1 /*
2  * layer3.c: Mpeg Layer-3 audio decoder
3  *
4  * Copyright (C) 1999-2010 The L.A.M.E. project
5  *
6  * Initially written by Michael Hipp, see also AUTHORS and README.
7  *
8  * This library is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Library General Public
10  * License as published by the Free Software Foundation; either
11  * version 2 of the License, or (at your option) any later version.
12  *
13  * This library is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Library General Public License for more details.
17  *
18  * You should have received a copy of the GNU Library General Public
19  * License along with this library; if not, write to the
20  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21  * Boston, MA 02111-1307, USA.
22  */
23 /* $Id$ */
24 
25 #ifdef HAVE_CONFIG_H
26 # include <config.h>
27 #endif
28 
29 #include <stdlib.h>
30 #include "common.h"
31 #include "huffman.h"
32 #include "lame.h"
33 #include "machine.h"
34 #include "encoder.h"
35 #include "lame-analysis.h"
36 #include "decode_i386.h"
37 #include "layer3.h"
38 
39 #ifdef WITH_DMALLOC
40 #include <dmalloc.h>
41 #endif
42 
43 
44 static int gd_are_hip_tables_layer3_initialized = 0;
45 
46 static real ispow[8207];
47 static real aa_ca[8], aa_cs[8];
48 static real COS1[12][6];
49 static real win[4][36];
50 static real win1[4][36];
51 static real gainpow2[256 + 118 + 4];
52 static real COS9[9];
53 static real COS6_1, COS6_2;
54 static real tfcos36[9];
55 static real tfcos12[3];
56 
57 struct bandInfoStruct {
58     short   longIdx[23];
59     short   longDiff[22];
60     short   shortIdx[14];
61     short   shortDiff[13];
62 };
63 
64 static int longLimit[9][23];
65 static int shortLimit[9][14];
66 
67 /* *INDENT-OFF* */
68 
69 static const struct bandInfoStruct bandInfo[9] = {
70 
71 /* MPEG 1.0 */
72  { {0,4,8,12,16,20,24,30,36,44,52,62,74, 90,110,134,162,196,238,288,342,418,576},
73    {4,4,4,4,4,4,6,6,8, 8,10,12,16,20,24,28,34,42,50,54, 76,158},
74    {0,4*3,8*3,12*3,16*3,22*3,30*3,40*3,52*3,66*3, 84*3,106*3,136*3,192*3},
75    {4,4,4,4,6,8,10,12,14,18,22,30,56} } ,
76 
77  { {0,4,8,12,16,20,24,30,36,42,50,60,72, 88,106,128,156,190,230,276,330,384,576},
78    {4,4,4,4,4,4,6,6,6, 8,10,12,16,18,22,28,34,40,46,54, 54,192},
79    {0,4*3,8*3,12*3,16*3,22*3,28*3,38*3,50*3,64*3, 80*3,100*3,126*3,192*3},
80    {4,4,4,4,6,6,10,12,14,16,20,26,66} } ,
81 
82  { {0,4,8,12,16,20,24,30,36,44,54,66,82,102,126,156,194,240,296,364,448,550,576} ,
83    {4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102, 26} ,
84    {0,4*3,8*3,12*3,16*3,22*3,30*3,42*3,58*3,78*3,104*3,138*3,180*3,192*3} ,
85    {4,4,4,4,6,8,12,16,20,26,34,42,12} }  ,
86 
87 /* MPEG 2.0 */
88  { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
89    {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 } ,
90    {0,4*3,8*3,12*3,18*3,24*3,32*3,42*3,56*3,74*3,100*3,132*3,174*3,192*3} ,
91    {4,4,4,6,6,8,10,14,18,26,32,42,18 } } ,
92                                              /* docs: 332. mpg123: 330 */
93  { {0,6,12,18,24,30,36,44,54,66,80,96,114,136,162,194,232,278,332,394,464,540,576},
94    {6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,54,62,70,76,36 } ,
95    {0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,136*3,180*3,192*3} ,
96    {4,4,4,6,8,10,12,14,18,24,32,44,12 } } ,
97 
98  { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
99    {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 },
100    {0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,134*3,174*3,192*3},
101    {4,4,4,6,8,10,12,14,18,24,30,40,18 } } ,
102 /* MPEG 2.5 */
103  { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} ,
104    {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54},
105    {0,12,24,36,54,78,108,144,186,240,312,402,522,576},
106    {4,4,4,6,8,10,12,14,18,24,30,40,18} },
107  { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} ,
108    {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54},
109    {0,12,24,36,54,78,108,144,186,240,312,402,522,576},
110    {4,4,4,6,8,10,12,14,18,24,30,40,18} },
111  { {0,12,24,36,48,60,72,88,108,132,160,192,232,280,336,400,476,566,568,570,572,574,576},
112    {12,12,12,12,12,12,16,20,24,28,32,40,48,56,64,76,90,2,2,2,2,2},
113    {0, 24, 48, 72,108,156,216,288,372,480,486,492,498,576},
114    {8,8,8,12,16,20,24,28,36,2,2,2,26} } ,
115 };
116 /* *INDENT-ON* */
117 
118 static int mapbuf0[9][152];
119 static int mapbuf1[9][156];
120 static int mapbuf2[9][44];
121 static int *map[9][3];
122 static int *mapend[9][3];
123 
124 static unsigned int n_slen2[512]; /* MPEG 2.0 slen for 'normal' mode */
125 static unsigned int i_slen2[256]; /* MPEG 2.0 slen for intensity stereo */
126 
127 static real tan1_1[16], tan2_1[16], tan1_2[16], tan2_2[16];
128 static real pow1_1[2][16], pow2_1[2][16], pow1_2[2][16], pow2_2[2][16];
129 
130 static unsigned int
get1bit(PMPSTR mp)131 get1bit(PMPSTR mp)
132 {
133     unsigned char rval;
134     rval = *mp->wordpointer << mp->bitindex;
135 
136     mp->bitindex++;
137     mp->wordpointer += (mp->bitindex >> 3);
138     mp->bitindex &= 7;
139 
140     return rval >> 7;
141 }
142 
143 static real
get_gain(real const* gain_ptr, int idx, int* overflow)144 get_gain(real const* gain_ptr, int idx, int* overflow)
145 {
146     static const real* const gainpow2_end_ptr = gainpow2 + (sizeof(gainpow2)/sizeof(gainpow2[0])) -1;
147     real const * ptr = &gain_ptr[idx];
148     if (&gain_ptr[idx] > gainpow2_end_ptr) {
149         ptr = gainpow2_end_ptr;
150         if (overflow) *overflow = 1;
151     }
152     return *ptr;
153 }
154 
155 
156 /*
157  * init tables for layer-3
158  */
159 void
hip_init_tables_layer3(void)160 hip_init_tables_layer3(void)
161 {
162     int     i, j, k;
163 
164     if (gd_are_hip_tables_layer3_initialized) {
165         return;
166     }
167     gd_are_hip_tables_layer3_initialized = 1;
168 
169     for (i = -256; i < 118 + 4; i++)
170         gainpow2[i + 256] = pow((double) 2.0, -0.25 * (double) (i + 210));
171 
172     for (i = 0; i < 8207; i++)
173         ispow[i] = pow((double) i, (double) 4.0 / 3.0);
174 
175     for (i = 0; i < 8; i++) {
176         static const double Ci[8] = { -0.6, -0.535, -0.33, -0.185, -0.095, -0.041, -0.0142, -0.0037 };
177         double  sq = sqrt(1.0 + Ci[i] * Ci[i]);
178         aa_cs[i] = 1.0 / sq;
179         aa_ca[i] = Ci[i] / sq;
180     }
181 
182     for (i = 0; i < 18; i++) {
183         win[0][i] = win[1][i] =
184             0.5 * sin(M_PI / 72.0 * (double) (2 * (i + 0) + 1)) / cos(M_PI *
185                                                                       (double) (2 * (i + 0) +
186                                                                                 19) / 72.0);
187         win[0][i + 18] = win[3][i + 18] =
188             0.5 * sin(M_PI / 72.0 * (double) (2 * (i + 18) + 1)) / cos(M_PI *
189                                                                        (double) (2 * (i + 18) +
190                                                                                  19) / 72.0);
191     }
192     for (i = 0; i < 6; i++) {
193         win[1][i + 18] = 0.5 / cos(M_PI * (double) (2 * (i + 18) + 19) / 72.0);
194         win[3][i + 12] = 0.5 / cos(M_PI * (double) (2 * (i + 12) + 19) / 72.0);
195         win[1][i + 24] =
196             0.5 * sin(M_PI / 24.0 * (double) (2 * i + 13)) / cos(M_PI *
197                                                                  (double) (2 * (i + 24) +
198                                                                            19) / 72.0);
199         win[1][i + 30] = win[3][i] = 0.0;
200         win[3][i + 6] =
201             0.5 * sin(M_PI / 24.0 * (double) (2 * i + 1)) / cos(M_PI * (double) (2 * (i + 6) + 19) /
202                                                                 72.0);
203     }
204 
205     for (i = 0; i < 9; i++)
206         COS9[i] = cos(M_PI / 18.0 * (double) i);
207 
208     for (i = 0; i < 9; i++)
209         tfcos36[i] = 0.5 / cos(M_PI * (double) (i * 2 + 1) / 36.0);
210     for (i = 0; i < 3; i++)
211         tfcos12[i] = 0.5 / cos(M_PI * (double) (i * 2 + 1) / 12.0);
212 
213     COS6_1 = cos(M_PI / 6.0 * (double) 1);
214     COS6_2 = cos(M_PI / 6.0 * (double) 2);
215 
216     for (i = 0; i < 12; i++) {
217         win[2][i] =
218             0.5 * sin(M_PI / 24.0 * (double) (2 * i + 1)) / cos(M_PI * (double) (2 * i + 7) / 24.0);
219         for (j = 0; j < 6; j++)
220             COS1[i][j] = cos(M_PI / 24.0 * (double) ((2 * i + 7) * (2 * j + 1)));
221     }
222 
223     for (j = 0; j < 4; j++) {
224         static int const len[4] = { 36, 36, 12, 36 };
225         for (i = 0; i < len[j]; i += 2)
226             win1[j][i] = +win[j][i];
227         for (i = 1; i < len[j]; i += 2)
228             win1[j][i] = -win[j][i];
229     }
230 
231     for (i = 0; i < 16; i++) {
232         double  t = tan((double) i * M_PI / 12.0);
233         tan1_1[i] = t / (1.0 + t);
234         tan2_1[i] = 1.0 / (1.0 + t);
235         tan1_2[i] = M_SQRT2 * t / (1.0 + t);
236         tan2_2[i] = M_SQRT2 / (1.0 + t);
237 
238         for (j = 0; j < 2; j++) {
239             double  base = pow(2.0, -0.25 * (j + 1.0));
240             double  p1 = 1.0, p2 = 1.0;
241             if (i > 0) {
242                 if (i & 1)
243                     p1 = pow(base, (i + 1.0) * 0.5);
244                 else
245                     p2 = pow(base, i * 0.5);
246             }
247             pow1_1[j][i] = p1;
248             pow2_1[j][i] = p2;
249             pow1_2[j][i] = M_SQRT2 * p1;
250             pow2_2[j][i] = M_SQRT2 * p2;
251         }
252     }
253 
254     for (j = 0; j < 9; j++) {
255         struct bandInfoStruct const *bi = (struct bandInfoStruct const *) &bandInfo[j];
256         int    *mp;
257         int     cb, lwin;
258         short const *bdf;
259         int switch_idx = (j < 3) ? 8 : 6;
260 
261         mp = map[j][0] = mapbuf0[j];
262         bdf = bi->longDiff;
263         for (i = 0, cb = 0; cb < switch_idx; cb++, i += *bdf++) {
264             *mp++ = (*bdf) >> 1;
265             *mp++ = i;
266             *mp++ = 3;
267             *mp++ = cb;
268         }
269         bdf = bi->shortDiff + 3;
270         for (cb = 3; cb < 13; cb++) {
271             int     l = (*bdf++) >> 1;
272             for (lwin = 0; lwin < 3; lwin++) {
273                 *mp++ = l;
274                 *mp++ = i + lwin;
275                 *mp++ = lwin;
276                 *mp++ = cb;
277             }
278             i += 6 * l;
279         }
280         mapend[j][0] = mp;
281 
282         mp = map[j][1] = mapbuf1[j];
283         bdf = bi->shortDiff + 0;
284         for (i = 0, cb = 0; cb < 13; cb++) {
285             int     l = (*bdf++) >> 1;
286             for (lwin = 0; lwin < 3; lwin++) {
287                 *mp++ = l;
288                 *mp++ = i + lwin;
289                 *mp++ = lwin;
290                 *mp++ = cb;
291             }
292             i += 6 * l;
293         }
294         mapend[j][1] = mp;
295 
296         mp = map[j][2] = mapbuf2[j];
297         bdf = bi->longDiff;
298         for (cb = 0; cb < 22; cb++) {
299             *mp++ = (*bdf++) >> 1;
300             *mp++ = cb;
301         }
302         mapend[j][2] = mp;
303 
304     }
305 
306     for (j = 0; j < 9; j++) {
307         for (i = 0; i < 23; i++) {
308             longLimit[j][i] = (bandInfo[j].longIdx[i] - 1 + 8) / 18 + 1;
309             if (longLimit[j][i] > SBLIMIT)
310                 longLimit[j][i] = SBLIMIT;
311         }
312         for (i = 0; i < 14; i++) {
313             shortLimit[j][i] = (bandInfo[j].shortIdx[i] - 1) / 18 + 1;
314             if (shortLimit[j][i] > SBLIMIT)
315                 shortLimit[j][i] = SBLIMIT;
316         }
317     }
318 
319     for (i = 0; i < 5; i++) {
320         for (j = 0; j < 6; j++) {
321             for (k = 0; k < 6; k++) {
322                 int     n = k + j * 6 + i * 36;
323                 i_slen2[n] = i | (j << 3) | (k << 6) | (3 << 12);
324             }
325         }
326     }
327     for (i = 0; i < 4; i++) {
328         for (j = 0; j < 4; j++) {
329             for (k = 0; k < 4; k++) {
330                 int     n = k + j * 4 + i * 16;
331                 i_slen2[n + 180] = i | (j << 3) | (k << 6) | (4 << 12);
332             }
333         }
334     }
335     for (i = 0; i < 4; i++) {
336         for (j = 0; j < 3; j++) {
337             int     n = j + i * 3;
338             i_slen2[n + 244] = i | (j << 3) | (5 << 12);
339             n_slen2[n + 500] = i | (j << 3) | (2 << 12) | (1 << 15);
340         }
341     }
342 
343     for (i = 0; i < 5; i++) {
344         for (j = 0; j < 5; j++) {
345             for (k = 0; k < 4; k++) {
346                 int     l;
347                 for (l = 0; l < 4; l++) {
348                     int     n = l + k * 4 + j * 16 + i * 80;
349                     n_slen2[n] = i | (j << 3) | (k << 6) | (l << 9) | (0 << 12);
350                 }
351             }
352         }
353     }
354     for (i = 0; i < 5; i++) {
355         for (j = 0; j < 5; j++) {
356             for (k = 0; k < 4; k++) {
357                 int     n = k + j * 4 + i * 20;
358                 n_slen2[n + 400] = i | (j << 3) | (k << 6) | (1 << 12);
359             }
360         }
361     }
362 }
363 
364 /*
365  * read additional side information
366  */
367 
368 static void
III_get_side_info_1(PMPSTR mp, int stereo, int ms_stereo, long sfreq, int single)369 III_get_side_info_1(PMPSTR mp, int stereo,
370                     int ms_stereo, long sfreq, int single)
371 {
372     int     ch, gr;
373     int     powdiff = (single == 3) ? 4 : 0;
374 
375     mp->sideinfo.main_data_begin = getbits(mp, 9);
376     if (stereo == 1)
377         mp->sideinfo.private_bits = getbits_fast(mp, 5);
378     else
379         mp->sideinfo.private_bits = getbits_fast(mp, 3);
380 
381     for (ch = 0; ch < stereo; ch++) {
382         mp->sideinfo.ch[ch].gr[0].scfsi = -1;
383         mp->sideinfo.ch[ch].gr[1].scfsi = getbits_fast(mp, 4);
384     }
385 
386     for (gr = 0; gr < 2; gr++) {
387         for (ch = 0; ch < stereo; ch++) {
388             struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]);
389 
390             gr_infos->part2_3_length = getbits(mp, 12);
391             gr_infos->big_values = getbits_fast(mp, 9);
392             if (gr_infos->big_values > 288) {
393                 lame_report_fnc(mp->report_err, "big_values too large! %i\n", gr_infos->big_values);
394                 gr_infos->big_values = 288;
395             }
396             {
397                 unsigned int qss = getbits_fast(mp, 8);
398                 gr_infos->pow2gain = gainpow2 + 256 - qss + powdiff;
399                 if (mp->pinfo != NULL) {
400                     mp->pinfo->qss[gr][ch] = qss;
401                 }
402             }
403             if (ms_stereo)
404                 gr_infos->pow2gain += 2;
405             gr_infos->scalefac_compress = getbits_fast(mp, 4);
406 /* window-switching flag == 1 for block_Type != 0 .. and block-type == 0 -> win-sw-flag = 0 */
407             if (get1bit(mp)) {
408                 int     i;
409                 gr_infos->block_type = getbits_fast(mp, 2);
410                 gr_infos->mixed_block_flag = get1bit(mp);
411                 gr_infos->table_select[0] = getbits_fast(mp, 5);
412                 gr_infos->table_select[1] = getbits_fast(mp, 5);
413 
414 
415                 /*
416                  * table_select[2] not needed, because there is no region2,
417                  * but to satisfy some verifications tools we set it either.
418                  */
419                 gr_infos->table_select[2] = 0;
420                 for (i = 0; i < 3; i++) {
421                     unsigned int sbg = (getbits_fast(mp, 3) << 3);
422                     gr_infos->full_gain[i] = gr_infos->pow2gain + sbg;
423                     if (mp->pinfo != NULL)
424                         mp->pinfo->sub_gain[gr][ch][i] = sbg / 8;
425                 }
426 
427                 if (gr_infos->block_type == 0) {
428                     lame_report_fnc(mp->report_err, "Blocktype == 0 and window-switching == 1 not allowed.\n");
429                     /* error seems to be very good recoverable, so don't exit */
430                     /* exit(1); */
431                 }
432                 /* region_count/start parameters are implicit in this case. */
433                 gr_infos->region1start = 36 >> 1;
434                 gr_infos->region2start = 576 >> 1;
435             }
436             else {
437                 unsigned int i, r0c, r1c, region0index, region1index;
438                 for (i = 0; i < 3; i++)
439                     gr_infos->table_select[i] = getbits_fast(mp, 5);
440                 r0c = getbits_fast(mp, 4);
441                 r1c = getbits_fast(mp, 3);
442                 region0index = r0c+1;
443                 if (region0index > 22) {
444                     lame_report_fnc(mp->report_err, "region0index=%d > 22\n", region0index);
445                     region0index = 22;
446                 }
447                 region1index = r0c+1 + r1c+1;
448                 if (region1index > 22) {
449                     lame_report_fnc(mp->report_err, "region1index=%d > 22\n", region1index);
450                     region1index = 22;
451                 }
452                 gr_infos->region1start = bandInfo[sfreq].longIdx[region0index] >> 1;
453                 gr_infos->region2start = bandInfo[sfreq].longIdx[region1index] >> 1;
454                 gr_infos->block_type = 0;
455                 gr_infos->mixed_block_flag = 0;
456             }
457             gr_infos->preflag = get1bit(mp);
458             gr_infos->scalefac_scale = get1bit(mp);
459             gr_infos->count1table_select = get1bit(mp);
460         }
461     }
462 }
463 
464 /*
465  * Side Info for MPEG 2.0 / LSF
466  */
467 static void
III_get_side_info_2(PMPSTR mp, int stereo, int ms_stereo, long sfreq, int single)468 III_get_side_info_2(PMPSTR mp, int stereo, int ms_stereo, long sfreq, int single)
469 {
470     int     ch;
471     int     powdiff = (single == 3) ? 4 : 0;
472 
473     mp->sideinfo.main_data_begin = getbits(mp, 8);
474 
475     if (stereo == 1)
476         mp->sideinfo.private_bits = get1bit(mp);
477     else
478         mp->sideinfo.private_bits = getbits_fast(mp, 2);
479 
480     for (ch = 0; ch < stereo; ch++) {
481         struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[0]);
482         unsigned int qss;
483 
484         gr_infos->part2_3_length = getbits(mp, 12);
485         gr_infos->big_values = getbits_fast(mp, 9);
486         if (gr_infos->big_values > 288) {
487             lame_report_fnc(mp->report_err, "big_values too large! %i\n", gr_infos->big_values);
488             gr_infos->big_values = 288;
489         }
490         qss = getbits_fast(mp, 8);
491         gr_infos->pow2gain = gainpow2 + 256 - qss + powdiff;
492         if (mp->pinfo != NULL) {
493             mp->pinfo->qss[0][ch] = qss;
494         }
495 
496 
497         if (ms_stereo)
498             gr_infos->pow2gain += 2;
499         gr_infos->scalefac_compress = getbits(mp, 9);
500 /* window-switching flag == 1 for block_Type != 0 .. and block-type == 0 -> win-sw-flag = 0 */
501         if (get1bit(mp)) {
502             int     i;
503             gr_infos->block_type = getbits_fast(mp, 2);
504             gr_infos->mixed_block_flag = get1bit(mp);
505             gr_infos->table_select[0] = getbits_fast(mp, 5);
506             gr_infos->table_select[1] = getbits_fast(mp, 5);
507             /*
508              * table_select[2] not needed, because there is no region2,
509              * but to satisfy some verifications tools we set it either.
510              */
511             gr_infos->table_select[2] = 0;
512             for (i = 0; i < 3; i++) {
513                 unsigned int sbg = (getbits_fast(mp, 3) << 3);
514                 gr_infos->full_gain[i] = gr_infos->pow2gain + sbg;
515                 if (mp->pinfo != NULL)
516                     mp->pinfo->sub_gain[0][ch][i] = sbg / 8;
517 
518             }
519 
520             if (gr_infos->block_type == 0) {
521                 lame_report_fnc(mp->report_err, "Blocktype == 0 and window-switching == 1 not allowed.\n");
522                 /* error seems to be very good recoverable, so don't exit */
523                 /* exit(1); */
524             }
525             /* region_count/start parameters are implicit in this case. */
526             if (gr_infos->block_type == 2) {
527                 if (gr_infos->mixed_block_flag == 0)
528                     gr_infos->region1start = 36 >> 1;
529                 else
530                     gr_infos->region1start = 48 >> 1;
531             }
532             else
533                 gr_infos->region1start = 54 >> 1;
534             if (sfreq == 8)
535                 gr_infos->region1start *= 2;
536             gr_infos->region2start = 576 >> 1;
537         }
538         else {
539             unsigned int i, r0c, r1c, region0index, region1index;
540             for (i = 0; i < 3; i++)
541                 gr_infos->table_select[i] = getbits_fast(mp, 5);
542             r0c = getbits_fast(mp, 4);
543             r1c = getbits_fast(mp, 3);
544             region0index = r0c+1;
545             if (region0index > 22) {
546                 lame_report_fnc(mp->report_err, "region0index=%d > 22\n", region0index);
547                 region0index = 22;
548             }
549             region1index = r0c+1 + r1c+1;
550             if (region1index > 22) {
551                 lame_report_fnc(mp->report_err, "region1index=%d > 22\n", region1index);
552                 region1index = 22;
553             }
554             gr_infos->region1start = bandInfo[sfreq].longIdx[region0index] >> 1;
555             gr_infos->region2start = bandInfo[sfreq].longIdx[region1index] >> 1;
556             gr_infos->block_type = 0;
557             gr_infos->mixed_block_flag = 0;
558         }
559         gr_infos->scalefac_scale = get1bit(mp);
560         gr_infos->count1table_select = get1bit(mp);
561     }
562 }
563 
564 /*
565  * read scalefactors
566  */
567 
568 static int
III_get_scale_factors_1(PMPSTR mp, int *scf, struct gr_info_s *gr_infos)569 III_get_scale_factors_1(PMPSTR mp, int *scf, struct gr_info_s *gr_infos)
570 {
571     static const unsigned char slen[2][16] = {
572         {0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4},
573         {0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3}
574     };
575     int     numbits;
576     int     num0 = slen[0][gr_infos->scalefac_compress];
577     int     num1 = slen[1][gr_infos->scalefac_compress];
578 
579     if (gr_infos->block_type == 2) {
580         int     i = 18;
581         numbits = (num0 + num1) * 18;
582 
583         if (gr_infos->mixed_block_flag) {
584             for (i = 8; i; i--)
585                 *scf++ = getbits_fast(mp, num0);
586             i = 9;
587             numbits -= num0; /* num0 * 17 + num1 * 18 */
588         }
589 
590         for (; i; i--)
591             *scf++ = getbits_fast(mp, num0);
592         for (i = 18; i; i--)
593             *scf++ = getbits_fast(mp, num1);
594         *scf++ = 0;
595         *scf++ = 0;
596         *scf++ = 0;     /* short[13][0..2] = 0 */
597     }
598     else {
599         int     i;
600         int     scfsi = gr_infos->scfsi;
601 
602         if (scfsi < 0) { /* scfsi < 0 => granule == 0 */
603             for (i = 11; i; i--)
604                 *scf++ = getbits_fast(mp, num0);
605             for (i = 10; i; i--)
606                 *scf++ = getbits_fast(mp, num1);
607             numbits = (num0 + num1) * 10 + num0;
608         }
609         else {
610             numbits = 0;
611             if (!(scfsi & 0x8)) {
612                 for (i = 6; i; i--)
613                     *scf++ = getbits_fast(mp, num0);
614                 numbits += num0 * 6;
615             }
616             else {
617                 scf += 6;
618             }
619 
620             if (!(scfsi & 0x4)) {
621                 for (i = 5; i; i--)
622                     *scf++ = getbits_fast(mp, num0);
623                 numbits += num0 * 5;
624             }
625             else {
626                 scf += 5;
627             }
628 
629             if (!(scfsi & 0x2)) {
630                 for (i = 5; i; i--)
631                     *scf++ = getbits_fast(mp, num1);
632                 numbits += num1 * 5;
633             }
634             else {
635                 scf += 5;
636             }
637 
638             if (!(scfsi & 0x1)) {
639                 for (i = 5; i; i--)
640                     *scf++ = getbits_fast(mp, num1);
641                 numbits += num1 * 5;
642             }
643             else {
644                 scf += 5;
645             }
646         }
647 
648         *scf++ = 0;     /* no l[21] in original sources */
649     }
650     return numbits;
651 }
652 
653 
654 static int
III_get_scale_factors_2(PMPSTR mp, int *scf, struct gr_info_s *gr_infos, int i_stereo)655 III_get_scale_factors_2(PMPSTR mp, int *scf, struct gr_info_s *gr_infos, int i_stereo)
656 {
657     unsigned char const *pnt;
658     int     i, j;
659     unsigned int slen;
660     int     n = 0;
661     int     numbits = 0;
662 
663   /* *INDENT-OFF* */
664   static const unsigned char stab[3][6][4] = {
665    { { 6, 5, 5,5 } , { 6, 5, 7,3 } , { 11,10,0,0} ,
666      { 7, 7, 7,0 } , { 6, 6, 6,3 } , {  8, 8,5,0} } ,
667    { { 9, 9, 9,9 } , { 9, 9,12,6 } , { 18,18,0,0} ,
668      {12,12,12,0 } , {12, 9, 9,6 } , { 15,12,9,0} } ,
669    { { 6, 9, 9,9 } , { 6, 9,12,6 } , { 15,18,0,0} ,
670      { 6,15,12,0 } , { 6,12, 9,6 } , {  6,18,9,0} } };
671   /* *INDENT-ON* */
672 
673     if (i_stereo)       /* i_stereo AND second channel -> do_layer3() checks this */
674         slen = i_slen2[gr_infos->scalefac_compress >> 1];
675     else
676         slen = n_slen2[gr_infos->scalefac_compress];
677 
678     gr_infos->preflag = (slen >> 15) & 0x1;
679 
680     n = 0;
681     if (gr_infos->block_type == 2) {
682         n++;
683         if (gr_infos->mixed_block_flag)
684             n++;
685     }
686 
687     pnt = (unsigned char const *) stab[n][(slen >> 12) & 0x7];
688 
689     for (i = 0; i < 4; i++) {
690         int     num = slen & 0x7;
691         slen >>= 3;
692         if (num) {
693             for (j = 0; j < (int) (pnt[i]); j++)
694                 *scf++ = getbits_fast(mp, num);
695             numbits += pnt[i] * num;
696         }
697         else {
698             for (j = 0; j < (int) (pnt[i]); j++)
699                 *scf++ = 0;
700         }
701     }
702 
703     n = (n << 1) + 1;
704     for (i = 0; i < n; i++)
705         *scf++ = 0;
706 
707     return numbits;
708 }
709 
710 /* *INDENT-OFF* */
711 static const int pretab1 [22] = {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,3,3,3,2,0}; /* char enough ? */
712 static const int pretab2 [22] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
713 /* *INDENT-ON* */
714 
715 /*
716  * don't forget to apply the same changes to III_dequantize_sample_ms() !!!
717  */
718 static int
III_dequantize_sample(PMPSTR mp, real xr[SBLIMIT][SSLIMIT], int *scf, struct gr_info_s *gr_infos, int sfreq, int part2bits)719 III_dequantize_sample(PMPSTR mp, real xr[SBLIMIT][SSLIMIT], int *scf,
720                       struct gr_info_s *gr_infos, int sfreq, int part2bits)
721 {
722     int     shift = 1 + gr_infos->scalefac_scale;
723     real   *xrpnt = (real *) xr, xr_value=0;
724     int     l[3], l3;
725     int     part2remain = gr_infos->part2_3_length - part2bits;
726     int    *me;
727     real const * const xr_endptr = &xr[SBLIMIT-1][SSLIMIT-1];
728 
729     int isbug = 0;
730     int bobug = 0;
731     int bobug_sb = 0, bobug_l3=0;
732 #define BUFFER_OVERFLOW_BUG() if(!bobug){bobug=1;bobug_sb=cb;bobug_l3=l3;}else
733 
734     /* lame_report_fnc(mp->report_dbg,"part2remain = %d, gr_infos->part2_3_length = %d, part2bits = %d\n",
735        part2remain, gr_infos->part2_3_length, part2bits); */
736 
737     {
738         int     i;
739 
740         for (i = (&xr[SBLIMIT][0] - xrpnt) >> 1; i > 0; i--) {
741             *xrpnt++ = 0.0;
742             *xrpnt++ = 0.0;
743         }
744 
745         xrpnt = (real *) xr;
746     }
747 
748     {
749         int     bv = gr_infos->big_values;
750         int     region1 = gr_infos->region1start;
751         int     region2 = gr_infos->region2start;
752 
753         l3 = ((576 >> 1) - bv) >> 1;
754 /*
755  * we may lose the 'odd' bit here !!
756  * check this later again
757  */
758         if (bv <= region1) {
759             l[0] = bv;
760             l[1] = 0;
761             l[2] = 0;
762         }
763         else {
764             l[0] = region1;
765             if (bv <= region2) {
766                 l[1] = bv - l[0];
767                 l[2] = 0;
768             }
769             else {
770                 l[1] = region2 - l[0];
771                 l[2] = bv - region2;
772             }
773         }
774     }
775     /* MDH crash fix */
776     {
777         int     i;
778         for (i = 0; i < 3; i++) {
779             if (l[i] < 0) {
780                 lame_report_fnc(mp->report_err, "hip: Bogus region length (%d)\n", l[i]);
781                 l[i] = 0;
782             }
783         }
784     }
785     /* end MDH crash fix */
786 
787     if (gr_infos->block_type == 2) {
788         /*
789          * decoding with short or mixed mode BandIndex table
790          */
791         int     i, max[4];
792         int     step = 0, lwin = 0, cb = 0;
793         real    v = 0.0;
794         int    *m, mc;
795 
796         if (gr_infos->mixed_block_flag) {
797             max[3] = -1;
798             max[0] = max[1] = max[2] = 2;
799             m = map[sfreq][0];
800             me = mapend[sfreq][0];
801         }
802         else {
803             max[0] = max[1] = max[2] = max[3] = -1;
804             /* max[3] not really needed in this case */
805             m = map[sfreq][1];
806             me = mapend[sfreq][1];
807         }
808 
809         mc = 0;
810         for (i = 0; i < 2; i++) {
811             int     lp = l[i];
812             struct newhuff const *h = (struct newhuff const *) (ht + gr_infos->table_select[i]);
813             for (; lp; lp--, mc--) {
814                 int     x, y;
815                 if ((!mc)) {
816                     mc = *m++;
817                     xrpnt = ((real *) xr) + (*m++);
818                     lwin = *m++;
819                     cb = *m++;
820                     if (lwin == 3) {
821                         v = get_gain(gr_infos->pow2gain, (*scf++) << shift, &isbug);
822                         step = 1;
823                     }
824                     else {
825                         v = get_gain(gr_infos->full_gain[lwin], (*scf++) << shift, &isbug);
826                         step = 3;
827                     }
828                 }
829                 {
830                     short const *val = (short const *) h->table;
831                     while ((y = *val++) < 0) {
832                         if (get1bit(mp))
833                             val -= y;
834                         part2remain--;
835                     }
836                     x = y >> 4;
837                     y &= 0xf;
838                 }
839                 if (x == 15) {
840                     max[lwin] = cb;
841                     part2remain -= h->linbits + 1;
842                     x += getbits(mp, (int) h->linbits);
843                     if (get1bit(mp))
844                         xr_value = -ispow[x] * v;
845                     else
846                         xr_value = ispow[x] * v;
847                 }
848                 else if (x) {
849                     max[lwin] = cb;
850                     if (get1bit(mp))
851                         xr_value = -ispow[x] * v;
852                     else
853                         xr_value = ispow[x] * v;
854                     part2remain--;
855                 }
856                 else
857                     xr_value = 0.0;
858 
859                 if (xrpnt <= xr_endptr)
860                     *xrpnt = xr_value;
861                 else
862                     BUFFER_OVERFLOW_BUG();
863                 xrpnt += step;
864                 if (y == 15) {
865                     max[lwin] = cb;
866                     part2remain -= h->linbits + 1;
867                     y += getbits(mp, (int) h->linbits);
868                     if (get1bit(mp))
869                         xr_value = -ispow[y] * v;
870                     else
871                         xr_value = ispow[y] * v;
872                 }
873                 else if (y) {
874                     max[lwin] = cb;
875                     if (get1bit(mp))
876                         xr_value = -ispow[y] * v;
877                     else
878                         xr_value = ispow[y] * v;
879                     part2remain--;
880                 }
881                 else
882                     xr_value = 0.0;
883 
884                 if (xrpnt <= xr_endptr)
885                     *xrpnt = xr_value;
886                 else
887                     BUFFER_OVERFLOW_BUG();
888                 xrpnt += step;
889             }
890         }
891         for (; (l3 > 0) && (part2remain > 0); l3--) {
892             struct newhuff const *h = (struct newhuff const *) (htc + gr_infos->count1table_select);
893             short const *val = (short const *) h->table;
894             short   a;
895 
896             while ((a = *val++) < 0) {
897                 part2remain--;
898                 if (part2remain < 0) {
899                     part2remain++;
900                     a = 0;
901                     break;
902                 }
903                 if (get1bit(mp))
904                     val -= a;
905             }
906             for (i = 0; i < 4; i++) {
907                 if (!(i & 1)) {
908                     if (!mc) {
909                         mc = *m++;
910                         xrpnt = ((real *) xr) + (*m++);
911                         lwin = *m++;
912                         cb = *m++;
913                         if (lwin == 3) {
914                             v = get_gain(gr_infos->pow2gain, (*scf++) << shift, &isbug);
915                             step = 1;
916                         }
917                         else {
918                             v = get_gain(gr_infos->full_gain[lwin], (*scf++) << shift, &isbug);
919                             step = 3;
920                         }
921                     }
922                     mc--;
923                 }
924                 if ((a & (0x8 >> i))) {
925                     max[lwin] = cb;
926                     part2remain--;
927                     if (part2remain < 0) {
928                         part2remain++;
929                         break;
930                     }
931                     if (get1bit(mp))
932                         xr_value = -v;
933                     else
934                         xr_value = v;
935                 }
936                 else
937                     xr_value = 0.0;
938 
939                 if (xrpnt <= xr_endptr)
940                     *xrpnt = xr_value;
941                 else
942                     BUFFER_OVERFLOW_BUG();
943                 xrpnt += step;
944             }
945         }
946         while (m < me) {
947             if (!mc) {
948                 mc = *m++;
949                 xrpnt = ((real *) xr) + *m++;
950                 if ((*m++) == 3)
951                     step = 1;
952                 else
953                     step = 3;
954                 m++;    /* cb */
955             }
956             mc--;
957             if (xrpnt <= xr_endptr)
958                 *xrpnt = 0.0;
959             else
960                 BUFFER_OVERFLOW_BUG();
961             xrpnt += step;
962             if (xrpnt <= xr_endptr)
963                 *xrpnt = 0.0;
964             else
965                 BUFFER_OVERFLOW_BUG();
966             xrpnt += step;
967 /* we could add a little opt. here:
968  * if we finished a band for window 3 or a long band
969  * further bands could copied in a simple loop without a
970  * special 'map' decoding
971  */
972         }
973 
974         gr_infos->maxband[0] = max[0] + 1;
975         gr_infos->maxband[1] = max[1] + 1;
976         gr_infos->maxband[2] = max[2] + 1;
977         gr_infos->maxbandl = max[3] + 1;
978 
979         {
980             int     rmax = max[0] > max[1] ? max[0] : max[1];
981             rmax = (rmax > max[2] ? rmax : max[2]) + 1;
982             gr_infos->maxb = rmax ? shortLimit[sfreq][rmax] : longLimit[sfreq][max[3] + 1];
983         }
984 
985     }
986     else {
987         /*
988          * decoding with 'long' BandIndex table (block_type != 2)
989          */
990         int const *pretab = (int const *) (gr_infos->preflag ? pretab1 : pretab2);
991         int     i, max = -1;
992         int     cb = 0;
993         int    *m = map[sfreq][2];
994         real    v = 0.0;
995         int     mc = 0;
996 
997         /*
998          * long hash table values
999          */
1000         for (i = 0; i < 3; i++) {
1001             int     lp = l[i];
1002             struct newhuff const *h = (struct newhuff const *) (ht + gr_infos->table_select[i]);
1003 
1004             for (; lp; lp--, mc--) {
1005                 int     x, y;
1006 
1007                 if (!mc) {
1008                     mc = *m++;
1009                     v = get_gain(gr_infos->pow2gain, ((*scf++) + (*pretab++)) << shift, &isbug);
1010                     cb = *m++;
1011                 }
1012                 {
1013                     short const *val = (short const *) h->table;
1014                     while ((y = *val++) < 0) {
1015                         if (get1bit(mp))
1016                             val -= y;
1017                         part2remain--;
1018                     }
1019                     x = y >> 4;
1020                     y &= 0xf;
1021                 }
1022                 if (x == 15) {
1023                     max = cb;
1024                     part2remain -= h->linbits + 1;
1025                     x += getbits(mp, (int) h->linbits);
1026                     if (get1bit(mp))
1027                         xr_value = -ispow[x] * v;
1028                     else
1029                         xr_value = ispow[x] * v;
1030                 }
1031                 else if (x) {
1032                     max = cb;
1033                     if (get1bit(mp))
1034                         xr_value = -ispow[x] * v;
1035                     else
1036                         xr_value = ispow[x] * v;
1037                     part2remain--;
1038                 }
1039                 else
1040                     xr_value = 0.0;
1041 
1042                 if (xrpnt <= xr_endptr)
1043                     *xrpnt++ = xr_value;
1044                 else
1045                     BUFFER_OVERFLOW_BUG();
1046 
1047                 if (y == 15) {
1048                     max = cb;
1049                     part2remain -= h->linbits + 1;
1050                     y += getbits(mp, (int) h->linbits);
1051                     if (get1bit(mp))
1052                         xr_value = -ispow[y] * v;
1053                     else
1054                         xr_value = ispow[y] * v;
1055                 }
1056                 else if (y) {
1057                     max = cb;
1058                     if (get1bit(mp))
1059                         xr_value = -ispow[y] * v;
1060                     else
1061                         xr_value = ispow[y] * v;
1062                     part2remain--;
1063                 }
1064                 else
1065                     xr_value = 0.0;
1066 
1067                 if (xrpnt <= xr_endptr)
1068                     *xrpnt++ = xr_value;
1069                 else
1070                     BUFFER_OVERFLOW_BUG();
1071             }
1072         }
1073 
1074         /*
1075          * short (count1table) values
1076          */
1077         for (; l3 && (part2remain > 0); l3--) {
1078             struct newhuff const *h = (struct newhuff const *) (htc + gr_infos->count1table_select);
1079             short const *val = (short const *) h->table;
1080             short   a;
1081 
1082             while ((a = *val++) < 0) {
1083                 part2remain--;
1084                 if (part2remain < 0) {
1085                     part2remain++;
1086                     a = 0;
1087                     break;
1088                 }
1089                 if (get1bit(mp))
1090                     val -= a;
1091             }
1092             for (i = 0; i < 4; i++) {
1093                 if (!(i & 1)) {
1094                     if (!mc) {
1095                         mc = *m++;
1096                         cb = *m++;
1097                         v = get_gain(gr_infos->pow2gain, ((*scf++) + (*pretab++)) << shift, &isbug);
1098                     }
1099                     mc--;
1100                 }
1101                 if ((a & (0x8 >> i))) {
1102                     max = cb;
1103                     part2remain--;
1104                     if (part2remain < 0) {
1105                         part2remain++;
1106                         break;
1107                     }
1108                     if (get1bit(mp))
1109                         xr_value = -v;
1110                     else
1111                         xr_value = v;
1112                 }
1113                 else
1114                     xr_value = 0.0;
1115 
1116                 if (xrpnt <= xr_endptr)
1117                     *xrpnt++ = xr_value;
1118                 else
1119                     BUFFER_OVERFLOW_BUG();
1120             }
1121         }
1122 
1123         /*
1124          * zero part
1125          */
1126         while (xrpnt <= xr_endptr)
1127             *xrpnt++ = 0.0;
1128 
1129         gr_infos->maxbandl = max + 1;
1130         gr_infos->maxb = longLimit[sfreq][gr_infos->maxbandl];
1131     }
1132 #undef BUFFER_OVERFLOW_BUG
1133     if (bobug) {
1134         /* well, there was a bug report, where this happened!
1135            The problem was, that mixed blocks summed up to over 576,
1136            because of a wrong long/short switching index.
1137            It's likely, that the buffer overflow is fixed now, after correcting mixed block map.
1138         */
1139         lame_report_fnc
1140           (mp->report_err
1141           ,"hip: OOPS, part2remain=%d l3=%d cb=%d bv=%d region1=%d region2=%d b-type=%d mixed=%d\n"
1142           ,part2remain
1143           ,bobug_l3
1144           ,bobug_sb
1145           ,gr_infos->big_values
1146           ,gr_infos->region1start
1147           ,gr_infos->region2start
1148           ,gr_infos->block_type
1149           ,gr_infos->mixed_block_flag
1150           );
1151     }
1152     if (isbug) {
1153         /* there is a bug report, where there is trouble with IS coded short block gain.
1154            Is intensity stereo coding implementation correct? Likely not.
1155         */
1156         int i_stereo = 0;
1157         if (mp->fr.mode == MPG_MD_JOINT_STEREO) {
1158             i_stereo = mp->fr.mode_ext & 0x1;
1159         }
1160         lame_report_fnc
1161           (mp->report_err
1162           ,"hip: OOPS, 'gainpow2' buffer overflow  lsf=%d i-stereo=%d b-type=%d mixed=%d\n"
1163           ,mp->fr.lsf
1164           ,i_stereo
1165           ,gr_infos->block_type
1166           ,gr_infos->mixed_block_flag
1167           );
1168     }
1169 
1170     while (part2remain > 16) {
1171         getbits(mp, 16); /* Dismiss stuffing Bits */
1172         part2remain -= 16;
1173     }
1174     if (part2remain > 0)
1175         getbits(mp, part2remain);
1176     else if (part2remain < 0) {
1177         lame_report_fnc(mp->report_err, "hip: Can't rewind stream by %d bits!\n", -part2remain);
1178         return 1;       /* -> error */
1179     }
1180     return 0;
1181 }
1182 
1183 /* intensity position, transmitted via a scalefactor value, allowed range is 0 - 15 */
1184 static
scalefac_to_is_pos(int sf)1185 int scalefac_to_is_pos(int sf)
1186 {
1187     if (0 <= sf && sf <= 15)
1188         return sf;
1189     return (sf < 0 ? 0 : 15);
1190 }
1191 
1192 /*
1193  * III_stereo: calculate real channel values for Joint-I-Stereo-mode
1194  */
1195 static void
III_i_stereo(real xr_buf[2][SBLIMIT][SSLIMIT], int *scalefac, struct gr_info_s *gr_infos, int sfreq, int ms_stereo, int lsf)1196 III_i_stereo(real xr_buf[2][SBLIMIT][SSLIMIT], int *scalefac,
1197              struct gr_info_s *gr_infos, int sfreq, int ms_stereo, int lsf)
1198 {
1199     real(*xr)[SBLIMIT * SSLIMIT] = (real(*)[SBLIMIT * SSLIMIT]) xr_buf;
1200     struct bandInfoStruct const *bi = (struct bandInfoStruct const *) &bandInfo[sfreq];
1201     real   *tabl1, *tabl2;
1202 
1203     if (lsf) {
1204         int     p = gr_infos->scalefac_compress & 0x1;
1205         if (ms_stereo) {
1206             tabl1 = pow1_2[p];
1207             tabl2 = pow2_2[p];
1208         }
1209         else {
1210             tabl1 = pow1_1[p];
1211             tabl2 = pow2_1[p];
1212         }
1213     }
1214     else {
1215         if (ms_stereo) {
1216             tabl1 = tan1_2;
1217             tabl2 = tan2_2;
1218         }
1219         else {
1220             tabl1 = tan1_1;
1221             tabl2 = tan2_1;
1222         }
1223     }
1224 
1225     if (gr_infos->block_type == 2) {
1226         int     lwin, do_l = 0;
1227         if (gr_infos->mixed_block_flag)
1228             do_l = 1;
1229 
1230         for (lwin = 0; lwin < 3; lwin++) { /* process each window */
1231             /* get first band with zero values */
1232             int     is_p, sb, idx, sfb = gr_infos->maxband[lwin]; /* sfb is minimal 3 for mixed mode */
1233             if (sfb > 3)
1234                 do_l = 0;
1235 
1236             for (; sfb < 12; sfb++) {
1237                 is_p = scalefac[sfb * 3 + lwin - gr_infos->mixed_block_flag]; /* scale: 0-15 */
1238                 is_p = scalefac_to_is_pos(is_p);
1239                 if (is_p != 7) {
1240                     real    t1, t2;
1241                     sb = bi->shortDiff[sfb];
1242                     idx = bi->shortIdx[sfb] + lwin;
1243                     t1 = tabl1[is_p];
1244                     t2 = tabl2[is_p];
1245                     for (; sb > 0; sb--, idx += 3) {
1246                         real    v = xr[0][idx];
1247                         xr[0][idx] = v * t1;
1248                         xr[1][idx] = v * t2;
1249                     }
1250                 }
1251             }
1252 
1253 #if 1
1254 /* in the original: copy 10 to 11 , here: copy 11 to 12
1255 maybe still wrong??? (copy 12 to 13?) */
1256             is_p = scalefac[11 * 3 + lwin - gr_infos->mixed_block_flag]; /* scale: 0-15 */
1257             sb = bi->shortDiff[12];
1258             idx = bi->shortIdx[12] + lwin;
1259 #else
1260             is_p = scalefac[10 * 3 + lwin - gr_infos->mixed_block_flag]; /* scale: 0-15 */
1261             sb = bi->shortDiff[11];
1262             idx = bi->shortIdx[11] + lwin;
1263 #endif
1264             is_p = scalefac_to_is_pos(is_p);
1265             if (is_p != 7) {
1266                 real    t1, t2;
1267                 t1 = tabl1[is_p];
1268                 t2 = tabl2[is_p];
1269                 for (; sb > 0; sb--, idx += 3) {
1270                     real    v = xr[0][idx];
1271                     xr[0][idx] = v * t1;
1272                     xr[1][idx] = v * t2;
1273                 }
1274             }
1275         }               /* end for(lwin; .. ; . ) */
1276 
1277         if (do_l) {
1278 /* also check l-part, if ALL bands in the three windows are 'empty'
1279  * and mode = mixed_mode
1280  */
1281             int     sfb = gr_infos->maxbandl;
1282             int     idx = bi->longIdx[sfb];
1283 
1284             for (; sfb < 8; sfb++) {
1285                 int     sb = bi->longDiff[sfb];
1286                 int     is_p = scalefac[sfb]; /* scale: 0-15 */
1287                 is_p = scalefac_to_is_pos(is_p);
1288                 if (is_p != 7) {
1289                     real    t1, t2;
1290                     t1 = tabl1[is_p];
1291                     t2 = tabl2[is_p];
1292                     for (; sb > 0; sb--, idx++) {
1293                         real    v = xr[0][idx];
1294                         xr[0][idx] = v * t1;
1295                         xr[1][idx] = v * t2;
1296                     }
1297                 }
1298                 else
1299                     idx += sb;
1300             }
1301         }
1302     }
1303     else {              /* ((gr_infos->block_type != 2)) */
1304 
1305         int     sfb = gr_infos->maxbandl;
1306         int     is_p, idx = bi->longIdx[sfb];
1307         for (; sfb < 21; sfb++) {
1308             int     sb = bi->longDiff[sfb];
1309             is_p = scalefac[sfb]; /* scale: 0-15 */
1310             is_p = scalefac_to_is_pos(is_p);
1311             if (is_p != 7) {
1312                 real    t1, t2;
1313                 t1 = tabl1[is_p];
1314                 t2 = tabl2[is_p];
1315                 for (; sb > 0; sb--, idx++) {
1316                     real    v = xr[0][idx];
1317                     xr[0][idx] = v * t1;
1318                     xr[1][idx] = v * t2;
1319                 }
1320             }
1321             else
1322                 idx += sb;
1323         }
1324 
1325         is_p = scalefac[20]; /* copy l-band 20 to l-band 21 */
1326         is_p = scalefac_to_is_pos(is_p);
1327         idx = bi->longIdx[21];
1328         if (is_p != 7) {
1329             int     sb;
1330             real    t1 = tabl1[is_p], t2 = tabl2[is_p];
1331 
1332             for (sb = bi->longDiff[21]; sb > 0; sb--, idx++) {
1333                 real    v = xr[0][idx];
1334                 xr[0][idx] = v * t1;
1335                 xr[1][idx] = v * t2;
1336             }
1337         }
1338     }                   /* ... */
1339 }
1340 
1341 static void
III_antialias(real xr[SBLIMIT][SSLIMIT], struct gr_info_s *gr_infos)1342 III_antialias(real xr[SBLIMIT][SSLIMIT], struct gr_info_s *gr_infos)
1343 {
1344     int     sblim;
1345 
1346     if (gr_infos->block_type == 2) {
1347         if (!gr_infos->mixed_block_flag)
1348             return;
1349         sblim = 1;
1350     }
1351     else {
1352         sblim = gr_infos->maxb - 1;
1353     }
1354 
1355     /* 31 alias-reduction operations between each pair of sub-bands */
1356     /* with 8 butterflies between each pair                         */
1357 
1358     {
1359         int     sb;
1360         real   *xr1 = (real *) xr[1];
1361 
1362         for (sb = sblim; sb; sb--, xr1 += 10) {
1363             int     ss;
1364             real   *cs = aa_cs, *ca = aa_ca;
1365             real   *xr2 = xr1;
1366 
1367             for (ss = 7; ss >= 0; ss--) { /* upper and lower butterfly inputs */
1368                 real    bu = *--xr2, bd = *xr1;
1369                 *xr2 = (bu * (*cs)) - (bd * (*ca));
1370                 *xr1++ = (bd * (*cs++)) + (bu * (*ca++));
1371             }
1372         }
1373     }
1374 }
1375 
1376 
1377 /* *INDENT-OFF* */
1378 
1379 /*
1380  DCT insipired by Jeff Tsay's DCT from the maplay package
1381  this is an optimized version with manual unroll.
1382 
1383  References:
1384  [1] S. Winograd: "On Computing the Discrete Fourier Transform",
1385      Mathematics of Computation, Volume 32, Number 141, January 1978,
1386      Pages 175-199
1387 */
1388 
dct36(real *inbuf,real *o1,real *o2,real *wintab,real *tsbuf)1389 static void dct36(real *inbuf,real *o1,real *o2,real *wintab,real *tsbuf)
1390 {
1391   {
1392     real *in = inbuf;
1393 
1394     in[17]+=in[16]; in[16]+=in[15]; in[15]+=in[14];
1395     in[14]+=in[13]; in[13]+=in[12]; in[12]+=in[11];
1396     in[11]+=in[10]; in[10]+=in[9];  in[9] +=in[8];
1397     in[8] +=in[7];  in[7] +=in[6];  in[6] +=in[5];
1398     in[5] +=in[4];  in[4] +=in[3];  in[3] +=in[2];
1399     in[2] +=in[1];  in[1] +=in[0];
1400 
1401     in[17]+=in[15]; in[15]+=in[13]; in[13]+=in[11]; in[11]+=in[9];
1402     in[9] +=in[7];  in[7] +=in[5];  in[5] +=in[3];  in[3] +=in[1];
1403 
1404   {
1405 
1406 #define MACRO0(v) { \
1407     real tmp; \
1408     out2[9+(v)] = (tmp = sum0 + sum1) * w[27+(v)]; \
1409     out2[8-(v)] = tmp * w[26-(v)];  } \
1410     sum0 -= sum1; \
1411     ts[SBLIMIT*(8-(v))] = out1[8-(v)] + sum0 * w[8-(v)]; \
1412     ts[SBLIMIT*(9+(v))] = out1[9+(v)] + sum0 * w[9+(v)];
1413 #define MACRO1(v) { \
1414     real sum0,sum1; \
1415     sum0 = tmp1a + tmp2a; \
1416     sum1 = (tmp1b + tmp2b) * tfcos36[(v)]; \
1417     MACRO0(v); }
1418 #define MACRO2(v) { \
1419     real sum0,sum1; \
1420     sum0 = tmp2a - tmp1a; \
1421     sum1 = (tmp2b - tmp1b) * tfcos36[(v)]; \
1422     MACRO0(v); }
1423 
1424     const real *c = COS9;
1425     real *out2 = o2;
1426     real *w = wintab;
1427     real *out1 = o1;
1428     real *ts = tsbuf;
1429 
1430     real ta33,ta66,tb33,tb66;
1431 
1432     ta33 = in[2*3+0] * c[3];
1433     ta66 = in[2*6+0] * c[6];
1434     tb33 = in[2*3+1] * c[3];
1435     tb66 = in[2*6+1] * c[6];
1436 
1437     {
1438       real tmp1a,tmp2a,tmp1b,tmp2b;
1439       tmp1a =             in[2*1+0] * c[1] + ta33 + in[2*5+0] * c[5] + in[2*7+0] * c[7];
1440       tmp1b =             in[2*1+1] * c[1] + tb33 + in[2*5+1] * c[5] + in[2*7+1] * c[7];
1441       tmp2a = in[2*0+0] + in[2*2+0] * c[2] + in[2*4+0] * c[4] + ta66 + in[2*8+0] * c[8];
1442       tmp2b = in[2*0+1] + in[2*2+1] * c[2] + in[2*4+1] * c[4] + tb66 + in[2*8+1] * c[8];
1443 
1444       MACRO1(0);
1445       MACRO2(8);
1446     }
1447 
1448     {
1449       real tmp1a,tmp2a,tmp1b,tmp2b;
1450       tmp1a = ( in[2*1+0] - in[2*5+0] - in[2*7+0] ) * c[3];
1451       tmp1b = ( in[2*1+1] - in[2*5+1] - in[2*7+1] ) * c[3];
1452       tmp2a = ( in[2*2+0] - in[2*4+0] - in[2*8+0] ) * c[6] - in[2*6+0] + in[2*0+0];
1453       tmp2b = ( in[2*2+1] - in[2*4+1] - in[2*8+1] ) * c[6] - in[2*6+1] + in[2*0+1];
1454 
1455       MACRO1(1);
1456       MACRO2(7);
1457     }
1458 
1459     {
1460       real tmp1a,tmp2a,tmp1b,tmp2b;
1461       tmp1a =             in[2*1+0] * c[5] - ta33 - in[2*5+0] * c[7] + in[2*7+0] * c[1];
1462       tmp1b =             in[2*1+1] * c[5] - tb33 - in[2*5+1] * c[7] + in[2*7+1] * c[1];
1463       tmp2a = in[2*0+0] - in[2*2+0] * c[8] - in[2*4+0] * c[2] + ta66 + in[2*8+0] * c[4];
1464       tmp2b = in[2*0+1] - in[2*2+1] * c[8] - in[2*4+1] * c[2] + tb66 + in[2*8+1] * c[4];
1465 
1466       MACRO1(2);
1467       MACRO2(6);
1468     }
1469 
1470     {
1471       real tmp1a,tmp2a,tmp1b,tmp2b;
1472       tmp1a =             in[2*1+0] * c[7] - ta33 + in[2*5+0] * c[1] - in[2*7+0] * c[5];
1473       tmp1b =             in[2*1+1] * c[7] - tb33 + in[2*5+1] * c[1] - in[2*7+1] * c[5];
1474       tmp2a = in[2*0+0] - in[2*2+0] * c[4] + in[2*4+0] * c[8] + ta66 - in[2*8+0] * c[2];
1475       tmp2b = in[2*0+1] - in[2*2+1] * c[4] + in[2*4+1] * c[8] + tb66 - in[2*8+1] * c[2];
1476 
1477       MACRO1(3);
1478       MACRO2(5);
1479     }
1480 
1481     {
1482       real sum0,sum1;
1483       sum0 =  in[2*0+0] - in[2*2+0] + in[2*4+0] - in[2*6+0] + in[2*8+0];
1484       sum1 = (in[2*0+1] - in[2*2+1] + in[2*4+1] - in[2*6+1] + in[2*8+1] ) * tfcos36[4];
1485       MACRO0(4);
1486     }
1487   }
1488 
1489   }
1490 }
1491 
1492 
1493 /*
1494  * new DCT12
1495  */
dct12(real *in,real *rawout1,real *rawout2,real *wi,real *ts)1496 static void dct12(real *in,real *rawout1,real *rawout2,real *wi,real *ts)
1497 {
1498 #define DCT12_PART1 \
1499              in5 = in[5*3];  \
1500      in5 += (in4 = in[4*3]); \
1501      in4 += (in3 = in[3*3]); \
1502      in3 += (in2 = in[2*3]); \
1503      in2 += (in1 = in[1*3]); \
1504      in1 += (in0 = in[0*3]); \
1505                              \
1506      in5 += in3; in3 += in1; \
1507                              \
1508      in2 *= COS6_1; \
1509      in3 *= COS6_1; \
1510 
1511 #define DCT12_PART2 \
1512      in0 += in4 * COS6_2; \
1513                           \
1514      in4 = in0 + in2;     \
1515      in0 -= in2;          \
1516                           \
1517      in1 += in5 * COS6_2; \
1518                           \
1519      in5 = (in1 + in3) * tfcos12[0]; \
1520      in1 = (in1 - in3) * tfcos12[2]; \
1521                          \
1522      in3 = in4 + in5;    \
1523      in4 -= in5;         \
1524                          \
1525      in2 = in0 + in1;    \
1526      in0 -= in1;
1527 
1528 
1529    {
1530      real in0,in1,in2,in3,in4,in5;
1531      real *out1 = rawout1;
1532      ts[SBLIMIT*0] = out1[0]; ts[SBLIMIT*1] = out1[1]; ts[SBLIMIT*2] = out1[2];
1533      ts[SBLIMIT*3] = out1[3]; ts[SBLIMIT*4] = out1[4]; ts[SBLIMIT*5] = out1[5];
1534 
1535      DCT12_PART1
1536 
1537      {
1538        real tmp0,tmp1 = (in0 - in4);
1539        {
1540          real tmp2 = (in1 - in5) * tfcos12[1];
1541          tmp0 = tmp1 + tmp2;
1542          tmp1 -= tmp2;
1543        }
1544        ts[(17-1)*SBLIMIT] = out1[17-1] + tmp0 * wi[11-1];
1545        ts[(12+1)*SBLIMIT] = out1[12+1] + tmp0 * wi[6+1];
1546        ts[(6 +1)*SBLIMIT] = out1[6 +1] + tmp1 * wi[1];
1547        ts[(11-1)*SBLIMIT] = out1[11-1] + tmp1 * wi[5-1];
1548      }
1549 
1550      DCT12_PART2
1551 
1552      ts[(17-0)*SBLIMIT] = out1[17-0] + in2 * wi[11-0];
1553      ts[(12+0)*SBLIMIT] = out1[12+0] + in2 * wi[6+0];
1554      ts[(12+2)*SBLIMIT] = out1[12+2] + in3 * wi[6+2];
1555      ts[(17-2)*SBLIMIT] = out1[17-2] + in3 * wi[11-2];
1556 
1557      ts[(6+0)*SBLIMIT]  = out1[6+0] + in0 * wi[0];
1558      ts[(11-0)*SBLIMIT] = out1[11-0] + in0 * wi[5-0];
1559      ts[(6+2)*SBLIMIT]  = out1[6+2] + in4 * wi[2];
1560      ts[(11-2)*SBLIMIT] = out1[11-2] + in4 * wi[5-2];
1561   }
1562 
1563   in++;
1564 
1565   {
1566      real in0,in1,in2,in3,in4,in5;
1567      real *out2 = rawout2;
1568 
1569      DCT12_PART1
1570 
1571      {
1572        real tmp0,tmp1 = (in0 - in4);
1573        {
1574          real tmp2 = (in1 - in5) * tfcos12[1];
1575          tmp0 = tmp1 + tmp2;
1576          tmp1 -= tmp2;
1577        }
1578        out2[5-1] = tmp0 * wi[11-1];
1579        out2[0+1] = tmp0 * wi[6+1];
1580        ts[(12+1)*SBLIMIT] += tmp1 * wi[1];
1581        ts[(17-1)*SBLIMIT] += tmp1 * wi[5-1];
1582      }
1583 
1584      DCT12_PART2
1585 
1586      out2[5-0] = in2 * wi[11-0];
1587      out2[0+0] = in2 * wi[6+0];
1588      out2[0+2] = in3 * wi[6+2];
1589      out2[5-2] = in3 * wi[11-2];
1590 
1591      ts[(12+0)*SBLIMIT] += in0 * wi[0];
1592      ts[(17-0)*SBLIMIT] += in0 * wi[5-0];
1593      ts[(12+2)*SBLIMIT] += in4 * wi[2];
1594      ts[(17-2)*SBLIMIT] += in4 * wi[5-2];
1595   }
1596 
1597   in++;
1598 
1599   {
1600      real in0,in1,in2,in3,in4,in5;
1601      real *out2 = rawout2;
1602      out2[12]=out2[13]=out2[14]=out2[15]=out2[16]=out2[17]=0.0;
1603 
1604      DCT12_PART1
1605 
1606      {
1607        real tmp0,tmp1 = (in0 - in4);
1608        {
1609          real tmp2 = (in1 - in5) * tfcos12[1];
1610          tmp0 = tmp1 + tmp2;
1611          tmp1 -= tmp2;
1612        }
1613        out2[11-1] = tmp0 * wi[11-1];
1614        out2[6 +1] = tmp0 * wi[6+1];
1615        out2[0+1] += tmp1 * wi[1];
1616        out2[5-1] += tmp1 * wi[5-1];
1617      }
1618 
1619      DCT12_PART2
1620 
1621      out2[11-0] = in2 * wi[11-0];
1622      out2[6 +0] = in2 * wi[6+0];
1623      out2[6 +2] = in3 * wi[6+2];
1624      out2[11-2] = in3 * wi[11-2];
1625 
1626      out2[0+0] += in0 * wi[0];
1627      out2[5-0] += in0 * wi[5-0];
1628      out2[0+2] += in4 * wi[2];
1629      out2[5-2] += in4 * wi[5-2];
1630   }
1631 }
1632 /* *INDENT-ON* */
1633 
1634 /*
1635  * III_hybrid
1636  */
1637 static void
III_hybrid(PMPSTR mp, real fsIn[SBLIMIT][SSLIMIT], real tsOut[SSLIMIT][SBLIMIT], int ch, struct gr_info_s *gr_infos)1638 III_hybrid(PMPSTR mp, real fsIn[SBLIMIT][SSLIMIT], real tsOut[SSLIMIT][SBLIMIT],
1639            int ch, struct gr_info_s *gr_infos)
1640 {
1641     real   *tspnt = (real *) tsOut;
1642     real(*block)[2][SBLIMIT * SSLIMIT] = mp->hybrid_block;
1643     int    *blc = mp->hybrid_blc;
1644     real   *rawout1, *rawout2;
1645     int     bt;
1646     int     sb = 0;
1647 
1648     {
1649         int     b = blc[ch];
1650         rawout1 = block[b][ch];
1651         b = -b + 1;
1652         rawout2 = block[b][ch];
1653         blc[ch] = b;
1654     }
1655 
1656 
1657     if (gr_infos->mixed_block_flag) {
1658         sb = 2;
1659         dct36(fsIn[0], rawout1, rawout2, win[0], tspnt);
1660         dct36(fsIn[1], rawout1 + 18, rawout2 + 18, win1[0], tspnt + 1);
1661         rawout1 += 36;
1662         rawout2 += 36;
1663         tspnt += 2;
1664     }
1665 
1666     bt = gr_infos->block_type;
1667     if (bt == 2) {
1668         for (; sb < (int) gr_infos->maxb; sb += 2, tspnt += 2, rawout1 += 36, rawout2 += 36) {
1669             dct12(fsIn[sb], rawout1, rawout2, win[2], tspnt);
1670             dct12(fsIn[sb + 1], rawout1 + 18, rawout2 + 18, win1[2], tspnt + 1);
1671         }
1672     }
1673     else {
1674         for (; sb < (int) gr_infos->maxb; sb += 2, tspnt += 2, rawout1 += 36, rawout2 += 36) {
1675             dct36(fsIn[sb], rawout1, rawout2, win[bt], tspnt);
1676             dct36(fsIn[sb + 1], rawout1 + 18, rawout2 + 18, win1[bt], tspnt + 1);
1677         }
1678     }
1679 
1680     for (; sb < SBLIMIT; sb++, tspnt++) {
1681         int     i;
1682         for (i = 0; i < SSLIMIT; i++) {
1683             tspnt[i * SBLIMIT] = *rawout1++;
1684             *rawout2++ = 0.0;
1685         }
1686     }
1687 }
1688 
1689 /*
1690  * main layer3 handler
1691  */
1692 
1693 int
layer3_audiodata_precedesframes(PMPSTR mp)1694 layer3_audiodata_precedesframes(PMPSTR mp)
1695 {
1696     int     audioDataInFrame;
1697     int     framesToBacktrack;
1698 
1699     /* specific to Layer 3, since Layer 1 & 2 the audio data starts at the frame that describes it. */
1700     /* determine how many bytes and therefore bitstream frames the audio data precedes it's matching frame */
1701     /* lame_report_fnc(mp->report_err, "hip: main_data_begin = %d, mp->bsize %d, mp->fsizeold %d, mp->ssize %d\n",
1702        sideinfo.main_data_begin, mp->bsize, mp->fsizeold, mp->ssize); */
1703     /* compute the number of frames to backtrack, 4 for the header, ssize already holds the CRC */
1704     /* TODO Erroneously assumes current frame is same as previous frame. */
1705     audioDataInFrame = mp->bsize - 4 - mp->ssize;
1706     framesToBacktrack = (mp->sideinfo.main_data_begin + audioDataInFrame - 1) / audioDataInFrame;
1707     /* lame_report_fnc(mp->report_err, "hip: audioDataInFrame %d framesToBacktrack %d\n", audioDataInFrame, framesToBacktrack); */
1708     return framesToBacktrack;
1709 }
1710 
1711 int
decode_layer3_sideinfo(PMPSTR mp)1712 decode_layer3_sideinfo(PMPSTR mp)
1713 {
1714     struct frame *fr = &mp->fr;
1715     int     stereo = fr->stereo;
1716     int     single = fr->single;
1717     int     ms_stereo;
1718     int     sfreq = fr->sampling_frequency;
1719     int     granules;
1720     int     ch, gr, databits;
1721 
1722     if (stereo == 1) {  /* stream is mono */
1723         single = 0;
1724     }
1725 
1726     if (fr->mode == MPG_MD_JOINT_STEREO) {
1727         ms_stereo = fr->mode_ext & 0x2;
1728     }
1729     else
1730         ms_stereo = 0;
1731 
1732 
1733     if (fr->lsf) {
1734         granules = 1;
1735         III_get_side_info_2(mp, stereo, ms_stereo, sfreq, single);
1736     }
1737     else {
1738         granules = 2;
1739         III_get_side_info_1(mp, stereo, ms_stereo, sfreq, single);
1740     }
1741 
1742     databits = 0;
1743     for (gr = 0; gr < granules; ++gr) {
1744         for (ch = 0; ch < stereo; ++ch) {
1745             struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]);
1746             databits += gr_infos->part2_3_length;
1747         }
1748     }
1749     return databits - 8 * mp->sideinfo.main_data_begin;
1750 }
1751 
1752 
1753 
1754 int
decode_layer3_frame(PMPSTR mp, unsigned char *pcm_sample, int *pcm_point, int (*synth_1to1_mono_ptr) (PMPSTR, real *, unsigned char *, int *), int (*synth_1to1_ptr) (PMPSTR, real *, int, unsigned char *, int *))1755 decode_layer3_frame(PMPSTR mp, unsigned char *pcm_sample, int *pcm_point,
1756           int (*synth_1to1_mono_ptr) (PMPSTR, real *, unsigned char *, int *),
1757           int (*synth_1to1_ptr) (PMPSTR, real *, int, unsigned char *, int *))
1758 {
1759     int     gr, ch, ss, clip = 0;
1760     int     scalefacs[2][39]; /* max 39 for short[13][3] mode, mixed: 38, long: 22 */
1761     /*  struct III_sideinfo sideinfo; */
1762     struct frame *fr = &(mp->fr);
1763     int     stereo = fr->stereo;
1764     int     single = fr->single;
1765     int     ms_stereo, i_stereo;
1766     int     sfreq = fr->sampling_frequency;
1767     int     stereo1, granules;
1768     real    hybridIn[2][SBLIMIT][SSLIMIT];
1769     real    hybridOut[2][SSLIMIT][SBLIMIT];
1770 
1771     if (set_pointer(mp, (int) mp->sideinfo.main_data_begin) == MP3_ERR)
1772         return 0;
1773 
1774     if (stereo == 1) {  /* stream is mono */
1775         stereo1 = 1;
1776         single = 0;
1777     }
1778     else if (single >= 0) /* stream is stereo, but force to mono */
1779         stereo1 = 1;
1780     else
1781         stereo1 = 2;
1782 
1783     if (fr->mode == MPG_MD_JOINT_STEREO) {
1784         ms_stereo = fr->mode_ext & 0x2;
1785         i_stereo = fr->mode_ext & 0x1;
1786     }
1787     else
1788         ms_stereo = i_stereo = 0;
1789 
1790 
1791     if (fr->lsf) {
1792         granules = 1;
1793     }
1794     else {
1795         granules = 2;
1796     }
1797 
1798     for (gr = 0; gr < granules; gr++) {
1799 
1800         {
1801             struct gr_info_s *gr_infos = &(mp->sideinfo.ch[0].gr[gr]);
1802             long    part2bits;
1803 
1804             if (fr->lsf)
1805                 part2bits = III_get_scale_factors_2(mp, scalefacs[0], gr_infos, 0);
1806             else {
1807                 part2bits = III_get_scale_factors_1(mp, scalefacs[0], gr_infos);
1808             }
1809             if (mp->pinfo != NULL) {
1810                 int     i;
1811                 mp->pinfo->sfbits[gr][0] = part2bits;
1812                 for (i = 0; i < 39; i++)
1813                     mp->pinfo->sfb_s[gr][0][i] = scalefacs[0][i];
1814             }
1815 
1816             /* lame_report_fnc(mp->report_err, "calling III dequantize sample 1 gr_infos->part2_3_length %d\n", gr_infos->part2_3_length); */
1817             if (III_dequantize_sample(mp, hybridIn[0], scalefacs[0], gr_infos, sfreq, part2bits))
1818                 return clip;
1819         }
1820         if (stereo == 2) {
1821             struct gr_info_s *gr_infos = &(mp->sideinfo.ch[1].gr[gr]);
1822             long    part2bits;
1823             if (fr->lsf)
1824                 part2bits = III_get_scale_factors_2(mp, scalefacs[1], gr_infos, i_stereo);
1825             else {
1826                 part2bits = III_get_scale_factors_1(mp, scalefacs[1], gr_infos);
1827             }
1828             if (mp->pinfo != NULL) {
1829                 int     i;
1830                 mp->pinfo->sfbits[gr][1] = part2bits;
1831                 for (i = 0; i < 39; i++)
1832                     mp->pinfo->sfb_s[gr][1][i] = scalefacs[1][i];
1833             }
1834 
1835             /* lame_report_fnc(mp->report_err, "calling III dequantize sample 2  gr_infos->part2_3_length %d\n", gr_infos->part2_3_length); */
1836             if (III_dequantize_sample(mp, hybridIn[1], scalefacs[1], gr_infos, sfreq, part2bits))
1837                 return clip;
1838 
1839             if (ms_stereo) {
1840                 int     i;
1841                 for (i = 0; i < SBLIMIT * SSLIMIT; i++) {
1842                     real    tmp0, tmp1;
1843                     tmp0 = ((real *) hybridIn[0])[i];
1844                     tmp1 = ((real *) hybridIn[1])[i];
1845                     ((real *) hybridIn[1])[i] = tmp0 - tmp1;
1846                     ((real *) hybridIn[0])[i] = tmp0 + tmp1;
1847                 }
1848             }
1849 
1850             if (i_stereo)
1851                 III_i_stereo(hybridIn, scalefacs[1], gr_infos, sfreq, ms_stereo, fr->lsf);
1852 
1853             if (ms_stereo || i_stereo || (single == 3)) {
1854                 if (gr_infos->maxb > mp->sideinfo.ch[0].gr[gr].maxb)
1855                     mp->sideinfo.ch[0].gr[gr].maxb = gr_infos->maxb;
1856                 else
1857                     gr_infos->maxb = mp->sideinfo.ch[0].gr[gr].maxb;
1858             }
1859 
1860             switch (single) {
1861             case 3:
1862                 {
1863                     int     i;
1864                     real   *in0 = (real *) hybridIn[0], *in1 = (real *) hybridIn[1];
1865                     for (i = 0; i < (int) (SSLIMIT * gr_infos->maxb); i++, in0++)
1866                         *in0 = (*in0 + *in1++); /* *0.5 done by pow-scale */
1867                 }
1868                 break;
1869             case 1:
1870                 {
1871                     int     i;
1872                     real   *in0 = (real *) hybridIn[0], *in1 = (real *) hybridIn[1];
1873                     for (i = 0; i < (int) (SSLIMIT * gr_infos->maxb); i++)
1874                         *in0++ = *in1++;
1875                 }
1876                 break;
1877             }
1878         }
1879 
1880         if (mp->pinfo != NULL) {
1881             int     i, sb;
1882             float   ifqstep;
1883 
1884             mp->pinfo->bitrate = tabsel_123[fr->lsf][fr->lay - 1][fr->bitrate_index];
1885             mp->pinfo->sampfreq = freqs[sfreq];
1886             mp->pinfo->emph = fr->emphasis;
1887             mp->pinfo->crc = fr->error_protection;
1888             mp->pinfo->padding = fr->padding;
1889             mp->pinfo->stereo = fr->stereo;
1890             mp->pinfo->js = (fr->mode == MPG_MD_JOINT_STEREO);
1891             mp->pinfo->ms_stereo = ms_stereo;
1892             mp->pinfo->i_stereo = i_stereo;
1893             mp->pinfo->maindata = mp->sideinfo.main_data_begin;
1894 
1895             for (ch = 0; ch < stereo1; ch++) {
1896                 struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]);
1897                 mp->pinfo->big_values[gr][ch] = gr_infos->big_values;
1898                 mp->pinfo->scalefac_scale[gr][ch] = gr_infos->scalefac_scale;
1899                 mp->pinfo->mixed[gr][ch] = gr_infos->mixed_block_flag;
1900                 mp->pinfo->mpg123blocktype[gr][ch] = gr_infos->block_type;
1901                 mp->pinfo->mainbits[gr][ch] = gr_infos->part2_3_length;
1902                 mp->pinfo->preflag[gr][ch] = gr_infos->preflag;
1903                 if (gr == 1)
1904                     mp->pinfo->scfsi[ch] = gr_infos->scfsi;
1905             }
1906 
1907 
1908             for (ch = 0; ch < stereo1; ch++) {
1909                 struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]);
1910                 ifqstep = (mp->pinfo->scalefac_scale[gr][ch] == 0) ? .5 : 1.0;
1911                 if (2 == gr_infos->block_type) {
1912                     for (i = 0; i < 3; i++) {
1913                         for (sb = 0; sb < 12; sb++) {
1914                             int     j = 3 * sb + i;
1915                             /*
1916                                is_p = scalefac[sfb*3+lwin-gr_infos->mixed_block_flag];
1917                              */
1918                             /* scalefac was copied into pinfo->sfb_s[] above */
1919                             mp->pinfo->sfb_s[gr][ch][j] =
1920                                 -ifqstep * mp->pinfo->sfb_s[gr][ch][j - gr_infos->mixed_block_flag];
1921                             mp->pinfo->sfb_s[gr][ch][j] -= 2 * (mp->pinfo->sub_gain[gr][ch][i]);
1922                         }
1923                         mp->pinfo->sfb_s[gr][ch][3 * sb + i] =
1924                             -2 * (mp->pinfo->sub_gain[gr][ch][i]);
1925                     }
1926                 }
1927                 else {
1928                     for (sb = 0; sb < 21; sb++) {
1929                         /* scalefac was copied into pinfo->sfb[] above */
1930                         mp->pinfo->sfb[gr][ch][sb] = mp->pinfo->sfb_s[gr][ch][sb];
1931                         if (gr_infos->preflag)
1932                             mp->pinfo->sfb[gr][ch][sb] += pretab1[sb];
1933                         mp->pinfo->sfb[gr][ch][sb] *= -ifqstep;
1934                     }
1935                     mp->pinfo->sfb[gr][ch][21] = 0;
1936                 }
1937             }
1938 
1939 
1940 
1941             for (ch = 0; ch < stereo1; ch++) {
1942                 int     j = 0;
1943                 for (sb = 0; sb < SBLIMIT; sb++)
1944                     for (ss = 0; ss < SSLIMIT; ss++, j++)
1945                         mp->pinfo->mpg123xr[gr][ch][j] = hybridIn[ch][sb][ss];
1946             }
1947         }
1948 
1949 
1950         for (ch = 0; ch < stereo1; ch++) {
1951             struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]);
1952             III_antialias(hybridIn[ch], gr_infos);
1953             III_hybrid(mp, hybridIn[ch], hybridOut[ch], ch, gr_infos);
1954         }
1955 
1956         for (ss = 0; ss < SSLIMIT; ss++) {
1957             if (single >= 0) {
1958                 clip += (*synth_1to1_mono_ptr) (mp, hybridOut[0][ss], pcm_sample, pcm_point);
1959             }
1960             else {
1961                 int     p1 = *pcm_point;
1962                 clip += (*synth_1to1_ptr) (mp, hybridOut[0][ss], 0, pcm_sample, &p1);
1963                 clip += (*synth_1to1_ptr) (mp, hybridOut[1][ss], 1, pcm_sample, pcm_point);
1964             }
1965         }
1966     }
1967 
1968     return clip;
1969 }
1970