PIPE_CONTROL_STALL_AT_SCOREBOARD | 8094 PIPE_CONTROL_DEPTH_STALL | 8095 PIPE_CONTROL_DATA_CACHE_FLUSH; 8096 if (!(flags & wa_bits)) 8097 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD; 8098 } 8099 8100 if (GFX_VER >= 12 && (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH)) { 8101 /* Wa_1409600907: 8102 * 8103 * "PIPE_CONTROL with Depth Stall Enable bit must be set 8104 * with any PIPE_CONTROL with Depth Flush Enable bit set. 8105 */ 8106 flags |= PIPE_CONTROL_DEPTH_STALL; 8107 } 8108 8109 /* Emit --------------------------------------------------------------- */ 8110 8111 if (INTEL_DEBUG(DEBUG_PIPE_CONTROL)) { 8112 fprintf(stderr, 8113 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n", 8114 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "", 8115 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "", 8116 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "", 8117 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "", 8118 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "", 8119 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "", 8120 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "", 8121 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "", 8122 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "", 8123 (flags & PIPE_CONTROL_TILE_CACHE_FLUSH) ? "Tile " : "", 8124 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "", 8125 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "", 8126 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "", 8127 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "", 8128 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "", 8129 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "", 8130 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ? 8131 "SnapRes" : "", 8132 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ? 8133 "ISPDis" : "", 8134 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "", 8135 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "", 8136 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "", 8137 (flags & PIPE_CONTROL_FLUSH_HDC) ? "HDC " : "", 8138 (flags & PIPE_CONTROL_PSS_STALL_SYNC) ? "PSS " : "", 8139 imm, reason); 8140 } 8141 8142 batch_mark_sync_for_pipe_control(batch, flags); 8143 iris_batch_sync_region_start(batch); 8144 8145 const bool trace_pc = 8146 (flags & (PIPE_CONTROL_CACHE_FLUSH_BITS | PIPE_CONTROL_CACHE_INVALIDATE_BITS)) != 0; 8147 8148 if (trace_pc) 8149 trace_intel_begin_stall(&batch->trace); 8150 8151 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) { 8152#if GFX_VERx10 >= 125 8153 pc.PSSStallSyncEnable = flags & PIPE_CONTROL_PSS_STALL_SYNC; 8154#endif 8155#if GFX_VER >= 12 8156 pc.TileCacheFlushEnable = flags & PIPE_CONTROL_TILE_CACHE_FLUSH; 8157#endif 8158#if GFX_VER >= 11 8159 pc.HDCPipelineFlushEnable = flags & PIPE_CONTROL_FLUSH_HDC; 8160#endif 8161 pc.LRIPostSyncOperation = NoLRIOperation; 8162 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE; 8163 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH; 8164 pc.StoreDataIndex = 0; 8165 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL; 8166 pc.GlobalSnapshotCountReset = 8167 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET; 8168 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE; 8169 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR; 8170 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD; 8171 pc.RenderTargetCacheFlushEnable = 8172 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH; 8173 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH; 8174 pc.StateCacheInvalidationEnable = 8175 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE; 8176#if GFX_VER >= 12 8177 pc.L3ReadOnlyCacheInvalidationEnable = 8178 flags & PIPE_CONTROL_L3_READ_ONLY_CACHE_INVALIDATE; 8179#endif 8180 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE; 8181 pc.ConstantCacheInvalidationEnable = 8182 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE; 8183 pc.PostSyncOperation = flags_to_post_sync_op(flags); 8184 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL; 8185 pc.InstructionCacheInvalidateEnable = 8186 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE; 8187 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE; 8188 pc.IndirectStatePointersDisable = 8189 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE; 8190 pc.TextureCacheInvalidationEnable = 8191 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 8192 pc.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE); 8193 pc.ImmediateData = imm; 8194 } 8195 8196 if (trace_pc) { 8197 trace_intel_end_stall(&batch->trace, flags, 8198 iris_utrace_pipe_flush_bit_to_ds_stall_flag, 8199 reason); 8200 } 8201 8202 iris_batch_sync_region_end(batch); 8203} 8204 8205#if GFX_VER == 9 8206/** 8207 * Preemption on Gfx9 has to be enabled or disabled in various cases. 8208 * 8209 * See these workarounds for preemption: 8210 * - WaDisableMidObjectPreemptionForGSLineStripAdj 8211 * - WaDisableMidObjectPreemptionForTrifanOrPolygon 8212 * - WaDisableMidObjectPreemptionForLineLoop 8213 * - WA#0798 8214 * 8215 * We don't put this in the vtable because it's only used on Gfx9. 8216 */ 8217void 8218gfx9_toggle_preemption(struct iris_context *ice, 8219 struct iris_batch *batch, 8220 const struct pipe_draw_info *draw) 8221{ 8222 struct iris_genx_state *genx = ice->state.genx; 8223 bool object_preemption = true; 8224 8225 /* WaDisableMidObjectPreemptionForGSLineStripAdj 8226 * 8227 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj 8228 * and GS is enabled." 8229 */ 8230 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY && 8231 ice->shaders.prog[MESA_SHADER_GEOMETRY]) 8232 object_preemption = false; 8233 8234 /* WaDisableMidObjectPreemptionForTrifanOrPolygon 8235 * 8236 * "TriFan miscompare in Execlist Preemption test. Cut index that is 8237 * on a previous context. End the previous, the resume another context 8238 * with a tri-fan or polygon, and the vertex count is corrupted. If we 8239 * prempt again we will cause corruption. 8240 * 8241 * WA: Disable mid-draw preemption when draw-call has a tri-fan." 8242 */ 8243 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN) 8244 object_preemption = false; 8245 8246 /* WaDisableMidObjectPreemptionForLineLoop 8247 * 8248 * "VF Stats Counters Missing a vertex when preemption enabled. 8249 * 8250 * WA: Disable mid-draw preemption when the draw uses a lineloop 8251 * topology." 8252 */ 8253 if (draw->mode == PIPE_PRIM_LINE_LOOP) 8254 object_preemption = false; 8255 8256 /* WA#0798 8257 * 8258 * "VF is corrupting GAFS data when preempted on an instance boundary 8259 * and replayed with instancing enabled. 8260 * 8261 * WA: Disable preemption when using instanceing." 8262 */ 8263 if (draw->instance_count > 1) 8264 object_preemption = false; 8265 8266 if (genx->object_preemption != object_preemption) { 8267 iris_enable_obj_preemption(batch, object_preemption); 8268 genx->object_preemption = object_preemption; 8269 } 8270} 8271#endif 8272 8273static void 8274iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch) 8275{ 8276 struct iris_genx_state *genx = ice->state.genx; 8277 8278#if GFX_VERx10 == 120 8279 genx->depth_reg_mode = IRIS_DEPTH_REG_MODE_UNKNOWN; 8280#endif 8281 8282 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer)); 8283} 8284 8285static void 8286iris_emit_mi_report_perf_count(struct iris_batch *batch, 8287 struct iris_bo *bo, 8288 uint32_t offset_in_bytes, 8289 uint32_t report_id) 8290{ 8291 iris_batch_sync_region_start(batch); 8292 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) { 8293 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes, 8294 IRIS_DOMAIN_OTHER_WRITE); 8295 mi_rpc.ReportID = report_id; 8296 } 8297 iris_batch_sync_region_end(batch); 8298} 8299 8300/** 8301 * Update the pixel hashing modes that determine the balancing of PS threads 8302 * across subslices and slices. 8303 * 8304 * \param width Width bound of the rendering area (already scaled down if \p 8305 * scale is greater than 1). 8306 * \param height Height bound of the rendering area (already scaled down if \p 8307 * scale is greater than 1). 8308 * \param scale The number of framebuffer samples that could potentially be 8309 * affected by an individual channel of the PS thread. This is 8310 * typically one for single-sampled rendering, but for operations 8311 * like CCS resolves and fast clears a single PS invocation may 8312 * update a huge number of pixels, in which case a finer 8313 * balancing is desirable in order to maximally utilize the 8314 * bandwidth available. UINT_MAX can be used as shorthand for 8315 * "finest hashing mode available". 8316 */ 8317void 8318genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch, 8319 unsigned width, unsigned height, unsigned scale) 8320{ 8321#if GFX_VER == 9 8322 const struct intel_device_info *devinfo = &batch->screen->devinfo; 8323 const unsigned slice_hashing[] = { 8324 /* Because all Gfx9 platforms with more than one slice require 8325 * three-way subslice hashing, a single "normal" 16x16 slice hashing 8326 * block is guaranteed to suffer from substantial imbalance, with one 8327 * subslice receiving twice as much work as the other two in the 8328 * slice. 8329 * 8330 * The performance impact of that would be particularly severe when 8331 * three-way hashing is also in use for slice balancing (which is the 8332 * case for all Gfx9 GT4 platforms), because one of the slices 8333 * receives one every three 16x16 blocks in either direction, which 8334 * is roughly the periodicity of the underlying subslice imbalance 8335 * pattern ("roughly" because in reality the hardware's 8336 * implementation of three-way hashing doesn't do exact modulo 3 8337 * arithmetic, which somewhat decreases the magnitude of this effect 8338 * in practice). This leads to a systematic subslice imbalance 8339 * within that slice regardless of the size of the primitive. The 8340 * 32x32 hashing mode guarantees that the subslice imbalance within a 8341 * single slice hashing block is minimal, largely eliminating this 8342 * effect. 8343 */ 8344 _32x32, 8345 /* Finest slice hashing mode available. */ 8346 NORMAL 8347 }; 8348 const unsigned subslice_hashing[] = { 8349 /* 16x16 would provide a slight cache locality benefit especially 8350 * visible in the sampler L1 cache efficiency of low-bandwidth 8351 * non-LLC platforms, but it comes at the cost of greater subslice 8352 * imbalance for primitives of dimensions approximately intermediate 8353 * between 16x4 and 16x16. 8354 */ 8355 _16x4, 8356 /* Finest subslice hashing mode available. */ 8357 _8x4 8358 }; 8359 /* Dimensions of the smallest hashing block of a given hashing mode. If 8360 * the rendering area is smaller than this there can't possibly be any 8361 * benefit from switching to this mode, so we optimize out the 8362 * transition. 8363 */ 8364 const unsigned min_size[][2] = { 8365 { 16, 4 }, 8366 { 8, 4 } 8367 }; 8368 const unsigned idx = scale > 1; 8369 8370 if (width > min_size[idx][0] || height > min_size[idx][1]) { 8371 iris_emit_raw_pipe_control(batch, 8372 "workaround: CS stall before GT_MODE LRI", 8373 PIPE_CONTROL_STALL_AT_SCOREBOARD | 8374 PIPE_CONTROL_CS_STALL, 8375 NULL, 0, 0); 8376 8377 iris_emit_reg(batch, GENX(GT_MODE), reg) { 8378 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0); 8379 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0); 8380 reg.SubsliceHashing = subslice_hashing[idx]; 8381 reg.SubsliceHashingMask = -1; 8382 }; 8383 8384 ice->state.current_hash_scale = scale; 8385 } 8386#endif 8387} 8388 8389static void 8390iris_set_frontend_noop(struct pipe_context *ctx, bool enable) 8391{ 8392 struct iris_context *ice = (struct iris_context *) ctx; 8393 8394 if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_RENDER], enable)) { 8395 ice->state.dirty |= IRIS_ALL_DIRTY_FOR_RENDER; 8396 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_RENDER; 8397 } 8398 8399 if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_COMPUTE], enable)) { 8400 ice->state.dirty |= IRIS_ALL_DIRTY_FOR_COMPUTE; 8401 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_COMPUTE; 8402 } 8403} 8404 8405void 8406genX(init_screen_state)(struct iris_screen *screen) 8407{ 8408 assert(screen->devinfo.verx10 == GFX_VERx10); 8409 screen->vtbl.destroy_state = iris_destroy_state; 8410 screen->vtbl.init_render_context = iris_init_render_context; 8411 screen->vtbl.init_compute_context = iris_init_compute_context; 8412 screen->vtbl.upload_render_state = iris_upload_render_state; 8413 screen->vtbl.update_binder_address = iris_update_binder_address; 8414 screen->vtbl.upload_compute_state = iris_upload_compute_state; 8415 screen->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control; 8416 screen->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count; 8417 screen->vtbl.rebind_buffer = iris_rebind_buffer; 8418 screen->vtbl.load_register_reg32 = iris_load_register_reg32; 8419 screen->vtbl.load_register_reg64 = iris_load_register_reg64; 8420 screen->vtbl.load_register_imm32 = iris_load_register_imm32; 8421 screen->vtbl.load_register_imm64 = iris_load_register_imm64; 8422 screen->vtbl.load_register_mem32 = iris_load_register_mem32; 8423 screen->vtbl.load_register_mem64 = iris_load_register_mem64; 8424 screen->vtbl.store_register_mem32 = iris_store_register_mem32; 8425 screen->vtbl.store_register_mem64 = iris_store_register_mem64; 8426 screen->vtbl.store_data_imm32 = iris_store_data_imm32; 8427 screen->vtbl.store_data_imm64 = iris_store_data_imm64; 8428 screen->vtbl.copy_mem_mem = iris_copy_mem_mem; 8429 screen->vtbl.derived_program_state_size = iris_derived_program_state_size; 8430 screen->vtbl.store_derived_program_state = iris_store_derived_program_state; 8431 screen->vtbl.create_so_decl_list = iris_create_so_decl_list; 8432 screen->vtbl.populate_vs_key = iris_populate_vs_key; 8433 screen->vtbl.populate_tcs_key = iris_populate_tcs_key; 8434 screen->vtbl.populate_tes_key = iris_populate_tes_key; 8435 screen->vtbl.populate_gs_key = iris_populate_gs_key; 8436 screen->vtbl.populate_fs_key = iris_populate_fs_key; 8437 screen->vtbl.populate_cs_key = iris_populate_cs_key; 8438 screen->vtbl.lost_genx_state = iris_lost_genx_state; 8439 screen->vtbl.disable_rhwo_optimization = iris_disable_rhwo_optimization; 8440} 8441 8442void 8443genX(init_state)(struct iris_context *ice) 8444{ 8445 struct pipe_context *ctx = &ice->ctx; 8446 struct iris_screen *screen = (struct iris_screen *)ctx->screen; 8447 8448 ctx->create_blend_state = iris_create_blend_state; 8449 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state; 8450 ctx->create_rasterizer_state = iris_create_rasterizer_state; 8451 ctx->create_sampler_state = iris_create_sampler_state; 8452 ctx->create_sampler_view = iris_create_sampler_view; 8453 ctx->create_surface = iris_create_surface; 8454 ctx->create_vertex_elements_state = iris_create_vertex_elements; 8455 ctx->bind_blend_state = iris_bind_blend_state; 8456 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state; 8457 ctx->bind_sampler_states = iris_bind_sampler_states; 8458 ctx->bind_rasterizer_state = iris_bind_rasterizer_state; 8459 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state; 8460 ctx->delete_blend_state = iris_delete_state; 8461 ctx->delete_depth_stencil_alpha_state = iris_delete_state; 8462 ctx->delete_rasterizer_state = iris_delete_state; 8463 ctx->delete_sampler_state = iris_delete_state; 8464 ctx->delete_vertex_elements_state = iris_delete_state; 8465 ctx->set_blend_color = iris_set_blend_color; 8466 ctx->set_clip_state = iris_set_clip_state; 8467 ctx->set_constant_buffer = iris_set_constant_buffer; 8468 ctx->set_shader_buffers = iris_set_shader_buffers; 8469 ctx->set_shader_images = iris_set_shader_images; 8470 ctx->set_sampler_views = iris_set_sampler_views; 8471 ctx->set_compute_resources = iris_set_compute_resources; 8472 ctx->set_global_binding = iris_set_global_binding; 8473 ctx->set_tess_state = iris_set_tess_state; 8474 ctx->set_patch_vertices = iris_set_patch_vertices; 8475 ctx->set_framebuffer_state = iris_set_framebuffer_state; 8476 ctx->set_polygon_stipple = iris_set_polygon_stipple; 8477 ctx->set_sample_mask = iris_set_sample_mask; 8478 ctx->set_scissor_states = iris_set_scissor_states; 8479 ctx->set_stencil_ref = iris_set_stencil_ref; 8480 ctx->set_vertex_buffers = iris_set_vertex_buffers; 8481 ctx->set_viewport_states = iris_set_viewport_states; 8482 ctx->sampler_view_destroy = iris_sampler_view_destroy; 8483 ctx->surface_destroy = iris_surface_destroy; 8484 ctx->draw_vbo = iris_draw_vbo; 8485 ctx->launch_grid = iris_launch_grid; 8486 ctx->create_stream_output_target = iris_create_stream_output_target; 8487 ctx->stream_output_target_destroy = iris_stream_output_target_destroy; 8488 ctx->set_stream_output_targets = iris_set_stream_output_targets; 8489 ctx->set_frontend_noop = iris_set_frontend_noop; 8490 8491 ice->state.dirty = ~0ull; 8492 ice->state.stage_dirty = ~0ull; 8493 8494 ice->state.statistics_counters_enabled = true; 8495 8496 ice->state.sample_mask = 0xffff; 8497 ice->state.num_viewports = 1; 8498 ice->state.prim_mode = PIPE_PRIM_MAX; 8499 ice->state.genx = calloc(1, sizeof(struct iris_genx_state)); 8500 ice->draw.derived_params.drawid = -1; 8501 8502 /* Make a 1x1x1 null surface for unbound textures */ 8503 void *null_surf_map = 8504 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex, 8505 4 * GENX(RENDER_SURFACE_STATE_length), 64); 8506 isl_null_fill_state(&screen->isl_dev, null_surf_map, 8507 .size = isl_extent3d(1, 1, 1)); 8508 ice->state.unbound_tex.offset += 8509 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res)); 8510 8511 /* Default all scissor rectangles to be empty regions. */ 8512 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) { 8513 ice->state.scissors[i] = (struct pipe_scissor_state) { 8514 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0, 8515 }; 8516 } 8517} 8518