1 /* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
2  * Permission is hereby granted, free of charge, to any person obtaining a copy
3  * of this software and associated documentation files (the "Software"), to
4  * deal in the Software without restriction, including without limitation the
5  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
6  * sell copies of the Software, and to permit persons to whom the Software is
7  * furnished to do so, subject to the following conditions:
8  *
9  * The above copyright notice and this permission notice shall be included in
10  * all copies or substantial portions of the Software.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
13  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
15  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
16  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
17  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
18  * IN THE SOFTWARE.
19  */
20 
21 /* We lean on the fact that POLL{IN,OUT,ERR,HUP} correspond with their
22  * EPOLL* counterparts.  We use the POLL* variants in this file because that
23  * is what libuv uses elsewhere.
24  */
25 
26 #include "uv.h"
27 #include "internal.h"
28 #include "uv_log.h"
29 #include <inttypes.h>
30 #include <stdatomic.h>
31 #include <stddef.h>  /* offsetof */
32 #include <stdint.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <assert.h>
37 #include <errno.h>
38 
39 #include <fcntl.h>
40 #include <ifaddrs.h>
41 #include <net/ethernet.h>
42 #include <net/if.h>
43 #include <netpacket/packet.h>
44 #include <sys/epoll.h>
45 #include <sys/inotify.h>
46 #include <sys/mman.h>
47 #include <sys/param.h>
48 #include <sys/prctl.h>
49 #include <sys/socket.h>
50 #include <sys/stat.h>
51 #include <sys/syscall.h>
52 #include <sys/sysinfo.h>
53 #include <sys/sysmacros.h>
54 #include <sys/types.h>
55 #include <sys/utsname.h>
56 #include <time.h>
57 #include <unistd.h>
58 
59 #ifdef USE_FFRT
60 #include "ffrt.h"
61 #include "c/executor_task.h"
62 
uv__epoll_wait(struct epoll_event* events, int eventsize, uint64_t timeout)63 int uv__epoll_wait(struct epoll_event* events, int eventsize, uint64_t timeout) {
64   int nfds = 0;
65   if (ffrt_get_cur_task() != NULL) {
66     ffrt_qos_t qos = ffrt_this_task_get_qos();
67     nfds = ffrt_epoll_wait(qos, events, eventsize, timeout);
68   }
69   return nfds;
70 }
71 #endif
72 
uv__epoll_ctl(int epoll_fd, int op, int fd, struct epoll_event* event)73 int uv__epoll_ctl(int epoll_fd, int op, int fd, struct epoll_event* event) {
74 #ifdef USE_FFRT
75   if (ffrt_get_cur_task() != NULL) {
76     ffrt_qos_t qos = ffrt_this_task_get_qos();
77     return ffrt_epoll_ctl(qos, op, fd, event == NULL ? 0 : event->events, NULL, NULL);
78   }
79 #endif
80   return epoll_ctl(epoll_fd, op, fd ,event);
81 }
82 #ifndef __NR_io_uring_setup
83 # define __NR_io_uring_setup 425
84 #endif
85 
86 #ifndef __NR_io_uring_enter
87 # define __NR_io_uring_enter 426
88 #endif
89 
90 #ifndef __NR_io_uring_register
91 # define __NR_io_uring_register 427
92 #endif
93 
94 #ifndef __NR_copy_file_range
95 # if defined(__x86_64__)
96 #  define __NR_copy_file_range 326
97 # elif defined(__i386__)
98 #  define __NR_copy_file_range 377
99 # elif defined(__s390__)
100 #  define __NR_copy_file_range 375
101 # elif defined(__arm__)
102 #  define __NR_copy_file_range 391
103 # elif defined(__aarch64__)
104 #  define __NR_copy_file_range 285
105 # elif defined(__powerpc__)
106 #  define __NR_copy_file_range 379
107 # elif defined(__arc__)
108 #  define __NR_copy_file_range 285
109 # elif defined(__riscv)
110 #  define __NR_copy_file_range 285
111 # endif
112 #endif /* __NR_copy_file_range */
113 
114 #ifndef __NR_statx
115 # if defined(__x86_64__)
116 #  define __NR_statx 332
117 # elif defined(__i386__)
118 #  define __NR_statx 383
119 # elif defined(__aarch64__)
120 #  define __NR_statx 397
121 # elif defined(__arm__)
122 #  define __NR_statx 397
123 # elif defined(__ppc__)
124 #  define __NR_statx 383
125 # elif defined(__s390__)
126 #  define __NR_statx 379
127 # elif defined(__riscv)
128 #  define __NR_statx 291
129 # endif
130 #endif /* __NR_statx */
131 
132 #ifndef __NR_getrandom
133 # if defined(__x86_64__)
134 #  define __NR_getrandom 318
135 # elif defined(__i386__)
136 #  define __NR_getrandom 355
137 # elif defined(__aarch64__)
138 #  define __NR_getrandom 384
139 # elif defined(__arm__)
140 #  define __NR_getrandom 384
141 # elif defined(__ppc__)
142 #  define __NR_getrandom 359
143 # elif defined(__s390__)
144 #  define __NR_getrandom 349
145 # elif defined(__riscv)
146 #  define __NR_getrandom 278
147 # endif
148 #endif /* __NR_getrandom */
149 
150 enum {
151   UV__IORING_SETUP_SQPOLL = 2u,
152 };
153 
154 enum {
155   UV__IORING_FEAT_SINGLE_MMAP = 1u,
156   UV__IORING_FEAT_NODROP = 2u,
157   UV__IORING_FEAT_RSRC_TAGS = 1024u,  /* linux v5.13 */
158 };
159 
160 enum {
161   UV__IORING_OP_READV = 1,
162   UV__IORING_OP_WRITEV = 2,
163   UV__IORING_OP_FSYNC = 3,
164   UV__IORING_OP_OPENAT = 18,
165   UV__IORING_OP_CLOSE = 19,
166   UV__IORING_OP_STATX = 21,
167   UV__IORING_OP_EPOLL_CTL = 29,
168   UV__IORING_OP_RENAMEAT = 35,
169   UV__IORING_OP_UNLINKAT = 36,
170   UV__IORING_OP_MKDIRAT = 37,
171   UV__IORING_OP_SYMLINKAT = 38,
172   UV__IORING_OP_LINKAT = 39,
173 };
174 
175 enum {
176   UV__IORING_ENTER_GETEVENTS = 1u,
177   UV__IORING_ENTER_SQ_WAKEUP = 2u,
178 };
179 
180 enum {
181   UV__IORING_SQ_NEED_WAKEUP = 1u,
182   UV__IORING_SQ_CQ_OVERFLOW = 2u,
183 };
184 
185 enum {
186   UV__MKDIRAT_SYMLINKAT_LINKAT = 1u,
187 };
188 
189 struct uv__io_cqring_offsets {
190   uint32_t head;
191   uint32_t tail;
192   uint32_t ring_mask;
193   uint32_t ring_entries;
194   uint32_t overflow;
195   uint32_t cqes;
196   uint64_t reserved0;
197   uint64_t reserved1;
198 };
199 
200 STATIC_ASSERT(40 == sizeof(struct uv__io_cqring_offsets));
201 
202 struct uv__io_sqring_offsets {
203   uint32_t head;
204   uint32_t tail;
205   uint32_t ring_mask;
206   uint32_t ring_entries;
207   uint32_t flags;
208   uint32_t dropped;
209   uint32_t array;
210   uint32_t reserved0;
211   uint64_t reserved1;
212 };
213 
214 STATIC_ASSERT(40 == sizeof(struct uv__io_sqring_offsets));
215 
216 struct uv__io_uring_cqe {
217   uint64_t user_data;
218   int32_t res;
219   uint32_t flags;
220 };
221 
222 STATIC_ASSERT(16 == sizeof(struct uv__io_uring_cqe));
223 
224 struct uv__io_uring_sqe {
225   uint8_t opcode;
226   uint8_t flags;
227   uint16_t ioprio;
228   int32_t fd;
229   union {
230     uint64_t off;
231     uint64_t addr2;
232   };
233   union {
234     uint64_t addr;
235   };
236   uint32_t len;
237   union {
238     uint32_t rw_flags;
239     uint32_t fsync_flags;
240     uint32_t open_flags;
241     uint32_t statx_flags;
242   };
243   uint64_t user_data;
244   union {
245     uint16_t buf_index;
246     uint64_t pad[3];
247   };
248 };
249 
250 STATIC_ASSERT(64 == sizeof(struct uv__io_uring_sqe));
251 STATIC_ASSERT(0 == offsetof(struct uv__io_uring_sqe, opcode));
252 STATIC_ASSERT(1 == offsetof(struct uv__io_uring_sqe, flags));
253 STATIC_ASSERT(2 == offsetof(struct uv__io_uring_sqe, ioprio));
254 STATIC_ASSERT(4 == offsetof(struct uv__io_uring_sqe, fd));
255 STATIC_ASSERT(8 == offsetof(struct uv__io_uring_sqe, off));
256 STATIC_ASSERT(16 == offsetof(struct uv__io_uring_sqe, addr));
257 STATIC_ASSERT(24 == offsetof(struct uv__io_uring_sqe, len));
258 STATIC_ASSERT(28 == offsetof(struct uv__io_uring_sqe, rw_flags));
259 STATIC_ASSERT(32 == offsetof(struct uv__io_uring_sqe, user_data));
260 STATIC_ASSERT(40 == offsetof(struct uv__io_uring_sqe, buf_index));
261 
262 struct uv__io_uring_params {
263   uint32_t sq_entries;
264   uint32_t cq_entries;
265   uint32_t flags;
266   uint32_t sq_thread_cpu;
267   uint32_t sq_thread_idle;
268   uint32_t features;
269   uint32_t reserved[4];
270   struct uv__io_sqring_offsets sq_off;  /* 40 bytes */
271   struct uv__io_cqring_offsets cq_off;  /* 40 bytes */
272 };
273 
274 STATIC_ASSERT(40 + 40 + 40 == sizeof(struct uv__io_uring_params));
275 STATIC_ASSERT(40 == offsetof(struct uv__io_uring_params, sq_off));
276 STATIC_ASSERT(80 == offsetof(struct uv__io_uring_params, cq_off));
277 
278 STATIC_ASSERT(EPOLL_CTL_ADD < 4);
279 STATIC_ASSERT(EPOLL_CTL_DEL < 4);
280 STATIC_ASSERT(EPOLL_CTL_MOD < 4);
281 
282 struct watcher_list {
283   RB_ENTRY(watcher_list) entry;
284   struct uv__queue watchers;
285   int iterating;
286   char* path;
287   int wd;
288 };
289 
290 struct watcher_root {
291   struct watcher_list* rbh_root;
292 };
293 
294 static int uv__inotify_fork(uv_loop_t* loop, struct watcher_list* root);
295 static void uv__inotify_read(uv_loop_t* loop,
296                              uv__io_t* w,
297                              unsigned int revents);
298 static int compare_watchers(const struct watcher_list* a,
299                             const struct watcher_list* b);
300 static void maybe_free_watcher_list(struct watcher_list* w,
301                                     uv_loop_t* loop);
302 
303 static void uv__epoll_ctl_flush(int epollfd,
304                                 struct uv__iou* ctl,
305                                 struct epoll_event (*events)[256]);
306 
307 static void uv__epoll_ctl_prep(int epollfd,
308                                struct uv__iou* ctl,
309                                struct epoll_event (*events)[256],
310                                int op,
311                                int fd,
312                                struct epoll_event* e);
313 
314 RB_GENERATE_STATIC(watcher_root, watcher_list, entry, compare_watchers)
315 
316 
uv__inotify_watchers(uv_loop_t* loop)317 static struct watcher_root* uv__inotify_watchers(uv_loop_t* loop) {
318   /* This cast works because watcher_root is a struct with a pointer as its
319    * sole member. Such type punning is unsafe in the presence of strict
320    * pointer aliasing (and is just plain nasty) but that is why libuv
321    * is compiled with -fno-strict-aliasing.
322    */
323   return (struct watcher_root*) &loop->inotify_watchers;
324 }
325 
326 
uv__kernel_version(void)327 unsigned uv__kernel_version(void) {
328   static _Atomic unsigned cached_version;
329   struct utsname u;
330   unsigned version;
331   unsigned major;
332   unsigned minor;
333   unsigned patch;
334   char v_sig[256];
335   char* needle;
336 
337   version = atomic_load_explicit(&cached_version, memory_order_relaxed);
338   if (version != 0)
339     return version;
340 
341   /* Check /proc/version_signature first as it's the way to get the mainline
342    * kernel version in Ubuntu. The format is:
343    *   Ubuntu ubuntu_kernel_version mainline_kernel_version
344    * For example:
345    *   Ubuntu 5.15.0-79.86-generic 5.15.111
346    */
347   if (0 == uv__slurp("/proc/version_signature", v_sig, sizeof(v_sig)))
348     if (3 == sscanf(v_sig, "Ubuntu %*s %u.%u.%u", &major, &minor, &patch))
349       goto calculate_version;
350 
351   if (-1 == uname(&u))
352     return 0;
353 
354   /* In Debian we need to check `version` instead of `release` to extract the
355    * mainline kernel version. This is an example of how it looks like:
356    *  #1 SMP Debian 5.10.46-4 (2021-08-03)
357    */
358   needle = strstr(u.version, "Debian ");
359   if (needle != NULL)
360     if (3 == sscanf(needle, "Debian %u.%u.%u", &major, &minor, &patch))
361       goto calculate_version;
362 
363   if (3 != sscanf(u.release, "%u.%u.%u", &major, &minor, &patch))
364     return 0;
365 
366   /* Handle it when the process runs under the UNAME26 personality:
367    *
368    * - kernels >= 3.x identify as 2.6.40+x
369    * - kernels >= 4.x identify as 2.6.60+x
370    *
371    * UNAME26 is a poorly conceived hack that doesn't let us distinguish
372    * between 4.x kernels and 5.x/6.x kernels so we conservatively assume
373    * that 2.6.60+x means 4.x.
374    *
375    * Fun fact of the day: it's technically possible to observe the actual
376    * kernel version for a brief moment because uname() first copies out the
377    * real release string before overwriting it with the backcompat string.
378    */
379   if (major == 2 && minor == 6) {
380     if (patch >= 60) {
381       major = 4;
382       minor = patch - 60;
383       patch = 0;
384     } else if (patch >= 40) {
385       major = 3;
386       minor = patch - 40;
387       patch = 0;
388     }
389   }
390 
391 calculate_version:
392   version = major * 65536 + minor * 256 + patch;
393   atomic_store_explicit(&cached_version, version, memory_order_relaxed);
394 
395   return version;
396 }
397 
398 
399 ssize_t
uv__fs_copy_file_range(int fd_in, off_t* off_in, int fd_out, off_t* off_out, size_t len, unsigned int flags)400 uv__fs_copy_file_range(int fd_in,
401                        off_t* off_in,
402                        int fd_out,
403                        off_t* off_out,
404                        size_t len,
405                        unsigned int flags)
406 {
407 #ifdef __NR_copy_file_range
408   return syscall(__NR_copy_file_range,
409                  fd_in,
410                  off_in,
411                  fd_out,
412                  off_out,
413                  len,
414                  flags);
415 #else
416   return errno = ENOSYS, -1;
417 #endif
418 }
419 
420 
uv__statx(int dirfd, const char* path, int flags, unsigned int mask, struct uv__statx* statxbuf)421 int uv__statx(int dirfd,
422               const char* path,
423               int flags,
424               unsigned int mask,
425               struct uv__statx* statxbuf) {
426 #if !defined(__NR_statx) || defined(__ANDROID_API__) && __ANDROID_API__ < 30
427   return errno = ENOSYS, -1;
428 #else
429   int rc;
430 
431   rc = syscall(__NR_statx, dirfd, path, flags, mask, statxbuf);
432   if (rc >= 0)
433     uv__msan_unpoison(statxbuf, sizeof(*statxbuf));
434 
435   return rc;
436 #endif
437 }
438 
439 
uv__getrandom(void* buf, size_t buflen, unsigned flags)440 ssize_t uv__getrandom(void* buf, size_t buflen, unsigned flags) {
441 #if !defined(__NR_getrandom) || defined(__ANDROID_API__) && __ANDROID_API__ < 28
442   return errno = ENOSYS, -1;
443 #else
444   ssize_t rc;
445 
446   rc = syscall(__NR_getrandom, buf, buflen, flags);
447   if (rc >= 0)
448     uv__msan_unpoison(buf, buflen);
449 
450   return rc;
451 #endif
452 }
453 
454 
uv__io_uring_setup(int entries, struct uv__io_uring_params* params)455 int uv__io_uring_setup(int entries, struct uv__io_uring_params* params) {
456   return syscall(__NR_io_uring_setup, entries, params);
457 }
458 
459 
uv__io_uring_enter(int fd, unsigned to_submit, unsigned min_complete, unsigned flags)460 int uv__io_uring_enter(int fd,
461                        unsigned to_submit,
462                        unsigned min_complete,
463                        unsigned flags) {
464   /* io_uring_enter used to take a sigset_t but it's unused
465    * in newer kernels unless IORING_ENTER_EXT_ARG is set,
466    * in which case it takes a struct io_uring_getevents_arg.
467    */
468   return syscall(__NR_io_uring_enter,
469                  fd,
470                  to_submit,
471                  min_complete,
472                  flags,
473                  NULL,
474                  0L);
475 }
476 
477 
uv__io_uring_register(int fd, unsigned opcode, void* arg, unsigned nargs)478 int uv__io_uring_register(int fd, unsigned opcode, void* arg, unsigned nargs) {
479   return syscall(__NR_io_uring_register, fd, opcode, arg, nargs);
480 }
481 
482 
uv__use_io_uring(void)483 static int uv__use_io_uring(void) {
484 #if defined(USE_OHOS_DFX)
485   return 0;
486 #endif
487 #if defined(__ANDROID_API__)
488   return 0;  /* Possibly available but blocked by seccomp. */
489 #elif defined(__arm__) && __SIZEOF_POINTER__ == 4
490   /* See https://github.com/libuv/libuv/issues/4158. */
491   return 0;  /* All 32 bits kernels appear buggy. */
492 #elif defined(__powerpc64__) || defined(__ppc64__)
493   /* See https://github.com/libuv/libuv/issues/4283. */
494   return 0; /* Random SIGSEGV in signal handler. */
495 #else
496   /* Ternary: unknown=0, yes=1, no=-1 */
497   static _Atomic int use_io_uring;
498   char* val;
499   int use;
500 
501   use = atomic_load_explicit(&use_io_uring, memory_order_relaxed);
502 
503   if (use == 0) {
504     use = uv__kernel_version() >=
505 #if defined(__hppa__)
506     /* io_uring first supported on parisc in 6.1, functional in .51 */
507     /* https://lore.kernel.org/all/cb912694-b1fe-dbb0-4d8c-d608f3526905@gmx.de/ */
508     /* 6.1.51 */ 0x060133
509 #else
510     /* Older kernels have a bug where the sqpoll thread uses 100% CPU. */
511     /* 5.10.186 */ 0x050ABA
512 #endif
513     ? 1 : -1;
514 
515     /* But users can still enable it if they so desire. */
516     val = getenv("UV_USE_IO_URING");
517     if (val != NULL)
518       use = atoi(val) ? 1 : -1;
519 
520     atomic_store_explicit(&use_io_uring, use, memory_order_relaxed);
521   }
522 
523   return use > 0;
524 #endif
525 }
526 
527 
uv__iou_init(int epollfd, struct uv__iou* iou, uint32_t entries, uint32_t flags)528 static void uv__iou_init(int epollfd,
529                          struct uv__iou* iou,
530                          uint32_t entries,
531                          uint32_t flags) {
532   struct uv__io_uring_params params;
533   struct epoll_event e;
534   size_t cqlen;
535   size_t sqlen;
536   size_t maxlen;
537   size_t sqelen;
538   uint32_t i;
539   char* sq;
540   char* sqe;
541   int ringfd;
542 
543   sq = MAP_FAILED;
544   sqe = MAP_FAILED;
545 
546   if (!uv__use_io_uring())
547     return;
548 
549   /* SQPOLL required CAP_SYS_NICE until linux v5.12 relaxed that requirement.
550    * Mostly academic because we check for a v5.13 kernel afterwards anyway.
551    */
552   memset(&params, 0, sizeof(params));
553   params.flags = flags;
554 
555   if (flags & UV__IORING_SETUP_SQPOLL)
556     params.sq_thread_idle = 10;  /* milliseconds */
557 
558   /* Kernel returns a file descriptor with O_CLOEXEC flag set. */
559   ringfd = uv__io_uring_setup(entries, &params);
560   if (ringfd == -1)
561     return;
562 
563   /* IORING_FEAT_RSRC_TAGS is used to detect linux v5.13 but what we're
564    * actually detecting is whether IORING_OP_STATX works with SQPOLL.
565    */
566   if (!(params.features & UV__IORING_FEAT_RSRC_TAGS))
567     goto fail;
568 
569   /* Implied by IORING_FEAT_RSRC_TAGS but checked explicitly anyway. */
570   if (!(params.features & UV__IORING_FEAT_SINGLE_MMAP))
571     goto fail;
572 
573   /* Implied by IORING_FEAT_RSRC_TAGS but checked explicitly anyway. */
574   if (!(params.features & UV__IORING_FEAT_NODROP))
575     goto fail;
576 
577   sqlen = params.sq_off.array + params.sq_entries * sizeof(uint32_t);
578   cqlen =
579       params.cq_off.cqes + params.cq_entries * sizeof(struct uv__io_uring_cqe);
580   maxlen = sqlen < cqlen ? cqlen : sqlen;
581   sqelen = params.sq_entries * sizeof(struct uv__io_uring_sqe);
582 
583   sq = mmap(0,
584             maxlen,
585             PROT_READ | PROT_WRITE,
586             MAP_SHARED | MAP_POPULATE,
587             ringfd,
588             0);  /* IORING_OFF_SQ_RING */
589 
590   sqe = mmap(0,
591              sqelen,
592              PROT_READ | PROT_WRITE,
593              MAP_SHARED | MAP_POPULATE,
594              ringfd,
595              0x10000000ull);  /* IORING_OFF_SQES */
596 
597   if (sq == MAP_FAILED || sqe == MAP_FAILED)
598     goto fail;
599 
600   if (flags & UV__IORING_SETUP_SQPOLL) {
601     /* Only interested in completion events. To get notified when
602      * the kernel pulls items from the submission ring, add POLLOUT.
603      */
604     memset(&e, 0, sizeof(e));
605     e.events = POLLIN;
606     e.data.fd = ringfd;
607 
608     if (uv__epoll_ctl(epollfd, EPOLL_CTL_ADD, ringfd, &e))
609       goto fail;
610   }
611 
612   iou->sqhead = (uint32_t*) (sq + params.sq_off.head);
613   iou->sqtail = (uint32_t*) (sq + params.sq_off.tail);
614   iou->sqmask = *(uint32_t*) (sq + params.sq_off.ring_mask);
615   iou->sqarray = (uint32_t*) (sq + params.sq_off.array);
616   iou->sqflags = (uint32_t*) (sq + params.sq_off.flags);
617   iou->cqhead = (uint32_t*) (sq + params.cq_off.head);
618   iou->cqtail = (uint32_t*) (sq + params.cq_off.tail);
619   iou->cqmask = *(uint32_t*) (sq + params.cq_off.ring_mask);
620   iou->sq = sq;
621   iou->cqe = sq + params.cq_off.cqes;
622   iou->sqe = sqe;
623   iou->sqlen = sqlen;
624   iou->cqlen = cqlen;
625   iou->maxlen = maxlen;
626   iou->sqelen = sqelen;
627   iou->ringfd = ringfd;
628   iou->in_flight = 0;
629   iou->flags = 0;
630 
631   if (uv__kernel_version() >= /* 5.15.0 */ 0x050F00)
632     iou->flags |= UV__MKDIRAT_SYMLINKAT_LINKAT;
633 
634   for (i = 0; i <= iou->sqmask; i++)
635     iou->sqarray[i] = i;  /* Slot -> sqe identity mapping. */
636 
637   return;
638 
639 fail:
640   if (sq != MAP_FAILED)
641     munmap(sq, maxlen);
642 
643   if (sqe != MAP_FAILED)
644     munmap(sqe, sqelen);
645 
646   uv__close(ringfd);
647 }
648 
649 
uv__iou_delete(struct uv__iou* iou)650 static void uv__iou_delete(struct uv__iou* iou) {
651   if (iou->ringfd != -1) {
652     munmap(iou->sq, iou->maxlen);
653     munmap(iou->sqe, iou->sqelen);
654     uv__close(iou->ringfd);
655     iou->ringfd = -1;
656   }
657 }
658 
659 
uv__platform_loop_init(uv_loop_t* loop)660 int uv__platform_loop_init(uv_loop_t* loop) {
661   uv__loop_internal_fields_t* lfields;
662 
663   lfields = uv__get_internal_fields(loop);
664   lfields->ctl.ringfd = -1;
665   lfields->iou.ringfd = -1;
666 
667   loop->inotify_watchers = NULL;
668   loop->inotify_fd = -1;
669   loop->backend_fd = epoll_create1(O_CLOEXEC);
670 #ifdef USE_OHOS_DFX
671   fdsan_exchange_owner_tag(loop->backend_fd, 0, uv__get_addr_tag((void *)&loop->backend_fd));
672 #endif
673   if (loop->backend_fd == -1)
674     return UV__ERR(errno);
675 
676   uv__iou_init(loop->backend_fd, &lfields->iou, 64, UV__IORING_SETUP_SQPOLL);
677   uv__iou_init(loop->backend_fd, &lfields->ctl, 256, 0);
678   UV_LOGI("init:%{public}zu, backend_fd:%{public}d", (size_t)loop, loop->backend_fd);
679   return 0;
680 }
681 
682 
uv__io_fork(uv_loop_t* loop)683 int uv__io_fork(uv_loop_t* loop) {
684   int err;
685   struct watcher_list* root;
686 
687   root = uv__inotify_watchers(loop)->rbh_root;
688 #ifdef USE_OHOS_DFX
689     fdsan_close_with_tag(loop->backend_fd, uv__get_addr_tag((void *)&loop->backend_fd));
690 #else
691   uv__close(loop->backend_fd);
692 #endif
693   loop->backend_fd = -1;
694 
695   /* TODO(bnoordhuis) Loses items from the submission and completion rings. */
696   uv__platform_loop_delete(loop);
697 
698   err = uv__platform_loop_init(loop);
699   if (err)
700     return err;
701 
702   return uv__inotify_fork(loop, root);
703 }
704 
705 
uv__platform_loop_delete(uv_loop_t* loop)706 void uv__platform_loop_delete(uv_loop_t* loop) {
707   uv__loop_internal_fields_t* lfields;
708 
709   lfields = uv__get_internal_fields(loop);
710   uv__iou_delete(&lfields->ctl);
711   uv__iou_delete(&lfields->iou);
712 
713   if (loop->inotify_fd != -1) {
714     uv__io_stop(loop, &loop->inotify_read_watcher, POLLIN);
715     uv__close(loop->inotify_fd);
716     loop->inotify_fd = -1;
717   }
718 }
719 
720 
721 struct uv__invalidate {
722   struct epoll_event (*prep)[256];
723   struct epoll_event* events;
724   int nfds;
725 };
726 
727 
uv__platform_invalidate_fd(uv_loop_t* loop, int fd)728 void uv__platform_invalidate_fd(uv_loop_t* loop, int fd) {
729   uv__loop_internal_fields_t* lfields;
730   struct uv__invalidate* inv;
731   struct epoll_event dummy;
732   int i;
733 
734   lfields = uv__get_internal_fields(loop);
735   inv = lfields->inv;
736 
737   /* Invalidate events with same file descriptor */
738   if (inv != NULL)
739     for (i = 0; i < inv->nfds; i++)
740       if (inv->events[i].data.fd == fd)
741         inv->events[i].data.fd = -1;
742 
743   /* Remove the file descriptor from the epoll.
744    * This avoids a problem where the same file description remains open
745    * in another process, causing repeated junk epoll events.
746    *
747    * We pass in a dummy epoll_event, to work around a bug in old kernels.
748    *
749    * Work around a bug in kernels 3.10 to 3.19 where passing a struct that
750    * has the EPOLLWAKEUP flag set generates spurious audit syslog warnings.
751    */
752   memset(&dummy, 0, sizeof(dummy));
753 
754   if (inv == NULL) {
755     uv__epoll_ctl(loop->backend_fd, EPOLL_CTL_DEL, fd, &dummy);
756   } else {
757     uv__epoll_ctl_prep(loop->backend_fd,
758                        &lfields->ctl,
759                        inv->prep,
760                        EPOLL_CTL_DEL,
761                        fd,
762                        &dummy);
763   }
764 }
765 
766 
uv__io_check_fd(uv_loop_t* loop, int fd)767 int uv__io_check_fd(uv_loop_t* loop, int fd) {
768   struct epoll_event e;
769   int rc;
770 
771   memset(&e, 0, sizeof(e));
772   e.events = POLLIN;
773   e.data.fd = -1;
774 
775   rc = 0;
776   if (uv__epoll_ctl(loop->backend_fd, EPOLL_CTL_ADD, fd, &e))
777     if (errno != EEXIST)
778       rc = UV__ERR(errno);
779 
780   if (rc == 0)
781     if (uv__epoll_ctl(loop->backend_fd, EPOLL_CTL_DEL, fd, &e))
782       abort();
783 
784   return rc;
785 }
786 
787 
788 /* Caller must initialize SQE and call uv__iou_submit(). */
uv__iou_get_sqe(struct uv__iou* iou, uv_loop_t* loop, uv_fs_t* req)789 static struct uv__io_uring_sqe* uv__iou_get_sqe(struct uv__iou* iou,
790                                                 uv_loop_t* loop,
791                                                 uv_fs_t* req) {
792   struct uv__io_uring_sqe* sqe;
793   uint32_t head;
794   uint32_t tail;
795   uint32_t mask;
796   uint32_t slot;
797 
798   if (iou->ringfd == -1)
799     return NULL;
800 
801   head = atomic_load_explicit((_Atomic uint32_t*) iou->sqhead,
802                               memory_order_acquire);
803   tail = *iou->sqtail;
804   mask = iou->sqmask;
805 
806   if ((head & mask) == ((tail + 1) & mask))
807     return NULL;  /* No room in ring buffer. TODO(bnoordhuis) maybe flush it? */
808 
809   slot = tail & mask;
810   sqe = iou->sqe;
811   sqe = &sqe[slot];
812   memset(sqe, 0, sizeof(*sqe));
813   sqe->user_data = (uintptr_t) req;
814 
815   /* Pacify uv_cancel(). */
816   req->work_req.loop = loop;
817   req->work_req.work = NULL;
818   req->work_req.done = NULL;
819   uv__queue_init(&req->work_req.wq);
820 
821   uv__req_register(loop, req);
822   iou->in_flight++;
823 
824   return sqe;
825 }
826 
827 
uv__iou_submit(struct uv__iou* iou)828 static void uv__iou_submit(struct uv__iou* iou) {
829   uint32_t flags;
830 
831   atomic_store_explicit((_Atomic uint32_t*) iou->sqtail,
832                         *iou->sqtail + 1,
833                         memory_order_release);
834 
835   flags = atomic_load_explicit((_Atomic uint32_t*) iou->sqflags,
836                                memory_order_acquire);
837 
838   if (flags & UV__IORING_SQ_NEED_WAKEUP)
839     if (uv__io_uring_enter(iou->ringfd, 0, 0, UV__IORING_ENTER_SQ_WAKEUP))
840       if (errno != EOWNERDEAD)  /* Kernel bug. Harmless, ignore. */
841         perror("libuv: io_uring_enter(wakeup)");  /* Can't happen. */
842 }
843 
844 
uv__iou_fs_close(uv_loop_t* loop, uv_fs_t* req)845 int uv__iou_fs_close(uv_loop_t* loop, uv_fs_t* req) {
846   struct uv__io_uring_sqe* sqe;
847   struct uv__iou* iou;
848   int kv;
849 
850   kv = uv__kernel_version();
851   /* Work around a poorly understood bug in older kernels where closing a file
852    * descriptor pointing to /foo/bar results in ETXTBSY errors when trying to
853    * execve("/foo/bar") later on. The bug seems to have been fixed somewhere
854    * between 5.15.85 and 5.15.90. I couldn't pinpoint the responsible commit
855    * but good candidates are the several data race fixes. Interestingly, it
856    * seems to manifest only when running under Docker so the possibility of
857    * a Docker bug can't be completely ruled out either. Yay, computers.
858    * Also, disable on non-longterm versions between 5.16.0 (non-longterm) and
859    * 6.1.0 (longterm). Starting with longterm 6.1.x, the issue seems to be
860    * solved.
861    */
862   if (kv < /* 5.15.90 */ 0x050F5A)
863     return 0;
864 
865   if (kv >= /* 5.16.0 */ 0x050A00 && kv < /* 6.1.0 */ 0x060100)
866     return 0;
867 
868 
869   iou = &uv__get_internal_fields(loop)->iou;
870 
871   sqe = uv__iou_get_sqe(iou, loop, req);
872   if (sqe == NULL)
873     return 0;
874 
875   sqe->fd = req->file;
876   sqe->opcode = UV__IORING_OP_CLOSE;
877 
878   uv__iou_submit(iou);
879 
880   return 1;
881 }
882 
883 
uv__iou_fs_fsync_or_fdatasync(uv_loop_t* loop, uv_fs_t* req, uint32_t fsync_flags)884 int uv__iou_fs_fsync_or_fdatasync(uv_loop_t* loop,
885                                   uv_fs_t* req,
886                                   uint32_t fsync_flags) {
887   struct uv__io_uring_sqe* sqe;
888   struct uv__iou* iou;
889 
890   iou = &uv__get_internal_fields(loop)->iou;
891 
892   sqe = uv__iou_get_sqe(iou, loop, req);
893   if (sqe == NULL)
894     return 0;
895 
896   /* Little known fact: setting seq->off and seq->len turns
897    * it into an asynchronous sync_file_range() operation.
898    */
899   sqe->fd = req->file;
900   sqe->fsync_flags = fsync_flags;
901   sqe->opcode = UV__IORING_OP_FSYNC;
902 
903   uv__iou_submit(iou);
904 
905   return 1;
906 }
907 
908 
uv__iou_fs_link(uv_loop_t* loop, uv_fs_t* req)909 int uv__iou_fs_link(uv_loop_t* loop, uv_fs_t* req) {
910   struct uv__io_uring_sqe* sqe;
911   struct uv__iou* iou;
912 
913   iou = &uv__get_internal_fields(loop)->iou;
914 
915   if (!(iou->flags & UV__MKDIRAT_SYMLINKAT_LINKAT))
916     return 0;
917 
918   sqe = uv__iou_get_sqe(iou, loop, req);
919   if (sqe == NULL)
920     return 0;
921 
922   sqe->addr = (uintptr_t) req->path;
923   sqe->fd = AT_FDCWD;
924   sqe->addr2 = (uintptr_t) req->new_path;
925   sqe->len = AT_FDCWD;
926   sqe->opcode = UV__IORING_OP_LINKAT;
927 
928   uv__iou_submit(iou);
929 
930   return 1;
931 }
932 
933 
uv__iou_fs_mkdir(uv_loop_t* loop, uv_fs_t* req)934 int uv__iou_fs_mkdir(uv_loop_t* loop, uv_fs_t* req) {
935   struct uv__io_uring_sqe* sqe;
936   struct uv__iou* iou;
937 
938   iou = &uv__get_internal_fields(loop)->iou;
939 
940   if (!(iou->flags & UV__MKDIRAT_SYMLINKAT_LINKAT))
941     return 0;
942 
943   sqe = uv__iou_get_sqe(iou, loop, req);
944   if (sqe == NULL)
945     return 0;
946 
947   sqe->addr = (uintptr_t) req->path;
948   sqe->fd = AT_FDCWD;
949   sqe->len = req->mode;
950   sqe->opcode = UV__IORING_OP_MKDIRAT;
951 
952   uv__iou_submit(iou);
953 
954   return 1;
955 }
956 
957 
uv__iou_fs_open(uv_loop_t* loop, uv_fs_t* req)958 int uv__iou_fs_open(uv_loop_t* loop, uv_fs_t* req) {
959   struct uv__io_uring_sqe* sqe;
960   struct uv__iou* iou;
961 
962   iou = &uv__get_internal_fields(loop)->iou;
963 
964   sqe = uv__iou_get_sqe(iou, loop, req);
965   if (sqe == NULL)
966     return 0;
967 
968   sqe->addr = (uintptr_t) req->path;
969   sqe->fd = AT_FDCWD;
970   sqe->len = req->mode;
971   sqe->opcode = UV__IORING_OP_OPENAT;
972   sqe->open_flags = req->flags | O_CLOEXEC;
973 
974   uv__iou_submit(iou);
975 
976   return 1;
977 }
978 
979 
uv__iou_fs_rename(uv_loop_t* loop, uv_fs_t* req)980 int uv__iou_fs_rename(uv_loop_t* loop, uv_fs_t* req) {
981   struct uv__io_uring_sqe* sqe;
982   struct uv__iou* iou;
983 
984   iou = &uv__get_internal_fields(loop)->iou;
985 
986   sqe = uv__iou_get_sqe(iou, loop, req);
987   if (sqe == NULL)
988     return 0;
989 
990   sqe->addr = (uintptr_t) req->path;
991   sqe->fd = AT_FDCWD;
992   sqe->addr2 = (uintptr_t) req->new_path;
993   sqe->len = AT_FDCWD;
994   sqe->opcode = UV__IORING_OP_RENAMEAT;
995 
996   uv__iou_submit(iou);
997 
998   return 1;
999 }
1000 
1001 
uv__iou_fs_symlink(uv_loop_t* loop, uv_fs_t* req)1002 int uv__iou_fs_symlink(uv_loop_t* loop, uv_fs_t* req) {
1003   struct uv__io_uring_sqe* sqe;
1004   struct uv__iou* iou;
1005 
1006   iou = &uv__get_internal_fields(loop)->iou;
1007 
1008   if (!(iou->flags & UV__MKDIRAT_SYMLINKAT_LINKAT))
1009     return 0;
1010 
1011   sqe = uv__iou_get_sqe(iou, loop, req);
1012   if (sqe == NULL)
1013     return 0;
1014 
1015   sqe->addr = (uintptr_t) req->path;
1016   sqe->fd = AT_FDCWD;
1017   sqe->addr2 = (uintptr_t) req->new_path;
1018   sqe->opcode = UV__IORING_OP_SYMLINKAT;
1019 
1020   uv__iou_submit(iou);
1021 
1022   return 1;
1023 }
1024 
1025 
uv__iou_fs_unlink(uv_loop_t* loop, uv_fs_t* req)1026 int uv__iou_fs_unlink(uv_loop_t* loop, uv_fs_t* req) {
1027   struct uv__io_uring_sqe* sqe;
1028   struct uv__iou* iou;
1029 
1030   iou = &uv__get_internal_fields(loop)->iou;
1031 
1032   sqe = uv__iou_get_sqe(iou, loop, req);
1033   if (sqe == NULL)
1034     return 0;
1035 
1036   sqe->addr = (uintptr_t) req->path;
1037   sqe->fd = AT_FDCWD;
1038   sqe->opcode = UV__IORING_OP_UNLINKAT;
1039 
1040   uv__iou_submit(iou);
1041 
1042   return 1;
1043 }
1044 
1045 
uv__iou_fs_read_or_write(uv_loop_t* loop, uv_fs_t* req, int is_read)1046 int uv__iou_fs_read_or_write(uv_loop_t* loop,
1047                              uv_fs_t* req,
1048                              int is_read) {
1049   struct uv__io_uring_sqe* sqe;
1050   struct uv__iou* iou;
1051 
1052   /* If iovcnt is greater than IOV_MAX, cap it to IOV_MAX on reads and fallback
1053    * to the threadpool on writes */
1054   if (req->nbufs > IOV_MAX) {
1055     if (is_read)
1056       req->nbufs = IOV_MAX;
1057     else
1058       return 0;
1059   }
1060 
1061   iou = &uv__get_internal_fields(loop)->iou;
1062 
1063   sqe = uv__iou_get_sqe(iou, loop, req);
1064   if (sqe == NULL)
1065     return 0;
1066 
1067   sqe->addr = (uintptr_t) req->bufs;
1068   sqe->fd = req->file;
1069   sqe->len = req->nbufs;
1070   sqe->off = req->off < 0 ? -1 : req->off;
1071   sqe->opcode = is_read ? UV__IORING_OP_READV : UV__IORING_OP_WRITEV;
1072 
1073   uv__iou_submit(iou);
1074 
1075   return 1;
1076 }
1077 
1078 
uv__iou_fs_statx(uv_loop_t* loop, uv_fs_t* req, int is_fstat, int is_lstat)1079 int uv__iou_fs_statx(uv_loop_t* loop,
1080                      uv_fs_t* req,
1081                      int is_fstat,
1082                      int is_lstat) {
1083   struct uv__io_uring_sqe* sqe;
1084   struct uv__statx* statxbuf;
1085   struct uv__iou* iou;
1086 
1087   statxbuf = uv__malloc(sizeof(*statxbuf));
1088   if (statxbuf == NULL)
1089     return 0;
1090 
1091   iou = &uv__get_internal_fields(loop)->iou;
1092 
1093   sqe = uv__iou_get_sqe(iou, loop, req);
1094   if (sqe == NULL) {
1095     uv__free(statxbuf);
1096     return 0;
1097   }
1098 
1099   req->ptr = statxbuf;
1100 
1101   sqe->addr = (uintptr_t) req->path;
1102   sqe->addr2 = (uintptr_t) statxbuf;
1103   sqe->fd = AT_FDCWD;
1104   sqe->len = 0xFFF; /* STATX_BASIC_STATS + STATX_BTIME */
1105   sqe->opcode = UV__IORING_OP_STATX;
1106 
1107   if (is_fstat) {
1108     sqe->addr = (uintptr_t) "";
1109     sqe->fd = req->file;
1110     sqe->statx_flags |= 0x1000; /* AT_EMPTY_PATH */
1111   }
1112 
1113   if (is_lstat)
1114     sqe->statx_flags |= AT_SYMLINK_NOFOLLOW;
1115 
1116   uv__iou_submit(iou);
1117 
1118   return 1;
1119 }
1120 
1121 
uv__statx_to_stat(const struct uv__statx* statxbuf, uv_stat_t* buf)1122 void uv__statx_to_stat(const struct uv__statx* statxbuf, uv_stat_t* buf) {
1123   buf->st_dev = makedev(statxbuf->stx_dev_major, statxbuf->stx_dev_minor);
1124   buf->st_mode = statxbuf->stx_mode;
1125   buf->st_nlink = statxbuf->stx_nlink;
1126   buf->st_uid = statxbuf->stx_uid;
1127   buf->st_gid = statxbuf->stx_gid;
1128   buf->st_rdev = makedev(statxbuf->stx_rdev_major, statxbuf->stx_rdev_minor);
1129   buf->st_ino = statxbuf->stx_ino;
1130   buf->st_size = statxbuf->stx_size;
1131   buf->st_blksize = statxbuf->stx_blksize;
1132   buf->st_blocks = statxbuf->stx_blocks;
1133   buf->st_atim.tv_sec = statxbuf->stx_atime.tv_sec;
1134   buf->st_atim.tv_nsec = statxbuf->stx_atime.tv_nsec;
1135   buf->st_mtim.tv_sec = statxbuf->stx_mtime.tv_sec;
1136   buf->st_mtim.tv_nsec = statxbuf->stx_mtime.tv_nsec;
1137   buf->st_ctim.tv_sec = statxbuf->stx_ctime.tv_sec;
1138   buf->st_ctim.tv_nsec = statxbuf->stx_ctime.tv_nsec;
1139   buf->st_birthtim.tv_sec = statxbuf->stx_btime.tv_sec;
1140   buf->st_birthtim.tv_nsec = statxbuf->stx_btime.tv_nsec;
1141   buf->st_flags = 0;
1142   buf->st_gen = 0;
1143 }
1144 
1145 
uv__iou_fs_statx_post(uv_fs_t* req)1146 static void uv__iou_fs_statx_post(uv_fs_t* req) {
1147   struct uv__statx* statxbuf;
1148   uv_stat_t* buf;
1149 
1150   buf = &req->statbuf;
1151   statxbuf = req->ptr;
1152   req->ptr = NULL;
1153 
1154   if (req->result == 0) {
1155     uv__msan_unpoison(statxbuf, sizeof(*statxbuf));
1156     uv__statx_to_stat(statxbuf, buf);
1157     req->ptr = buf;
1158   }
1159 
1160   uv__free(statxbuf);
1161 }
1162 
1163 
uv__poll_io_uring(uv_loop_t* loop, struct uv__iou* iou)1164 static void uv__poll_io_uring(uv_loop_t* loop, struct uv__iou* iou) {
1165   struct uv__io_uring_cqe* cqe;
1166   struct uv__io_uring_cqe* e;
1167   uv_fs_t* req;
1168   uint32_t head;
1169   uint32_t tail;
1170   uint32_t mask;
1171   uint32_t i;
1172   uint32_t flags;
1173   int nevents;
1174   int rc;
1175 
1176   head = *iou->cqhead;
1177   tail = atomic_load_explicit((_Atomic uint32_t*) iou->cqtail,
1178                               memory_order_acquire);
1179   mask = iou->cqmask;
1180   cqe = iou->cqe;
1181   nevents = 0;
1182 
1183   for (i = head; i != tail; i++) {
1184     e = &cqe[i & mask];
1185 
1186     req = (uv_fs_t*) (uintptr_t) e->user_data;
1187     assert(req->type == UV_FS);
1188 
1189     uv__req_unregister(loop, req);
1190     iou->in_flight--;
1191 
1192     /* If the op is not supported by the kernel retry using the thread pool */
1193     if (e->res == -EOPNOTSUPP) {
1194       uv__fs_post(loop, req);
1195       continue;
1196     }
1197 
1198     /* io_uring stores error codes as negative numbers, same as libuv. */
1199     req->result = e->res;
1200 
1201     switch (req->fs_type) {
1202       case UV_FS_FSTAT:
1203       case UV_FS_LSTAT:
1204       case UV_FS_STAT:
1205         uv__iou_fs_statx_post(req);
1206         break;
1207       default:  /* Squelch -Wswitch warnings. */
1208         break;
1209     }
1210 
1211     uv__metrics_update_idle_time(loop);
1212     req->cb(req);
1213     nevents++;
1214   }
1215 
1216   atomic_store_explicit((_Atomic uint32_t*) iou->cqhead,
1217                         tail,
1218                         memory_order_release);
1219 
1220   /* Check whether CQE's overflowed, if so enter the kernel to make them
1221    * available. Don't grab them immediately but in the next loop iteration to
1222    * avoid loop starvation. */
1223   flags = atomic_load_explicit((_Atomic uint32_t*) iou->sqflags,
1224                                memory_order_acquire);
1225 
1226   if (flags & UV__IORING_SQ_CQ_OVERFLOW) {
1227     do
1228       rc = uv__io_uring_enter(iou->ringfd, 0, 0, UV__IORING_ENTER_GETEVENTS);
1229     while (rc == -1 && errno == EINTR);
1230 
1231     if (rc < 0)
1232       perror("libuv: io_uring_enter(getevents)");  /* Can't happen. */
1233   }
1234 
1235   uv__metrics_inc_events(loop, nevents);
1236   if (uv__get_internal_fields(loop)->current_timeout == 0)
1237     uv__metrics_inc_events_waiting(loop, nevents);
1238 }
1239 
1240 
uv__epoll_ctl_prep(int epollfd, struct uv__iou* ctl, struct epoll_event (*events)[256], int op, int fd, struct epoll_event* e)1241 static void uv__epoll_ctl_prep(int epollfd,
1242                                struct uv__iou* ctl,
1243                                struct epoll_event (*events)[256],
1244                                int op,
1245                                int fd,
1246                                struct epoll_event* e) {
1247   struct uv__io_uring_sqe* sqe;
1248   struct epoll_event* pe;
1249   uint32_t mask;
1250   uint32_t slot;
1251   int ret = 0;
1252 
1253   if (ctl->ringfd == -1) {
1254     if (!uv__epoll_ctl(epollfd, op, fd, e))
1255       return;
1256 
1257     if (op == EPOLL_CTL_DEL)
1258       return;  /* Ignore errors, may be racing with another thread. */
1259 
1260     if (op != EPOLL_CTL_ADD) {
1261 #ifdef PRINT_ERRNO_ABORT
1262       UV_ERRNO_ABORT("errno is %d, fd is %d, backend_fd is %d(%s:%s:%d)",
1263         errno, fd, epollfd, __FILE__, __func__, __LINE__);
1264 #else
1265       abort();
1266 #endif
1267     }
1268 
1269     if (errno != EEXIST) {
1270 #ifdef PRINT_ERRNO_ABORT
1271       UV_ERRNO_ABORT("errno is %d, fd is %d, backend_fd is %d(%s:%s:%d)",
1272         errno, fd, epollfd, __FILE__, __func__, __LINE__);
1273 #else
1274       abort();
1275 #endif
1276     }
1277 
1278     /* File descriptor that's been watched before, update event mask. */
1279     ret = uv__epoll_ctl(epollfd, EPOLL_CTL_MOD, fd, e);
1280     if (!ret)
1281       return;
1282 
1283 #ifdef PRINT_ERRNO_ABORT
1284     UV_ERRNO_ABORT("errno is %d, uv__epoll_ctl ret is %d, fd is %d, backend_fd is %d(%s:%s:%d)",
1285       errno, ret, fd, epollfd, __FILE__, __func__, __LINE__);
1286 #else
1287     abort();
1288 #endif
1289   } else {
1290     mask = ctl->sqmask;
1291     slot = (*ctl->sqtail)++ & mask;
1292 
1293     pe = &(*events)[slot];
1294     *pe = *e;
1295 
1296     sqe = ctl->sqe;
1297     sqe = &sqe[slot];
1298 
1299     memset(sqe, 0, sizeof(*sqe));
1300     sqe->addr = (uintptr_t) pe;
1301     sqe->fd = epollfd;
1302     sqe->len = op;
1303     sqe->off = fd;
1304     sqe->opcode = UV__IORING_OP_EPOLL_CTL;
1305     sqe->user_data = op | slot << 2 | (int64_t) fd << 32;
1306 
1307     if ((*ctl->sqhead & mask) == (*ctl->sqtail & mask))
1308       uv__epoll_ctl_flush(epollfd, ctl, events);
1309   }
1310 }
1311 
1312 
uv__epoll_ctl_flush(int epollfd, struct uv__iou* ctl, struct epoll_event (*events)[256])1313 static void uv__epoll_ctl_flush(int epollfd,
1314                                 struct uv__iou* ctl,
1315                                 struct epoll_event (*events)[256]) {
1316   struct epoll_event oldevents[256];
1317   struct uv__io_uring_cqe* cqe;
1318   uint32_t oldslot;
1319   uint32_t slot;
1320   uint32_t n;
1321   int fd;
1322   int op;
1323   int rc;
1324 
1325   STATIC_ASSERT(sizeof(oldevents) == sizeof(*events));
1326   assert(ctl->ringfd != -1);
1327   assert(*ctl->sqhead != *ctl->sqtail);
1328 
1329   n = *ctl->sqtail - *ctl->sqhead;
1330   do
1331     rc = uv__io_uring_enter(ctl->ringfd, n, n, UV__IORING_ENTER_GETEVENTS);
1332   while (rc == -1 && errno == EINTR);
1333 
1334   if (rc < 0)
1335     perror("libuv: io_uring_enter(getevents)");  /* Can't happen. */
1336 
1337   if (rc != (int) n)
1338     abort();
1339 
1340   assert(*ctl->sqhead == *ctl->sqtail);
1341 
1342   memcpy(oldevents, *events, sizeof(*events));
1343 
1344   /* Failed submissions are either EPOLL_CTL_DEL commands for file descriptors
1345    * that have been closed, or EPOLL_CTL_ADD commands for file descriptors
1346    * that we are already watching. Ignore the former and retry the latter
1347    * with EPOLL_CTL_MOD.
1348    */
1349   while (*ctl->cqhead != *ctl->cqtail) {
1350     slot = (*ctl->cqhead)++ & ctl->cqmask;
1351 
1352     cqe = ctl->cqe;
1353     cqe = &cqe[slot];
1354 
1355     if (cqe->res == 0)
1356       continue;
1357 
1358     fd = cqe->user_data >> 32;
1359     op = 3 & cqe->user_data;
1360     oldslot = 255 & (cqe->user_data >> 2);
1361 
1362     if (op == EPOLL_CTL_DEL)
1363       continue;
1364 
1365     if (op != EPOLL_CTL_ADD)
1366       abort();
1367 
1368     if (cqe->res != -EEXIST)
1369       abort();
1370 
1371     uv__epoll_ctl_prep(epollfd,
1372                        ctl,
1373                        events,
1374                        EPOLL_CTL_MOD,
1375                        fd,
1376                        &oldevents[oldslot]);
1377   }
1378 }
1379 
1380 
uv__io_poll(uv_loop_t* loop, int timeout)1381 void uv__io_poll(uv_loop_t* loop, int timeout) {
1382   uv__loop_internal_fields_t* lfields;
1383   struct epoll_event events[1024];
1384   struct epoll_event prep[256];
1385   struct uv__invalidate inv;
1386   struct epoll_event* pe;
1387   struct epoll_event e;
1388   struct uv__iou* ctl;
1389   struct uv__iou* iou;
1390   int real_timeout;
1391   struct uv__queue* q;
1392   uv__io_t* w;
1393   sigset_t* sigmask;
1394   sigset_t sigset;
1395   uint64_t base;
1396   int have_iou_events;
1397   int have_signals;
1398   int nevents;
1399   int epollfd;
1400   int count;
1401   int nfds;
1402   int fd;
1403   int op;
1404   int i;
1405   int user_timeout;
1406   int reset_timeout;
1407 
1408   lfields = uv__get_internal_fields(loop);
1409   ctl = &lfields->ctl;
1410   iou = &lfields->iou;
1411 
1412   sigmask = NULL;
1413   if (loop->flags & UV_LOOP_BLOCK_SIGPROF) {
1414     sigemptyset(&sigset);
1415     sigaddset(&sigset, SIGPROF);
1416     sigmask = &sigset;
1417   }
1418 
1419   assert(timeout >= -1);
1420   base = loop->time;
1421   count = 48; /* Benchmarks suggest this gives the best throughput. */
1422   real_timeout = timeout;
1423 
1424   if (lfields->flags & UV_METRICS_IDLE_TIME) {
1425     reset_timeout = 1;
1426     user_timeout = timeout;
1427     timeout = 0;
1428   } else {
1429     reset_timeout = 0;
1430     user_timeout = 0;
1431   }
1432 
1433   epollfd = loop->backend_fd;
1434 
1435   memset(&e, 0, sizeof(e));
1436 
1437   while (!uv__queue_empty(&loop->watcher_queue)) {
1438     q = uv__queue_head(&loop->watcher_queue);
1439     w = uv__queue_data(q, uv__io_t, watcher_queue);
1440     uv__queue_remove(q);
1441     uv__queue_init(q);
1442 
1443     op = EPOLL_CTL_MOD;
1444     if (w->events == 0)
1445       op = EPOLL_CTL_ADD;
1446 
1447     w->events = w->pevents;
1448     e.events = w->pevents;
1449     e.data.fd = w->fd;
1450 
1451     uv__epoll_ctl_prep(epollfd, ctl, &prep, op, w->fd, &e);
1452   }
1453 
1454   inv.events = events;
1455   inv.prep = &prep;
1456   inv.nfds = -1;
1457 
1458   for (;;) {
1459     if (loop->nfds == 0)
1460       if (iou->in_flight == 0)
1461         break;
1462 
1463     /* All event mask mutations should be visible to the kernel before
1464      * we enter epoll_pwait().
1465      */
1466     if (ctl->ringfd != -1)
1467       while (*ctl->sqhead != *ctl->sqtail)
1468         uv__epoll_ctl_flush(epollfd, ctl, &prep);
1469 
1470     /* Only need to set the provider_entry_time if timeout != 0. The function
1471      * will return early if the loop isn't configured with UV_METRICS_IDLE_TIME.
1472      */
1473     if (timeout != 0)
1474       uv__metrics_set_provider_entry_time(loop);
1475 
1476     /* Store the current timeout in a location that's globally accessible so
1477      * other locations like uv__work_done() can determine whether the queue
1478      * of events in the callback were waiting when poll was called.
1479      */
1480     lfields->current_timeout = timeout;
1481 #ifdef USE_FFRT
1482     if (ffrt_get_cur_task() == NULL) {
1483       nfds = epoll_pwait(epollfd, events, ARRAY_SIZE(events), timeout, sigmask);
1484     } else {
1485       nfds = uv__epoll_wait(events, ARRAY_SIZE(events), timeout);
1486     }
1487 #else
1488     nfds = epoll_pwait(epollfd, events, ARRAY_SIZE(events), timeout, sigmask);
1489 #endif
1490 
1491     /* Update loop->time unconditionally. It's tempting to skip the update when
1492      * timeout == 0 (i.e. non-blocking poll) but there is no guarantee that the
1493      * operating system didn't reschedule our process while in the syscall.
1494      */
1495     SAVE_ERRNO(uv__update_time(loop));
1496 
1497     if (nfds == -1)
1498       assert(errno == EINTR);
1499     else if (nfds == 0)
1500       /* Unlimited timeout should only return with events or signal. */
1501       assert(timeout != -1);
1502 
1503     if (nfds == 0 || nfds == -1) {
1504       if (reset_timeout != 0) {
1505         timeout = user_timeout;
1506         reset_timeout = 0;
1507       } else if (nfds == 0) {
1508         return;
1509       }
1510 
1511       /* Interrupted by a signal. Update timeout and poll again. */
1512       goto update_timeout;
1513     }
1514 
1515     have_iou_events = 0;
1516     have_signals = 0;
1517     nevents = 0;
1518 
1519     inv.nfds = nfds;
1520     lfields->inv = &inv;
1521 
1522     for (i = 0; i < nfds; i++) {
1523       pe = events + i;
1524       fd = pe->data.fd;
1525 
1526       /* Skip invalidated events, see uv__platform_invalidate_fd */
1527       if (fd == -1)
1528         continue;
1529 
1530       if (fd == iou->ringfd) {
1531         uv__poll_io_uring(loop, iou);
1532         have_iou_events = 1;
1533         continue;
1534       }
1535 
1536 #ifndef USE_OHOS_DFX
1537       assert(fd >= 0);
1538       assert((unsigned) fd < loop->nwatchers);
1539 #else
1540       if (fd < 0 || (unsigned) fd >= loop->nwatchers)
1541         continue;
1542 #endif
1543 
1544       w = loop->watchers[fd];
1545 
1546       if (w == NULL) {
1547         /* File descriptor that we've stopped watching, disarm it.
1548          *
1549          * Ignore all errors because we may be racing with another thread
1550          * when the file descriptor is closed.
1551          */
1552         uv__epoll_ctl_prep(epollfd, ctl, &prep, EPOLL_CTL_DEL, fd, pe);
1553         continue;
1554       }
1555 
1556       /* Give users only events they're interested in. Prevents spurious
1557        * callbacks when previous callback invocation in this loop has stopped
1558        * the current watcher. Also, filters out events that users has not
1559        * requested us to watch.
1560        */
1561       pe->events &= w->pevents | POLLERR | POLLHUP;
1562 
1563       /* Work around an epoll quirk where it sometimes reports just the
1564        * EPOLLERR or EPOLLHUP event.  In order to force the event loop to
1565        * move forward, we merge in the read/write events that the watcher
1566        * is interested in; uv__read() and uv__write() will then deal with
1567        * the error or hangup in the usual fashion.
1568        *
1569        * Note to self: happens when epoll reports EPOLLIN|EPOLLHUP, the user
1570        * reads the available data, calls uv_read_stop(), then sometime later
1571        * calls uv_read_start() again.  By then, libuv has forgotten about the
1572        * hangup and the kernel won't report EPOLLIN again because there's
1573        * nothing left to read.  If anything, libuv is to blame here.  The
1574        * current hack is just a quick bandaid; to properly fix it, libuv
1575        * needs to remember the error/hangup event.  We should get that for
1576        * free when we switch over to edge-triggered I/O.
1577        */
1578       if (pe->events == POLLERR || pe->events == POLLHUP)
1579         pe->events |=
1580           w->pevents & (POLLIN | POLLOUT | UV__POLLRDHUP | UV__POLLPRI);
1581 
1582       if (pe->events != 0) {
1583         /* Run signal watchers last.  This also affects child process watchers
1584          * because those are implemented in terms of signal watchers.
1585          */
1586         if (w == &loop->signal_io_watcher) {
1587           have_signals = 1;
1588         } else {
1589           uv__metrics_update_idle_time(loop);
1590           w->cb(loop, w, pe->events);
1591         }
1592 
1593         nevents++;
1594       }
1595     }
1596 
1597     uv__metrics_inc_events(loop, nevents);
1598     if (reset_timeout != 0) {
1599       timeout = user_timeout;
1600       reset_timeout = 0;
1601       uv__metrics_inc_events_waiting(loop, nevents);
1602     }
1603 
1604     if (have_signals != 0) {
1605       uv__metrics_update_idle_time(loop);
1606       loop->signal_io_watcher.cb(loop, &loop->signal_io_watcher, POLLIN);
1607     }
1608 
1609     lfields->inv = NULL;
1610 
1611     if (have_iou_events != 0)
1612       break;  /* Event loop should cycle now so don't poll again. */
1613 
1614     if (have_signals != 0)
1615       break;  /* Event loop should cycle now so don't poll again. */
1616 
1617     if (nevents != 0) {
1618       if (nfds == ARRAY_SIZE(events) && --count != 0) {
1619         /* Poll for more events but don't block this time. */
1620         timeout = 0;
1621         continue;
1622       }
1623       break;
1624     }
1625 
1626 update_timeout:
1627     if (timeout == 0)
1628       break;
1629 
1630     if (timeout == -1)
1631       continue;
1632 
1633     assert(timeout > 0);
1634 
1635     real_timeout -= (loop->time - base);
1636     if (real_timeout <= 0)
1637       break;
1638 
1639     timeout = real_timeout;
1640   }
1641 
1642   if (ctl->ringfd != -1)
1643     while (*ctl->sqhead != *ctl->sqtail)
1644       uv__epoll_ctl_flush(epollfd, ctl, &prep);
1645 }
1646 
uv__hrtime(uv_clocktype_t type)1647 uint64_t uv__hrtime(uv_clocktype_t type) {
1648   static _Atomic clock_t fast_clock_id = -1;
1649   struct timespec t;
1650   clock_t clock_id;
1651 
1652   /* Prefer CLOCK_MONOTONIC_COARSE if available but only when it has
1653    * millisecond granularity or better.  CLOCK_MONOTONIC_COARSE is
1654    * serviced entirely from the vDSO, whereas CLOCK_MONOTONIC may
1655    * decide to make a costly system call.
1656    */
1657   /* TODO(bnoordhuis) Use CLOCK_MONOTONIC_COARSE for UV_CLOCK_PRECISE
1658    * when it has microsecond granularity or better (unlikely).
1659    */
1660   clock_id = CLOCK_MONOTONIC;
1661   if (type != UV_CLOCK_FAST)
1662     goto done;
1663 
1664   clock_id = atomic_load_explicit(&fast_clock_id, memory_order_relaxed);
1665   if (clock_id != -1)
1666     goto done;
1667 
1668   clock_id = CLOCK_MONOTONIC;
1669   if (0 == clock_getres(CLOCK_MONOTONIC_COARSE, &t))
1670     if (t.tv_nsec <= 1 * 1000 * 1000)
1671       clock_id = CLOCK_MONOTONIC_COARSE;
1672 
1673   atomic_store_explicit(&fast_clock_id, clock_id, memory_order_relaxed);
1674 
1675 done:
1676 
1677   if (clock_gettime(clock_id, &t))
1678     return 0;  /* Not really possible. */
1679 
1680   return t.tv_sec * (uint64_t) 1e9 + t.tv_nsec;
1681 }
1682 
1683 
uv_resident_set_memory(size_t* rss)1684 int uv_resident_set_memory(size_t* rss) {
1685   char buf[1024];
1686   const char* s;
1687   ssize_t n;
1688   long val;
1689   int fd;
1690   int i;
1691 
1692   do
1693     fd = open("/proc/self/stat", O_RDONLY);
1694   while (fd == -1 && errno == EINTR);
1695 
1696   if (fd == -1)
1697     return UV__ERR(errno);
1698 
1699   do
1700     n = read(fd, buf, sizeof(buf) - 1);
1701   while (n == -1 && errno == EINTR);
1702 
1703   uv__close(fd);
1704   if (n == -1)
1705     return UV__ERR(errno);
1706   buf[n] = '\0';
1707 
1708   s = strchr(buf, ' ');
1709   if (s == NULL)
1710     goto err;
1711 
1712   s += 1;
1713   if (*s != '(')
1714     goto err;
1715 
1716   s = strchr(s, ')');
1717   if (s == NULL)
1718     goto err;
1719 
1720   for (i = 1; i <= 22; i++) {
1721     s = strchr(s + 1, ' ');
1722     if (s == NULL)
1723       goto err;
1724   }
1725 
1726   errno = 0;
1727   val = strtol(s, NULL, 10);
1728   if (errno != 0)
1729     goto err;
1730   if (val < 0)
1731     goto err;
1732 
1733   *rss = val * getpagesize();
1734   return 0;
1735 
1736 err:
1737   return UV_EINVAL;
1738 }
1739 
uv_uptime(double* uptime)1740 int uv_uptime(double* uptime) {
1741   struct timespec now;
1742   char buf[128];
1743 
1744   /* Consult /proc/uptime when present (common case), or fall back to
1745    * clock_gettime. Why not always clock_gettime? It doesn't always return the
1746    * right result under OpenVZ and possibly other containerized environments.
1747    */
1748   if (0 == uv__slurp("/proc/uptime", buf, sizeof(buf)))
1749     if (1 == sscanf(buf, "%lf", uptime))
1750       return 0;
1751 
1752   if (clock_gettime(CLOCK_BOOTTIME, &now))
1753     return UV__ERR(errno);
1754 
1755   *uptime = now.tv_sec;
1756   return 0;
1757 }
1758 
1759 
uv_cpu_info(uv_cpu_info_t** ci, int* count)1760 int uv_cpu_info(uv_cpu_info_t** ci, int* count) {
1761 #if defined(__PPC__)
1762   static const char model_marker[] = "cpu\t\t: ";
1763 #elif defined(__arm__)
1764   static const char model_marker[] = "Processor\t: ";
1765 #elif defined(__aarch64__)
1766   static const char model_marker[] = "CPU part\t: ";
1767 #elif defined(__mips__)
1768   static const char model_marker[] = "cpu model\t\t: ";
1769 #elif defined(__loongarch__)
1770   static const char model_marker[] = "cpu family\t\t: ";
1771 #else
1772   static const char model_marker[] = "model name\t: ";
1773 #endif
1774   static const char parts[] =
1775 #ifdef __aarch64__
1776     "0x811\nARM810\n"       "0x920\nARM920\n"      "0x922\nARM922\n"
1777     "0x926\nARM926\n"       "0x940\nARM940\n"      "0x946\nARM946\n"
1778     "0x966\nARM966\n"       "0xa20\nARM1020\n"      "0xa22\nARM1022\n"
1779     "0xa26\nARM1026\n"      "0xb02\nARM11 MPCore\n" "0xb36\nARM1136\n"
1780     "0xb56\nARM1156\n"      "0xb76\nARM1176\n"      "0xc05\nCortex-A5\n"
1781     "0xc07\nCortex-A7\n"    "0xc08\nCortex-A8\n"    "0xc09\nCortex-A9\n"
1782     "0xc0d\nCortex-A17\n"   /* Originally A12 */
1783     "0xc0f\nCortex-A15\n"   "0xc0e\nCortex-A17\n"   "0xc14\nCortex-R4\n"
1784     "0xc15\nCortex-R5\n"    "0xc17\nCortex-R7\n"    "0xc18\nCortex-R8\n"
1785     "0xc20\nCortex-M0\n"    "0xc21\nCortex-M1\n"    "0xc23\nCortex-M3\n"
1786     "0xc24\nCortex-M4\n"    "0xc27\nCortex-M7\n"    "0xc60\nCortex-M0+\n"
1787     "0xd01\nCortex-A32\n"   "0xd03\nCortex-A53\n"   "0xd04\nCortex-A35\n"
1788     "0xd05\nCortex-A55\n"   "0xd06\nCortex-A65\n"   "0xd07\nCortex-A57\n"
1789     "0xd08\nCortex-A72\n"   "0xd09\nCortex-A73\n"   "0xd0a\nCortex-A75\n"
1790     "0xd0b\nCortex-A76\n"   "0xd0c\nNeoverse-N1\n"  "0xd0d\nCortex-A77\n"
1791     "0xd0e\nCortex-A76AE\n" "0xd13\nCortex-R52\n"   "0xd20\nCortex-M23\n"
1792     "0xd21\nCortex-M33\n"   "0xd41\nCortex-A78\n"   "0xd42\nCortex-A78AE\n"
1793     "0xd4a\nNeoverse-E1\n"  "0xd4b\nCortex-A78C\n"
1794 #endif
1795     "";
1796   struct cpu {
1797     unsigned long long freq, user, nice, sys, idle, irq;
1798     unsigned model;
1799   };
1800   FILE* fp;
1801   char* p;
1802   int found;
1803   int n;
1804   unsigned i;
1805   unsigned cpu;
1806   unsigned maxcpu;
1807   unsigned size;
1808   unsigned long long skip;
1809   struct cpu (*cpus)[8192];  /* Kernel maximum. */
1810   struct cpu* c;
1811   struct cpu t;
1812   char (*model)[64];
1813   unsigned char bitmap[ARRAY_SIZE(*cpus) / 8];
1814   /* Assumption: even big.LITTLE systems will have only a handful
1815    * of different CPU models. Most systems will just have one.
1816    */
1817   char models[8][64];
1818   char buf[1024];
1819 
1820   memset(bitmap, 0, sizeof(bitmap));
1821   memset(models, 0, sizeof(models));
1822   snprintf(*models, sizeof(*models), "unknown");
1823   maxcpu = 0;
1824 
1825   cpus = uv__calloc(ARRAY_SIZE(*cpus), sizeof(**cpus));
1826   if (cpus == NULL)
1827     return UV_ENOMEM;
1828 
1829   fp = uv__open_file("/proc/stat");
1830   if (fp == NULL) {
1831     uv__free(cpus);
1832     return UV__ERR(errno);
1833   }
1834 
1835   if (NULL == fgets(buf, sizeof(buf), fp))
1836     abort();
1837 
1838   for (;;) {
1839     memset(&t, 0, sizeof(t));
1840 
1841     n = fscanf(fp, "cpu%u %llu %llu %llu %llu %llu %llu",
1842                &cpu, &t.user, &t.nice, &t.sys, &t.idle, &skip, &t.irq);
1843 
1844     if (n != 7)
1845       break;
1846 
1847     if (NULL == fgets(buf, sizeof(buf), fp))
1848       abort();
1849 
1850     if (cpu >= ARRAY_SIZE(*cpus))
1851       continue;
1852 
1853     (*cpus)[cpu] = t;
1854 
1855     bitmap[cpu >> 3] |= 1 << (cpu & 7);
1856 
1857     if (cpu >= maxcpu)
1858       maxcpu = cpu + 1;
1859   }
1860 
1861   fclose(fp);
1862 
1863   fp = uv__open_file("/proc/cpuinfo");
1864   if (fp == NULL)
1865     goto nocpuinfo;
1866 
1867   for (;;) {
1868     if (1 != fscanf(fp, "processor\t: %u\n", &cpu))
1869       break;  /* Parse error. */
1870 
1871     found = 0;
1872     while (!found && fgets(buf, sizeof(buf), fp))
1873       found = !strncmp(buf, model_marker, sizeof(model_marker) - 1);
1874 
1875     if (!found)
1876       goto next;
1877 
1878     p = buf + sizeof(model_marker) - 1;
1879     n = (int) strcspn(p, "\n");
1880 
1881     /* arm64: translate CPU part code to model name. */
1882     if (*parts) {
1883       p = memmem(parts, sizeof(parts) - 1, p, n + 1);
1884       if (p == NULL)
1885         p = "unknown";
1886       else
1887         p += n + 1;
1888       n = (int) strcspn(p, "\n");
1889     }
1890 
1891     found = 0;
1892     for (model = models; !found && model < ARRAY_END(models); model++)
1893       found = !strncmp(p, *model, strlen(*model));
1894 
1895     if (!found)
1896       goto next;
1897 
1898     if (**model == '\0')
1899       snprintf(*model, sizeof(*model), "%.*s", n, p);
1900 
1901     if (cpu < maxcpu)
1902       (*cpus)[cpu].model = model - models;
1903 
1904 next:
1905     while (fgets(buf, sizeof(buf), fp))
1906       if (*buf == '\n')
1907         break;
1908   }
1909 
1910   fclose(fp);
1911   fp = NULL;
1912 
1913 nocpuinfo:
1914 
1915   n = 0;
1916   for (cpu = 0; cpu < maxcpu; cpu++) {
1917     if (!(bitmap[cpu >> 3] & (1 << (cpu & 7))))
1918       continue;
1919 
1920     n++;
1921     snprintf(buf, sizeof(buf),
1922              "/sys/devices/system/cpu/cpu%u/cpufreq/scaling_cur_freq", cpu);
1923 
1924     fp = uv__open_file(buf);
1925     if (fp == NULL)
1926       continue;
1927 
1928     if (1 != fscanf(fp, "%llu", &(*cpus)[cpu].freq))
1929       abort();
1930     fclose(fp);
1931     fp = NULL;
1932   }
1933 
1934   size = n * sizeof(**ci) + sizeof(models);
1935   *ci = uv__malloc(size);
1936   *count = 0;
1937 
1938   if (*ci == NULL) {
1939     uv__free(cpus);
1940     return UV_ENOMEM;
1941   }
1942 
1943   *count = n;
1944   p = memcpy(*ci + n, models, sizeof(models));
1945 
1946   i = 0;
1947   for (cpu = 0; cpu < maxcpu; cpu++) {
1948     if (!(bitmap[cpu >> 3] & (1 << (cpu & 7))))
1949       continue;
1950 
1951     c = *cpus + cpu;
1952 
1953     (*ci)[i++] = (uv_cpu_info_t) {
1954       .model     = p + c->model * sizeof(*model),
1955       .speed     = c->freq / 1000,
1956       /* Note: sysconf(_SC_CLK_TCK) is fixed at 100 Hz,
1957        * therefore the multiplier is always 1000/100 = 10.
1958        */
1959       .cpu_times = (struct uv_cpu_times_s) {
1960         .user = 10 * c->user,
1961         .nice = 10 * c->nice,
1962         .sys  = 10 * c->sys,
1963         .idle = 10 * c->idle,
1964         .irq  = 10 * c->irq,
1965       },
1966     };
1967   }
1968 
1969   uv__free(cpus);
1970 
1971   return 0;
1972 }
1973 
1974 
uv__ifaddr_exclude(struct ifaddrs *ent, int exclude_type)1975 static int uv__ifaddr_exclude(struct ifaddrs *ent, int exclude_type) {
1976   if (!((ent->ifa_flags & IFF_UP) && (ent->ifa_flags & IFF_RUNNING)))
1977     return 1;
1978   if (ent->ifa_addr == NULL)
1979     return 1;
1980   /*
1981    * On Linux getifaddrs returns information related to the raw underlying
1982    * devices. We're not interested in this information yet.
1983    */
1984   if (ent->ifa_addr->sa_family == PF_PACKET)
1985     return exclude_type;
1986   return !exclude_type;
1987 }
1988 
uv_interface_addresses(uv_interface_address_t** addresses, int* count)1989 int uv_interface_addresses(uv_interface_address_t** addresses, int* count) {
1990   struct ifaddrs *addrs, *ent;
1991   uv_interface_address_t* address;
1992   int i;
1993   struct sockaddr_ll *sll;
1994 
1995   *count = 0;
1996   *addresses = NULL;
1997 
1998   if (getifaddrs(&addrs))
1999     return UV__ERR(errno);
2000 
2001   /* Count the number of interfaces */
2002   for (ent = addrs; ent != NULL; ent = ent->ifa_next) {
2003     if (uv__ifaddr_exclude(ent, UV__EXCLUDE_IFADDR))
2004       continue;
2005 
2006     (*count)++;
2007   }
2008 
2009   if (*count == 0) {
2010     freeifaddrs(addrs);
2011     return 0;
2012   }
2013 
2014   /* Make sure the memory is initiallized to zero using calloc() */
2015   *addresses = uv__calloc(*count, sizeof(**addresses));
2016   if (!(*addresses)) {
2017     freeifaddrs(addrs);
2018     return UV_ENOMEM;
2019   }
2020 
2021   address = *addresses;
2022 
2023   for (ent = addrs; ent != NULL; ent = ent->ifa_next) {
2024     if (uv__ifaddr_exclude(ent, UV__EXCLUDE_IFADDR))
2025       continue;
2026 
2027     address->name = uv__strdup(ent->ifa_name);
2028 
2029     if (ent->ifa_addr->sa_family == AF_INET6) {
2030       address->address.address6 = *((struct sockaddr_in6*) ent->ifa_addr);
2031     } else {
2032       address->address.address4 = *((struct sockaddr_in*) ent->ifa_addr);
2033     }
2034 
2035     if (ent->ifa_netmask->sa_family == AF_INET6) {
2036       address->netmask.netmask6 = *((struct sockaddr_in6*) ent->ifa_netmask);
2037     } else {
2038       address->netmask.netmask4 = *((struct sockaddr_in*) ent->ifa_netmask);
2039     }
2040 
2041     address->is_internal = !!(ent->ifa_flags & IFF_LOOPBACK);
2042 
2043     address++;
2044   }
2045 
2046   /* Fill in physical addresses for each interface */
2047   for (ent = addrs; ent != NULL; ent = ent->ifa_next) {
2048     if (uv__ifaddr_exclude(ent, UV__EXCLUDE_IFPHYS))
2049       continue;
2050 
2051     address = *addresses;
2052 
2053     for (i = 0; i < (*count); i++) {
2054       size_t namelen = strlen(ent->ifa_name);
2055       /* Alias interface share the same physical address */
2056       if (strncmp(address->name, ent->ifa_name, namelen) == 0 &&
2057           (address->name[namelen] == 0 || address->name[namelen] == ':')) {
2058         sll = (struct sockaddr_ll*)ent->ifa_addr;
2059         memcpy(address->phys_addr, sll->sll_addr, sizeof(address->phys_addr));
2060       }
2061       address++;
2062     }
2063   }
2064 
2065   freeifaddrs(addrs);
2066 
2067   return 0;
2068 }
2069 
2070 
uv_free_interface_addresses(uv_interface_address_t* addresses, int count)2071 void uv_free_interface_addresses(uv_interface_address_t* addresses,
2072   int count) {
2073   int i;
2074 
2075   for (i = 0; i < count; i++) {
2076     uv__free(addresses[i].name);
2077   }
2078 
2079   uv__free(addresses);
2080 }
2081 
2082 
uv__set_process_title(const char* title)2083 void uv__set_process_title(const char* title) {
2084 #if defined(PR_SET_NAME)
2085   prctl(PR_SET_NAME, title);  /* Only copies first 16 characters. */
2086 #endif
2087 }
2088 
2089 
uv__read_proc_meminfo(const char* what)2090 static uint64_t uv__read_proc_meminfo(const char* what) {
2091   uint64_t rc;
2092   char* p;
2093   char buf[4096];  /* Large enough to hold all of /proc/meminfo. */
2094 
2095   if (uv__slurp("/proc/meminfo", buf, sizeof(buf)))
2096     return 0;
2097 
2098   p = strstr(buf, what);
2099 
2100   if (p == NULL)
2101     return 0;
2102 
2103   p += strlen(what);
2104 
2105   rc = 0;
2106   sscanf(p, "%" PRIu64 " kB", &rc);
2107 
2108   return rc * 1024;
2109 }
2110 
2111 
uv_get_free_memory(void)2112 uint64_t uv_get_free_memory(void) {
2113   struct sysinfo info;
2114   uint64_t rc;
2115 
2116   rc = uv__read_proc_meminfo("MemAvailable:");
2117 
2118   if (rc != 0)
2119     return rc;
2120 
2121   if (0 == sysinfo(&info))
2122     return (uint64_t) info.freeram * info.mem_unit;
2123 
2124   return 0;
2125 }
2126 
2127 
uv_get_total_memory(void)2128 uint64_t uv_get_total_memory(void) {
2129   struct sysinfo info;
2130   uint64_t rc;
2131 
2132   rc = uv__read_proc_meminfo("MemTotal:");
2133 
2134   if (rc != 0)
2135     return rc;
2136 
2137   if (0 == sysinfo(&info))
2138     return (uint64_t) info.totalram * info.mem_unit;
2139 
2140   return 0;
2141 }
2142 
2143 
uv__read_uint64(const char* filename)2144 static uint64_t uv__read_uint64(const char* filename) {
2145   char buf[32];  /* Large enough to hold an encoded uint64_t. */
2146   uint64_t rc;
2147 
2148   rc = 0;
2149   if (0 == uv__slurp(filename, buf, sizeof(buf)))
2150     if (1 != sscanf(buf, "%" PRIu64, &rc))
2151       if (0 == strcmp(buf, "max\n"))
2152         rc = UINT64_MAX;
2153 
2154   return rc;
2155 }
2156 
2157 
2158 /* Given a buffer with the contents of a cgroup1 /proc/self/cgroups,
2159  * finds the location and length of the memory controller mount path.
2160  * This disregards the leading / for easy concatenation of paths.
2161  * Returns NULL if the memory controller wasn't found. */
uv__cgroup1_find_memory_controller(char buf[static 1024], int* n)2162 static char* uv__cgroup1_find_memory_controller(char buf[static 1024],
2163                                                 int* n) {
2164   char* p;
2165 
2166   /* Seek to the memory controller line. */
2167   p = strchr(buf, ':');
2168   while (p != NULL && strncmp(p, ":memory:", 8)) {
2169     p = strchr(p, '\n');
2170     if (p != NULL)
2171       p = strchr(p, ':');
2172   }
2173 
2174   if (p != NULL) {
2175     /* Determine the length of the mount path. */
2176     p = p + strlen(":memory:/");
2177     *n = (int) strcspn(p, "\n");
2178   }
2179 
2180   return p;
2181 }
2182 
uv__get_cgroup1_memory_limits(char buf[static 1024], uint64_t* high, uint64_t* max)2183 static void uv__get_cgroup1_memory_limits(char buf[static 1024], uint64_t* high,
2184                                           uint64_t* max) {
2185   char filename[4097];
2186   char* p;
2187   int n;
2188   uint64_t cgroup1_max;
2189 
2190   /* Find out where the controller is mounted. */
2191   p = uv__cgroup1_find_memory_controller(buf, &n);
2192   if (p != NULL) {
2193     snprintf(filename, sizeof(filename),
2194              "/sys/fs/cgroup/memory/%.*s/memory.soft_limit_in_bytes", n, p);
2195     *high = uv__read_uint64(filename);
2196 
2197     snprintf(filename, sizeof(filename),
2198              "/sys/fs/cgroup/memory/%.*s/memory.limit_in_bytes", n, p);
2199     *max = uv__read_uint64(filename);
2200 
2201     /* If the controller wasn't mounted, the reads above will have failed,
2202      * as indicated by uv__read_uint64 returning 0.
2203      */
2204      if (*high != 0 && *max != 0)
2205        goto update_limits;
2206   }
2207 
2208   /* Fall back to the limits of the global memory controller. */
2209   *high = uv__read_uint64("/sys/fs/cgroup/memory/memory.soft_limit_in_bytes");
2210   *max = uv__read_uint64("/sys/fs/cgroup/memory/memory.limit_in_bytes");
2211 
2212   /* uv__read_uint64 detects cgroup2's "max", so we need to separately detect
2213    * cgroup1's maximum value (which is derived from LONG_MAX and PAGE_SIZE).
2214    */
2215 update_limits:
2216   cgroup1_max = LONG_MAX & ~(sysconf(_SC_PAGESIZE) - 1);
2217   if (*high == cgroup1_max)
2218     *high = UINT64_MAX;
2219   if (*max == cgroup1_max)
2220     *max = UINT64_MAX;
2221 }
2222 
uv__get_cgroup2_memory_limits(char buf[static 1024], uint64_t* high, uint64_t* max)2223 static void uv__get_cgroup2_memory_limits(char buf[static 1024], uint64_t* high,
2224                                           uint64_t* max) {
2225   char filename[4097];
2226   char* p;
2227   int n;
2228 
2229   /* Find out where the controller is mounted. */
2230   p = buf + strlen("0::/");
2231   n = (int) strcspn(p, "\n");
2232 
2233   /* Read the memory limits of the controller. */
2234   snprintf(filename, sizeof(filename), "/sys/fs/cgroup/%.*s/memory.max", n, p);
2235   *max = uv__read_uint64(filename);
2236   snprintf(filename, sizeof(filename), "/sys/fs/cgroup/%.*s/memory.high", n, p);
2237   *high = uv__read_uint64(filename);
2238 }
2239 
uv__get_cgroup_constrained_memory(char buf[static 1024])2240 static uint64_t uv__get_cgroup_constrained_memory(char buf[static 1024]) {
2241   uint64_t high;
2242   uint64_t max;
2243 
2244   /* In the case of cgroupv2, we'll only have a single entry. */
2245   if (strncmp(buf, "0::/", 4))
2246     uv__get_cgroup1_memory_limits(buf, &high, &max);
2247   else
2248     uv__get_cgroup2_memory_limits(buf, &high, &max);
2249 
2250   if (high == 0 || max == 0)
2251     return 0;
2252 
2253   return high < max ? high : max;
2254 }
2255 
uv_get_constrained_memory(void)2256 uint64_t uv_get_constrained_memory(void) {
2257   char buf[1024];
2258 
2259   if (uv__slurp("/proc/self/cgroup", buf, sizeof(buf)))
2260     return 0;
2261 
2262   return uv__get_cgroup_constrained_memory(buf);
2263 }
2264 
2265 
uv__get_cgroup1_current_memory(char buf[static 1024])2266 static uint64_t uv__get_cgroup1_current_memory(char buf[static 1024]) {
2267   char filename[4097];
2268   uint64_t current;
2269   char* p;
2270   int n;
2271 
2272   /* Find out where the controller is mounted. */
2273   p = uv__cgroup1_find_memory_controller(buf, &n);
2274   if (p != NULL) {
2275     snprintf(filename, sizeof(filename),
2276             "/sys/fs/cgroup/memory/%.*s/memory.usage_in_bytes", n, p);
2277     current = uv__read_uint64(filename);
2278 
2279     /* If the controller wasn't mounted, the reads above will have failed,
2280      * as indicated by uv__read_uint64 returning 0.
2281      */
2282     if (current != 0)
2283       return current;
2284   }
2285 
2286   /* Fall back to the usage of the global memory controller. */
2287   return uv__read_uint64("/sys/fs/cgroup/memory/memory.usage_in_bytes");
2288 }
2289 
uv__get_cgroup2_current_memory(char buf[static 1024])2290 static uint64_t uv__get_cgroup2_current_memory(char buf[static 1024]) {
2291   char filename[4097];
2292   char* p;
2293   int n;
2294 
2295   /* Find out where the controller is mounted. */
2296   p = buf + strlen("0::/");
2297   n = (int) strcspn(p, "\n");
2298 
2299   snprintf(filename, sizeof(filename),
2300            "/sys/fs/cgroup/%.*s/memory.current", n, p);
2301   return uv__read_uint64(filename);
2302 }
2303 
uv_get_available_memory(void)2304 uint64_t uv_get_available_memory(void) {
2305   char buf[1024];
2306   uint64_t constrained;
2307   uint64_t current;
2308   uint64_t total;
2309 
2310   if (uv__slurp("/proc/self/cgroup", buf, sizeof(buf)))
2311     return 0;
2312 
2313   constrained = uv__get_cgroup_constrained_memory(buf);
2314   if (constrained == 0)
2315     return uv_get_free_memory();
2316 
2317   total = uv_get_total_memory();
2318   if (constrained > total)
2319     return uv_get_free_memory();
2320 
2321   /* In the case of cgroupv2, we'll only have a single entry. */
2322   if (strncmp(buf, "0::/", 4))
2323     current = uv__get_cgroup1_current_memory(buf);
2324   else
2325     current = uv__get_cgroup2_current_memory(buf);
2326 
2327   /* memory usage can be higher than the limit (for short bursts of time) */
2328   if (constrained < current)
2329     return 0;
2330 
2331   return constrained - current;
2332 }
2333 
2334 
uv_loadavg(double avg[3])2335 void uv_loadavg(double avg[3]) {
2336   struct sysinfo info;
2337   char buf[128];  /* Large enough to hold all of /proc/loadavg. */
2338 
2339   if (0 == uv__slurp("/proc/loadavg", buf, sizeof(buf)))
2340     if (3 == sscanf(buf, "%lf %lf %lf", &avg[0], &avg[1], &avg[2]))
2341       return;
2342 
2343   if (sysinfo(&info) < 0)
2344     return;
2345 
2346   avg[0] = (double) info.loads[0] / 65536.0;
2347   avg[1] = (double) info.loads[1] / 65536.0;
2348   avg[2] = (double) info.loads[2] / 65536.0;
2349 }
2350 
2351 
compare_watchers(const struct watcher_list* a, const struct watcher_list* b)2352 static int compare_watchers(const struct watcher_list* a,
2353                             const struct watcher_list* b) {
2354   if (a->wd < b->wd) return -1;
2355   if (a->wd > b->wd) return 1;
2356   return 0;
2357 }
2358 
2359 
init_inotify(uv_loop_t* loop)2360 static int init_inotify(uv_loop_t* loop) {
2361   int fd;
2362 
2363   if (loop->inotify_fd != -1)
2364     return 0;
2365 
2366   fd = inotify_init1(IN_NONBLOCK | IN_CLOEXEC);
2367   if (fd < 0)
2368     return UV__ERR(errno);
2369 
2370   loop->inotify_fd = fd;
2371   uv__io_init(&loop->inotify_read_watcher, uv__inotify_read, loop->inotify_fd);
2372   uv__io_start(loop, &loop->inotify_read_watcher, POLLIN);
2373 
2374   return 0;
2375 }
2376 
2377 
uv__inotify_fork(uv_loop_t* loop, struct watcher_list* root)2378 static int uv__inotify_fork(uv_loop_t* loop, struct watcher_list* root) {
2379   /* Open the inotify_fd, and re-arm all the inotify watchers. */
2380   int err;
2381   struct watcher_list* tmp_watcher_list_iter;
2382   struct watcher_list* watcher_list;
2383   struct watcher_list tmp_watcher_list;
2384   struct uv__queue queue;
2385   struct uv__queue* q;
2386   uv_fs_event_t* handle;
2387   char* tmp_path;
2388 
2389   if (root == NULL)
2390     return 0;
2391 
2392   /* We must restore the old watcher list to be able to close items
2393    * out of it.
2394    */
2395   loop->inotify_watchers = root;
2396 
2397   uv__queue_init(&tmp_watcher_list.watchers);
2398   /* Note that the queue we use is shared with the start and stop()
2399    * functions, making uv__queue_foreach unsafe to use. So we use the
2400    * uv__queue_move trick to safely iterate. Also don't free the watcher
2401    * list until we're done iterating. c.f. uv__inotify_read.
2402    */
2403   RB_FOREACH_SAFE(watcher_list, watcher_root,
2404                   uv__inotify_watchers(loop), tmp_watcher_list_iter) {
2405     watcher_list->iterating = 1;
2406     uv__queue_move(&watcher_list->watchers, &queue);
2407     while (!uv__queue_empty(&queue)) {
2408       q = uv__queue_head(&queue);
2409       handle = uv__queue_data(q, uv_fs_event_t, watchers);
2410       /* It's critical to keep a copy of path here, because it
2411        * will be set to NULL by stop() and then deallocated by
2412        * maybe_free_watcher_list
2413        */
2414       tmp_path = uv__strdup(handle->path);
2415       assert(tmp_path != NULL);
2416       uv__queue_remove(q);
2417       uv__queue_insert_tail(&watcher_list->watchers, q);
2418       uv_fs_event_stop(handle);
2419 
2420       uv__queue_insert_tail(&tmp_watcher_list.watchers, &handle->watchers);
2421       handle->path = tmp_path;
2422     }
2423     watcher_list->iterating = 0;
2424     maybe_free_watcher_list(watcher_list, loop);
2425   }
2426 
2427   uv__queue_move(&tmp_watcher_list.watchers, &queue);
2428   while (!uv__queue_empty(&queue)) {
2429       q = uv__queue_head(&queue);
2430       uv__queue_remove(q);
2431       handle = uv__queue_data(q, uv_fs_event_t, watchers);
2432       tmp_path = handle->path;
2433       handle->path = NULL;
2434       err = uv_fs_event_start(handle, handle->cb, tmp_path, 0);
2435       uv__free(tmp_path);
2436       if (err)
2437         return err;
2438   }
2439 
2440   return 0;
2441 }
2442 
2443 
find_watcher(uv_loop_t* loop, int wd)2444 static struct watcher_list* find_watcher(uv_loop_t* loop, int wd) {
2445   struct watcher_list w;
2446   w.wd = wd;
2447   return RB_FIND(watcher_root, uv__inotify_watchers(loop), &w);
2448 }
2449 
2450 
maybe_free_watcher_list(struct watcher_list* w, uv_loop_t* loop)2451 static void maybe_free_watcher_list(struct watcher_list* w, uv_loop_t* loop) {
2452   /* if the watcher_list->watchers is being iterated over, we can't free it. */
2453   if ((!w->iterating) && uv__queue_empty(&w->watchers)) {
2454     /* No watchers left for this path. Clean up. */
2455     RB_REMOVE(watcher_root, uv__inotify_watchers(loop), w);
2456     inotify_rm_watch(loop->inotify_fd, w->wd);
2457     uv__free(w);
2458   }
2459 }
2460 
2461 
uv__inotify_read(uv_loop_t* loop, uv__io_t* dummy, unsigned int events)2462 static void uv__inotify_read(uv_loop_t* loop,
2463                              uv__io_t* dummy,
2464                              unsigned int events) {
2465   const struct inotify_event* e;
2466   struct watcher_list* w;
2467   uv_fs_event_t* h;
2468   struct uv__queue queue;
2469   struct uv__queue* q;
2470   const char* path;
2471   ssize_t size;
2472   const char *p;
2473   /* needs to be large enough for sizeof(inotify_event) + strlen(path) */
2474   char buf[4096];
2475 
2476   for (;;) {
2477     do
2478       size = read(loop->inotify_fd, buf, sizeof(buf));
2479     while (size == -1 && errno == EINTR);
2480 
2481     if (size == -1) {
2482       assert(errno == EAGAIN || errno == EWOULDBLOCK);
2483       break;
2484     }
2485 
2486     assert(size > 0); /* pre-2.6.21 thing, size=0 == read buffer too small */
2487 
2488     /* Now we have one or more inotify_event structs. */
2489     for (p = buf; p < buf + size; p += sizeof(*e) + e->len) {
2490       e = (const struct inotify_event*) p;
2491 
2492       events = 0;
2493       if (e->mask & (IN_ATTRIB|IN_MODIFY))
2494         events |= UV_CHANGE;
2495       if (e->mask & ~(IN_ATTRIB|IN_MODIFY))
2496         events |= UV_RENAME;
2497 
2498       w = find_watcher(loop, e->wd);
2499       if (w == NULL)
2500         continue; /* Stale event, no watchers left. */
2501 
2502       /* inotify does not return the filename when monitoring a single file
2503        * for modifications. Repurpose the filename for API compatibility.
2504        * I'm not convinced this is a good thing, maybe it should go.
2505        */
2506       path = e->len ? (const char*) (e + 1) : uv__basename_r(w->path);
2507 
2508       /* We're about to iterate over the queue and call user's callbacks.
2509        * What can go wrong?
2510        * A callback could call uv_fs_event_stop()
2511        * and the queue can change under our feet.
2512        * So, we use uv__queue_move() trick to safely iterate over the queue.
2513        * And we don't free the watcher_list until we're done iterating.
2514        *
2515        * First,
2516        * tell uv_fs_event_stop() (that could be called from a user's callback)
2517        * not to free watcher_list.
2518        */
2519       w->iterating = 1;
2520       uv__queue_move(&w->watchers, &queue);
2521       while (!uv__queue_empty(&queue)) {
2522         q = uv__queue_head(&queue);
2523         h = uv__queue_data(q, uv_fs_event_t, watchers);
2524 
2525         uv__queue_remove(q);
2526         uv__queue_insert_tail(&w->watchers, q);
2527 
2528         h->cb(h, path, events, 0);
2529       }
2530       /* done iterating, time to (maybe) free empty watcher_list */
2531       w->iterating = 0;
2532       maybe_free_watcher_list(w, loop);
2533     }
2534   }
2535 }
2536 
2537 
uv_fs_event_init(uv_loop_t* loop, uv_fs_event_t* handle)2538 int uv_fs_event_init(uv_loop_t* loop, uv_fs_event_t* handle) {
2539   uv__handle_init(loop, (uv_handle_t*)handle, UV_FS_EVENT);
2540   return 0;
2541 }
2542 
2543 
uv_fs_event_start(uv_fs_event_t* handle, uv_fs_event_cb cb, const char* path, unsigned int flags)2544 int uv_fs_event_start(uv_fs_event_t* handle,
2545                       uv_fs_event_cb cb,
2546                       const char* path,
2547                       unsigned int flags) {
2548   struct watcher_list* w;
2549   uv_loop_t* loop;
2550   size_t len;
2551   int events;
2552   int err;
2553   int wd;
2554 
2555   if (uv__is_active(handle))
2556     return UV_EINVAL;
2557 
2558   loop = handle->loop;
2559 
2560   err = init_inotify(loop);
2561   if (err)
2562     return err;
2563 
2564   events = IN_ATTRIB
2565          | IN_CREATE
2566          | IN_MODIFY
2567          | IN_DELETE
2568          | IN_DELETE_SELF
2569          | IN_MOVE_SELF
2570          | IN_MOVED_FROM
2571          | IN_MOVED_TO;
2572 
2573   wd = inotify_add_watch(loop->inotify_fd, path, events);
2574   if (wd == -1)
2575     return UV__ERR(errno);
2576 
2577   w = find_watcher(loop, wd);
2578   if (w)
2579     goto no_insert;
2580 
2581   len = strlen(path) + 1;
2582   w = uv__malloc(sizeof(*w) + len);
2583   if (w == NULL)
2584     return UV_ENOMEM;
2585 
2586   w->wd = wd;
2587   w->path = memcpy(w + 1, path, len);
2588   uv__queue_init(&w->watchers);
2589   w->iterating = 0;
2590   RB_INSERT(watcher_root, uv__inotify_watchers(loop), w);
2591 
2592 no_insert:
2593   uv__handle_start(handle);
2594   uv__queue_insert_tail(&w->watchers, &handle->watchers);
2595   handle->path = w->path;
2596   handle->cb = cb;
2597   handle->wd = wd;
2598 
2599   return 0;
2600 }
2601 
2602 
uv_fs_event_stop(uv_fs_event_t* handle)2603 int uv_fs_event_stop(uv_fs_event_t* handle) {
2604   struct watcher_list* w;
2605 
2606   if (!uv__is_active(handle))
2607     return 0;
2608 
2609   w = find_watcher(handle->loop, handle->wd);
2610   assert(w != NULL);
2611 
2612   handle->wd = -1;
2613   handle->path = NULL;
2614   uv__handle_stop(handle);
2615   uv__queue_remove(&handle->watchers);
2616 
2617   maybe_free_watcher_list(w, handle->loop);
2618 
2619   return 0;
2620 }
2621 
2622 
uv__fs_event_close(uv_fs_event_t* handle)2623 void uv__fs_event_close(uv_fs_event_t* handle) {
2624   uv_fs_event_stop(handle);
2625 }
2626