1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // The ACTION* family of macros can be used in a namespace scope to
33 // define custom actions easily.  The syntax:
34 //
35 //   ACTION(name) { statements; }
36 //
37 // will define an action with the given name that executes the
38 // statements.  The value returned by the statements will be used as
39 // the return value of the action.  Inside the statements, you can
40 // refer to the K-th (0-based) argument of the mock function by
41 // 'argK', and refer to its type by 'argK_type'.  For example:
42 //
43 //   ACTION(IncrementArg1) {
44 //     arg1_type temp = arg1;
45 //     return ++(*temp);
46 //   }
47 //
48 // allows you to write
49 //
50 //   ...WillOnce(IncrementArg1());
51 //
52 // You can also refer to the entire argument tuple and its type by
53 // 'args' and 'args_type', and refer to the mock function type and its
54 // return type by 'function_type' and 'return_type'.
55 //
56 // Note that you don't need to specify the types of the mock function
57 // arguments.  However rest assured that your code is still type-safe:
58 // you'll get a compiler error if *arg1 doesn't support the ++
59 // operator, or if the type of ++(*arg1) isn't compatible with the
60 // mock function's return type, for example.
61 //
62 // Sometimes you'll want to parameterize the action.   For that you can use
63 // another macro:
64 //
65 //   ACTION_P(name, param_name) { statements; }
66 //
67 // For example:
68 //
69 //   ACTION_P(Add, n) { return arg0 + n; }
70 //
71 // will allow you to write:
72 //
73 //   ...WillOnce(Add(5));
74 //
75 // Note that you don't need to provide the type of the parameter
76 // either.  If you need to reference the type of a parameter named
77 // 'foo', you can write 'foo_type'.  For example, in the body of
78 // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
79 // of 'n'.
80 //
81 // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
82 // multi-parameter actions.
83 //
84 // For the purpose of typing, you can view
85 //
86 //   ACTION_Pk(Foo, p1, ..., pk) { ... }
87 //
88 // as shorthand for
89 //
90 //   template <typename p1_type, ..., typename pk_type>
91 //   FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
92 //
93 // In particular, you can provide the template type arguments
94 // explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
95 // although usually you can rely on the compiler to infer the types
96 // for you automatically.  You can assign the result of expression
97 // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
98 // pk_type>.  This can be useful when composing actions.
99 //
100 // You can also overload actions with different numbers of parameters:
101 //
102 //   ACTION_P(Plus, a) { ... }
103 //   ACTION_P2(Plus, a, b) { ... }
104 //
105 // While it's tempting to always use the ACTION* macros when defining
106 // a new action, you should also consider implementing ActionInterface
107 // or using MakePolymorphicAction() instead, especially if you need to
108 // use the action a lot.  While these approaches require more work,
109 // they give you more control on the types of the mock function
110 // arguments and the action parameters, which in general leads to
111 // better compiler error messages that pay off in the long run.  They
112 // also allow overloading actions based on parameter types (as opposed
113 // to just based on the number of parameters).
114 //
115 // CAVEAT:
116 //
117 // ACTION*() can only be used in a namespace scope as templates cannot be
118 // declared inside of a local class.
119 // Users can, however, define any local functors (e.g. a lambda) that
120 // can be used as actions.
121 //
122 // MORE INFORMATION:
123 //
124 // To learn more about using these macros, please search for 'ACTION' on
125 // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
126 
127 // IWYU pragma: private, include "gmock/gmock.h"
128 // IWYU pragma: friend gmock/.*
129 
130 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
131 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
132 
133 #ifndef _WIN32_WCE
134 #include <errno.h>
135 #endif
136 
137 #include <algorithm>
138 #include <functional>
139 #include <memory>
140 #include <string>
141 #include <tuple>
142 #include <type_traits>
143 #include <utility>
144 
145 #include "gmock/internal/gmock-internal-utils.h"
146 #include "gmock/internal/gmock-port.h"
147 #include "gmock/internal/gmock-pp.h"
148 
149 #ifdef _MSC_VER
150 #pragma warning(push)
151 #pragma warning(disable : 4100)
152 #endif
153 
154 namespace testing {
155 
156 // To implement an action Foo, define:
157 //   1. a class FooAction that implements the ActionInterface interface, and
158 //   2. a factory function that creates an Action object from a
159 //      const FooAction*.
160 //
161 // The two-level delegation design follows that of Matcher, providing
162 // consistency for extension developers.  It also eases ownership
163 // management as Action objects can now be copied like plain values.
164 
165 namespace internal {
166 
167 // BuiltInDefaultValueGetter<T, true>::Get() returns a
168 // default-constructed T value.  BuiltInDefaultValueGetter<T,
169 // false>::Get() crashes with an error.
170 //
171 // This primary template is used when kDefaultConstructible is true.
172 template <typename T, bool kDefaultConstructible>
173 struct BuiltInDefaultValueGetter {
Gettesting::internal::BuiltInDefaultValueGetter174   static T Get() { return T(); }
175 };
176 template <typename T>
177 struct BuiltInDefaultValueGetter<T, false> {
Gettesting::internal::BuiltInDefaultValueGetter178   static T Get() {
179     Assert(false, __FILE__, __LINE__,
180            "Default action undefined for the function return type.");
181     return internal::Invalid<T>();
182     // The above statement will never be reached, but is required in
183     // order for this function to compile.
184   }
185 };
186 
187 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
188 // for type T, which is NULL when T is a raw pointer type, 0 when T is
189 // a numeric type, false when T is bool, or "" when T is string or
190 // std::string.  In addition, in C++11 and above, it turns a
191 // default-constructed T value if T is default constructible.  For any
192 // other type T, the built-in default T value is undefined, and the
193 // function will abort the process.
194 template <typename T>
195 class BuiltInDefaultValue {
196  public:
197   // This function returns true if and only if type T has a built-in default
198   // value.
Exists()199   static bool Exists() { return ::std::is_default_constructible<T>::value; }
200 
Get()201   static T Get() {
202     return BuiltInDefaultValueGetter<
203         T, ::std::is_default_constructible<T>::value>::Get();
204   }
205 };
206 
207 // This partial specialization says that we use the same built-in
208 // default value for T and const T.
209 template <typename T>
210 class BuiltInDefaultValue<const T> {
211  public:
Exists()212   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
Get()213   static T Get() { return BuiltInDefaultValue<T>::Get(); }
214 };
215 
216 // This partial specialization defines the default values for pointer
217 // types.
218 template <typename T>
219 class BuiltInDefaultValue<T*> {
220  public:
Exists()221   static bool Exists() { return true; }
Get()222   static T* Get() { return nullptr; }
223 };
224 
225 // The following specializations define the default values for
226 // specific types we care about.
227 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
228   template <>                                                     \
229   class BuiltInDefaultValue<type> {                               \
230    public:                                                        \
231     static bool Exists() { return true; }                         \
232     static type Get() { return value; }                           \
233   }
234 
235 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
236 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
237 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
238 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
239 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
240 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
241 
242 // There's no need for a default action for signed wchar_t, as that
243 // type is the same as wchar_t for gcc, and invalid for MSVC.
244 //
245 // There's also no need for a default action for unsigned wchar_t, as
246 // that type is the same as unsigned int for gcc, and invalid for
247 // MSVC.
248 #if GMOCK_WCHAR_T_IS_NATIVE_
249 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
250 #endif
251 
252 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
253 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
254 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
255 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
256 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);     // NOLINT
257 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);        // NOLINT
258 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0);  // NOLINT
259 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0);    // NOLINT
260 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
261 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
262 
263 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
264 
265 // Partial implementations of metaprogramming types from the standard library
266 // not available in C++11.
267 
268 template <typename P>
269 struct negation
270     // NOLINTNEXTLINE
271     : std::integral_constant<bool, bool(!P::value)> {};
272 
273 // Base case: with zero predicates the answer is always true.
274 template <typename...>
275 struct conjunction : std::true_type {};
276 
277 // With a single predicate, the answer is that predicate.
278 template <typename P1>
279 struct conjunction<P1> : P1 {};
280 
281 // With multiple predicates the answer is the first predicate if that is false,
282 // and we recurse otherwise.
283 template <typename P1, typename... Ps>
284 struct conjunction<P1, Ps...>
285     : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {};
286 
287 template <typename...>
288 struct disjunction : std::false_type {};
289 
290 template <typename P1>
291 struct disjunction<P1> : P1 {};
292 
293 template <typename P1, typename... Ps>
294 struct disjunction<P1, Ps...>
295     // NOLINTNEXTLINE
296     : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {};
297 
298 template <typename...>
299 using void_t = void;
300 
301 // Detects whether an expression of type `From` can be implicitly converted to
302 // `To` according to [conv]. In C++17, [conv]/3 defines this as follows:
303 //
304 //     An expression e can be implicitly converted to a type T if and only if
305 //     the declaration T t=e; is well-formed, for some invented temporary
306 //     variable t ([dcl.init]).
307 //
308 // [conv]/2 implies we can use function argument passing to detect whether this
309 // initialization is valid.
310 //
311 // Note that this is distinct from is_convertible, which requires this be valid:
312 //
313 //     To test() {
314 //       return declval<From>();
315 //     }
316 //
317 // In particular, is_convertible doesn't give the correct answer when `To` and
318 // `From` are the same non-moveable type since `declval<From>` will be an rvalue
319 // reference, defeating the guaranteed copy elision that would otherwise make
320 // this function work.
321 //
322 // REQUIRES: `From` is not cv void.
323 template <typename From, typename To>
324 struct is_implicitly_convertible {
325  private:
326   // A function that accepts a parameter of type T. This can be called with type
327   // U successfully only if U is implicitly convertible to T.
328   template <typename T>
329   static void Accept(T);
330 
331   // A function that creates a value of type T.
332   template <typename T>
333   static T Make();
334 
335   // An overload be selected when implicit conversion from T to To is possible.
336   template <typename T, typename = decltype(Accept<To>(Make<T>()))>
337   static std::true_type TestImplicitConversion(int);
338 
339   // A fallback overload selected in all other cases.
340   template <typename T>
341   static std::false_type TestImplicitConversion(...);
342 
343  public:
344   using type = decltype(TestImplicitConversion<From>(0));
345   static constexpr bool value = type::value;
346 };
347 
348 // Like std::invoke_result_t from C++17, but works only for objects with call
349 // operators (not e.g. member function pointers, which we don't need specific
350 // support for in OnceAction because std::function deals with them).
351 template <typename F, typename... Args>
352 using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...));
353 
354 template <typename Void, typename R, typename F, typename... Args>
355 struct is_callable_r_impl : std::false_type {};
356 
357 // Specialize the struct for those template arguments where call_result_t is
358 // well-formed. When it's not, the generic template above is chosen, resulting
359 // in std::false_type.
360 template <typename R, typename F, typename... Args>
361 struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...>
362     : std::conditional<
363           std::is_void<R>::value,  //
364           std::true_type,          //
365           is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {};
366 
367 // Like std::is_invocable_r from C++17, but works only for objects with call
368 // operators. See the note on call_result_t.
369 template <typename R, typename F, typename... Args>
370 using is_callable_r = is_callable_r_impl<void, R, F, Args...>;
371 
372 // Like std::as_const from C++17.
373 template <typename T>
as_const(T& t)374 typename std::add_const<T>::type& as_const(T& t) {
375   return t;
376 }
377 
378 }  // namespace internal
379 
380 // Specialized for function types below.
381 template <typename F>
382 class OnceAction;
383 
384 // An action that can only be used once.
385 //
386 // This is accepted by WillOnce, which doesn't require the underlying action to
387 // be copy-constructible (only move-constructible), and promises to invoke it as
388 // an rvalue reference. This allows the action to work with move-only types like
389 // std::move_only_function in a type-safe manner.
390 //
391 // For example:
392 //
393 //     // Assume we have some API that needs to accept a unique pointer to some
394 //     // non-copyable object Foo.
395 //     void AcceptUniquePointer(std::unique_ptr<Foo> foo);
396 //
397 //     // We can define an action that provides a Foo to that API. Because It
398 //     // has to give away its unique pointer, it must not be called more than
399 //     // once, so its call operator is &&-qualified.
400 //     struct ProvideFoo {
401 //       std::unique_ptr<Foo> foo;
402 //
403 //       void operator()() && {
404 //         AcceptUniquePointer(std::move(Foo));
405 //       }
406 //     };
407 //
408 //     // This action can be used with WillOnce.
409 //     EXPECT_CALL(mock, Call)
410 //         .WillOnce(ProvideFoo{std::make_unique<Foo>(...)});
411 //
412 //     // But a call to WillRepeatedly will fail to compile. This is correct,
413 //     // since the action cannot correctly be used repeatedly.
414 //     EXPECT_CALL(mock, Call)
415 //         .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)});
416 //
417 // A less-contrived example would be an action that returns an arbitrary type,
418 // whose &&-qualified call operator is capable of dealing with move-only types.
419 template <typename Result, typename... Args>
420 class OnceAction<Result(Args...)> final {
421  private:
422   // True iff we can use the given callable type (or lvalue reference) directly
423   // via StdFunctionAdaptor.
424   template <typename Callable>
425   using IsDirectlyCompatible = internal::conjunction<
426       // It must be possible to capture the callable in StdFunctionAdaptor.
427       std::is_constructible<typename std::decay<Callable>::type, Callable>,
428       // The callable must be compatible with our signature.
429       internal::is_callable_r<Result, typename std::decay<Callable>::type,
430                               Args...>>;
431 
432   // True iff we can use the given callable type via StdFunctionAdaptor once we
433   // ignore incoming arguments.
434   template <typename Callable>
435   using IsCompatibleAfterIgnoringArguments = internal::conjunction<
436       // It must be possible to capture the callable in a lambda.
437       std::is_constructible<typename std::decay<Callable>::type, Callable>,
438       // The callable must be invocable with zero arguments, returning something
439       // convertible to Result.
440       internal::is_callable_r<Result, typename std::decay<Callable>::type>>;
441 
442  public:
443   // Construct from a callable that is directly compatible with our mocked
444   // signature: it accepts our function type's arguments and returns something
445   // convertible to our result type.
446   template <typename Callable,
447             typename std::enable_if<
448                 internal::conjunction<
449                     // Teach clang on macOS that we're not talking about a
450                     // copy/move constructor here. Otherwise it gets confused
451                     // when checking the is_constructible requirement of our
452                     // traits above.
453                     internal::negation<std::is_same<
454                         OnceAction, typename std::decay<Callable>::type>>,
455                     IsDirectlyCompatible<Callable>>  //
456                 ::value,
457                 int>::type = 0>
OnceAction(Callable&& callable)458   OnceAction(Callable&& callable)  // NOLINT
459       : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>(
460             {}, std::forward<Callable>(callable))) {}
461 
462   // As above, but for a callable that ignores the mocked function's arguments.
463   template <typename Callable,
464             typename std::enable_if<
465                 internal::conjunction<
466                     // Teach clang on macOS that we're not talking about a
467                     // copy/move constructor here. Otherwise it gets confused
468                     // when checking the is_constructible requirement of our
469                     // traits above.
470                     internal::negation<std::is_same<
471                         OnceAction, typename std::decay<Callable>::type>>,
472                     // Exclude callables for which the overload above works.
473                     // We'd rather provide the arguments if possible.
474                     internal::negation<IsDirectlyCompatible<Callable>>,
475                     IsCompatibleAfterIgnoringArguments<Callable>>::value,
476                 int>::type = 0>
OnceAction(Callable&& callable)477   OnceAction(Callable&& callable)  // NOLINT
478                                    // Call the constructor above with a callable
479                                    // that ignores the input arguments.
480       : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{
481             std::forward<Callable>(callable)}) {}
482 
483   // We are naturally copyable because we store only an std::function, but
484   // semantically we should not be copyable.
485   OnceAction(const OnceAction&) = delete;
486   OnceAction& operator=(const OnceAction&) = delete;
487   OnceAction(OnceAction&&) = default;
488 
489   // Invoke the underlying action callable with which we were constructed,
490   // handing it the supplied arguments.
Call(Args.... args)491   Result Call(Args... args) && {
492     return function_(std::forward<Args>(args)...);
493   }
494 
495  private:
496   // An adaptor that wraps a callable that is compatible with our signature and
497   // being invoked as an rvalue reference so that it can be used as an
498   // StdFunctionAdaptor. This throws away type safety, but that's fine because
499   // this is only used by WillOnce, which we know calls at most once.
500   //
501   // Once we have something like std::move_only_function from C++23, we can do
502   // away with this.
503   template <typename Callable>
504   class StdFunctionAdaptor final {
505    public:
506     // A tag indicating that the (otherwise universal) constructor is accepting
507     // the callable itself, instead of e.g. stealing calls for the move
508     // constructor.
509     struct CallableTag final {};
510 
511     template <typename F>
StdFunctionAdaptor(CallableTag, F&& callable)512     explicit StdFunctionAdaptor(CallableTag, F&& callable)
513         : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {}
514 
515     // Rather than explicitly returning Result, we return whatever the wrapped
516     // callable returns. This allows for compatibility with existing uses like
517     // the following, when the mocked function returns void:
518     //
519     //     EXPECT_CALL(mock_fn_, Call)
520     //         .WillOnce([&] {
521     //            [...]
522     //            return 0;
523     //         });
524     //
525     // Such a callable can be turned into std::function<void()>. If we use an
526     // explicit return type of Result here then it *doesn't* work with
527     // std::function, because we'll get a "void function should not return a
528     // value" error.
529     //
530     // We need not worry about incompatible result types because the SFINAE on
531     // OnceAction already checks this for us. std::is_invocable_r_v itself makes
532     // the same allowance for void result types.
533     template <typename... ArgRefs>
operator ()( ArgRefs&&.... args) const534     internal::call_result_t<Callable, ArgRefs...> operator()(
535         ArgRefs&&... args) const {
536       return std::move(*callable_)(std::forward<ArgRefs>(args)...);
537     }
538 
539    private:
540     // We must put the callable on the heap so that we are copyable, which
541     // std::function needs.
542     std::shared_ptr<Callable> callable_;
543   };
544 
545   // An adaptor that makes a callable that accepts zero arguments callable with
546   // our mocked arguments.
547   template <typename Callable>
548   struct IgnoreIncomingArguments {
operator ()testing::final::IgnoreIncomingArguments549     internal::call_result_t<Callable> operator()(Args&&...) {
550       return std::move(callable)();
551     }
552 
553     Callable callable;
554   };
555 
556   std::function<Result(Args...)> function_;
557 };
558 
559 // When an unexpected function call is encountered, Google Mock will
560 // let it return a default value if the user has specified one for its
561 // return type, or if the return type has a built-in default value;
562 // otherwise Google Mock won't know what value to return and will have
563 // to abort the process.
564 //
565 // The DefaultValue<T> class allows a user to specify the
566 // default value for a type T that is both copyable and publicly
567 // destructible (i.e. anything that can be used as a function return
568 // type).  The usage is:
569 //
570 //   // Sets the default value for type T to be foo.
571 //   DefaultValue<T>::Set(foo);
572 template <typename T>
573 class DefaultValue {
574  public:
575   // Sets the default value for type T; requires T to be
576   // copy-constructable and have a public destructor.
Set(T x)577   static void Set(T x) {
578     delete producer_;
579     producer_ = new FixedValueProducer(x);
580   }
581 
582   // Provides a factory function to be called to generate the default value.
583   // This method can be used even if T is only move-constructible, but it is not
584   // limited to that case.
585   typedef T (*FactoryFunction)();
SetFactory(FactoryFunction factory)586   static void SetFactory(FactoryFunction factory) {
587     delete producer_;
588     producer_ = new FactoryValueProducer(factory);
589   }
590 
591   // Unsets the default value for type T.
Clear()592   static void Clear() {
593     delete producer_;
594     producer_ = nullptr;
595   }
596 
597   // Returns true if and only if the user has set the default value for type T.
IsSet()598   static bool IsSet() { return producer_ != nullptr; }
599 
600   // Returns true if T has a default return value set by the user or there
601   // exists a built-in default value.
Exists()602   static bool Exists() {
603     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
604   }
605 
606   // Returns the default value for type T if the user has set one;
607   // otherwise returns the built-in default value. Requires that Exists()
608   // is true, which ensures that the return value is well-defined.
Get()609   static T Get() {
610     return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
611                                 : producer_->Produce();
612   }
613 
614  private:
615   class ValueProducer {
616    public:
~ValueProducer()617     virtual ~ValueProducer() {}
618     virtual T Produce() = 0;
619   };
620 
621   class FixedValueProducer : public ValueProducer {
622    public:
FixedValueProducer(T value)623     explicit FixedValueProducer(T value) : value_(value) {}
624     T Produce() override { return value_; }
625 
626    private:
627     const T value_;
628     FixedValueProducer(const FixedValueProducer&) = delete;
629     FixedValueProducer& operator=(const FixedValueProducer&) = delete;
630   };
631 
632   class FactoryValueProducer : public ValueProducer {
633    public:
FactoryValueProducer(FactoryFunction factory)634     explicit FactoryValueProducer(FactoryFunction factory)
635         : factory_(factory) {}
636     T Produce() override { return factory_(); }
637 
638    private:
639     const FactoryFunction factory_;
640     FactoryValueProducer(const FactoryValueProducer&) = delete;
641     FactoryValueProducer& operator=(const FactoryValueProducer&) = delete;
642   };
643 
644   static ValueProducer* producer_;
645 };
646 
647 // This partial specialization allows a user to set default values for
648 // reference types.
649 template <typename T>
650 class DefaultValue<T&> {
651  public:
652   // Sets the default value for type T&.
Set(T& x)653   static void Set(T& x) {  // NOLINT
654     address_ = &x;
655   }
656 
657   // Unsets the default value for type T&.
Clear()658   static void Clear() { address_ = nullptr; }
659 
660   // Returns true if and only if the user has set the default value for type T&.
IsSet()661   static bool IsSet() { return address_ != nullptr; }
662 
663   // Returns true if T has a default return value set by the user or there
664   // exists a built-in default value.
Exists()665   static bool Exists() {
666     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
667   }
668 
669   // Returns the default value for type T& if the user has set one;
670   // otherwise returns the built-in default value if there is one;
671   // otherwise aborts the process.
Get()672   static T& Get() {
673     return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
674                                : *address_;
675   }
676 
677  private:
678   static T* address_;
679 };
680 
681 // This specialization allows DefaultValue<void>::Get() to
682 // compile.
683 template <>
684 class DefaultValue<void> {
685  public:
Exists()686   static bool Exists() { return true; }
Get()687   static void Get() {}
688 };
689 
690 // Points to the user-set default value for type T.
691 template <typename T>
692 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
693 
694 // Points to the user-set default value for type T&.
695 template <typename T>
696 T* DefaultValue<T&>::address_ = nullptr;
697 
698 // Implement this interface to define an action for function type F.
699 template <typename F>
700 class ActionInterface {
701  public:
702   typedef typename internal::Function<F>::Result Result;
703   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
704 
ActionInterface()705   ActionInterface() {}
~ActionInterface()706   virtual ~ActionInterface() {}
707 
708   // Performs the action.  This method is not const, as in general an
709   // action can have side effects and be stateful.  For example, a
710   // get-the-next-element-from-the-collection action will need to
711   // remember the current element.
712   virtual Result Perform(const ArgumentTuple& args) = 0;
713 
714  private:
715   ActionInterface(const ActionInterface&) = delete;
716   ActionInterface& operator=(const ActionInterface&) = delete;
717 };
718 
719 template <typename F>
720 class Action;
721 
722 // An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment)
723 // object that represents an action to be taken when a mock function of type
724 // R(Args...) is called. The implementation of Action<T> is just a
725 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You
726 // can view an object implementing ActionInterface<F> as a concrete action
727 // (including its current state), and an Action<F> object as a handle to it.
728 template <typename R, typename... Args>
729 class Action<R(Args...)> {
730  private:
731   using F = R(Args...);
732 
733   // Adapter class to allow constructing Action from a legacy ActionInterface.
734   // New code should create Actions from functors instead.
735   struct ActionAdapter {
736     // Adapter must be copyable to satisfy std::function requirements.
737     ::std::shared_ptr<ActionInterface<F>> impl_;
738 
739     template <typename... InArgs>
operator ()testing::Action::ActionAdapter740     typename internal::Function<F>::Result operator()(InArgs&&... args) {
741       return impl_->Perform(
742           ::std::forward_as_tuple(::std::forward<InArgs>(args)...));
743     }
744   };
745 
746   template <typename G>
747   using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
748 
749  public:
750   typedef typename internal::Function<F>::Result Result;
751   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
752 
753   // Constructs a null Action.  Needed for storing Action objects in
754   // STL containers.
Action()755   Action() {}
756 
757   // Construct an Action from a specified callable.
758   // This cannot take std::function directly, because then Action would not be
759   // directly constructible from lambda (it would require two conversions).
760   template <
761       typename G,
762       typename = typename std::enable_if<internal::disjunction<
763           IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
764                                                         G>>::value>::type>
Action(G&& fun)765   Action(G&& fun) {  // NOLINT
766     Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
767   }
768 
769   // Constructs an Action from its implementation.
Action(ActionInterface<F>* impl)770   explicit Action(ActionInterface<F>* impl)
771       : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
772 
773   // This constructor allows us to turn an Action<Func> object into an
774   // Action<F>, as long as F's arguments can be implicitly converted
775   // to Func's and Func's return type can be implicitly converted to F's.
776   template <typename Func>
Action(const Action<Func>& action)777   Action(const Action<Func>& action)  // NOLINT
778       : fun_(action.fun_) {}
779 
780   // Returns true if and only if this is the DoDefault() action.
IsDoDefault() const781   bool IsDoDefault() const { return fun_ == nullptr; }
782 
783   // Performs the action.  Note that this method is const even though
784   // the corresponding method in ActionInterface is not.  The reason
785   // is that a const Action<F> means that it cannot be re-bound to
786   // another concrete action, not that the concrete action it binds to
787   // cannot change state.  (Think of the difference between a const
788   // pointer and a pointer to const.)
Perform(ArgumentTuple args) const789   Result Perform(ArgumentTuple args) const {
790     if (IsDoDefault()) {
791       internal::IllegalDoDefault(__FILE__, __LINE__);
792     }
793     return internal::Apply(fun_, ::std::move(args));
794   }
795 
796   // An action can be used as a OnceAction, since it's obviously safe to call it
797   // once.
operator OnceAction<F>() const798   operator OnceAction<F>() const {  // NOLINT
799     // Return a OnceAction-compatible callable that calls Perform with the
800     // arguments it is provided. We could instead just return fun_, but then
801     // we'd need to handle the IsDoDefault() case separately.
802     struct OA {
803       Action<F> action;
804 
805       R operator()(Args... args) && {
806         return action.Perform(
807             std::forward_as_tuple(std::forward<Args>(args)...));
808       }
809     };
810 
811     return OA{*this};
812   }
813 
814  private:
815   template <typename G>
816   friend class Action;
817 
818   template <typename G>
Init(G&& g, ::std::true_type)819   void Init(G&& g, ::std::true_type) {
820     fun_ = ::std::forward<G>(g);
821   }
822 
823   template <typename G>
Init(G&& g, ::std::false_type)824   void Init(G&& g, ::std::false_type) {
825     fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
826   }
827 
828   template <typename FunctionImpl>
829   struct IgnoreArgs {
830     template <typename... InArgs>
operator ()testing::Action::IgnoreArgs831     Result operator()(const InArgs&...) const {
832       return function_impl();
833     }
834 
835     FunctionImpl function_impl;
836   };
837 
838   // fun_ is an empty function if and only if this is the DoDefault() action.
839   ::std::function<F> fun_;
840 };
841 
842 // The PolymorphicAction class template makes it easy to implement a
843 // polymorphic action (i.e. an action that can be used in mock
844 // functions of than one type, e.g. Return()).
845 //
846 // To define a polymorphic action, a user first provides a COPYABLE
847 // implementation class that has a Perform() method template:
848 //
849 //   class FooAction {
850 //    public:
851 //     template <typename Result, typename ArgumentTuple>
852 //     Result Perform(const ArgumentTuple& args) const {
853 //       // Processes the arguments and returns a result, using
854 //       // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
855 //     }
856 //     ...
857 //   };
858 //
859 // Then the user creates the polymorphic action using
860 // MakePolymorphicAction(object) where object has type FooAction.  See
861 // the definition of Return(void) and SetArgumentPointee<N>(value) for
862 // complete examples.
863 template <typename Impl>
864 class PolymorphicAction {
865  public:
PolymorphicAction(const Impl& impl)866   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
867 
868   template <typename F>
operator Action<F>() const869   operator Action<F>() const {
870     return Action<F>(new MonomorphicImpl<F>(impl_));
871   }
872 
873  private:
874   template <typename F>
875   class MonomorphicImpl : public ActionInterface<F> {
876    public:
877     typedef typename internal::Function<F>::Result Result;
878     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
879 
MonomorphicImpl(const Impl& impl)880     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
881 
882     Result Perform(const ArgumentTuple& args) override {
883       return impl_.template Perform<Result>(args);
884     }
885 
886    private:
887     Impl impl_;
888   };
889 
890   Impl impl_;
891 };
892 
893 // Creates an Action from its implementation and returns it.  The
894 // created Action object owns the implementation.
895 template <typename F>
MakeAction(ActionInterface<F>* impl)896 Action<F> MakeAction(ActionInterface<F>* impl) {
897   return Action<F>(impl);
898 }
899 
900 // Creates a polymorphic action from its implementation.  This is
901 // easier to use than the PolymorphicAction<Impl> constructor as it
902 // doesn't require you to explicitly write the template argument, e.g.
903 //
904 //   MakePolymorphicAction(foo);
905 // vs
906 //   PolymorphicAction<TypeOfFoo>(foo);
907 template <typename Impl>
MakePolymorphicAction(const Impl& impl)908 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
909   return PolymorphicAction<Impl>(impl);
910 }
911 
912 namespace internal {
913 
914 // Helper struct to specialize ReturnAction to execute a move instead of a copy
915 // on return. Useful for move-only types, but could be used on any type.
916 template <typename T>
917 struct ByMoveWrapper {
ByMoveWrappertesting::internal::ByMoveWrapper918   explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
919   T payload;
920 };
921 
922 // The general implementation of Return(R). Specializations follow below.
923 template <typename R>
924 class ReturnAction final {
925  public:
ReturnAction(R value)926   explicit ReturnAction(R value) : value_(std::move(value)) {}
927 
928   template <typename U, typename... Args,
929             typename = typename std::enable_if<conjunction<
930                 // See the requirements documented on Return.
931                 negation<std::is_same<void, U>>,  //
932                 negation<std::is_reference<U>>,   //
933                 std::is_convertible<R, U>,        //
934                 std::is_move_constructible<U>>::value>::type>
operator OnceAction<U(Args....)935   operator OnceAction<U(Args...)>() && {  // NOLINT
936     return Impl<U>(std::move(value_));
937   }
938 
939   template <typename U, typename... Args,
940             typename = typename std::enable_if<conjunction<
941                 // See the requirements documented on Return.
942                 negation<std::is_same<void, U>>,   //
943                 negation<std::is_reference<U>>,    //
944                 std::is_convertible<const R&, U>,  //
945                 std::is_copy_constructible<U>>::value>::type>
operator Action<U(Args....) const946   operator Action<U(Args...)>() const {  // NOLINT
947     return Impl<U>(value_);
948   }
949 
950  private:
951   // Implements the Return(x) action for a mock function that returns type U.
952   template <typename U>
953   class Impl final {
954    public:
955     // The constructor used when the return value is allowed to move from the
956     // input value (i.e. we are converting to OnceAction).
Impl(R&& input_value)957     explicit Impl(R&& input_value)
958         : state_(new State(std::move(input_value))) {}
959 
960     // The constructor used when the return value is not allowed to move from
961     // the input value (i.e. we are converting to Action).
Impl(const R& input_value)962     explicit Impl(const R& input_value) : state_(new State(input_value)) {}
963 
operator ()()964     U operator()() && { return std::move(state_->value); }
operator ()() const965     U operator()() const& { return state_->value; }
966 
967    private:
968     // We put our state on the heap so that the compiler-generated copy/move
969     // constructors work correctly even when U is a reference-like type. This is
970     // necessary only because we eagerly create State::value (see the note on
971     // that symbol for details). If we instead had only the input value as a
972     // member then the default constructors would work fine.
973     //
974     // For example, when R is std::string and U is std::string_view, value is a
975     // reference to the string backed by input_value. The copy constructor would
976     // copy both, so that we wind up with a new input_value object (with the
977     // same contents) and a reference to the *old* input_value object rather
978     // than the new one.
979     struct State {
Statetesting::internal::final::final::State980       explicit State(const R& input_value_in)
981           : input_value(input_value_in),
982             // Make an implicit conversion to Result before initializing the U
983             // object we store, avoiding calling any explicit constructor of U
984             // from R.
985             //
986             // This simulates the language rules: a function with return type U
987             // that does `return R()` requires R to be implicitly convertible to
988             // U, and uses that path for the conversion, even U Result has an
989             // explicit constructor from R.
990             value(ImplicitCast_<U>(internal::as_const(input_value))) {}
991 
992       // As above, but for the case where we're moving from the ReturnAction
993       // object because it's being used as a OnceAction.
Statetesting::internal::final::final::State994       explicit State(R&& input_value_in)
995           : input_value(std::move(input_value_in)),
996             // For the same reason as above we make an implicit conversion to U
997             // before initializing the value.
998             //
999             // Unlike above we provide the input value as an rvalue to the
1000             // implicit conversion because this is a OnceAction: it's fine if it
1001             // wants to consume the input value.
1002             value(ImplicitCast_<U>(std::move(input_value))) {}
1003 
1004       // A copy of the value originally provided by the user. We retain this in
1005       // addition to the value of the mock function's result type below in case
1006       // the latter is a reference-like type. See the std::string_view example
1007       // in the documentation on Return.
1008       R input_value;
1009 
1010       // The value we actually return, as the type returned by the mock function
1011       // itself.
1012       //
1013       // We eagerly initialize this here, rather than lazily doing the implicit
1014       // conversion automatically each time Perform is called, for historical
1015       // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126)
1016       // made the Action<U()> conversion operator eagerly convert the R value to
1017       // U, but without keeping the R alive. This broke the use case discussed
1018       // in the documentation for Return, making reference-like types such as
1019       // std::string_view not safe to use as U where the input type R is a
1020       // value-like type such as std::string.
1021       //
1022       // The example the commit gave was not very clear, nor was the issue
1023       // thread (https://github.com/google/googlemock/issues/86), but it seems
1024       // the worry was about reference-like input types R that flatten to a
1025       // value-like type U when being implicitly converted. An example of this
1026       // is std::vector<bool>::reference, which is often a proxy type with an
1027       // reference to the underlying vector:
1028       //
1029       //     // Helper method: have the mock function return bools according
1030       //     // to the supplied script.
1031       //     void SetActions(MockFunction<bool(size_t)>& mock,
1032       //                     const std::vector<bool>& script) {
1033       //       for (size_t i = 0; i < script.size(); ++i) {
1034       //         EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i]));
1035       //       }
1036       //     }
1037       //
1038       //     TEST(Foo, Bar) {
1039       //       // Set actions using a temporary vector, whose operator[]
1040       //       // returns proxy objects that references that will be
1041       //       // dangling once the call to SetActions finishes and the
1042       //       // vector is destroyed.
1043       //       MockFunction<bool(size_t)> mock;
1044       //       SetActions(mock, {false, true});
1045       //
1046       //       EXPECT_FALSE(mock.AsStdFunction()(0));
1047       //       EXPECT_TRUE(mock.AsStdFunction()(1));
1048       //     }
1049       //
1050       // This eager conversion helps with a simple case like this, but doesn't
1051       // fully make these types work in general. For example the following still
1052       // uses a dangling reference:
1053       //
1054       //     TEST(Foo, Baz) {
1055       //       MockFunction<std::vector<std::string>()> mock;
1056       //
1057       //       // Return the same vector twice, and then the empty vector
1058       //       // thereafter.
1059       //       auto action = Return(std::initializer_list<std::string>{
1060       //           "taco", "burrito",
1061       //       });
1062       //
1063       //       EXPECT_CALL(mock, Call)
1064       //           .WillOnce(action)
1065       //           .WillOnce(action)
1066       //           .WillRepeatedly(Return(std::vector<std::string>{}));
1067       //
1068       //       EXPECT_THAT(mock.AsStdFunction()(),
1069       //                   ElementsAre("taco", "burrito"));
1070       //       EXPECT_THAT(mock.AsStdFunction()(),
1071       //                   ElementsAre("taco", "burrito"));
1072       //       EXPECT_THAT(mock.AsStdFunction()(), IsEmpty());
1073       //     }
1074       //
1075       U value;
1076     };
1077 
1078     const std::shared_ptr<State> state_;
1079   };
1080 
1081   R value_;
1082 };
1083 
1084 // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T.
1085 //
1086 // This version applies the type system-defeating hack of moving from T even in
1087 // the const call operator, checking at runtime that it isn't called more than
1088 // once, since the user has declared their intent to do so by using ByMove.
1089 template <typename T>
1090 class ReturnAction<ByMoveWrapper<T>> final {
1091  public:
ReturnAction(ByMoveWrapper<T> wrapper)1092   explicit ReturnAction(ByMoveWrapper<T> wrapper)
1093       : state_(new State(std::move(wrapper.payload))) {}
1094 
operator ()() const1095   T operator()() const {
1096     GTEST_CHECK_(!state_->called)
1097         << "A ByMove() action must be performed at most once.";
1098 
1099     state_->called = true;
1100     return std::move(state_->value);
1101   }
1102 
1103  private:
1104   // We store our state on the heap so that we are copyable as required by
1105   // Action, despite the fact that we are stateful and T may not be copyable.
1106   struct State {
Statetesting::internal::final::State1107     explicit State(T&& value_in) : value(std::move(value_in)) {}
1108 
1109     T value;
1110     bool called = false;
1111   };
1112 
1113   const std::shared_ptr<State> state_;
1114 };
1115 
1116 // Implements the ReturnNull() action.
1117 class ReturnNullAction {
1118  public:
1119   // Allows ReturnNull() to be used in any pointer-returning function. In C++11
1120   // this is enforced by returning nullptr, and in non-C++11 by asserting a
1121   // pointer type on compile time.
1122   template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple&)1123   static Result Perform(const ArgumentTuple&) {
1124     return nullptr;
1125   }
1126 };
1127 
1128 // Implements the Return() action.
1129 class ReturnVoidAction {
1130  public:
1131   // Allows Return() to be used in any void-returning function.
1132   template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple&)1133   static void Perform(const ArgumentTuple&) {
1134     static_assert(std::is_void<Result>::value, "Result should be void.");
1135   }
1136 };
1137 
1138 // Implements the polymorphic ReturnRef(x) action, which can be used
1139 // in any function that returns a reference to the type of x,
1140 // regardless of the argument types.
1141 template <typename T>
1142 class ReturnRefAction {
1143  public:
1144   // Constructs a ReturnRefAction object from the reference to be returned.
ReturnRefAction(T& ref)1145   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
1146 
1147   // This template type conversion operator allows ReturnRef(x) to be
1148   // used in ANY function that returns a reference to x's type.
1149   template <typename F>
operator Action<F>() const1150   operator Action<F>() const {
1151     typedef typename Function<F>::Result Result;
1152     // Asserts that the function return type is a reference.  This
1153     // catches the user error of using ReturnRef(x) when Return(x)
1154     // should be used, and generates some helpful error message.
1155     static_assert(std::is_reference<Result>::value,
1156                   "use Return instead of ReturnRef to return a value");
1157     return Action<F>(new Impl<F>(ref_));
1158   }
1159 
1160  private:
1161   // Implements the ReturnRef(x) action for a particular function type F.
1162   template <typename F>
1163   class Impl : public ActionInterface<F> {
1164    public:
1165     typedef typename Function<F>::Result Result;
1166     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1167 
Impl(T& ref)1168     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
1169 
1170     Result Perform(const ArgumentTuple&) override { return ref_; }
1171 
1172    private:
1173     T& ref_;
1174   };
1175 
1176   T& ref_;
1177 };
1178 
1179 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
1180 // used in any function that returns a reference to the type of x,
1181 // regardless of the argument types.
1182 template <typename T>
1183 class ReturnRefOfCopyAction {
1184  public:
1185   // Constructs a ReturnRefOfCopyAction object from the reference to
1186   // be returned.
ReturnRefOfCopyAction(const T& value)1187   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
1188 
1189   // This template type conversion operator allows ReturnRefOfCopy(x) to be
1190   // used in ANY function that returns a reference to x's type.
1191   template <typename F>
operator Action<F>() const1192   operator Action<F>() const {
1193     typedef typename Function<F>::Result Result;
1194     // Asserts that the function return type is a reference.  This
1195     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
1196     // should be used, and generates some helpful error message.
1197     static_assert(std::is_reference<Result>::value,
1198                   "use Return instead of ReturnRefOfCopy to return a value");
1199     return Action<F>(new Impl<F>(value_));
1200   }
1201 
1202  private:
1203   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
1204   template <typename F>
1205   class Impl : public ActionInterface<F> {
1206    public:
1207     typedef typename Function<F>::Result Result;
1208     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1209 
Impl(const T& value)1210     explicit Impl(const T& value) : value_(value) {}  // NOLINT
1211 
1212     Result Perform(const ArgumentTuple&) override { return value_; }
1213 
1214    private:
1215     T value_;
1216   };
1217 
1218   const T value_;
1219 };
1220 
1221 // Implements the polymorphic ReturnRoundRobin(v) action, which can be
1222 // used in any function that returns the element_type of v.
1223 template <typename T>
1224 class ReturnRoundRobinAction {
1225  public:
ReturnRoundRobinAction(std::vector<T> values)1226   explicit ReturnRoundRobinAction(std::vector<T> values) {
1227     GTEST_CHECK_(!values.empty())
1228         << "ReturnRoundRobin requires at least one element.";
1229     state_->values = std::move(values);
1230   }
1231 
1232   template <typename... Args>
operator ()(Args&&....) const1233   T operator()(Args&&...) const {
1234     return state_->Next();
1235   }
1236 
1237  private:
1238   struct State {
Nexttesting::internal::ReturnRoundRobinAction::State1239     T Next() {
1240       T ret_val = values[i++];
1241       if (i == values.size()) i = 0;
1242       return ret_val;
1243     }
1244 
1245     std::vector<T> values;
1246     size_t i = 0;
1247   };
1248   std::shared_ptr<State> state_ = std::make_shared<State>();
1249 };
1250 
1251 // Implements the polymorphic DoDefault() action.
1252 class DoDefaultAction {
1253  public:
1254   // This template type conversion operator allows DoDefault() to be
1255   // used in any function.
1256   template <typename F>
operator Action<F>() const1257   operator Action<F>() const {
1258     return Action<F>();
1259   }  // NOLINT
1260 };
1261 
1262 // Implements the Assign action to set a given pointer referent to a
1263 // particular value.
1264 template <typename T1, typename T2>
1265 class AssignAction {
1266  public:
AssignAction(T1* ptr, T2 value)1267   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
1268 
1269   template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple& ) const1270   void Perform(const ArgumentTuple& /* args */) const {
1271     *ptr_ = value_;
1272   }
1273 
1274  private:
1275   T1* const ptr_;
1276   const T2 value_;
1277 };
1278 
1279 #if !GTEST_OS_WINDOWS_MOBILE
1280 
1281 // Implements the SetErrnoAndReturn action to simulate return from
1282 // various system calls and libc functions.
1283 template <typename T>
1284 class SetErrnoAndReturnAction {
1285  public:
SetErrnoAndReturnAction(int errno_value, T result)1286   SetErrnoAndReturnAction(int errno_value, T result)
1287       : errno_(errno_value), result_(result) {}
1288   template <typename Result, typename ArgumentTuple>
Perform(const ArgumentTuple& ) const1289   Result Perform(const ArgumentTuple& /* args */) const {
1290     errno = errno_;
1291     return result_;
1292   }
1293 
1294  private:
1295   const int errno_;
1296   const T result_;
1297 };
1298 
1299 #endif  // !GTEST_OS_WINDOWS_MOBILE
1300 
1301 // Implements the SetArgumentPointee<N>(x) action for any function
1302 // whose N-th argument (0-based) is a pointer to x's type.
1303 template <size_t N, typename A, typename = void>
1304 struct SetArgumentPointeeAction {
1305   A value;
1306 
1307   template <typename... Args>
operator ()testing::internal::SetArgumentPointeeAction1308   void operator()(const Args&... args) const {
1309     *::std::get<N>(std::tie(args...)) = value;
1310   }
1311 };
1312 
1313 // Implements the Invoke(object_ptr, &Class::Method) action.
1314 template <class Class, typename MethodPtr>
1315 struct InvokeMethodAction {
1316   Class* const obj_ptr;
1317   const MethodPtr method_ptr;
1318 
1319   template <typename... Args>
1320   auto operator()(Args&&... args) const
decltypetesting::internal::InvokeMethodAction1321       -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
1322     return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
1323   }
1324 };
1325 
1326 // Implements the InvokeWithoutArgs(f) action.  The template argument
1327 // FunctionImpl is the implementation type of f, which can be either a
1328 // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
1329 // Action<F> as long as f's type is compatible with F.
1330 template <typename FunctionImpl>
1331 struct InvokeWithoutArgsAction {
1332   FunctionImpl function_impl;
1333 
1334   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
1335   // compatible with f.
1336   template <typename... Args>
function_impltesting::internal::InvokeWithoutArgsAction1337   auto operator()(const Args&...) -> decltype(function_impl()) {
1338     return function_impl();
1339   }
1340 };
1341 
1342 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
1343 template <class Class, typename MethodPtr>
1344 struct InvokeMethodWithoutArgsAction {
1345   Class* const obj_ptr;
1346   const MethodPtr method_ptr;
1347 
1348   using ReturnType =
1349       decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
1350 
1351   template <typename... Args>
operator ()testing::internal::InvokeMethodWithoutArgsAction1352   ReturnType operator()(const Args&...) const {
1353     return (obj_ptr->*method_ptr)();
1354   }
1355 };
1356 
1357 // Implements the IgnoreResult(action) action.
1358 template <typename A>
1359 class IgnoreResultAction {
1360  public:
IgnoreResultAction(const A& action)1361   explicit IgnoreResultAction(const A& action) : action_(action) {}
1362 
1363   template <typename F>
operator Action<F>() const1364   operator Action<F>() const {
1365     // Assert statement belongs here because this is the best place to verify
1366     // conditions on F. It produces the clearest error messages
1367     // in most compilers.
1368     // Impl really belongs in this scope as a local class but can't
1369     // because MSVC produces duplicate symbols in different translation units
1370     // in this case. Until MS fixes that bug we put Impl into the class scope
1371     // and put the typedef both here (for use in assert statement) and
1372     // in the Impl class. But both definitions must be the same.
1373     typedef typename internal::Function<F>::Result Result;
1374 
1375     // Asserts at compile time that F returns void.
1376     static_assert(std::is_void<Result>::value, "Result type should be void.");
1377 
1378     return Action<F>(new Impl<F>(action_));
1379   }
1380 
1381  private:
1382   template <typename F>
1383   class Impl : public ActionInterface<F> {
1384    public:
1385     typedef typename internal::Function<F>::Result Result;
1386     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1387 
Impl(const A& action)1388     explicit Impl(const A& action) : action_(action) {}
1389 
1390     void Perform(const ArgumentTuple& args) override {
1391       // Performs the action and ignores its result.
1392       action_.Perform(args);
1393     }
1394 
1395    private:
1396     // Type OriginalFunction is the same as F except that its return
1397     // type is IgnoredValue.
1398     typedef
1399         typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction;
1400 
1401     const Action<OriginalFunction> action_;
1402   };
1403 
1404   const A action_;
1405 };
1406 
1407 template <typename InnerAction, size_t... I>
1408 struct WithArgsAction {
1409   InnerAction inner_action;
1410 
1411   // The signature of the function as seen by the inner action, given an out
1412   // action with the given result and argument types.
1413   template <typename R, typename... Args>
1414   using InnerSignature =
1415       R(typename std::tuple_element<I, std::tuple<Args...>>::type...);
1416 
1417   // Rather than a call operator, we must define conversion operators to
1418   // particular action types. This is necessary for embedded actions like
1419   // DoDefault(), which rely on an action conversion operators rather than
1420   // providing a call operator because even with a particular set of arguments
1421   // they don't have a fixed return type.
1422 
1423   template <typename R, typename... Args,
1424             typename std::enable_if<
1425                 std::is_convertible<
1426                     InnerAction,
1427                     // Unfortunately we can't use the InnerSignature alias here;
1428                     // MSVC complains about the I parameter pack not being
1429                     // expanded (error C3520) despite it being expanded in the
1430                     // type alias.
1431                     // TupleElement is also an MSVC workaround.
1432                     // See its definition for details.
1433                     OnceAction<R(internal::TupleElement<
1434                                  I, std::tuple<Args...>>...)>>::value,
1435                 int>::type = 0>
operator OnceAction<Rtesting::internal::WithArgsAction1436   operator OnceAction<R(Args...)>() && {  // NOLINT
1437     struct OA {
1438       OnceAction<InnerSignature<R, Args...>> inner_action;
1439 
1440       R operator()(Args&&... args) && {
1441         return std::move(inner_action)
1442             .Call(std::get<I>(
1443                 std::forward_as_tuple(std::forward<Args>(args)...))...);
1444       }
1445     };
1446 
1447     return OA{std::move(inner_action)};
1448   }
1449 
1450   template <typename R, typename... Args,
1451             typename std::enable_if<
1452                 std::is_convertible<
1453                     const InnerAction&,
1454                     // Unfortunately we can't use the InnerSignature alias here;
1455                     // MSVC complains about the I parameter pack not being
1456                     // expanded (error C3520) despite it being expanded in the
1457                     // type alias.
1458                     // TupleElement is also an MSVC workaround.
1459                     // See its definition for details.
1460                     Action<R(internal::TupleElement<
1461                              I, std::tuple<Args...>>...)>>::value,
1462                 int>::type = 0>
operator Action<Rtesting::internal::WithArgsAction1463   operator Action<R(Args...)>() const {  // NOLINT
1464     Action<InnerSignature<R, Args...>> converted(inner_action);
1465 
1466     return [converted](Args&&... args) -> R {
1467       return converted.Perform(std::forward_as_tuple(
1468           std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
1469     };
1470   }
1471 };
1472 
1473 template <typename... Actions>
1474 class DoAllAction;
1475 
1476 // Base case: only a single action.
1477 template <typename FinalAction>
1478 class DoAllAction<FinalAction> {
1479  public:
1480   struct UserConstructorTag {};
1481 
1482   template <typename T>
DoAllAction(UserConstructorTag, T&& action)1483   explicit DoAllAction(UserConstructorTag, T&& action)
1484       : final_action_(std::forward<T>(action)) {}
1485 
1486   // Rather than a call operator, we must define conversion operators to
1487   // particular action types. This is necessary for embedded actions like
1488   // DoDefault(), which rely on an action conversion operators rather than
1489   // providing a call operator because even with a particular set of arguments
1490   // they don't have a fixed return type.
1491 
1492   template <typename R, typename... Args,
1493             typename std::enable_if<
1494                 std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value,
1495                 int>::type = 0>
operator OnceAction<R(Args....)1496   operator OnceAction<R(Args...)>() && {  // NOLINT
1497     return std::move(final_action_);
1498   }
1499 
1500   template <
1501       typename R, typename... Args,
1502       typename std::enable_if<
1503           std::is_convertible<const FinalAction&, Action<R(Args...)>>::value,
1504           int>::type = 0>
operator Action<R(Args....) const1505   operator Action<R(Args...)>() const {  // NOLINT
1506     return final_action_;
1507   }
1508 
1509  private:
1510   FinalAction final_action_;
1511 };
1512 
1513 // Recursive case: support N actions by calling the initial action and then
1514 // calling through to the base class containing N-1 actions.
1515 template <typename InitialAction, typename... OtherActions>
1516 class DoAllAction<InitialAction, OtherActions...>
1517     : private DoAllAction<OtherActions...> {
1518  private:
1519   using Base = DoAllAction<OtherActions...>;
1520 
1521   // The type of reference that should be provided to an initial action for a
1522   // mocked function parameter of type T.
1523   //
1524   // There are two quirks here:
1525   //
1526   //  *  Unlike most forwarding functions, we pass scalars through by value.
1527   //     This isn't strictly necessary because an lvalue reference would work
1528   //     fine too and be consistent with other non-reference types, but it's
1529   //     perhaps less surprising.
1530   //
1531   //     For example if the mocked function has signature void(int), then it
1532   //     might seem surprising for the user's initial action to need to be
1533   //     convertible to Action<void(const int&)>. This is perhaps less
1534   //     surprising for a non-scalar type where there may be a performance
1535   //     impact, or it might even be impossible, to pass by value.
1536   //
1537   //  *  More surprisingly, `const T&` is often not a const reference type.
1538   //     By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to
1539   //     U& or U&& for some non-scalar type U, then InitialActionArgType<T> is
1540   //     U&. In other words, we may hand over a non-const reference.
1541   //
1542   //     So for example, given some non-scalar type Obj we have the following
1543   //     mappings:
1544   //
1545   //            T               InitialActionArgType<T>
1546   //         -------            -----------------------
1547   //         Obj                const Obj&
1548   //         Obj&               Obj&
1549   //         Obj&&              Obj&
1550   //         const Obj          const Obj&
1551   //         const Obj&         const Obj&
1552   //         const Obj&&        const Obj&
1553   //
1554   //     In other words, the initial actions get a mutable view of an non-scalar
1555   //     argument if and only if the mock function itself accepts a non-const
1556   //     reference type. They are never given an rvalue reference to an
1557   //     non-scalar type.
1558   //
1559   //     This situation makes sense if you imagine use with a matcher that is
1560   //     designed to write through a reference. For example, if the caller wants
1561   //     to fill in a reference argument and then return a canned value:
1562   //
1563   //         EXPECT_CALL(mock, Call)
1564   //             .WillOnce(DoAll(SetArgReferee<0>(17), Return(19)));
1565   //
1566   template <typename T>
1567   using InitialActionArgType =
1568       typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
1569 
1570  public:
1571   struct UserConstructorTag {};
1572 
1573   template <typename T, typename... U>
DoAllAction(UserConstructorTag, T&& initial_action, U&&... other_actions)1574   explicit DoAllAction(UserConstructorTag, T&& initial_action,
1575                        U&&... other_actions)
1576       : Base({}, std::forward<U>(other_actions)...),
1577         initial_action_(std::forward<T>(initial_action)) {}
1578 
1579   template <typename R, typename... Args,
1580             typename std::enable_if<
1581                 conjunction<
1582                     // Both the initial action and the rest must support
1583                     // conversion to OnceAction.
1584                     std::is_convertible<
1585                         InitialAction,
1586                         OnceAction<void(InitialActionArgType<Args>...)>>,
1587                     std::is_convertible<Base, OnceAction<R(Args...)>>>::value,
1588                 int>::type = 0>
operator OnceAction<R(Args....)1589   operator OnceAction<R(Args...)>() && {  // NOLINT
1590     // Return an action that first calls the initial action with arguments
1591     // filtered through InitialActionArgType, then forwards arguments directly
1592     // to the base class to deal with the remaining actions.
1593     struct OA {
1594       OnceAction<void(InitialActionArgType<Args>...)> initial_action;
1595       OnceAction<R(Args...)> remaining_actions;
1596 
1597       R operator()(Args... args) && {
1598         std::move(initial_action)
1599             .Call(static_cast<InitialActionArgType<Args>>(args)...);
1600 
1601         return std::move(remaining_actions).Call(std::forward<Args>(args)...);
1602       }
1603     };
1604 
1605     return OA{
1606         std::move(initial_action_),
1607         std::move(static_cast<Base&>(*this)),
1608     };
1609   }
1610 
1611   template <
1612       typename R, typename... Args,
1613       typename std::enable_if<
1614           conjunction<
1615               // Both the initial action and the rest must support conversion to
1616               // Action.
1617               std::is_convertible<const InitialAction&,
1618                                   Action<void(InitialActionArgType<Args>...)>>,
1619               std::is_convertible<const Base&, Action<R(Args...)>>>::value,
1620           int>::type = 0>
operator Action<R(Args....) const1621   operator Action<R(Args...)>() const {  // NOLINT
1622     // Return an action that first calls the initial action with arguments
1623     // filtered through InitialActionArgType, then forwards arguments directly
1624     // to the base class to deal with the remaining actions.
1625     struct OA {
1626       Action<void(InitialActionArgType<Args>...)> initial_action;
1627       Action<R(Args...)> remaining_actions;
1628 
1629       R operator()(Args... args) const {
1630         initial_action.Perform(std::forward_as_tuple(
1631             static_cast<InitialActionArgType<Args>>(args)...));
1632 
1633         return remaining_actions.Perform(
1634             std::forward_as_tuple(std::forward<Args>(args)...));
1635       }
1636     };
1637 
1638     return OA{
1639         initial_action_,
1640         static_cast<const Base&>(*this),
1641     };
1642   }
1643 
1644  private:
1645   InitialAction initial_action_;
1646 };
1647 
1648 template <typename T, typename... Params>
1649 struct ReturnNewAction {
operator ()testing::ReturnNewAction1650   T* operator()() const {
1651     return internal::Apply(
1652         [](const Params&... unpacked_params) {
1653           return new T(unpacked_params...);
1654         },
1655         params);
1656   }
1657   std::tuple<Params...> params;
1658 };
1659 
1660 template <size_t k>
1661 struct ReturnArgAction {
1662   template <typename... Args,
1663             typename = typename std::enable_if<(k < sizeof...(Args))>::type>
getReturnArgAction1664   auto operator()(Args&&... args) const -> decltype(std::get<k>(
1665       std::forward_as_tuple(std::forward<Args>(args)...))) {
1666     return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...));
1667   }
1668 };
1669 
1670 template <size_t k, typename Ptr>
1671 struct SaveArgAction {
1672   Ptr pointer;
1673 
1674   template <typename... Args>
operator ()SaveArgAction1675   void operator()(const Args&... args) const {
1676     *pointer = std::get<k>(std::tie(args...));
1677   }
1678 };
1679 
1680 template <size_t k, typename Ptr>
1681 struct SaveArgPointeeAction {
1682   Ptr pointer;
1683 
1684   template <typename... Args>
operator ()SaveArgPointeeAction1685   void operator()(const Args&... args) const {
1686     *pointer = *std::get<k>(std::tie(args...));
1687   }
1688 };
1689 
1690 template <size_t k, typename T>
1691 struct SetArgRefereeAction {
1692   T value;
1693 
1694   template <typename... Args>
operator ()SetArgRefereeAction1695   void operator()(Args&&... args) const {
1696     using argk_type =
1697         typename ::std::tuple_element<k, std::tuple<Args...>>::type;
1698     static_assert(std::is_lvalue_reference<argk_type>::value,
1699                   "Argument must be a reference type.");
1700     std::get<k>(std::tie(args...)) = value;
1701   }
1702 };
1703 
1704 template <size_t k, typename I1, typename I2>
1705 struct SetArrayArgumentAction {
1706   I1 first;
1707   I2 last;
1708 
1709   template <typename... Args>
operator ()SetArrayArgumentAction1710   void operator()(const Args&... args) const {
1711     auto value = std::get<k>(std::tie(args...));
1712     for (auto it = first; it != last; ++it, (void)++value) {
1713       *value = *it;
1714     }
1715   }
1716 };
1717 
1718 template <size_t k>
1719 struct DeleteArgAction {
1720   template <typename... Args>
operator ()DeleteArgAction1721   void operator()(const Args&... args) const {
1722     delete std::get<k>(std::tie(args...));
1723   }
1724 };
1725 
1726 template <typename Ptr>
1727 struct ReturnPointeeAction {
1728   Ptr pointer;
1729   template <typename... Args>
1730   auto operator()(const Args&...) const -> decltype(*pointer) {
1731     return *pointer;
1732   }
1733 };
1734 
1735 #if GTEST_HAS_EXCEPTIONS
1736 template <typename T>
1737 struct ThrowAction {
1738   T exception;
1739   // We use a conversion operator to adapt to any return type.
1740   template <typename R, typename... Args>
operator Action<RThrowAction1741   operator Action<R(Args...)>() const {  // NOLINT
1742     T copy = exception;
1743     return [copy](Args...) -> R { throw copy; };
1744   }
1745 };
1746 #endif  // GTEST_HAS_EXCEPTIONS
1747 
1748 }  // namespace internal
1749 
1750 // An Unused object can be implicitly constructed from ANY value.
1751 // This is handy when defining actions that ignore some or all of the
1752 // mock function arguments.  For example, given
1753 //
1754 //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1755 //   MOCK_METHOD3(Bar, double(int index, double x, double y));
1756 //
1757 // instead of
1758 //
1759 //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
1760 //     return sqrt(x*x + y*y);
1761 //   }
1762 //   double DistanceToOriginWithIndex(int index, double x, double y) {
1763 //     return sqrt(x*x + y*y);
1764 //   }
1765 //   ...
1766 //   EXPECT_CALL(mock, Foo("abc", _, _))
1767 //       .WillOnce(Invoke(DistanceToOriginWithLabel));
1768 //   EXPECT_CALL(mock, Bar(5, _, _))
1769 //       .WillOnce(Invoke(DistanceToOriginWithIndex));
1770 //
1771 // you could write
1772 //
1773 //   // We can declare any uninteresting argument as Unused.
1774 //   double DistanceToOrigin(Unused, double x, double y) {
1775 //     return sqrt(x*x + y*y);
1776 //   }
1777 //   ...
1778 //   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1779 //   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1780 typedef internal::IgnoredValue Unused;
1781 
1782 // Creates an action that does actions a1, a2, ..., sequentially in
1783 // each invocation. All but the last action will have a readonly view of the
1784 // arguments.
1785 template <typename... Action>
1786 internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
1787     Action&&... action) {
1788   return internal::DoAllAction<typename std::decay<Action>::type...>(
1789       {}, std::forward<Action>(action)...);
1790 }
1791 
1792 // WithArg<k>(an_action) creates an action that passes the k-th
1793 // (0-based) argument of the mock function to an_action and performs
1794 // it.  It adapts an action accepting one argument to one that accepts
1795 // multiple arguments.  For convenience, we also provide
1796 // WithArgs<k>(an_action) (defined below) as a synonym.
1797 template <size_t k, typename InnerAction>
1798 internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg(
1799     InnerAction&& action) {
1800   return {std::forward<InnerAction>(action)};
1801 }
1802 
1803 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
1804 // the selected arguments of the mock function to an_action and
1805 // performs it.  It serves as an adaptor between actions with
1806 // different argument lists.
1807 template <size_t k, size_t... ks, typename InnerAction>
1808 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
1809 WithArgs(InnerAction&& action) {
1810   return {std::forward<InnerAction>(action)};
1811 }
1812 
1813 // WithoutArgs(inner_action) can be used in a mock function with a
1814 // non-empty argument list to perform inner_action, which takes no
1815 // argument.  In other words, it adapts an action accepting no
1816 // argument to one that accepts (and ignores) arguments.
1817 template <typename InnerAction>
1818 internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(
1819     InnerAction&& action) {
1820   return {std::forward<InnerAction>(action)};
1821 }
1822 
1823 // Creates an action that returns a value.
1824 //
1825 // The returned type can be used with a mock function returning a non-void,
1826 // non-reference type U as follows:
1827 //
1828 //  *  If R is convertible to U and U is move-constructible, then the action can
1829 //     be used with WillOnce.
1830 //
1831 //  *  If const R& is convertible to U and U is copy-constructible, then the
1832 //     action can be used with both WillOnce and WillRepeatedly.
1833 //
1834 // The mock expectation contains the R value from which the U return value is
1835 // constructed (a move/copy of the argument to Return). This means that the R
1836 // value will survive at least until the mock object's expectations are cleared
1837 // or the mock object is destroyed, meaning that U can safely be a
1838 // reference-like type such as std::string_view:
1839 //
1840 //     // The mock function returns a view of a copy of the string fed to
1841 //     // Return. The view is valid even after the action is performed.
1842 //     MockFunction<std::string_view()> mock;
1843 //     EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco")));
1844 //     const std::string_view result = mock.AsStdFunction()();
1845 //     EXPECT_EQ("taco", result);
1846 //
1847 template <typename R>
1848 internal::ReturnAction<R> Return(R value) {
1849   return internal::ReturnAction<R>(std::move(value));
1850 }
1851 
1852 // Creates an action that returns NULL.
1853 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
1854   return MakePolymorphicAction(internal::ReturnNullAction());
1855 }
1856 
1857 // Creates an action that returns from a void function.
1858 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
1859   return MakePolymorphicAction(internal::ReturnVoidAction());
1860 }
1861 
1862 // Creates an action that returns the reference to a variable.
1863 template <typename R>
1864 inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
1865   return internal::ReturnRefAction<R>(x);
1866 }
1867 
1868 // Prevent using ReturnRef on reference to temporary.
1869 template <typename R, R* = nullptr>
1870 internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
1871 
1872 // Creates an action that returns the reference to a copy of the
1873 // argument.  The copy is created when the action is constructed and
1874 // lives as long as the action.
1875 template <typename R>
1876 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
1877   return internal::ReturnRefOfCopyAction<R>(x);
1878 }
1879 
1880 // DEPRECATED: use Return(x) directly with WillOnce.
1881 //
1882 // Modifies the parent action (a Return() action) to perform a move of the
1883 // argument instead of a copy.
1884 // Return(ByMove()) actions can only be executed once and will assert this
1885 // invariant.
1886 template <typename R>
1887 internal::ByMoveWrapper<R> ByMove(R x) {
1888   return internal::ByMoveWrapper<R>(std::move(x));
1889 }
1890 
1891 // Creates an action that returns an element of `vals`. Calling this action will
1892 // repeatedly return the next value from `vals` until it reaches the end and
1893 // will restart from the beginning.
1894 template <typename T>
1895 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
1896   return internal::ReturnRoundRobinAction<T>(std::move(vals));
1897 }
1898 
1899 // Creates an action that returns an element of `vals`. Calling this action will
1900 // repeatedly return the next value from `vals` until it reaches the end and
1901 // will restart from the beginning.
1902 template <typename T>
1903 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
1904     std::initializer_list<T> vals) {
1905   return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
1906 }
1907 
1908 // Creates an action that does the default action for the give mock function.
1909 inline internal::DoDefaultAction DoDefault() {
1910   return internal::DoDefaultAction();
1911 }
1912 
1913 // Creates an action that sets the variable pointed by the N-th
1914 // (0-based) function argument to 'value'.
1915 template <size_t N, typename T>
1916 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
1917   return {std::move(value)};
1918 }
1919 
1920 // The following version is DEPRECATED.
1921 template <size_t N, typename T>
1922 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
1923   return {std::move(value)};
1924 }
1925 
1926 // Creates an action that sets a pointer referent to a given value.
1927 template <typename T1, typename T2>
1928 PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) {
1929   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1930 }
1931 
1932 #if !GTEST_OS_WINDOWS_MOBILE
1933 
1934 // Creates an action that sets errno and returns the appropriate error.
1935 template <typename T>
1936 PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn(
1937     int errval, T result) {
1938   return MakePolymorphicAction(
1939       internal::SetErrnoAndReturnAction<T>(errval, result));
1940 }
1941 
1942 #endif  // !GTEST_OS_WINDOWS_MOBILE
1943 
1944 // Various overloads for Invoke().
1945 
1946 // Legacy function.
1947 // Actions can now be implicitly constructed from callables. No need to create
1948 // wrapper objects.
1949 // This function exists for backwards compatibility.
1950 template <typename FunctionImpl>
1951 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
1952   return std::forward<FunctionImpl>(function_impl);
1953 }
1954 
1955 // Creates an action that invokes the given method on the given object
1956 // with the mock function's arguments.
1957 template <class Class, typename MethodPtr>
1958 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
1959                                                       MethodPtr method_ptr) {
1960   return {obj_ptr, method_ptr};
1961 }
1962 
1963 // Creates an action that invokes 'function_impl' with no argument.
1964 template <typename FunctionImpl>
1965 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
1966 InvokeWithoutArgs(FunctionImpl function_impl) {
1967   return {std::move(function_impl)};
1968 }
1969 
1970 // Creates an action that invokes the given method on the given object
1971 // with no argument.
1972 template <class Class, typename MethodPtr>
1973 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
1974     Class* obj_ptr, MethodPtr method_ptr) {
1975   return {obj_ptr, method_ptr};
1976 }
1977 
1978 // Creates an action that performs an_action and throws away its
1979 // result.  In other words, it changes the return type of an_action to
1980 // void.  an_action MUST NOT return void, or the code won't compile.
1981 template <typename A>
1982 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1983   return internal::IgnoreResultAction<A>(an_action);
1984 }
1985 
1986 // Creates a reference wrapper for the given L-value.  If necessary,
1987 // you can explicitly specify the type of the reference.  For example,
1988 // suppose 'derived' is an object of type Derived, ByRef(derived)
1989 // would wrap a Derived&.  If you want to wrap a const Base& instead,
1990 // where Base is a base class of Derived, just write:
1991 //
1992 //   ByRef<const Base>(derived)
1993 //
1994 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
1995 // However, it may still be used for consistency with ByMove().
1996 template <typename T>
1997 inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT
1998   return ::std::reference_wrapper<T>(l_value);
1999 }
2000 
2001 // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
2002 // instance of type T, constructed on the heap with constructor arguments
2003 // a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
2004 template <typename T, typename... Params>
2005 internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
2006     Params&&... params) {
2007   return {std::forward_as_tuple(std::forward<Params>(params)...)};
2008 }
2009 
2010 // Action ReturnArg<k>() returns the k-th argument of the mock function.
2011 template <size_t k>
2012 internal::ReturnArgAction<k> ReturnArg() {
2013   return {};
2014 }
2015 
2016 // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
2017 // mock function to *pointer.
2018 template <size_t k, typename Ptr>
2019 internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
2020   return {pointer};
2021 }
2022 
2023 // Action SaveArgPointee<k>(pointer) saves the value pointed to
2024 // by the k-th (0-based) argument of the mock function to *pointer.
2025 template <size_t k, typename Ptr>
2026 internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
2027   return {pointer};
2028 }
2029 
2030 // Action SetArgReferee<k>(value) assigns 'value' to the variable
2031 // referenced by the k-th (0-based) argument of the mock function.
2032 template <size_t k, typename T>
2033 internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
2034     T&& value) {
2035   return {std::forward<T>(value)};
2036 }
2037 
2038 // Action SetArrayArgument<k>(first, last) copies the elements in
2039 // source range [first, last) to the array pointed to by the k-th
2040 // (0-based) argument, which can be either a pointer or an
2041 // iterator. The action does not take ownership of the elements in the
2042 // source range.
2043 template <size_t k, typename I1, typename I2>
2044 internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
2045                                                              I2 last) {
2046   return {first, last};
2047 }
2048 
2049 // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
2050 // function.
2051 template <size_t k>
2052 internal::DeleteArgAction<k> DeleteArg() {
2053   return {};
2054 }
2055 
2056 // This action returns the value pointed to by 'pointer'.
2057 template <typename Ptr>
2058 internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
2059   return {pointer};
2060 }
2061 
2062 // Action Throw(exception) can be used in a mock function of any type
2063 // to throw the given exception.  Any copyable value can be thrown.
2064 #if GTEST_HAS_EXCEPTIONS
2065 template <typename T>
2066 internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
2067   return {std::forward<T>(exception)};
2068 }
2069 #endif  // GTEST_HAS_EXCEPTIONS
2070 
2071 namespace internal {
2072 
2073 // A macro from the ACTION* family (defined later in gmock-generated-actions.h)
2074 // defines an action that can be used in a mock function.  Typically,
2075 // these actions only care about a subset of the arguments of the mock
2076 // function.  For example, if such an action only uses the second
2077 // argument, it can be used in any mock function that takes >= 2
2078 // arguments where the type of the second argument is compatible.
2079 //
2080 // Therefore, the action implementation must be prepared to take more
2081 // arguments than it needs.  The ExcessiveArg type is used to
2082 // represent those excessive arguments.  In order to keep the compiler
2083 // error messages tractable, we define it in the testing namespace
2084 // instead of testing::internal.  However, this is an INTERNAL TYPE
2085 // and subject to change without notice, so a user MUST NOT USE THIS
2086 // TYPE DIRECTLY.
2087 struct ExcessiveArg {};
2088 
2089 // Builds an implementation of an Action<> for some particular signature, using
2090 // a class defined by an ACTION* macro.
2091 template <typename F, typename Impl>
2092 struct ActionImpl;
2093 
2094 template <typename Impl>
2095 struct ImplBase {
2096   struct Holder {
2097     // Allows each copy of the Action<> to get to the Impl.
2098     explicit operator const Impl&() const { return *ptr; }
2099     std::shared_ptr<Impl> ptr;
2100   };
2101   using type = typename std::conditional<std::is_constructible<Impl>::value,
2102                                          Impl, Holder>::type;
2103 };
2104 
2105 template <typename R, typename... Args, typename Impl>
2106 struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
2107   using Base = typename ImplBase<Impl>::type;
2108   using function_type = R(Args...);
2109   using args_type = std::tuple<Args...>;
2110 
2111   ActionImpl() = default;  // Only defined if appropriate for Base.
2112   explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {}
2113 
2114   R operator()(Args&&... arg) const {
2115     static constexpr size_t kMaxArgs =
2116         sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
2117     return Apply(MakeIndexSequence<kMaxArgs>{},
2118                  MakeIndexSequence<10 - kMaxArgs>{},
2119                  args_type{std::forward<Args>(arg)...});
2120   }
2121 
2122   template <std::size_t... arg_id, std::size_t... excess_id>
2123   R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
2124           const args_type& args) const {
2125     // Impl need not be specific to the signature of action being implemented;
2126     // only the implementing function body needs to have all of the specific
2127     // types instantiated.  Up to 10 of the args that are provided by the
2128     // args_type get passed, followed by a dummy of unspecified type for the
2129     // remainder up to 10 explicit args.
2130     static constexpr ExcessiveArg kExcessArg{};
2131     return static_cast<const Impl&>(*this)
2132         .template gmock_PerformImpl<
2133             /*function_type=*/function_type, /*return_type=*/R,
2134             /*args_type=*/args_type,
2135             /*argN_type=*/
2136             typename std::tuple_element<arg_id, args_type>::type...>(
2137             /*args=*/args, std::get<arg_id>(args)...,
2138             ((void)excess_id, kExcessArg)...);
2139   }
2140 };
2141 
2142 // Stores a default-constructed Impl as part of the Action<>'s
2143 // std::function<>. The Impl should be trivial to copy.
2144 template <typename F, typename Impl>
2145 ::testing::Action<F> MakeAction() {
2146   return ::testing::Action<F>(ActionImpl<F, Impl>());
2147 }
2148 
2149 // Stores just the one given instance of Impl.
2150 template <typename F, typename Impl>
2151 ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
2152   return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
2153 }
2154 
2155 #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
2156   , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
2157 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_                 \
2158   const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
2159       GMOCK_INTERNAL_ARG_UNUSED, , 10)
2160 
2161 #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
2162 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
2163   const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
2164 
2165 #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
2166 #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
2167   GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
2168 
2169 #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
2170 #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
2171   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
2172 
2173 #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
2174 #define GMOCK_ACTION_TYPE_PARAMS_(params) \
2175   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
2176 
2177 #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
2178   , param##_type gmock_p##i
2179 #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
2180   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
2181 
2182 #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
2183   , std::forward<param##_type>(gmock_p##i)
2184 #define GMOCK_ACTION_GVALUE_PARAMS_(params) \
2185   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
2186 
2187 #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
2188   , param(::std::forward<param##_type>(gmock_p##i))
2189 #define GMOCK_ACTION_INIT_PARAMS_(params) \
2190   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
2191 
2192 #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
2193 #define GMOCK_ACTION_FIELD_PARAMS_(params) \
2194   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
2195 
2196 #define GMOCK_INTERNAL_ACTION(name, full_name, params)                         \
2197   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
2198   class full_name {                                                            \
2199    public:                                                                     \
2200     explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))               \
2201         : impl_(std::make_shared<gmock_Impl>(                                  \
2202               GMOCK_ACTION_GVALUE_PARAMS_(params))) {}                         \
2203     full_name(const full_name&) = default;                                     \
2204     full_name(full_name&&) noexcept = default;                                 \
2205     template <typename F>                                                      \
2206     operator ::testing::Action<F>() const {                                    \
2207       return ::testing::internal::MakeAction<F>(impl_);                        \
2208     }                                                                          \
2209                                                                                \
2210    private:                                                                    \
2211     class gmock_Impl {                                                         \
2212      public:                                                                   \
2213       explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))            \
2214           : GMOCK_ACTION_INIT_PARAMS_(params) {}                               \
2215       template <typename function_type, typename return_type,                  \
2216                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>         \
2217       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const;  \
2218       GMOCK_ACTION_FIELD_PARAMS_(params)                                       \
2219     };                                                                         \
2220     std::shared_ptr<const gmock_Impl> impl_;                                   \
2221   };                                                                           \
2222   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
2223   inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                    \
2224       GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_;        \
2225   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
2226   inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                    \
2227       GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) {                              \
2228     return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>(                       \
2229         GMOCK_ACTION_GVALUE_PARAMS_(params));                                  \
2230   }                                                                            \
2231   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
2232   template <typename function_type, typename return_type, typename args_type,  \
2233             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                 \
2234   return_type                                                                  \
2235   full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \
2236       GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2237 
2238 }  // namespace internal
2239 
2240 // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
2241 #define ACTION(name)                                                          \
2242   class name##Action {                                                        \
2243    public:                                                                    \
2244     explicit name##Action() noexcept {}                                       \
2245     name##Action(const name##Action&) noexcept {}                             \
2246     template <typename F>                                                     \
2247     operator ::testing::Action<F>() const {                                   \
2248       return ::testing::internal::MakeAction<F, gmock_Impl>();                \
2249     }                                                                         \
2250                                                                               \
2251    private:                                                                   \
2252     class gmock_Impl {                                                        \
2253      public:                                                                  \
2254       template <typename function_type, typename return_type,                 \
2255                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>        \
2256       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2257     };                                                                        \
2258   };                                                                          \
2259   inline name##Action name() GTEST_MUST_USE_RESULT_;                          \
2260   inline name##Action name() { return name##Action(); }                       \
2261   template <typename function_type, typename return_type, typename args_type, \
2262             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
2263   return_type name##Action::gmock_Impl::gmock_PerformImpl(                    \
2264       GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2265 
2266 #define ACTION_P(name, ...) \
2267   GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
2268 
2269 #define ACTION_P2(name, ...) \
2270   GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
2271 
2272 #define ACTION_P3(name, ...) \
2273   GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
2274 
2275 #define ACTION_P4(name, ...) \
2276   GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
2277 
2278 #define ACTION_P5(name, ...) \
2279   GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
2280 
2281 #define ACTION_P6(name, ...) \
2282   GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
2283 
2284 #define ACTION_P7(name, ...) \
2285   GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
2286 
2287 #define ACTION_P8(name, ...) \
2288   GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
2289 
2290 #define ACTION_P9(name, ...) \
2291   GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
2292 
2293 #define ACTION_P10(name, ...) \
2294   GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
2295 
2296 }  // namespace testing
2297 
2298 #ifdef _MSC_VER
2299 #pragma warning(pop)
2300 #endif
2301 
2302 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
2303