1 /*
2 * Copyright (c) 2021 Loongson Technology Corporation Limited
3 * All rights reserved.
4 * Contributed by Shiyou Yin <yinshiyou-hf@loongson.cn>
5 * Xiwei Gu <guxiwei-hf@loongson.cn>
6 * Lu Wang <wanglu@loongson.cn>
7 *
8 * This file is part of FFmpeg.
9 *
10 * FFmpeg is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * FFmpeg is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with FFmpeg; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 *
24 */
25
26 #ifndef AVUTIL_LOONGARCH_LOONGSON_INTRINSICS_H
27 #define AVUTIL_LOONGARCH_LOONGSON_INTRINSICS_H
28
29 /*
30 * Copyright (c) 2021 Loongson Technology Corporation Limited
31 * All rights reserved.
32 * Contributed by Shiyou Yin <yinshiyou-hf@loongson.cn>
33 * Xiwei Gu <guxiwei-hf@loongson.cn>
34 * Lu Wang <wanglu@loongson.cn>
35 *
36 * This file is a header file for loongarch builtin extension.
37 *
38 */
39
40 #ifndef LOONGSON_INTRINSICS_H
41 #define LOONGSON_INTRINSICS_H
42
43 /**
44 * MAJOR version: Macro usage changes.
45 * MINOR version: Add new functions, or bug fixes.
46 * MICRO version: Comment changes or implementation changes.
47 */
48 #define LSOM_VERSION_MAJOR 1
49 #define LSOM_VERSION_MINOR 1
50 #define LSOM_VERSION_MICRO 0
51
52 #define DUP2_ARG1(_INS, _IN0, _IN1, _OUT0, _OUT1) \
53 { \
54 _OUT0 = _INS(_IN0); \
55 _OUT1 = _INS(_IN1); \
56 }
57
58 #define DUP2_ARG2(_INS, _IN0, _IN1, _IN2, _IN3, _OUT0, _OUT1) \
59 { \
60 _OUT0 = _INS(_IN0, _IN1); \
61 _OUT1 = _INS(_IN2, _IN3); \
62 }
63
64 #define DUP2_ARG3(_INS, _IN0, _IN1, _IN2, _IN3, _IN4, _IN5, _OUT0, _OUT1) \
65 { \
66 _OUT0 = _INS(_IN0, _IN1, _IN2); \
67 _OUT1 = _INS(_IN3, _IN4, _IN5); \
68 }
69
70 #define DUP4_ARG1(_INS, _IN0, _IN1, _IN2, _IN3, _OUT0, _OUT1, _OUT2, _OUT3) \
71 { \
72 DUP2_ARG1(_INS, _IN0, _IN1, _OUT0, _OUT1); \
73 DUP2_ARG1(_INS, _IN2, _IN3, _OUT2, _OUT3); \
74 }
75
76 #define DUP4_ARG2(_INS, _IN0, _IN1, _IN2, _IN3, _IN4, _IN5, _IN6, _IN7, _OUT0, \
77 _OUT1, _OUT2, _OUT3) \
78 { \
79 DUP2_ARG2(_INS, _IN0, _IN1, _IN2, _IN3, _OUT0, _OUT1); \
80 DUP2_ARG2(_INS, _IN4, _IN5, _IN6, _IN7, _OUT2, _OUT3); \
81 }
82
83 #define DUP4_ARG3(_INS, _IN0, _IN1, _IN2, _IN3, _IN4, _IN5, _IN6, _IN7, _IN8, \
84 _IN9, _IN10, _IN11, _OUT0, _OUT1, _OUT2, _OUT3) \
85 { \
86 DUP2_ARG3(_INS, _IN0, _IN1, _IN2, _IN3, _IN4, _IN5, _OUT0, _OUT1); \
87 DUP2_ARG3(_INS, _IN6, _IN7, _IN8, _IN9, _IN10, _IN11, _OUT2, _OUT3); \
88 }
89
90 #ifdef __loongarch_sx
91 #include <lsxintrin.h>
92 /*
93 * =============================================================================
94 * Description : Dot product & addition of byte vector elements
95 * Arguments : Inputs - in_c, in_h, in_l
96 * Outputs - out
97 * Return Type - halfword
98 * Details : Signed byte elements from in_h are multiplied by
99 * signed byte elements from in_l, and then added adjacent to
100 * each other to get results with the twice size of input.
101 * Then the results plus to signed half-word elements from in_c.
102 * Example : out = __lsx_vdp2add_h_b(in_c, in_h, in_l)
103 * in_c : 1,2,3,4, 1,2,3,4
104 * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
105 * in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1
106 * out : 23,40,41,26, 23,40,41,26
107 * =============================================================================
108 */
__lsx_vdp2add_h_b(__m128i in_c, __m128i in_h, __m128i in_l)109 static inline __m128i __lsx_vdp2add_h_b(__m128i in_c, __m128i in_h,
110 __m128i in_l) {
111 __m128i out;
112
113 out = __lsx_vmaddwev_h_b(in_c, in_h, in_l);
114 out = __lsx_vmaddwod_h_b(out, in_h, in_l);
115 return out;
116 }
117
118 /*
119 * =============================================================================
120 * Description : Dot product & addition of byte vector elements
121 * Arguments : Inputs - in_c, in_h, in_l
122 * Outputs - out
123 * Return Type - halfword
124 * Details : Unsigned byte elements from in_h are multiplied by
125 * unsigned byte elements from in_l, and then added adjacent to
126 * each other to get results with the twice size of input.
127 * The results plus to signed half-word elements from in_c.
128 * Example : out = __lsx_vdp2add_h_bu(in_c, in_h, in_l)
129 * in_c : 1,2,3,4, 1,2,3,4
130 * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
131 * in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1
132 * out : 23,40,41,26, 23,40,41,26
133 * =============================================================================
134 */
__lsx_vdp2add_h_bu(__m128i in_c, __m128i in_h, __m128i in_l)135 static inline __m128i __lsx_vdp2add_h_bu(__m128i in_c, __m128i in_h,
136 __m128i in_l) {
137 __m128i out;
138
139 out = __lsx_vmaddwev_h_bu(in_c, in_h, in_l);
140 out = __lsx_vmaddwod_h_bu(out, in_h, in_l);
141 return out;
142 }
143
144 /*
145 * =============================================================================
146 * Description : Dot product & addition of byte vector elements
147 * Arguments : Inputs - in_c, in_h, in_l
148 * Outputs - out
149 * Return Type - halfword
150 * Details : Unsigned byte elements from in_h are multiplied by
151 * signed byte elements from in_l, and then added adjacent to
152 * each other to get results with the twice size of input.
153 * The results plus to signed half-word elements from in_c.
154 * Example : out = __lsx_vdp2add_h_bu_b(in_c, in_h, in_l)
155 * in_c : 1,1,1,1, 1,1,1,1
156 * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
157 * in_l : -1,-2,-3,-4, -5,-6,-7,-8, 1,2,3,4, 5,6,7,8
158 * out : -4,-24,-60,-112, 6,26,62,114
159 * =============================================================================
160 */
__lsx_vdp2add_h_bu_b(__m128i in_c, __m128i in_h, __m128i in_l)161 static inline __m128i __lsx_vdp2add_h_bu_b(__m128i in_c, __m128i in_h,
162 __m128i in_l) {
163 __m128i out;
164
165 out = __lsx_vmaddwev_h_bu_b(in_c, in_h, in_l);
166 out = __lsx_vmaddwod_h_bu_b(out, in_h, in_l);
167 return out;
168 }
169
170 /*
171 * =============================================================================
172 * Description : Dot product & addition of half-word vector elements
173 * Arguments : Inputs - in_c, in_h, in_l
174 * Outputs - out
175 * Return Type - __m128i
176 * Details : Signed half-word elements from in_h are multiplied by
177 * signed half-word elements from in_l, and then added adjacent to
178 * each other to get results with the twice size of input.
179 * Then the results plus to signed word elements from in_c.
180 * Example : out = __lsx_vdp2add_h_b(in_c, in_h, in_l)
181 * in_c : 1,2,3,4
182 * in_h : 1,2,3,4, 5,6,7,8
183 * in_l : 8,7,6,5, 4,3,2,1
184 * out : 23,40,41,26
185 * =============================================================================
186 */
__lsx_vdp2add_w_h(__m128i in_c, __m128i in_h, __m128i in_l)187 static inline __m128i __lsx_vdp2add_w_h(__m128i in_c, __m128i in_h,
188 __m128i in_l) {
189 __m128i out;
190
191 out = __lsx_vmaddwev_w_h(in_c, in_h, in_l);
192 out = __lsx_vmaddwod_w_h(out, in_h, in_l);
193 return out;
194 }
195
196 /*
197 * =============================================================================
198 * Description : Dot product of byte vector elements
199 * Arguments : Inputs - in_h, in_l
200 * Outputs - out
201 * Return Type - halfword
202 * Details : Signed byte elements from in_h are multiplied by
203 * signed byte elements from in_l, and then added adjacent to
204 * each other to get results with the twice size of input.
205 * Example : out = __lsx_vdp2_h_b(in_h, in_l)
206 * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
207 * in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1
208 * out : 22,38,38,22, 22,38,38,22
209 * =============================================================================
210 */
__lsx_vdp2_h_b(__m128i in_h, __m128i in_l)211 static inline __m128i __lsx_vdp2_h_b(__m128i in_h, __m128i in_l) {
212 __m128i out;
213
214 out = __lsx_vmulwev_h_b(in_h, in_l);
215 out = __lsx_vmaddwod_h_b(out, in_h, in_l);
216 return out;
217 }
218
219 /*
220 * =============================================================================
221 * Description : Dot product of byte vector elements
222 * Arguments : Inputs - in_h, in_l
223 * Outputs - out
224 * Return Type - halfword
225 * Details : Unsigned byte elements from in_h are multiplied by
226 * unsigned byte elements from in_l, and then added adjacent to
227 * each other to get results with the twice size of input.
228 * Example : out = __lsx_vdp2_h_bu(in_h, in_l)
229 * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
230 * in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1
231 * out : 22,38,38,22, 22,38,38,22
232 * =============================================================================
233 */
__lsx_vdp2_h_bu(__m128i in_h, __m128i in_l)234 static inline __m128i __lsx_vdp2_h_bu(__m128i in_h, __m128i in_l) {
235 __m128i out;
236
237 out = __lsx_vmulwev_h_bu(in_h, in_l);
238 out = __lsx_vmaddwod_h_bu(out, in_h, in_l);
239 return out;
240 }
241
242 /*
243 * =============================================================================
244 * Description : Dot product of byte vector elements
245 * Arguments : Inputs - in_h, in_l
246 * Outputs - out
247 * Return Type - halfword
248 * Details : Unsigned byte elements from in_h are multiplied by
249 * signed byte elements from in_l, and then added adjacent to
250 * each other to get results with the twice size of input.
251 * Example : out = __lsx_vdp2_h_bu_b(in_h, in_l)
252 * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
253 * in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,-1
254 * out : 22,38,38,22, 22,38,38,6
255 * =============================================================================
256 */
__lsx_vdp2_h_bu_b(__m128i in_h, __m128i in_l)257 static inline __m128i __lsx_vdp2_h_bu_b(__m128i in_h, __m128i in_l) {
258 __m128i out;
259
260 out = __lsx_vmulwev_h_bu_b(in_h, in_l);
261 out = __lsx_vmaddwod_h_bu_b(out, in_h, in_l);
262 return out;
263 }
264
265 /*
266 * =============================================================================
267 * Description : Dot product of byte vector elements
268 * Arguments : Inputs - in_h, in_l
269 * Outputs - out
270 * Return Type - halfword
271 * Details : Signed byte elements from in_h are multiplied by
272 * signed byte elements from in_l, and then added adjacent to
273 * each other to get results with the twice size of input.
274 * Example : out = __lsx_vdp2_w_h(in_h, in_l)
275 * in_h : 1,2,3,4, 5,6,7,8
276 * in_l : 8,7,6,5, 4,3,2,1
277 * out : 22,38,38,22
278 * =============================================================================
279 */
__lsx_vdp2_w_h(__m128i in_h, __m128i in_l)280 static inline __m128i __lsx_vdp2_w_h(__m128i in_h, __m128i in_l) {
281 __m128i out;
282
283 out = __lsx_vmulwev_w_h(in_h, in_l);
284 out = __lsx_vmaddwod_w_h(out, in_h, in_l);
285 return out;
286 }
287
288 /*
289 * =============================================================================
290 * Description : Clip all halfword elements of input vector between min & max
291 * out = ((_in) < (min)) ? (min) : (((_in) > (max)) ? (max) :
292 * (_in))
293 * Arguments : Inputs - _in (input vector)
294 * - min (min threshold)
295 * - max (max threshold)
296 * Outputs - out (output vector with clipped elements)
297 * Return Type - signed halfword
298 * Example : out = __lsx_vclip_h(_in)
299 * _in : -8,2,280,249, -8,255,280,249
300 * min : 1,1,1,1, 1,1,1,1
301 * max : 9,9,9,9, 9,9,9,9
302 * out : 1,2,9,9, 1,9,9,9
303 * =============================================================================
304 */
__lsx_vclip_h(__m128i _in, __m128i min, __m128i max)305 static inline __m128i __lsx_vclip_h(__m128i _in, __m128i min, __m128i max) {
306 __m128i out;
307
308 out = __lsx_vmax_h(min, _in);
309 out = __lsx_vmin_h(max, out);
310 return out;
311 }
312
313 /*
314 * =============================================================================
315 * Description : Set each element of vector between 0 and 255
316 * Arguments : Inputs - _in
317 * Outputs - out
318 * Return Type - halfword
319 * Details : Signed byte elements from _in are clamped between 0 and 255.
320 * Example : out = __lsx_vclip255_h(_in)
321 * _in : -8,255,280,249, -8,255,280,249
322 * out : 0,255,255,249, 0,255,255,249
323 * =============================================================================
324 */
__lsx_vclip255_h(__m128i _in)325 static inline __m128i __lsx_vclip255_h(__m128i _in) {
326 __m128i out;
327
328 out = __lsx_vmaxi_h(_in, 0);
329 out = __lsx_vsat_hu(out, 7);
330 return out;
331 }
332
333 /*
334 * =============================================================================
335 * Description : Set each element of vector between 0 and 255
336 * Arguments : Inputs - _in
337 * Outputs - out
338 * Return Type - word
339 * Details : Signed byte elements from _in are clamped between 0 and 255.
340 * Example : out = __lsx_vclip255_w(_in)
341 * _in : -8,255,280,249
342 * out : 0,255,255,249
343 * =============================================================================
344 */
__lsx_vclip255_w(__m128i _in)345 static inline __m128i __lsx_vclip255_w(__m128i _in) {
346 __m128i out;
347
348 out = __lsx_vmaxi_w(_in, 0);
349 out = __lsx_vsat_wu(out, 7);
350 return out;
351 }
352
353 /*
354 * =============================================================================
355 * Description : Swap two variables
356 * Arguments : Inputs - _in0, _in1
357 * Outputs - _in0, _in1 (in-place)
358 * Details : Swapping of two input variables using xor
359 * Example : LSX_SWAP(_in0, _in1)
360 * _in0 : 1,2,3,4
361 * _in1 : 5,6,7,8
362 * _in0(out) : 5,6,7,8
363 * _in1(out) : 1,2,3,4
364 * =============================================================================
365 */
366 #define LSX_SWAP(_in0, _in1) \
367 { \
368 _in0 = __lsx_vxor_v(_in0, _in1); \
369 _in1 = __lsx_vxor_v(_in0, _in1); \
370 _in0 = __lsx_vxor_v(_in0, _in1); \
371 }
372
373 /*
374 * =============================================================================
375 * Description : Transpose 4x4 block with word elements in vectors
376 * Arguments : Inputs - in0, in1, in2, in3
377 * Outputs - out0, out1, out2, out3
378 * Details :
379 * Example :
380 * 1, 2, 3, 4 1, 5, 9,13
381 * 5, 6, 7, 8 to 2, 6,10,14
382 * 9,10,11,12 =====> 3, 7,11,15
383 * 13,14,15,16 4, 8,12,16
384 * =============================================================================
385 */
386 #define LSX_TRANSPOSE4x4_W(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
387 { \
388 __m128i _t0, _t1, _t2, _t3; \
389 \
390 _t0 = __lsx_vilvl_w(_in1, _in0); \
391 _t1 = __lsx_vilvh_w(_in1, _in0); \
392 _t2 = __lsx_vilvl_w(_in3, _in2); \
393 _t3 = __lsx_vilvh_w(_in3, _in2); \
394 _out0 = __lsx_vilvl_d(_t2, _t0); \
395 _out1 = __lsx_vilvh_d(_t2, _t0); \
396 _out2 = __lsx_vilvl_d(_t3, _t1); \
397 _out3 = __lsx_vilvh_d(_t3, _t1); \
398 }
399
400 /*
401 * =============================================================================
402 * Description : Transpose 8x8 block with byte elements in vectors
403 * Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7
404 * Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6,
405 * _out7
406 * Details : The rows of the matrix become columns, and the columns
407 * become rows.
408 * Example : LSX_TRANSPOSE8x8_B
409 * _in0 : 00,01,02,03,04,05,06,07, 00,00,00,00,00,00,00,00
410 * _in1 : 10,11,12,13,14,15,16,17, 00,00,00,00,00,00,00,00
411 * _in2 : 20,21,22,23,24,25,26,27, 00,00,00,00,00,00,00,00
412 * _in3 : 30,31,32,33,34,35,36,37, 00,00,00,00,00,00,00,00
413 * _in4 : 40,41,42,43,44,45,46,47, 00,00,00,00,00,00,00,00
414 * _in5 : 50,51,52,53,54,55,56,57, 00,00,00,00,00,00,00,00
415 * _in6 : 60,61,62,63,64,65,66,67, 00,00,00,00,00,00,00,00
416 * _in7 : 70,71,72,73,74,75,76,77, 00,00,00,00,00,00,00,00
417 *
418 * _ out0 : 00,10,20,30,40,50,60,70, 00,00,00,00,00,00,00,00
419 * _ out1 : 01,11,21,31,41,51,61,71, 00,00,00,00,00,00,00,00
420 * _ out2 : 02,12,22,32,42,52,62,72, 00,00,00,00,00,00,00,00
421 * _ out3 : 03,13,23,33,43,53,63,73, 00,00,00,00,00,00,00,00
422 * _ out4 : 04,14,24,34,44,54,64,74, 00,00,00,00,00,00,00,00
423 * _ out5 : 05,15,25,35,45,55,65,75, 00,00,00,00,00,00,00,00
424 * _ out6 : 06,16,26,36,46,56,66,76, 00,00,00,00,00,00,00,00
425 * _ out7 : 07,17,27,37,47,57,67,77, 00,00,00,00,00,00,00,00
426 * =============================================================================
427 */
428 #define LSX_TRANSPOSE8x8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
429 _out0, _out1, _out2, _out3, _out4, _out5, _out6, \
430 _out7) \
431 { \
432 __m128i zero = { 0 }; \
433 __m128i shuf8 = { 0x0F0E0D0C0B0A0908, 0x1716151413121110 }; \
434 __m128i _t0, _t1, _t2, _t3, _t4, _t5, _t6, _t7; \
435 \
436 _t0 = __lsx_vilvl_b(_in2, _in0); \
437 _t1 = __lsx_vilvl_b(_in3, _in1); \
438 _t2 = __lsx_vilvl_b(_in6, _in4); \
439 _t3 = __lsx_vilvl_b(_in7, _in5); \
440 _t4 = __lsx_vilvl_b(_t1, _t0); \
441 _t5 = __lsx_vilvh_b(_t1, _t0); \
442 _t6 = __lsx_vilvl_b(_t3, _t2); \
443 _t7 = __lsx_vilvh_b(_t3, _t2); \
444 _out0 = __lsx_vilvl_w(_t6, _t4); \
445 _out2 = __lsx_vilvh_w(_t6, _t4); \
446 _out4 = __lsx_vilvl_w(_t7, _t5); \
447 _out6 = __lsx_vilvh_w(_t7, _t5); \
448 _out1 = __lsx_vshuf_b(zero, _out0, shuf8); \
449 _out3 = __lsx_vshuf_b(zero, _out2, shuf8); \
450 _out5 = __lsx_vshuf_b(zero, _out4, shuf8); \
451 _out7 = __lsx_vshuf_b(zero, _out6, shuf8); \
452 }
453
454 /*
455 * =============================================================================
456 * Description : Transpose 8x8 block with half-word elements in vectors
457 * Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7
458 * Outputs - out0, out1, out2, out3, out4, out5, out6, out7
459 * Details :
460 * Example :
461 * 00,01,02,03,04,05,06,07 00,10,20,30,40,50,60,70
462 * 10,11,12,13,14,15,16,17 01,11,21,31,41,51,61,71
463 * 20,21,22,23,24,25,26,27 02,12,22,32,42,52,62,72
464 * 30,31,32,33,34,35,36,37 to 03,13,23,33,43,53,63,73
465 * 40,41,42,43,44,45,46,47 ======> 04,14,24,34,44,54,64,74
466 * 50,51,52,53,54,55,56,57 05,15,25,35,45,55,65,75
467 * 60,61,62,63,64,65,66,67 06,16,26,36,46,56,66,76
468 * 70,71,72,73,74,75,76,77 07,17,27,37,47,57,67,77
469 * =============================================================================
470 */
471 #define LSX_TRANSPOSE8x8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
472 _out0, _out1, _out2, _out3, _out4, _out5, _out6, \
473 _out7) \
474 { \
475 __m128i _s0, _s1, _t0, _t1, _t2, _t3, _t4, _t5, _t6, _t7; \
476 \
477 _s0 = __lsx_vilvl_h(_in6, _in4); \
478 _s1 = __lsx_vilvl_h(_in7, _in5); \
479 _t0 = __lsx_vilvl_h(_s1, _s0); \
480 _t1 = __lsx_vilvh_h(_s1, _s0); \
481 _s0 = __lsx_vilvh_h(_in6, _in4); \
482 _s1 = __lsx_vilvh_h(_in7, _in5); \
483 _t2 = __lsx_vilvl_h(_s1, _s0); \
484 _t3 = __lsx_vilvh_h(_s1, _s0); \
485 _s0 = __lsx_vilvl_h(_in2, _in0); \
486 _s1 = __lsx_vilvl_h(_in3, _in1); \
487 _t4 = __lsx_vilvl_h(_s1, _s0); \
488 _t5 = __lsx_vilvh_h(_s1, _s0); \
489 _s0 = __lsx_vilvh_h(_in2, _in0); \
490 _s1 = __lsx_vilvh_h(_in3, _in1); \
491 _t6 = __lsx_vilvl_h(_s1, _s0); \
492 _t7 = __lsx_vilvh_h(_s1, _s0); \
493 \
494 _out0 = __lsx_vpickev_d(_t0, _t4); \
495 _out2 = __lsx_vpickev_d(_t1, _t5); \
496 _out4 = __lsx_vpickev_d(_t2, _t6); \
497 _out6 = __lsx_vpickev_d(_t3, _t7); \
498 _out1 = __lsx_vpickod_d(_t0, _t4); \
499 _out3 = __lsx_vpickod_d(_t1, _t5); \
500 _out5 = __lsx_vpickod_d(_t2, _t6); \
501 _out7 = __lsx_vpickod_d(_t3, _t7); \
502 }
503
504 /*
505 * =============================================================================
506 * Description : Transpose input 8x4 byte block into 4x8
507 * Arguments : Inputs - _in0, _in1, _in2, _in3 (input 8x4 byte block)
508 * Outputs - _out0, _out1, _out2, _out3 (output 4x8 byte block)
509 * Return Type - as per RTYPE
510 * Details : The rows of the matrix become columns, and the columns become
511 * rows.
512 * Example : LSX_TRANSPOSE8x4_B
513 * _in0 : 00,01,02,03,00,00,00,00, 00,00,00,00,00,00,00,00
514 * _in1 : 10,11,12,13,00,00,00,00, 00,00,00,00,00,00,00,00
515 * _in2 : 20,21,22,23,00,00,00,00, 00,00,00,00,00,00,00,00
516 * _in3 : 30,31,32,33,00,00,00,00, 00,00,00,00,00,00,00,00
517 * _in4 : 40,41,42,43,00,00,00,00, 00,00,00,00,00,00,00,00
518 * _in5 : 50,51,52,53,00,00,00,00, 00,00,00,00,00,00,00,00
519 * _in6 : 60,61,62,63,00,00,00,00, 00,00,00,00,00,00,00,00
520 * _in7 : 70,71,72,73,00,00,00,00, 00,00,00,00,00,00,00,00
521 *
522 * _out0 : 00,10,20,30,40,50,60,70, 00,00,00,00,00,00,00,00
523 * _out1 : 01,11,21,31,41,51,61,71, 00,00,00,00,00,00,00,00
524 * _out2 : 02,12,22,32,42,52,62,72, 00,00,00,00,00,00,00,00
525 * _out3 : 03,13,23,33,43,53,63,73, 00,00,00,00,00,00,00,00
526 * =============================================================================
527 */
528 #define LSX_TRANSPOSE8x4_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
529 _out0, _out1, _out2, _out3) \
530 { \
531 __m128i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \
532 \
533 _tmp0_m = __lsx_vpackev_w(_in4, _in0); \
534 _tmp1_m = __lsx_vpackev_w(_in5, _in1); \
535 _tmp2_m = __lsx_vilvl_b(_tmp1_m, _tmp0_m); \
536 _tmp0_m = __lsx_vpackev_w(_in6, _in2); \
537 _tmp1_m = __lsx_vpackev_w(_in7, _in3); \
538 \
539 _tmp3_m = __lsx_vilvl_b(_tmp1_m, _tmp0_m); \
540 _tmp0_m = __lsx_vilvl_h(_tmp3_m, _tmp2_m); \
541 _tmp1_m = __lsx_vilvh_h(_tmp3_m, _tmp2_m); \
542 \
543 _out0 = __lsx_vilvl_w(_tmp1_m, _tmp0_m); \
544 _out2 = __lsx_vilvh_w(_tmp1_m, _tmp0_m); \
545 _out1 = __lsx_vilvh_d(_out2, _out0); \
546 _out3 = __lsx_vilvh_d(_out0, _out2); \
547 }
548
549 /*
550 * =============================================================================
551 * Description : Transpose 16x8 block with byte elements in vectors
552 * Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, in8
553 * in9, in10, in11, in12, in13, in14, in15
554 * Outputs - out0, out1, out2, out3, out4, out5, out6, out7
555 * Details :
556 * Example :
557 * 000,001,002,003,004,005,006,007
558 * 008,009,010,011,012,013,014,015
559 * 016,017,018,019,020,021,022,023
560 * 024,025,026,027,028,029,030,031
561 * 032,033,034,035,036,037,038,039
562 * 040,041,042,043,044,045,046,047 000,008,...,112,120
563 * 048,049,050,051,052,053,054,055 001,009,...,113,121
564 * 056,057,058,059,060,061,062,063 to 002,010,...,114,122
565 * 064,068,066,067,068,069,070,071 =====> 003,011,...,115,123
566 * 072,073,074,075,076,077,078,079 004,012,...,116,124
567 * 080,081,082,083,084,085,086,087 005,013,...,117,125
568 * 088,089,090,091,092,093,094,095 006,014,...,118,126
569 * 096,097,098,099,100,101,102,103 007,015,...,119,127
570 * 104,105,106,107,108,109,110,111
571 * 112,113,114,115,116,117,118,119
572 * 120,121,122,123,124,125,126,127
573 * =============================================================================
574 */
575 #define LSX_TRANSPOSE16x8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
576 _in8, _in9, _in10, _in11, _in12, _in13, _in14, \
577 _in15, _out0, _out1, _out2, _out3, _out4, _out5, \
578 _out6, _out7) \
579 { \
580 __m128i _tmp0, _tmp1, _tmp2, _tmp3, _tmp4, _tmp5, _tmp6, _tmp7; \
581 __m128i _t0, _t1, _t2, _t3, _t4, _t5, _t6, _t7; \
582 DUP4_ARG2(__lsx_vilvl_b, _in2, _in0, _in3, _in1, _in6, _in4, _in7, _in5, \
583 _tmp0, _tmp1, _tmp2, _tmp3); \
584 DUP4_ARG2(__lsx_vilvl_b, _in10, _in8, _in11, _in9, _in14, _in12, _in15, \
585 _in13, _tmp4, _tmp5, _tmp6, _tmp7); \
586 DUP2_ARG2(__lsx_vilvl_b, _tmp1, _tmp0, _tmp3, _tmp2, _t0, _t2); \
587 DUP2_ARG2(__lsx_vilvh_b, _tmp1, _tmp0, _tmp3, _tmp2, _t1, _t3); \
588 DUP2_ARG2(__lsx_vilvl_b, _tmp5, _tmp4, _tmp7, _tmp6, _t4, _t6); \
589 DUP2_ARG2(__lsx_vilvh_b, _tmp5, _tmp4, _tmp7, _tmp6, _t5, _t7); \
590 DUP2_ARG2(__lsx_vilvl_w, _t2, _t0, _t3, _t1, _tmp0, _tmp4); \
591 DUP2_ARG2(__lsx_vilvh_w, _t2, _t0, _t3, _t1, _tmp2, _tmp6); \
592 DUP2_ARG2(__lsx_vilvl_w, _t6, _t4, _t7, _t5, _tmp1, _tmp5); \
593 DUP2_ARG2(__lsx_vilvh_w, _t6, _t4, _t7, _t5, _tmp3, _tmp7); \
594 DUP2_ARG2(__lsx_vilvl_d, _tmp1, _tmp0, _tmp3, _tmp2, _out0, _out2); \
595 DUP2_ARG2(__lsx_vilvh_d, _tmp1, _tmp0, _tmp3, _tmp2, _out1, _out3); \
596 DUP2_ARG2(__lsx_vilvl_d, _tmp5, _tmp4, _tmp7, _tmp6, _out4, _out6); \
597 DUP2_ARG2(__lsx_vilvh_d, _tmp5, _tmp4, _tmp7, _tmp6, _out5, _out7); \
598 }
599
600 /*
601 * =============================================================================
602 * Description : Butterfly of 4 input vectors
603 * Arguments : Inputs - in0, in1, in2, in3
604 * Outputs - out0, out1, out2, out3
605 * Details : Butterfly operation
606 * Example :
607 * out0 = in0 + in3;
608 * out1 = in1 + in2;
609 * out2 = in1 - in2;
610 * out3 = in0 - in3;
611 * =============================================================================
612 */
613 #define LSX_BUTTERFLY_4_B(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
614 { \
615 _out0 = __lsx_vadd_b(_in0, _in3); \
616 _out1 = __lsx_vadd_b(_in1, _in2); \
617 _out2 = __lsx_vsub_b(_in1, _in2); \
618 _out3 = __lsx_vsub_b(_in0, _in3); \
619 }
620 #define LSX_BUTTERFLY_4_H(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
621 { \
622 _out0 = __lsx_vadd_h(_in0, _in3); \
623 _out1 = __lsx_vadd_h(_in1, _in2); \
624 _out2 = __lsx_vsub_h(_in1, _in2); \
625 _out3 = __lsx_vsub_h(_in0, _in3); \
626 }
627 #define LSX_BUTTERFLY_4_W(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
628 { \
629 _out0 = __lsx_vadd_w(_in0, _in3); \
630 _out1 = __lsx_vadd_w(_in1, _in2); \
631 _out2 = __lsx_vsub_w(_in1, _in2); \
632 _out3 = __lsx_vsub_w(_in0, _in3); \
633 }
634 #define LSX_BUTTERFLY_4_D(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
635 { \
636 _out0 = __lsx_vadd_d(_in0, _in3); \
637 _out1 = __lsx_vadd_d(_in1, _in2); \
638 _out2 = __lsx_vsub_d(_in1, _in2); \
639 _out3 = __lsx_vsub_d(_in0, _in3); \
640 }
641
642 /*
643 * =============================================================================
644 * Description : Butterfly of 8 input vectors
645 * Arguments : Inputs - _in0, _in1, _in2, _in3, ~
646 * Outputs - _out0, _out1, _out2, _out3, ~
647 * Details : Butterfly operation
648 * Example :
649 * _out0 = _in0 + _in7;
650 * _out1 = _in1 + _in6;
651 * _out2 = _in2 + _in5;
652 * _out3 = _in3 + _in4;
653 * _out4 = _in3 - _in4;
654 * _out5 = _in2 - _in5;
655 * _out6 = _in1 - _in6;
656 * _out7 = _in0 - _in7;
657 * =============================================================================
658 */
659 #define LSX_BUTTERFLY_8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
660 _out0, _out1, _out2, _out3, _out4, _out5, _out6, \
661 _out7) \
662 { \
663 _out0 = __lsx_vadd_b(_in0, _in7); \
664 _out1 = __lsx_vadd_b(_in1, _in6); \
665 _out2 = __lsx_vadd_b(_in2, _in5); \
666 _out3 = __lsx_vadd_b(_in3, _in4); \
667 _out4 = __lsx_vsub_b(_in3, _in4); \
668 _out5 = __lsx_vsub_b(_in2, _in5); \
669 _out6 = __lsx_vsub_b(_in1, _in6); \
670 _out7 = __lsx_vsub_b(_in0, _in7); \
671 }
672
673 #define LSX_BUTTERFLY_8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
674 _out0, _out1, _out2, _out3, _out4, _out5, _out6, \
675 _out7) \
676 { \
677 _out0 = __lsx_vadd_h(_in0, _in7); \
678 _out1 = __lsx_vadd_h(_in1, _in6); \
679 _out2 = __lsx_vadd_h(_in2, _in5); \
680 _out3 = __lsx_vadd_h(_in3, _in4); \
681 _out4 = __lsx_vsub_h(_in3, _in4); \
682 _out5 = __lsx_vsub_h(_in2, _in5); \
683 _out6 = __lsx_vsub_h(_in1, _in6); \
684 _out7 = __lsx_vsub_h(_in0, _in7); \
685 }
686
687 #define LSX_BUTTERFLY_8_W(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
688 _out0, _out1, _out2, _out3, _out4, _out5, _out6, \
689 _out7) \
690 { \
691 _out0 = __lsx_vadd_w(_in0, _in7); \
692 _out1 = __lsx_vadd_w(_in1, _in6); \
693 _out2 = __lsx_vadd_w(_in2, _in5); \
694 _out3 = __lsx_vadd_w(_in3, _in4); \
695 _out4 = __lsx_vsub_w(_in3, _in4); \
696 _out5 = __lsx_vsub_w(_in2, _in5); \
697 _out6 = __lsx_vsub_w(_in1, _in6); \
698 _out7 = __lsx_vsub_w(_in0, _in7); \
699 }
700
701 #define LSX_BUTTERFLY_8_D(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
702 _out0, _out1, _out2, _out3, _out4, _out5, _out6, \
703 _out7) \
704 { \
705 _out0 = __lsx_vadd_d(_in0, _in7); \
706 _out1 = __lsx_vadd_d(_in1, _in6); \
707 _out2 = __lsx_vadd_d(_in2, _in5); \
708 _out3 = __lsx_vadd_d(_in3, _in4); \
709 _out4 = __lsx_vsub_d(_in3, _in4); \
710 _out5 = __lsx_vsub_d(_in2, _in5); \
711 _out6 = __lsx_vsub_d(_in1, _in6); \
712 _out7 = __lsx_vsub_d(_in0, _in7); \
713 }
714
715 #endif // LSX
716
717 #ifdef __loongarch_asx
718 #include <lasxintrin.h>
719 /*
720 * =============================================================================
721 * Description : Dot product of byte vector elements
722 * Arguments : Inputs - in_h, in_l
723 * Output - out
724 * Return Type - signed halfword
725 * Details : Unsigned byte elements from in_h are multiplied with
726 * unsigned byte elements from in_l producing a result
727 * twice the size of input i.e. signed halfword.
728 * Then this multiplied results of adjacent odd-even elements
729 * are added to the out vector
730 * Example : See out = __lasx_xvdp2_w_h(in_h, in_l)
731 * =============================================================================
732 */
__lasx_xvdp2_h_bu(__m256i in_h, __m256i in_l)733 static inline __m256i __lasx_xvdp2_h_bu(__m256i in_h, __m256i in_l) {
734 __m256i out;
735
736 out = __lasx_xvmulwev_h_bu(in_h, in_l);
737 out = __lasx_xvmaddwod_h_bu(out, in_h, in_l);
738 return out;
739 }
740
741 /*
742 * =============================================================================
743 * Description : Dot product of byte vector elements
744 * Arguments : Inputs - in_h, in_l
745 * Output - out
746 * Return Type - signed halfword
747 * Details : Signed byte elements from in_h are multiplied with
748 * signed byte elements from in_l producing a result
749 * twice the size of input i.e. signed halfword.
750 * Then this multiplication results of adjacent odd-even elements
751 * are added to the out vector
752 * Example : See out = __lasx_xvdp2_w_h(in_h, in_l)
753 * =============================================================================
754 */
__lasx_xvdp2_h_b(__m256i in_h, __m256i in_l)755 static inline __m256i __lasx_xvdp2_h_b(__m256i in_h, __m256i in_l) {
756 __m256i out;
757
758 out = __lasx_xvmulwev_h_b(in_h, in_l);
759 out = __lasx_xvmaddwod_h_b(out, in_h, in_l);
760 return out;
761 }
762
763 /*
764 * =============================================================================
765 * Description : Dot product of halfword vector elements
766 * Arguments : Inputs - in_h, in_l
767 * Output - out
768 * Return Type - signed word
769 * Details : Signed halfword elements from in_h are multiplied with
770 * signed halfword elements from in_l producing a result
771 * twice the size of input i.e. signed word.
772 * Then this multiplied results of adjacent odd-even elements
773 * are added to the out vector.
774 * Example : out = __lasx_xvdp2_w_h(in_h, in_l)
775 * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
776 * in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1
777 * out : 22,38,38,22, 22,38,38,22
778 * =============================================================================
779 */
__lasx_xvdp2_w_h(__m256i in_h, __m256i in_l)780 static inline __m256i __lasx_xvdp2_w_h(__m256i in_h, __m256i in_l) {
781 __m256i out;
782
783 out = __lasx_xvmulwev_w_h(in_h, in_l);
784 out = __lasx_xvmaddwod_w_h(out, in_h, in_l);
785 return out;
786 }
787
788 /*
789 * =============================================================================
790 * Description : Dot product of word vector elements
791 * Arguments : Inputs - in_h, in_l
792 * Output - out
793 * Return Type - signed double
794 * Details : Signed word elements from in_h are multiplied with
795 * signed word elements from in_l producing a result
796 * twice the size of input i.e. signed double-word.
797 * Then this multiplied results of adjacent odd-even elements
798 * are added to the out vector.
799 * Example : See out = __lasx_xvdp2_w_h(in_h, in_l)
800 * =============================================================================
801 */
__lasx_xvdp2_d_w(__m256i in_h, __m256i in_l)802 static inline __m256i __lasx_xvdp2_d_w(__m256i in_h, __m256i in_l) {
803 __m256i out;
804
805 out = __lasx_xvmulwev_d_w(in_h, in_l);
806 out = __lasx_xvmaddwod_d_w(out, in_h, in_l);
807 return out;
808 }
809
810 /*
811 * =============================================================================
812 * Description : Dot product of halfword vector elements
813 * Arguments : Inputs - in_h, in_l
814 * Output - out
815 * Return Type - signed word
816 * Details : Unsigned halfword elements from in_h are multiplied with
817 * signed halfword elements from in_l producing a result
818 * twice the size of input i.e. unsigned word.
819 * Multiplication result of adjacent odd-even elements
820 * are added to the out vector
821 * Example : See out = __lasx_xvdp2_w_h(in_h, in_l)
822 * =============================================================================
823 */
__lasx_xvdp2_w_hu_h(__m256i in_h, __m256i in_l)824 static inline __m256i __lasx_xvdp2_w_hu_h(__m256i in_h, __m256i in_l) {
825 __m256i out;
826
827 out = __lasx_xvmulwev_w_hu_h(in_h, in_l);
828 out = __lasx_xvmaddwod_w_hu_h(out, in_h, in_l);
829 return out;
830 }
831
832 /*
833 * =============================================================================
834 * Description : Dot product & addition of byte vector elements
835 * Arguments : Inputs - in_h, in_l
836 * Output - out
837 * Return Type - halfword
838 * Details : Signed byte elements from in_h are multiplied with
839 * signed byte elements from in_l producing a result
840 * twice the size of input i.e. signed halfword.
841 * Then this multiplied results of adjacent odd-even elements
842 * are added to the in_c vector.
843 * Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l)
844 * =============================================================================
845 */
__lasx_xvdp2add_h_b(__m256i in_c, __m256i in_h, __m256i in_l)846 static inline __m256i __lasx_xvdp2add_h_b(__m256i in_c, __m256i in_h,
847 __m256i in_l) {
848 __m256i out;
849
850 out = __lasx_xvmaddwev_h_b(in_c, in_h, in_l);
851 out = __lasx_xvmaddwod_h_b(out, in_h, in_l);
852 return out;
853 }
854
855 /*
856 * =============================================================================
857 * Description : Dot product & addition of byte vector elements
858 * Arguments : Inputs - in_h, in_l
859 * Output - out
860 * Return Type - halfword
861 * Details : Unsigned byte elements from in_h are multiplied with
862 * unsigned byte elements from in_l producing a result
863 * twice the size of input i.e. signed halfword.
864 * Then this multiplied results of adjacent odd-even elements
865 * are added to the in_c vector.
866 * Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l)
867 * =============================================================================
868 */
__lasx_xvdp2add_h_bu(__m256i in_c, __m256i in_h, __m256i in_l)869 static inline __m256i __lasx_xvdp2add_h_bu(__m256i in_c, __m256i in_h,
870 __m256i in_l) {
871 __m256i out;
872
873 out = __lasx_xvmaddwev_h_bu(in_c, in_h, in_l);
874 out = __lasx_xvmaddwod_h_bu(out, in_h, in_l);
875 return out;
876 }
877
878 /*
879 * =============================================================================
880 * Description : Dot product & addition of byte vector elements
881 * Arguments : Inputs - in_h, in_l
882 * Output - out
883 * Return Type - halfword
884 * Details : Unsigned byte elements from in_h are multiplied with
885 * signed byte elements from in_l producing a result
886 * twice the size of input i.e. signed halfword.
887 * Then this multiplied results of adjacent odd-even elements
888 * are added to the in_c vector.
889 * Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l)
890 * =============================================================================
891 */
__lasx_xvdp2add_h_bu_b(__m256i in_c, __m256i in_h, __m256i in_l)892 static inline __m256i __lasx_xvdp2add_h_bu_b(__m256i in_c, __m256i in_h,
893 __m256i in_l) {
894 __m256i out;
895
896 out = __lasx_xvmaddwev_h_bu_b(in_c, in_h, in_l);
897 out = __lasx_xvmaddwod_h_bu_b(out, in_h, in_l);
898 return out;
899 }
900
901 /*
902 * =============================================================================
903 * Description : Dot product of halfword vector elements
904 * Arguments : Inputs - in_c, in_h, in_l
905 * Output - out
906 * Return Type - per RTYPE
907 * Details : Signed halfword elements from in_h are multiplied with
908 * signed halfword elements from in_l producing a result
909 * twice the size of input i.e. signed word.
910 * Multiplication result of adjacent odd-even elements
911 * are added to the in_c vector.
912 * Example : out = __lasx_xvdp2add_w_h(in_c, in_h, in_l)
913 * in_c : 1,2,3,4, 1,2,3,4
914 * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8,
915 * in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1,
916 * out : 23,40,41,26, 23,40,41,26
917 * =============================================================================
918 */
__lasx_xvdp2add_w_h(__m256i in_c, __m256i in_h, __m256i in_l)919 static inline __m256i __lasx_xvdp2add_w_h(__m256i in_c, __m256i in_h,
920 __m256i in_l) {
921 __m256i out;
922
923 out = __lasx_xvmaddwev_w_h(in_c, in_h, in_l);
924 out = __lasx_xvmaddwod_w_h(out, in_h, in_l);
925 return out;
926 }
927
928 /*
929 * =============================================================================
930 * Description : Dot product of halfword vector elements
931 * Arguments : Inputs - in_c, in_h, in_l
932 * Output - out
933 * Return Type - signed word
934 * Details : Unsigned halfword elements from in_h are multiplied with
935 * unsigned halfword elements from in_l producing a result
936 * twice the size of input i.e. signed word.
937 * Multiplication result of adjacent odd-even elements
938 * are added to the in_c vector.
939 * Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l)
940 * =============================================================================
941 */
__lasx_xvdp2add_w_hu(__m256i in_c, __m256i in_h, __m256i in_l)942 static inline __m256i __lasx_xvdp2add_w_hu(__m256i in_c, __m256i in_h,
943 __m256i in_l) {
944 __m256i out;
945
946 out = __lasx_xvmaddwev_w_hu(in_c, in_h, in_l);
947 out = __lasx_xvmaddwod_w_hu(out, in_h, in_l);
948 return out;
949 }
950
951 /*
952 * =============================================================================
953 * Description : Dot product of halfword vector elements
954 * Arguments : Inputs - in_c, in_h, in_l
955 * Output - out
956 * Return Type - signed word
957 * Details : Unsigned halfword elements from in_h are multiplied with
958 * signed halfword elements from in_l producing a result
959 * twice the size of input i.e. signed word.
960 * Multiplication result of adjacent odd-even elements
961 * are added to the in_c vector
962 * Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l)
963 * =============================================================================
964 */
__lasx_xvdp2add_w_hu_h(__m256i in_c, __m256i in_h, __m256i in_l)965 static inline __m256i __lasx_xvdp2add_w_hu_h(__m256i in_c, __m256i in_h,
966 __m256i in_l) {
967 __m256i out;
968
969 out = __lasx_xvmaddwev_w_hu_h(in_c, in_h, in_l);
970 out = __lasx_xvmaddwod_w_hu_h(out, in_h, in_l);
971 return out;
972 }
973
974 /*
975 * =============================================================================
976 * Description : Vector Unsigned Dot Product and Subtract
977 * Arguments : Inputs - in_c, in_h, in_l
978 * Output - out
979 * Return Type - signed halfword
980 * Details : Unsigned byte elements from in_h are multiplied with
981 * unsigned byte elements from in_l producing a result
982 * twice the size of input i.e. signed halfword.
983 * Multiplication result of adjacent odd-even elements
984 * are added together and subtracted from double width elements
985 * in_c vector.
986 * Example : See out = __lasx_xvdp2sub_w_h(in_c, in_h, in_l)
987 * =============================================================================
988 */
__lasx_xvdp2sub_h_bu(__m256i in_c, __m256i in_h, __m256i in_l)989 static inline __m256i __lasx_xvdp2sub_h_bu(__m256i in_c, __m256i in_h,
990 __m256i in_l) {
991 __m256i out;
992
993 out = __lasx_xvmulwev_h_bu(in_h, in_l);
994 out = __lasx_xvmaddwod_h_bu(out, in_h, in_l);
995 out = __lasx_xvsub_h(in_c, out);
996 return out;
997 }
998
999 /*
1000 * =============================================================================
1001 * Description : Vector Signed Dot Product and Subtract
1002 * Arguments : Inputs - in_c, in_h, in_l
1003 * Output - out
1004 * Return Type - signed word
1005 * Details : Signed halfword elements from in_h are multiplied with
1006 * Signed halfword elements from in_l producing a result
1007 * twice the size of input i.e. signed word.
1008 * Multiplication result of adjacent odd-even elements
1009 * are added together and subtracted from double width elements
1010 * in_c vector.
1011 * Example : out = __lasx_xvdp2sub_w_h(in_c, in_h, in_l)
1012 * in_c : 0,0,0,0, 0,0,0,0
1013 * in_h : 3,1,3,0, 0,0,0,1, 0,0,1,1, 0,0,0,1
1014 * in_l : 2,1,1,0, 1,0,0,0, 0,0,1,0, 1,0,0,1
1015 * out : -7,-3,0,0, 0,-1,0,-1
1016 * =============================================================================
1017 */
__lasx_xvdp2sub_w_h(__m256i in_c, __m256i in_h, __m256i in_l)1018 static inline __m256i __lasx_xvdp2sub_w_h(__m256i in_c, __m256i in_h,
1019 __m256i in_l) {
1020 __m256i out;
1021
1022 out = __lasx_xvmulwev_w_h(in_h, in_l);
1023 out = __lasx_xvmaddwod_w_h(out, in_h, in_l);
1024 out = __lasx_xvsub_w(in_c, out);
1025 return out;
1026 }
1027
1028 /*
1029 * =============================================================================
1030 * Description : Dot product of halfword vector elements
1031 * Arguments : Inputs - in_h, in_l
1032 * Output - out
1033 * Return Type - signed word
1034 * Details : Signed halfword elements from in_h are multiplied with
1035 * signed halfword elements from in_l producing a result
1036 * four times the size of input i.e. signed doubleword.
1037 * Then this multiplication results of four adjacent elements
1038 * are added together and stored to the out vector.
1039 * Example : out = __lasx_xvdp4_d_h(in_h, in_l)
1040 * in_h : 3,1,3,0, 0,0,0,1, 0,0,1,-1, 0,0,0,1
1041 * in_l : -2,1,1,0, 1,0,0,0, 0,0,1, 0, 1,0,0,1
1042 * out : -2,0,1,1
1043 * =============================================================================
1044 */
__lasx_xvdp4_d_h(__m256i in_h, __m256i in_l)1045 static inline __m256i __lasx_xvdp4_d_h(__m256i in_h, __m256i in_l) {
1046 __m256i out;
1047
1048 out = __lasx_xvmulwev_w_h(in_h, in_l);
1049 out = __lasx_xvmaddwod_w_h(out, in_h, in_l);
1050 out = __lasx_xvhaddw_d_w(out, out);
1051 return out;
1052 }
1053
1054 /*
1055 * =============================================================================
1056 * Description : The high half of the vector elements are expanded and
1057 * added after being doubled.
1058 * Arguments : Inputs - in_h, in_l
1059 * Output - out
1060 * Details : The in_h vector and the in_l vector are added after the
1061 * higher half of the two-fold sign extension (signed byte
1062 * to signed halfword) and stored to the out vector.
1063 * Example : See out = __lasx_xvaddwh_w_h(in_h, in_l)
1064 * =============================================================================
1065 */
__lasx_xvaddwh_h_b(__m256i in_h, __m256i in_l)1066 static inline __m256i __lasx_xvaddwh_h_b(__m256i in_h, __m256i in_l) {
1067 __m256i out;
1068
1069 out = __lasx_xvilvh_b(in_h, in_l);
1070 out = __lasx_xvhaddw_h_b(out, out);
1071 return out;
1072 }
1073
1074 /*
1075 * =============================================================================
1076 * Description : The high half of the vector elements are expanded and
1077 * added after being doubled.
1078 * Arguments : Inputs - in_h, in_l
1079 * Output - out
1080 * Details : The in_h vector and the in_l vector are added after the
1081 * higher half of the two-fold sign extension (signed halfword
1082 * to signed word) and stored to the out vector.
1083 * Example : out = __lasx_xvaddwh_w_h(in_h, in_l)
1084 * in_h : 3, 0,3,0, 0,0,0,-1, 0,0,1,-1, 0,0,0,1
1085 * in_l : 2,-1,1,2, 1,0,0, 0, 1,0,1, 0, 1,0,0,1
1086 * out : 1,0,0,-1, 1,0,0, 2
1087 * =============================================================================
1088 */
__lasx_xvaddwh_w_h(__m256i in_h, __m256i in_l)1089 static inline __m256i __lasx_xvaddwh_w_h(__m256i in_h, __m256i in_l) {
1090 __m256i out;
1091
1092 out = __lasx_xvilvh_h(in_h, in_l);
1093 out = __lasx_xvhaddw_w_h(out, out);
1094 return out;
1095 }
1096
1097 /*
1098 * =============================================================================
1099 * Description : The low half of the vector elements are expanded and
1100 * added after being doubled.
1101 * Arguments : Inputs - in_h, in_l
1102 * Output - out
1103 * Details : The in_h vector and the in_l vector are added after the
1104 * lower half of the two-fold sign extension (signed byte
1105 * to signed halfword) and stored to the out vector.
1106 * Example : See out = __lasx_xvaddwl_w_h(in_h, in_l)
1107 * =============================================================================
1108 */
__lasx_xvaddwl_h_b(__m256i in_h, __m256i in_l)1109 static inline __m256i __lasx_xvaddwl_h_b(__m256i in_h, __m256i in_l) {
1110 __m256i out;
1111
1112 out = __lasx_xvilvl_b(in_h, in_l);
1113 out = __lasx_xvhaddw_h_b(out, out);
1114 return out;
1115 }
1116
1117 /*
1118 * =============================================================================
1119 * Description : The low half of the vector elements are expanded and
1120 * added after being doubled.
1121 * Arguments : Inputs - in_h, in_l
1122 * Output - out
1123 * Details : The in_h vector and the in_l vector are added after the
1124 * lower half of the two-fold sign extension (signed halfword
1125 * to signed word) and stored to the out vector.
1126 * Example : out = __lasx_xvaddwl_w_h(in_h, in_l)
1127 * in_h : 3, 0,3,0, 0,0,0,-1, 0,0,1,-1, 0,0,0,1
1128 * in_l : 2,-1,1,2, 1,0,0, 0, 1,0,1, 0, 1,0,0,1
1129 * out : 5,-1,4,2, 1,0,2,-1
1130 * =============================================================================
1131 */
__lasx_xvaddwl_w_h(__m256i in_h, __m256i in_l)1132 static inline __m256i __lasx_xvaddwl_w_h(__m256i in_h, __m256i in_l) {
1133 __m256i out;
1134
1135 out = __lasx_xvilvl_h(in_h, in_l);
1136 out = __lasx_xvhaddw_w_h(out, out);
1137 return out;
1138 }
1139
1140 /*
1141 * =============================================================================
1142 * Description : The low half of the vector elements are expanded and
1143 * added after being doubled.
1144 * Arguments : Inputs - in_h, in_l
1145 * Output - out
1146 * Details : The out vector and the out vector are added after the
1147 * lower half of the two-fold zero extension (unsigned byte
1148 * to unsigned halfword) and stored to the out vector.
1149 * Example : See out = __lasx_xvaddwl_w_h(in_h, in_l)
1150 * =============================================================================
1151 */
__lasx_xvaddwl_h_bu(__m256i in_h, __m256i in_l)1152 static inline __m256i __lasx_xvaddwl_h_bu(__m256i in_h, __m256i in_l) {
1153 __m256i out;
1154
1155 out = __lasx_xvilvl_b(in_h, in_l);
1156 out = __lasx_xvhaddw_hu_bu(out, out);
1157 return out;
1158 }
1159
1160 /*
1161 * =============================================================================
1162 * Description : The low half of the vector elements are expanded and
1163 * added after being doubled.
1164 * Arguments : Inputs - in_h, in_l
1165 * Output - out
1166 * Details : The in_l vector after double zero extension (unsigned byte to
1167 * signed halfword),added to the in_h vector.
1168 * Example : See out = __lasx_xvaddw_w_w_h(in_h, in_l)
1169 * =============================================================================
1170 */
__lasx_xvaddw_h_h_bu(__m256i in_h, __m256i in_l)1171 static inline __m256i __lasx_xvaddw_h_h_bu(__m256i in_h, __m256i in_l) {
1172 __m256i out;
1173
1174 out = __lasx_xvsllwil_hu_bu(in_l, 0);
1175 out = __lasx_xvadd_h(in_h, out);
1176 return out;
1177 }
1178
1179 /*
1180 * =============================================================================
1181 * Description : The low half of the vector elements are expanded and
1182 * added after being doubled.
1183 * Arguments : Inputs - in_h, in_l
1184 * Output - out
1185 * Details : The in_l vector after double sign extension (signed halfword to
1186 * signed word), added to the in_h vector.
1187 * Example : out = __lasx_xvaddw_w_w_h(in_h, in_l)
1188 * in_h : 0, 1,0,0, -1,0,0,1,
1189 * in_l : 2,-1,1,2, 1,0,0,0, 0,0,1,0, 1,0,0,1,
1190 * out : 2, 0,1,2, -1,0,1,1,
1191 * =============================================================================
1192 */
__lasx_xvaddw_w_w_h(__m256i in_h, __m256i in_l)1193 static inline __m256i __lasx_xvaddw_w_w_h(__m256i in_h, __m256i in_l) {
1194 __m256i out;
1195
1196 out = __lasx_xvsllwil_w_h(in_l, 0);
1197 out = __lasx_xvadd_w(in_h, out);
1198 return out;
1199 }
1200
1201 /*
1202 * =============================================================================
1203 * Description : Multiplication and addition calculation after expansion
1204 * of the lower half of the vector.
1205 * Arguments : Inputs - in_c, in_h, in_l
1206 * Output - out
1207 * Details : The in_h vector and the in_l vector are multiplied after
1208 * the lower half of the two-fold sign extension (signed halfword
1209 * to signed word), and the result is added to the vector in_c,
1210 * then stored to the out vector.
1211 * Example : out = __lasx_xvmaddwl_w_h(in_c, in_h, in_l)
1212 * in_c : 1,2,3,4, 5,6,7,8
1213 * in_h : 1,2,3,4, 1,2,3,4, 5,6,7,8, 5,6,7,8
1214 * in_l : 200, 300, 400, 500, 2000, 3000, 4000, 5000,
1215 * -200,-300,-400,-500, -2000,-3000,-4000,-5000
1216 * out : 201, 602,1203,2004, -995, -1794,-2793,-3992
1217 * =============================================================================
1218 */
__lasx_xvmaddwl_w_h(__m256i in_c, __m256i in_h, __m256i in_l)1219 static inline __m256i __lasx_xvmaddwl_w_h(__m256i in_c, __m256i in_h,
1220 __m256i in_l) {
1221 __m256i tmp0, tmp1, out;
1222
1223 tmp0 = __lasx_xvsllwil_w_h(in_h, 0);
1224 tmp1 = __lasx_xvsllwil_w_h(in_l, 0);
1225 tmp0 = __lasx_xvmul_w(tmp0, tmp1);
1226 out = __lasx_xvadd_w(tmp0, in_c);
1227 return out;
1228 }
1229
1230 /*
1231 * =============================================================================
1232 * Description : Multiplication and addition calculation after expansion
1233 * of the higher half of the vector.
1234 * Arguments : Inputs - in_c, in_h, in_l
1235 * Output - out
1236 * Details : The in_h vector and the in_l vector are multiplied after
1237 * the higher half of the two-fold sign extension (signed
1238 * halfword to signed word), and the result is added to
1239 * the vector in_c, then stored to the out vector.
1240 * Example : See out = __lasx_xvmaddwl_w_h(in_c, in_h, in_l)
1241 * =============================================================================
1242 */
__lasx_xvmaddwh_w_h(__m256i in_c, __m256i in_h, __m256i in_l)1243 static inline __m256i __lasx_xvmaddwh_w_h(__m256i in_c, __m256i in_h,
1244 __m256i in_l) {
1245 __m256i tmp0, tmp1, out;
1246
1247 tmp0 = __lasx_xvilvh_h(in_h, in_h);
1248 tmp1 = __lasx_xvilvh_h(in_l, in_l);
1249 tmp0 = __lasx_xvmulwev_w_h(tmp0, tmp1);
1250 out = __lasx_xvadd_w(tmp0, in_c);
1251 return out;
1252 }
1253
1254 /*
1255 * =============================================================================
1256 * Description : Multiplication calculation after expansion of the lower
1257 * half of the vector.
1258 * Arguments : Inputs - in_h, in_l
1259 * Output - out
1260 * Details : The in_h vector and the in_l vector are multiplied after
1261 * the lower half of the two-fold sign extension (signed
1262 * halfword to signed word), then stored to the out vector.
1263 * Example : out = __lasx_xvmulwl_w_h(in_h, in_l)
1264 * in_h : 3,-1,3,0, 0,0,0,-1, 0,0,1,-1, 0,0,0,1
1265 * in_l : 2,-1,1,2, 1,0,0, 0, 0,0,1, 0, 1,0,0,1
1266 * out : 6,1,3,0, 0,0,1,0
1267 * =============================================================================
1268 */
__lasx_xvmulwl_w_h(__m256i in_h, __m256i in_l)1269 static inline __m256i __lasx_xvmulwl_w_h(__m256i in_h, __m256i in_l) {
1270 __m256i tmp0, tmp1, out;
1271
1272 tmp0 = __lasx_xvsllwil_w_h(in_h, 0);
1273 tmp1 = __lasx_xvsllwil_w_h(in_l, 0);
1274 out = __lasx_xvmul_w(tmp0, tmp1);
1275 return out;
1276 }
1277
1278 /*
1279 * =============================================================================
1280 * Description : Multiplication calculation after expansion of the lower
1281 * half of the vector.
1282 * Arguments : Inputs - in_h, in_l
1283 * Output - out
1284 * Details : The in_h vector and the in_l vector are multiplied after
1285 * the lower half of the two-fold sign extension (signed
1286 * halfword to signed word), then stored to the out vector.
1287 * Example : out = __lasx_xvmulwh_w_h(in_h, in_l)
1288 * in_h : 3,-1,3,0, 0,0,0,-1, 0,0,1,-1, 0,0,0,1
1289 * in_l : 2,-1,1,2, 1,0,0, 0, 0,0,1, 0, 1,0,0,1
1290 * out : 0,0,0,0, 0,0,0,1
1291 * =============================================================================
1292 */
__lasx_xvmulwh_w_h(__m256i in_h, __m256i in_l)1293 static inline __m256i __lasx_xvmulwh_w_h(__m256i in_h, __m256i in_l) {
1294 __m256i tmp0, tmp1, out;
1295
1296 tmp0 = __lasx_xvilvh_h(in_h, in_h);
1297 tmp1 = __lasx_xvilvh_h(in_l, in_l);
1298 out = __lasx_xvmulwev_w_h(tmp0, tmp1);
1299 return out;
1300 }
1301
1302 /*
1303 * =============================================================================
1304 * Description : The low half of the vector elements are added to the high half
1305 * after being doubled, then saturated.
1306 * Arguments : Inputs - in_h, in_l
1307 * Output - out
1308 * Details : The in_h vector adds the in_l vector after the lower half of
1309 * the two-fold zero extension (unsigned byte to unsigned
1310 * halfword) and then saturated. The results are stored to the out
1311 * vector.
1312 * Example : out = __lasx_xvsaddw_hu_hu_bu(in_h, in_l)
1313 * in_h : 2,65532,1,2, 1,0,0,0, 0,0,1,0, 1,0,0,1
1314 * in_l : 3,6,3,0, 0,0,0,1, 0,0,1,1, 0,0,0,1, 3,18,3,0, 0,0,0,1, 0,0,1,1,
1315 * 0,0,0,1
1316 * out : 5,65535,4,2, 1,0,0,1, 3,18,4,0, 1,0,0,2,
1317 * =============================================================================
1318 */
__lasx_xvsaddw_hu_hu_bu(__m256i in_h, __m256i in_l)1319 static inline __m256i __lasx_xvsaddw_hu_hu_bu(__m256i in_h, __m256i in_l) {
1320 __m256i tmp1, out;
1321 __m256i zero = { 0 };
1322
1323 tmp1 = __lasx_xvilvl_b(zero, in_l);
1324 out = __lasx_xvsadd_hu(in_h, tmp1);
1325 return out;
1326 }
1327
1328 /*
1329 * =============================================================================
1330 * Description : Clip all halfword elements of input vector between min & max
1331 * out = ((in) < (min)) ? (min) : (((in) > (max)) ? (max) : (in))
1332 * Arguments : Inputs - in (input vector)
1333 * - min (min threshold)
1334 * - max (max threshold)
1335 * Outputs - in (output vector with clipped elements)
1336 * Return Type - signed halfword
1337 * Example : out = __lasx_xvclip_h(in, min, max)
1338 * in : -8,2,280,249, -8,255,280,249, 4,4,4,4, 5,5,5,5
1339 * min : 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1
1340 * max : 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9
1341 * out : 1,2,9,9, 1,9,9,9, 4,4,4,4, 5,5,5,5
1342 * =============================================================================
1343 */
__lasx_xvclip_h(__m256i in, __m256i min, __m256i max)1344 static inline __m256i __lasx_xvclip_h(__m256i in, __m256i min, __m256i max) {
1345 __m256i out;
1346
1347 out = __lasx_xvmax_h(min, in);
1348 out = __lasx_xvmin_h(max, out);
1349 return out;
1350 }
1351
1352 /*
1353 * =============================================================================
1354 * Description : Clip all signed halfword elements of input vector
1355 * between 0 & 255
1356 * Arguments : Inputs - in (input vector)
1357 * Outputs - out (output vector with clipped elements)
1358 * Return Type - signed halfword
1359 * Example : See out = __lasx_xvclip255_w(in)
1360 * =============================================================================
1361 */
__lasx_xvclip255_h(__m256i in)1362 static inline __m256i __lasx_xvclip255_h(__m256i in) {
1363 __m256i out;
1364
1365 out = __lasx_xvmaxi_h(in, 0);
1366 out = __lasx_xvsat_hu(out, 7);
1367 return out;
1368 }
1369
1370 /*
1371 * =============================================================================
1372 * Description : Clip all signed word elements of input vector
1373 * between 0 & 255
1374 * Arguments : Inputs - in (input vector)
1375 * Output - out (output vector with clipped elements)
1376 * Return Type - signed word
1377 * Example : out = __lasx_xvclip255_w(in)
1378 * in : -8,255,280,249, -8,255,280,249
1379 * out : 0,255,255,249, 0,255,255,249
1380 * =============================================================================
1381 */
__lasx_xvclip255_w(__m256i in)1382 static inline __m256i __lasx_xvclip255_w(__m256i in) {
1383 __m256i out;
1384
1385 out = __lasx_xvmaxi_w(in, 0);
1386 out = __lasx_xvsat_wu(out, 7);
1387 return out;
1388 }
1389
1390 /*
1391 * =============================================================================
1392 * Description : Indexed halfword element values are replicated to all
1393 * elements in output vector. If 'idx < 8' use xvsplati_l_*,
1394 * if 'idx >= 8' use xvsplati_h_*.
1395 * Arguments : Inputs - in, idx
1396 * Output - out
1397 * Details : Idx element value from in vector is replicated to all
1398 * elements in out vector.
1399 * Valid index range for halfword operation is 0-7
1400 * Example : out = __lasx_xvsplati_l_h(in, idx)
1401 * in : 20,10,11,12, 13,14,15,16, 0,0,2,0, 0,0,0,0
1402 * idx : 0x02
1403 * out : 11,11,11,11, 11,11,11,11, 11,11,11,11, 11,11,11,11
1404 * =============================================================================
1405 */
__lasx_xvsplati_l_h(__m256i in, int idx)1406 static inline __m256i __lasx_xvsplati_l_h(__m256i in, int idx) {
1407 __m256i out;
1408
1409 out = __lasx_xvpermi_q(in, in, 0x02);
1410 out = __lasx_xvreplve_h(out, idx);
1411 return out;
1412 }
1413
1414 /*
1415 * =============================================================================
1416 * Description : Indexed halfword element values are replicated to all
1417 * elements in output vector. If 'idx < 8' use xvsplati_l_*,
1418 * if 'idx >= 8' use xvsplati_h_*.
1419 * Arguments : Inputs - in, idx
1420 * Output - out
1421 * Details : Idx element value from in vector is replicated to all
1422 * elements in out vector.
1423 * Valid index range for halfword operation is 0-7
1424 * Example : out = __lasx_xvsplati_h_h(in, idx)
1425 * in : 20,10,11,12, 13,14,15,16, 0,2,0,0, 0,0,0,0
1426 * idx : 0x09
1427 * out : 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,2,2,2
1428 * =============================================================================
1429 */
__lasx_xvsplati_h_h(__m256i in, int idx)1430 static inline __m256i __lasx_xvsplati_h_h(__m256i in, int idx) {
1431 __m256i out;
1432
1433 out = __lasx_xvpermi_q(in, in, 0x13);
1434 out = __lasx_xvreplve_h(out, idx);
1435 return out;
1436 }
1437
1438 /*
1439 * =============================================================================
1440 * Description : Transpose 4x4 block with double-word elements in vectors
1441 * Arguments : Inputs - _in0, _in1, _in2, _in3
1442 * Outputs - _out0, _out1, _out2, _out3
1443 * Example : LASX_TRANSPOSE4x4_D
1444 * _in0 : 1,2,3,4
1445 * _in1 : 1,2,3,4
1446 * _in2 : 1,2,3,4
1447 * _in3 : 1,2,3,4
1448 *
1449 * _out0 : 1,1,1,1
1450 * _out1 : 2,2,2,2
1451 * _out2 : 3,3,3,3
1452 * _out3 : 4,4,4,4
1453 * =============================================================================
1454 */
1455 #define LASX_TRANSPOSE4x4_D(_in0, _in1, _in2, _in3, _out0, _out1, _out2, \
1456 _out3) \
1457 { \
1458 __m256i _tmp0, _tmp1, _tmp2, _tmp3; \
1459 _tmp0 = __lasx_xvilvl_d(_in1, _in0); \
1460 _tmp1 = __lasx_xvilvh_d(_in1, _in0); \
1461 _tmp2 = __lasx_xvilvl_d(_in3, _in2); \
1462 _tmp3 = __lasx_xvilvh_d(_in3, _in2); \
1463 _out0 = __lasx_xvpermi_q(_tmp2, _tmp0, 0x20); \
1464 _out2 = __lasx_xvpermi_q(_tmp2, _tmp0, 0x31); \
1465 _out1 = __lasx_xvpermi_q(_tmp3, _tmp1, 0x20); \
1466 _out3 = __lasx_xvpermi_q(_tmp3, _tmp1, 0x31); \
1467 }
1468
1469 /*
1470 * =============================================================================
1471 * Description : Transpose 8x8 block with word elements in vectors
1472 * Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7
1473 * Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6,
1474 * _out7
1475 * Example : LASX_TRANSPOSE8x8_W
1476 * _in0 : 1,2,3,4,5,6,7,8
1477 * _in1 : 2,2,3,4,5,6,7,8
1478 * _in2 : 3,2,3,4,5,6,7,8
1479 * _in3 : 4,2,3,4,5,6,7,8
1480 * _in4 : 5,2,3,4,5,6,7,8
1481 * _in5 : 6,2,3,4,5,6,7,8
1482 * _in6 : 7,2,3,4,5,6,7,8
1483 * _in7 : 8,2,3,4,5,6,7,8
1484 *
1485 * _out0 : 1,2,3,4,5,6,7,8
1486 * _out1 : 2,2,2,2,2,2,2,2
1487 * _out2 : 3,3,3,3,3,3,3,3
1488 * _out3 : 4,4,4,4,4,4,4,4
1489 * _out4 : 5,5,5,5,5,5,5,5
1490 * _out5 : 6,6,6,6,6,6,6,6
1491 * _out6 : 7,7,7,7,7,7,7,7
1492 * _out7 : 8,8,8,8,8,8,8,8
1493 * =============================================================================
1494 */
1495 #define LASX_TRANSPOSE8x8_W(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
1496 _out0, _out1, _out2, _out3, _out4, _out5, _out6, \
1497 _out7) \
1498 { \
1499 __m256i _s0_m, _s1_m; \
1500 __m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \
1501 __m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \
1502 \
1503 _s0_m = __lasx_xvilvl_w(_in2, _in0); \
1504 _s1_m = __lasx_xvilvl_w(_in3, _in1); \
1505 _tmp0_m = __lasx_xvilvl_w(_s1_m, _s0_m); \
1506 _tmp1_m = __lasx_xvilvh_w(_s1_m, _s0_m); \
1507 _s0_m = __lasx_xvilvh_w(_in2, _in0); \
1508 _s1_m = __lasx_xvilvh_w(_in3, _in1); \
1509 _tmp2_m = __lasx_xvilvl_w(_s1_m, _s0_m); \
1510 _tmp3_m = __lasx_xvilvh_w(_s1_m, _s0_m); \
1511 _s0_m = __lasx_xvilvl_w(_in6, _in4); \
1512 _s1_m = __lasx_xvilvl_w(_in7, _in5); \
1513 _tmp4_m = __lasx_xvilvl_w(_s1_m, _s0_m); \
1514 _tmp5_m = __lasx_xvilvh_w(_s1_m, _s0_m); \
1515 _s0_m = __lasx_xvilvh_w(_in6, _in4); \
1516 _s1_m = __lasx_xvilvh_w(_in7, _in5); \
1517 _tmp6_m = __lasx_xvilvl_w(_s1_m, _s0_m); \
1518 _tmp7_m = __lasx_xvilvh_w(_s1_m, _s0_m); \
1519 _out0 = __lasx_xvpermi_q(_tmp4_m, _tmp0_m, 0x20); \
1520 _out1 = __lasx_xvpermi_q(_tmp5_m, _tmp1_m, 0x20); \
1521 _out2 = __lasx_xvpermi_q(_tmp6_m, _tmp2_m, 0x20); \
1522 _out3 = __lasx_xvpermi_q(_tmp7_m, _tmp3_m, 0x20); \
1523 _out4 = __lasx_xvpermi_q(_tmp4_m, _tmp0_m, 0x31); \
1524 _out5 = __lasx_xvpermi_q(_tmp5_m, _tmp1_m, 0x31); \
1525 _out6 = __lasx_xvpermi_q(_tmp6_m, _tmp2_m, 0x31); \
1526 _out7 = __lasx_xvpermi_q(_tmp7_m, _tmp3_m, 0x31); \
1527 }
1528
1529 /*
1530 * =============================================================================
1531 * Description : Transpose input 16x8 byte block
1532 * Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7,
1533 * _in8, _in9, _in10, _in11, _in12, _in13, _in14, _in15
1534 * (input 16x8 byte block)
1535 * Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6,
1536 * _out7 (output 8x16 byte block)
1537 * Details : The rows of the matrix become columns, and the columns become
1538 * rows.
1539 * Example : See LASX_TRANSPOSE16x8_H
1540 * =============================================================================
1541 */
1542 #define LASX_TRANSPOSE16x8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
1543 _in8, _in9, _in10, _in11, _in12, _in13, _in14, \
1544 _in15, _out0, _out1, _out2, _out3, _out4, _out5, \
1545 _out6, _out7) \
1546 { \
1547 __m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \
1548 __m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \
1549 \
1550 _tmp0_m = __lasx_xvilvl_b(_in2, _in0); \
1551 _tmp1_m = __lasx_xvilvl_b(_in3, _in1); \
1552 _tmp2_m = __lasx_xvilvl_b(_in6, _in4); \
1553 _tmp3_m = __lasx_xvilvl_b(_in7, _in5); \
1554 _tmp4_m = __lasx_xvilvl_b(_in10, _in8); \
1555 _tmp5_m = __lasx_xvilvl_b(_in11, _in9); \
1556 _tmp6_m = __lasx_xvilvl_b(_in14, _in12); \
1557 _tmp7_m = __lasx_xvilvl_b(_in15, _in13); \
1558 _out0 = __lasx_xvilvl_b(_tmp1_m, _tmp0_m); \
1559 _out1 = __lasx_xvilvh_b(_tmp1_m, _tmp0_m); \
1560 _out2 = __lasx_xvilvl_b(_tmp3_m, _tmp2_m); \
1561 _out3 = __lasx_xvilvh_b(_tmp3_m, _tmp2_m); \
1562 _out4 = __lasx_xvilvl_b(_tmp5_m, _tmp4_m); \
1563 _out5 = __lasx_xvilvh_b(_tmp5_m, _tmp4_m); \
1564 _out6 = __lasx_xvilvl_b(_tmp7_m, _tmp6_m); \
1565 _out7 = __lasx_xvilvh_b(_tmp7_m, _tmp6_m); \
1566 _tmp0_m = __lasx_xvilvl_w(_out2, _out0); \
1567 _tmp2_m = __lasx_xvilvh_w(_out2, _out0); \
1568 _tmp4_m = __lasx_xvilvl_w(_out3, _out1); \
1569 _tmp6_m = __lasx_xvilvh_w(_out3, _out1); \
1570 _tmp1_m = __lasx_xvilvl_w(_out6, _out4); \
1571 _tmp3_m = __lasx_xvilvh_w(_out6, _out4); \
1572 _tmp5_m = __lasx_xvilvl_w(_out7, _out5); \
1573 _tmp7_m = __lasx_xvilvh_w(_out7, _out5); \
1574 _out0 = __lasx_xvilvl_d(_tmp1_m, _tmp0_m); \
1575 _out1 = __lasx_xvilvh_d(_tmp1_m, _tmp0_m); \
1576 _out2 = __lasx_xvilvl_d(_tmp3_m, _tmp2_m); \
1577 _out3 = __lasx_xvilvh_d(_tmp3_m, _tmp2_m); \
1578 _out4 = __lasx_xvilvl_d(_tmp5_m, _tmp4_m); \
1579 _out5 = __lasx_xvilvh_d(_tmp5_m, _tmp4_m); \
1580 _out6 = __lasx_xvilvl_d(_tmp7_m, _tmp6_m); \
1581 _out7 = __lasx_xvilvh_d(_tmp7_m, _tmp6_m); \
1582 }
1583
1584 /*
1585 * =============================================================================
1586 * Description : Transpose input 16x8 byte block
1587 * Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7,
1588 * _in8, _in9, _in10, _in11, _in12, _in13, _in14, _in15
1589 * (input 16x8 byte block)
1590 * Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6,
1591 * _out7 (output 8x16 byte block)
1592 * Details : The rows of the matrix become columns, and the columns become
1593 * rows.
1594 * Example : LASX_TRANSPOSE16x8_H
1595 * _in0 : 1,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1596 * _in1 : 2,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1597 * _in2 : 3,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1598 * _in3 : 4,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1599 * _in4 : 5,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1600 * _in5 : 6,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1601 * _in6 : 7,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1602 * _in7 : 8,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1603 * _in8 : 9,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1604 * _in9 : 1,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1605 * _in10 : 0,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1606 * _in11 : 2,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1607 * _in12 : 3,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1608 * _in13 : 7,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1609 * _in14 : 5,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1610 * _in15 : 6,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
1611 *
1612 * _out0 : 1,2,3,4,5,6,7,8,9,1,0,2,3,7,5,6
1613 * _out1 : 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
1614 * _out2 : 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
1615 * _out3 : 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4
1616 * _out4 : 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
1617 * _out5 : 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6
1618 * _out6 : 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
1619 * _out7 : 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
1620 * =============================================================================
1621 */
1622 #define LASX_TRANSPOSE16x8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
1623 _in8, _in9, _in10, _in11, _in12, _in13, _in14, \
1624 _in15, _out0, _out1, _out2, _out3, _out4, _out5, \
1625 _out6, _out7) \
1626 { \
1627 __m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \
1628 __m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \
1629 __m256i _t0, _t1, _t2, _t3, _t4, _t5, _t6, _t7; \
1630 \
1631 _tmp0_m = __lasx_xvilvl_h(_in2, _in0); \
1632 _tmp1_m = __lasx_xvilvl_h(_in3, _in1); \
1633 _tmp2_m = __lasx_xvilvl_h(_in6, _in4); \
1634 _tmp3_m = __lasx_xvilvl_h(_in7, _in5); \
1635 _tmp4_m = __lasx_xvilvl_h(_in10, _in8); \
1636 _tmp5_m = __lasx_xvilvl_h(_in11, _in9); \
1637 _tmp6_m = __lasx_xvilvl_h(_in14, _in12); \
1638 _tmp7_m = __lasx_xvilvl_h(_in15, _in13); \
1639 _t0 = __lasx_xvilvl_h(_tmp1_m, _tmp0_m); \
1640 _t1 = __lasx_xvilvh_h(_tmp1_m, _tmp0_m); \
1641 _t2 = __lasx_xvilvl_h(_tmp3_m, _tmp2_m); \
1642 _t3 = __lasx_xvilvh_h(_tmp3_m, _tmp2_m); \
1643 _t4 = __lasx_xvilvl_h(_tmp5_m, _tmp4_m); \
1644 _t5 = __lasx_xvilvh_h(_tmp5_m, _tmp4_m); \
1645 _t6 = __lasx_xvilvl_h(_tmp7_m, _tmp6_m); \
1646 _t7 = __lasx_xvilvh_h(_tmp7_m, _tmp6_m); \
1647 _tmp0_m = __lasx_xvilvl_d(_t2, _t0); \
1648 _tmp2_m = __lasx_xvilvh_d(_t2, _t0); \
1649 _tmp4_m = __lasx_xvilvl_d(_t3, _t1); \
1650 _tmp6_m = __lasx_xvilvh_d(_t3, _t1); \
1651 _tmp1_m = __lasx_xvilvl_d(_t6, _t4); \
1652 _tmp3_m = __lasx_xvilvh_d(_t6, _t4); \
1653 _tmp5_m = __lasx_xvilvl_d(_t7, _t5); \
1654 _tmp7_m = __lasx_xvilvh_d(_t7, _t5); \
1655 _out0 = __lasx_xvpermi_q(_tmp1_m, _tmp0_m, 0x20); \
1656 _out1 = __lasx_xvpermi_q(_tmp3_m, _tmp2_m, 0x20); \
1657 _out2 = __lasx_xvpermi_q(_tmp5_m, _tmp4_m, 0x20); \
1658 _out3 = __lasx_xvpermi_q(_tmp7_m, _tmp6_m, 0x20); \
1659 \
1660 _tmp0_m = __lasx_xvilvh_h(_in2, _in0); \
1661 _tmp1_m = __lasx_xvilvh_h(_in3, _in1); \
1662 _tmp2_m = __lasx_xvilvh_h(_in6, _in4); \
1663 _tmp3_m = __lasx_xvilvh_h(_in7, _in5); \
1664 _tmp4_m = __lasx_xvilvh_h(_in10, _in8); \
1665 _tmp5_m = __lasx_xvilvh_h(_in11, _in9); \
1666 _tmp6_m = __lasx_xvilvh_h(_in14, _in12); \
1667 _tmp7_m = __lasx_xvilvh_h(_in15, _in13); \
1668 _t0 = __lasx_xvilvl_h(_tmp1_m, _tmp0_m); \
1669 _t1 = __lasx_xvilvh_h(_tmp1_m, _tmp0_m); \
1670 _t2 = __lasx_xvilvl_h(_tmp3_m, _tmp2_m); \
1671 _t3 = __lasx_xvilvh_h(_tmp3_m, _tmp2_m); \
1672 _t4 = __lasx_xvilvl_h(_tmp5_m, _tmp4_m); \
1673 _t5 = __lasx_xvilvh_h(_tmp5_m, _tmp4_m); \
1674 _t6 = __lasx_xvilvl_h(_tmp7_m, _tmp6_m); \
1675 _t7 = __lasx_xvilvh_h(_tmp7_m, _tmp6_m); \
1676 _tmp0_m = __lasx_xvilvl_d(_t2, _t0); \
1677 _tmp2_m = __lasx_xvilvh_d(_t2, _t0); \
1678 _tmp4_m = __lasx_xvilvl_d(_t3, _t1); \
1679 _tmp6_m = __lasx_xvilvh_d(_t3, _t1); \
1680 _tmp1_m = __lasx_xvilvl_d(_t6, _t4); \
1681 _tmp3_m = __lasx_xvilvh_d(_t6, _t4); \
1682 _tmp5_m = __lasx_xvilvl_d(_t7, _t5); \
1683 _tmp7_m = __lasx_xvilvh_d(_t7, _t5); \
1684 _out4 = __lasx_xvpermi_q(_tmp1_m, _tmp0_m, 0x20); \
1685 _out5 = __lasx_xvpermi_q(_tmp3_m, _tmp2_m, 0x20); \
1686 _out6 = __lasx_xvpermi_q(_tmp5_m, _tmp4_m, 0x20); \
1687 _out7 = __lasx_xvpermi_q(_tmp7_m, _tmp6_m, 0x20); \
1688 }
1689
1690 /*
1691 * =============================================================================
1692 * Description : Transpose 4x4 block with halfword elements in vectors
1693 * Arguments : Inputs - _in0, _in1, _in2, _in3
1694 * Outputs - _out0, _out1, _out2, _out3
1695 * Return Type - signed halfword
1696 * Details : The rows of the matrix become columns, and the columns become
1697 * rows.
1698 * Example : See LASX_TRANSPOSE8x8_H
1699 * =============================================================================
1700 */
1701 #define LASX_TRANSPOSE4x4_H(_in0, _in1, _in2, _in3, _out0, _out1, _out2, \
1702 _out3) \
1703 { \
1704 __m256i _s0_m, _s1_m; \
1705 \
1706 _s0_m = __lasx_xvilvl_h(_in1, _in0); \
1707 _s1_m = __lasx_xvilvl_h(_in3, _in2); \
1708 _out0 = __lasx_xvilvl_w(_s1_m, _s0_m); \
1709 _out2 = __lasx_xvilvh_w(_s1_m, _s0_m); \
1710 _out1 = __lasx_xvilvh_d(_out0, _out0); \
1711 _out3 = __lasx_xvilvh_d(_out2, _out2); \
1712 }
1713
1714 /*
1715 * =============================================================================
1716 * Description : Transpose input 8x8 byte block
1717 * Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7
1718 * (input 8x8 byte block)
1719 * Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6,
1720 * _out7 (output 8x8 byte block)
1721 * Example : See LASX_TRANSPOSE8x8_H
1722 * =============================================================================
1723 */
1724 #define LASX_TRANSPOSE8x8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
1725 _out0, _out1, _out2, _out3, _out4, _out5, _out6, \
1726 _out7) \
1727 { \
1728 __m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \
1729 __m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \
1730 _tmp0_m = __lasx_xvilvl_b(_in2, _in0); \
1731 _tmp1_m = __lasx_xvilvl_b(_in3, _in1); \
1732 _tmp2_m = __lasx_xvilvl_b(_in6, _in4); \
1733 _tmp3_m = __lasx_xvilvl_b(_in7, _in5); \
1734 _tmp4_m = __lasx_xvilvl_b(_tmp1_m, _tmp0_m); \
1735 _tmp5_m = __lasx_xvilvh_b(_tmp1_m, _tmp0_m); \
1736 _tmp6_m = __lasx_xvilvl_b(_tmp3_m, _tmp2_m); \
1737 _tmp7_m = __lasx_xvilvh_b(_tmp3_m, _tmp2_m); \
1738 _out0 = __lasx_xvilvl_w(_tmp6_m, _tmp4_m); \
1739 _out2 = __lasx_xvilvh_w(_tmp6_m, _tmp4_m); \
1740 _out4 = __lasx_xvilvl_w(_tmp7_m, _tmp5_m); \
1741 _out6 = __lasx_xvilvh_w(_tmp7_m, _tmp5_m); \
1742 _out1 = __lasx_xvbsrl_v(_out0, 8); \
1743 _out3 = __lasx_xvbsrl_v(_out2, 8); \
1744 _out5 = __lasx_xvbsrl_v(_out4, 8); \
1745 _out7 = __lasx_xvbsrl_v(_out6, 8); \
1746 }
1747
1748 /*
1749 * =============================================================================
1750 * Description : Transpose 8x8 block with halfword elements in vectors.
1751 * Arguments : Inputs - _in0, _in1, ~
1752 * Outputs - _out0, _out1, ~
1753 * Details : The rows of the matrix become columns, and the columns become
1754 * rows.
1755 * Example : LASX_TRANSPOSE8x8_H
1756 * _in0 : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
1757 * _in1 : 8,2,3,4, 5,6,7,8, 8,2,3,4, 5,6,7,8
1758 * _in2 : 8,2,3,4, 5,6,7,8, 8,2,3,4, 5,6,7,8
1759 * _in3 : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
1760 * _in4 : 9,2,3,4, 5,6,7,8, 9,2,3,4, 5,6,7,8
1761 * _in5 : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
1762 * _in6 : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
1763 * _in7 : 9,2,3,4, 5,6,7,8, 9,2,3,4, 5,6,7,8
1764 *
1765 * _out0 : 1,8,8,1, 9,1,1,9, 1,8,8,1, 9,1,1,9
1766 * _out1 : 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,2,2,2
1767 * _out2 : 3,3,3,3, 3,3,3,3, 3,3,3,3, 3,3,3,3
1768 * _out3 : 4,4,4,4, 4,4,4,4, 4,4,4,4, 4,4,4,4
1769 * _out4 : 5,5,5,5, 5,5,5,5, 5,5,5,5, 5,5,5,5
1770 * _out5 : 6,6,6,6, 6,6,6,6, 6,6,6,6, 6,6,6,6
1771 * _out6 : 7,7,7,7, 7,7,7,7, 7,7,7,7, 7,7,7,7
1772 * _out7 : 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8
1773 * =============================================================================
1774 */
1775 #define LASX_TRANSPOSE8x8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
1776 _out0, _out1, _out2, _out3, _out4, _out5, _out6, \
1777 _out7) \
1778 { \
1779 __m256i _s0_m, _s1_m; \
1780 __m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \
1781 __m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \
1782 \
1783 _s0_m = __lasx_xvilvl_h(_in6, _in4); \
1784 _s1_m = __lasx_xvilvl_h(_in7, _in5); \
1785 _tmp0_m = __lasx_xvilvl_h(_s1_m, _s0_m); \
1786 _tmp1_m = __lasx_xvilvh_h(_s1_m, _s0_m); \
1787 _s0_m = __lasx_xvilvh_h(_in6, _in4); \
1788 _s1_m = __lasx_xvilvh_h(_in7, _in5); \
1789 _tmp2_m = __lasx_xvilvl_h(_s1_m, _s0_m); \
1790 _tmp3_m = __lasx_xvilvh_h(_s1_m, _s0_m); \
1791 \
1792 _s0_m = __lasx_xvilvl_h(_in2, _in0); \
1793 _s1_m = __lasx_xvilvl_h(_in3, _in1); \
1794 _tmp4_m = __lasx_xvilvl_h(_s1_m, _s0_m); \
1795 _tmp5_m = __lasx_xvilvh_h(_s1_m, _s0_m); \
1796 _s0_m = __lasx_xvilvh_h(_in2, _in0); \
1797 _s1_m = __lasx_xvilvh_h(_in3, _in1); \
1798 _tmp6_m = __lasx_xvilvl_h(_s1_m, _s0_m); \
1799 _tmp7_m = __lasx_xvilvh_h(_s1_m, _s0_m); \
1800 \
1801 _out0 = __lasx_xvpickev_d(_tmp0_m, _tmp4_m); \
1802 _out2 = __lasx_xvpickev_d(_tmp1_m, _tmp5_m); \
1803 _out4 = __lasx_xvpickev_d(_tmp2_m, _tmp6_m); \
1804 _out6 = __lasx_xvpickev_d(_tmp3_m, _tmp7_m); \
1805 _out1 = __lasx_xvpickod_d(_tmp0_m, _tmp4_m); \
1806 _out3 = __lasx_xvpickod_d(_tmp1_m, _tmp5_m); \
1807 _out5 = __lasx_xvpickod_d(_tmp2_m, _tmp6_m); \
1808 _out7 = __lasx_xvpickod_d(_tmp3_m, _tmp7_m); \
1809 }
1810
1811 /*
1812 * =============================================================================
1813 * Description : Butterfly of 4 input vectors
1814 * Arguments : Inputs - _in0, _in1, _in2, _in3
1815 * Outputs - _out0, _out1, _out2, _out3
1816 * Details : Butterfly operation
1817 * Example : LASX_BUTTERFLY_4
1818 * _out0 = _in0 + _in3;
1819 * _out1 = _in1 + _in2;
1820 * _out2 = _in1 - _in2;
1821 * _out3 = _in0 - _in3;
1822 * =============================================================================
1823 */
1824 #define LASX_BUTTERFLY_4_B(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
1825 { \
1826 _out0 = __lasx_xvadd_b(_in0, _in3); \
1827 _out1 = __lasx_xvadd_b(_in1, _in2); \
1828 _out2 = __lasx_xvsub_b(_in1, _in2); \
1829 _out3 = __lasx_xvsub_b(_in0, _in3); \
1830 }
1831 #define LASX_BUTTERFLY_4_H(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
1832 { \
1833 _out0 = __lasx_xvadd_h(_in0, _in3); \
1834 _out1 = __lasx_xvadd_h(_in1, _in2); \
1835 _out2 = __lasx_xvsub_h(_in1, _in2); \
1836 _out3 = __lasx_xvsub_h(_in0, _in3); \
1837 }
1838 #define LASX_BUTTERFLY_4_W(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
1839 { \
1840 _out0 = __lasx_xvadd_w(_in0, _in3); \
1841 _out1 = __lasx_xvadd_w(_in1, _in2); \
1842 _out2 = __lasx_xvsub_w(_in1, _in2); \
1843 _out3 = __lasx_xvsub_w(_in0, _in3); \
1844 }
1845 #define LASX_BUTTERFLY_4_D(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
1846 { \
1847 _out0 = __lasx_xvadd_d(_in0, _in3); \
1848 _out1 = __lasx_xvadd_d(_in1, _in2); \
1849 _out2 = __lasx_xvsub_d(_in1, _in2); \
1850 _out3 = __lasx_xvsub_d(_in0, _in3); \
1851 }
1852
1853 /*
1854 * =============================================================================
1855 * Description : Butterfly of 8 input vectors
1856 * Arguments : Inputs - _in0, _in1, _in2, _in3, ~
1857 * Outputs - _out0, _out1, _out2, _out3, ~
1858 * Details : Butterfly operation
1859 * Example : LASX_BUTTERFLY_8
1860 * _out0 = _in0 + _in7;
1861 * _out1 = _in1 + _in6;
1862 * _out2 = _in2 + _in5;
1863 * _out3 = _in3 + _in4;
1864 * _out4 = _in3 - _in4;
1865 * _out5 = _in2 - _in5;
1866 * _out6 = _in1 - _in6;
1867 * _out7 = _in0 - _in7;
1868 * =============================================================================
1869 */
1870 #define LASX_BUTTERFLY_8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
1871 _out0, _out1, _out2, _out3, _out4, _out5, _out6, \
1872 _out7) \
1873 { \
1874 _out0 = __lasx_xvadd_b(_in0, _in7); \
1875 _out1 = __lasx_xvadd_b(_in1, _in6); \
1876 _out2 = __lasx_xvadd_b(_in2, _in5); \
1877 _out3 = __lasx_xvadd_b(_in3, _in4); \
1878 _out4 = __lasx_xvsub_b(_in3, _in4); \
1879 _out5 = __lasx_xvsub_b(_in2, _in5); \
1880 _out6 = __lasx_xvsub_b(_in1, _in6); \
1881 _out7 = __lasx_xvsub_b(_in0, _in7); \
1882 }
1883
1884 #define LASX_BUTTERFLY_8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
1885 _out0, _out1, _out2, _out3, _out4, _out5, _out6, \
1886 _out7) \
1887 { \
1888 _out0 = __lasx_xvadd_h(_in0, _in7); \
1889 _out1 = __lasx_xvadd_h(_in1, _in6); \
1890 _out2 = __lasx_xvadd_h(_in2, _in5); \
1891 _out3 = __lasx_xvadd_h(_in3, _in4); \
1892 _out4 = __lasx_xvsub_h(_in3, _in4); \
1893 _out5 = __lasx_xvsub_h(_in2, _in5); \
1894 _out6 = __lasx_xvsub_h(_in1, _in6); \
1895 _out7 = __lasx_xvsub_h(_in0, _in7); \
1896 }
1897
1898 #define LASX_BUTTERFLY_8_W(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
1899 _out0, _out1, _out2, _out3, _out4, _out5, _out6, \
1900 _out7) \
1901 { \
1902 _out0 = __lasx_xvadd_w(_in0, _in7); \
1903 _out1 = __lasx_xvadd_w(_in1, _in6); \
1904 _out2 = __lasx_xvadd_w(_in2, _in5); \
1905 _out3 = __lasx_xvadd_w(_in3, _in4); \
1906 _out4 = __lasx_xvsub_w(_in3, _in4); \
1907 _out5 = __lasx_xvsub_w(_in2, _in5); \
1908 _out6 = __lasx_xvsub_w(_in1, _in6); \
1909 _out7 = __lasx_xvsub_w(_in0, _in7); \
1910 }
1911
1912 #define LASX_BUTTERFLY_8_D(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
1913 _out0, _out1, _out2, _out3, _out4, _out5, _out6, \
1914 _out7) \
1915 { \
1916 _out0 = __lasx_xvadd_d(_in0, _in7); \
1917 _out1 = __lasx_xvadd_d(_in1, _in6); \
1918 _out2 = __lasx_xvadd_d(_in2, _in5); \
1919 _out3 = __lasx_xvadd_d(_in3, _in4); \
1920 _out4 = __lasx_xvsub_d(_in3, _in4); \
1921 _out5 = __lasx_xvsub_d(_in2, _in5); \
1922 _out6 = __lasx_xvsub_d(_in1, _in6); \
1923 _out7 = __lasx_xvsub_d(_in0, _in7); \
1924 }
1925
1926 #endif // LASX
1927
1928 /*
1929 * =============================================================================
1930 * Description : Print out elements in vector.
1931 * Arguments : Inputs - RTYPE, _element_num, _in0, _enter
1932 * Outputs -
1933 * Details : Print out '_element_num' elements in 'RTYPE' vector '_in0', if
1934 * '_enter' is TRUE, prefix "\nVP:" will be added first.
1935 * Example : VECT_PRINT(v4i32,4,in0,1); // in0: 1,2,3,4
1936 * VP:1,2,3,4,
1937 * =============================================================================
1938 */
1939 #define VECT_PRINT(RTYPE, element_num, in0, enter) \
1940 { \
1941 RTYPE _tmp0 = (RTYPE)in0; \
1942 int _i = 0; \
1943 if (enter) printf("\nVP:"); \
1944 for (_i = 0; _i < element_num; _i++) printf("%d,", _tmp0[_i]); \
1945 }
1946
1947 #endif /* LOONGSON_INTRINSICS_H */
1948 #endif /* AVUTIL_LOONGARCH_LOONGSON_INTRINSICS_H */
1949