1/* 2 * TwinVQ decoder 3 * Copyright (c) 2009 Vitor Sessak 4 * 5 * This file is part of FFmpeg. 6 * 7 * FFmpeg is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2.1 of the License, or (at your option) any later version. 11 * 12 * FFmpeg is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with FFmpeg; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 20 */ 21 22#include <math.h> 23#include <stdint.h> 24 25#include "libavutil/channel_layout.h" 26#include "libavutil/float_dsp.h" 27#include "avcodec.h" 28#include "fft.h" 29#include "internal.h" 30#include "lsp.h" 31#include "sinewin.h" 32#include "twinvq.h" 33 34/** 35 * Evaluate a single LPC amplitude spectrum envelope coefficient from the line 36 * spectrum pairs. 37 * 38 * @param lsp a vector of the cosine of the LSP values 39 * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude 40 * @param order the order of the LSP (and the size of the *lsp buffer). Must 41 * be a multiple of four. 42 * @return the LPC value 43 * 44 * @todo reuse code from Vorbis decoder: vorbis_floor0_decode 45 */ 46static float eval_lpc_spectrum(const float *lsp, float cos_val, int order) 47{ 48 int j; 49 float p = 0.5f; 50 float q = 0.5f; 51 float two_cos_w = 2.0f * cos_val; 52 53 for (j = 0; j + 1 < order; j += 2 * 2) { 54 // Unroll the loop once since order is a multiple of four 55 q *= lsp[j] - two_cos_w; 56 p *= lsp[j + 1] - two_cos_w; 57 58 q *= lsp[j + 2] - two_cos_w; 59 p *= lsp[j + 3] - two_cos_w; 60 } 61 62 p *= p * (2.0f - two_cos_w); 63 q *= q * (2.0f + two_cos_w); 64 65 return 0.5 / (p + q); 66} 67 68/** 69 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs. 70 */ 71static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc) 72{ 73 int i; 74 const TwinVQModeTab *mtab = tctx->mtab; 75 int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub; 76 77 for (i = 0; i < size_s / 2; i++) { 78 float cos_i = tctx->cos_tabs[0][i]; 79 lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp); 80 lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp); 81 } 82} 83 84static void interpolate(float *out, float v1, float v2, int size) 85{ 86 int i; 87 float step = (v1 - v2) / (size + 1); 88 89 for (i = 0; i < size; i++) { 90 v2 += step; 91 out[i] = v2; 92 } 93} 94 95static inline float get_cos(int idx, int part, const float *cos_tab, int size) 96{ 97 return part ? -cos_tab[size - idx - 1] 98 : cos_tab[idx]; 99} 100 101/** 102 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs. 103 * Probably for speed reasons, the coefficients are evaluated as 104 * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ... 105 * where s is an evaluated value, i is a value interpolated from the others 106 * and b might be either calculated or interpolated, depending on an 107 * unexplained condition. 108 * 109 * @param step the size of a block "siiiibiiii" 110 * @param in the cosine of the LSP data 111 * @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI 112 * (negative cosine values) 113 * @param size the size of the whole output 114 */ 115static inline void eval_lpcenv_or_interp(TwinVQContext *tctx, 116 enum TwinVQFrameType ftype, 117 float *out, const float *in, 118 int size, int step, int part) 119{ 120 int i; 121 const TwinVQModeTab *mtab = tctx->mtab; 122 const float *cos_tab = tctx->cos_tabs[ftype]; 123 124 // Fill the 's' 125 for (i = 0; i < size; i += step) 126 out[i] = 127 eval_lpc_spectrum(in, 128 get_cos(i, part, cos_tab, size), 129 mtab->n_lsp); 130 131 // Fill the 'iiiibiiii' 132 for (i = step; i <= size - 2 * step; i += step) { 133 if (out[i + step] + out[i - step] > 1.95 * out[i] || 134 out[i + step] >= out[i - step]) { 135 interpolate(out + i - step + 1, out[i], out[i - step], step - 1); 136 } else { 137 out[i - step / 2] = 138 eval_lpc_spectrum(in, 139 get_cos(i - step / 2, part, cos_tab, size), 140 mtab->n_lsp); 141 interpolate(out + i - step + 1, out[i - step / 2], 142 out[i - step], step / 2 - 1); 143 interpolate(out + i - step / 2 + 1, out[i], 144 out[i - step / 2], step / 2 - 1); 145 } 146 } 147 148 interpolate(out + size - 2 * step + 1, out[size - step], 149 out[size - 2 * step], step - 1); 150} 151 152static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype, 153 const float *buf, float *lpc, 154 int size, int step) 155{ 156 eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0); 157 eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2, 158 2 * step, 1); 159 160 interpolate(lpc + size / 2 - step + 1, lpc[size / 2], 161 lpc[size / 2 - step], step); 162 163 twinvq_memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step], 164 2 * step - 1); 165} 166 167/** 168 * Inverse quantization. Read CB coefficients for cb1 and cb2 from the 169 * bitstream, sum the corresponding vectors and write the result to *out 170 * after permutation. 171 */ 172static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out, 173 enum TwinVQFrameType ftype, 174 const int16_t *cb0, const int16_t *cb1, int cb_len) 175{ 176 int pos = 0; 177 int i, j; 178 179 for (i = 0; i < tctx->n_div[ftype]; i++) { 180 int tmp0, tmp1; 181 int sign0 = 1; 182 int sign1 = 1; 183 const int16_t *tab0, *tab1; 184 int length = tctx->length[ftype][i >= tctx->length_change[ftype]]; 185 int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]); 186 187 int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part]; 188 tmp0 = *cb_bits++; 189 if (bits == 7) { 190 if (tmp0 & 0x40) 191 sign0 = -1; 192 tmp0 &= 0x3F; 193 } 194 195 bits = tctx->bits_main_spec[1][ftype][bitstream_second_part]; 196 tmp1 = *cb_bits++; 197 if (bits == 7) { 198 if (tmp1 & 0x40) 199 sign1 = -1; 200 tmp1 &= 0x3F; 201 } 202 203 tab0 = cb0 + tmp0 * cb_len; 204 tab1 = cb1 + tmp1 * cb_len; 205 206 for (j = 0; j < length; j++) 207 out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] + 208 sign1 * tab1[j]; 209 210 pos += length; 211 } 212} 213 214static void dec_gain(TwinVQContext *tctx, 215 enum TwinVQFrameType ftype, float *out) 216{ 217 const TwinVQModeTab *mtab = tctx->mtab; 218 const TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame]; 219 int i, j; 220 int channels = tctx->avctx->ch_layout.nb_channels; 221 int sub = mtab->fmode[ftype].sub; 222 float step = TWINVQ_AMP_MAX / ((1 << TWINVQ_GAIN_BITS) - 1); 223 float sub_step = TWINVQ_SUB_AMP_MAX / ((1 << TWINVQ_SUB_GAIN_BITS) - 1); 224 225 if (ftype == TWINVQ_FT_LONG) { 226 for (i = 0; i < channels; i++) 227 out[i] = (1.0 / (1 << 13)) * 228 twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i], 229 TWINVQ_AMP_MAX, TWINVQ_MULAW_MU); 230 } else { 231 for (i = 0; i < channels; i++) { 232 float val = (1.0 / (1 << 23)) * 233 twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i], 234 TWINVQ_AMP_MAX, TWINVQ_MULAW_MU); 235 236 for (j = 0; j < sub; j++) 237 out[i * sub + j] = 238 val * twinvq_mulawinv(sub_step * 0.5 + 239 sub_step * bits->sub_gain_bits[i * sub + j], 240 TWINVQ_SUB_AMP_MAX, TWINVQ_MULAW_MU); 241 } 242 } 243} 244 245/** 246 * Rearrange the LSP coefficients so that they have a minimum distance of 247 * min_dist. This function does it exactly as described in section of 3.2.4 248 * of the G.729 specification (but interestingly is different from what the 249 * reference decoder actually does). 250 */ 251static void rearrange_lsp(int order, float *lsp, float min_dist) 252{ 253 int i; 254 float min_dist2 = min_dist * 0.5; 255 for (i = 1; i < order; i++) 256 if (lsp[i] - lsp[i - 1] < min_dist) { 257 float avg = (lsp[i] + lsp[i - 1]) * 0.5; 258 259 lsp[i - 1] = avg - min_dist2; 260 lsp[i] = avg + min_dist2; 261 } 262} 263 264static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2, 265 int lpc_hist_idx, float *lsp, float *hist) 266{ 267 const TwinVQModeTab *mtab = tctx->mtab; 268 int i, j; 269 270 const float *cb = mtab->lspcodebook; 271 const float *cb2 = cb + (1 << mtab->lsp_bit1) * mtab->n_lsp; 272 const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp; 273 274 const int8_t funny_rounding[4] = { 275 -2, 276 mtab->lsp_split == 4 ? -2 : 1, 277 mtab->lsp_split == 4 ? -2 : 1, 278 0 279 }; 280 281 j = 0; 282 for (i = 0; i < mtab->lsp_split; i++) { 283 int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) / 284 mtab->lsp_split; 285 for (; j < chunk_end; j++) 286 lsp[j] = cb[lpc_idx1 * mtab->n_lsp + j] + 287 cb2[lpc_idx2[i] * mtab->n_lsp + j]; 288 } 289 290 rearrange_lsp(mtab->n_lsp, lsp, 0.0001); 291 292 for (i = 0; i < mtab->n_lsp; i++) { 293 float tmp1 = 1.0 - cb3[lpc_hist_idx * mtab->n_lsp + i]; 294 float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i]; 295 hist[i] = lsp[i]; 296 lsp[i] = lsp[i] * tmp1 + tmp2; 297 } 298 299 rearrange_lsp(mtab->n_lsp, lsp, 0.0001); 300 rearrange_lsp(mtab->n_lsp, lsp, 0.000095); 301 ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp); 302} 303 304static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp, 305 enum TwinVQFrameType ftype, float *lpc) 306{ 307 int i; 308 int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub; 309 310 for (i = 0; i < tctx->mtab->n_lsp; i++) 311 lsp[i] = 2 * cos(lsp[i]); 312 313 switch (ftype) { 314 case TWINVQ_FT_LONG: 315 eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8); 316 break; 317 case TWINVQ_FT_MEDIUM: 318 eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2); 319 break; 320 case TWINVQ_FT_SHORT: 321 eval_lpcenv(tctx, lsp, lpc); 322 break; 323 } 324} 325 326static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 }; 327 328static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype, 329 int wtype, float *in, float *prev, int ch) 330{ 331 FFTContext *mdct = &tctx->mdct_ctx[ftype]; 332 const TwinVQModeTab *mtab = tctx->mtab; 333 int bsize = mtab->size / mtab->fmode[ftype].sub; 334 int size = mtab->size; 335 float *buf1 = tctx->tmp_buf; 336 int j, first_wsize, wsize; // Window size 337 float *out = tctx->curr_frame + 2 * ch * mtab->size; 338 float *out2 = out; 339 float *prev_buf; 340 int types_sizes[] = { 341 mtab->size / mtab->fmode[TWINVQ_FT_LONG].sub, 342 mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub, 343 mtab->size / (mtab->fmode[TWINVQ_FT_SHORT].sub * 2), 344 }; 345 346 wsize = types_sizes[wtype_to_wsize[wtype]]; 347 first_wsize = wsize; 348 prev_buf = prev + (size - bsize) / 2; 349 350 for (j = 0; j < mtab->fmode[ftype].sub; j++) { 351 int sub_wtype = ftype == TWINVQ_FT_MEDIUM ? 8 : wtype; 352 353 if (!j && wtype == 4) 354 sub_wtype = 4; 355 else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7) 356 sub_wtype = 7; 357 358 wsize = types_sizes[wtype_to_wsize[sub_wtype]]; 359 360 mdct->imdct_half(mdct, buf1 + bsize * j, in + bsize * j); 361 362 tctx->fdsp->vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2, 363 buf1 + bsize * j, 364 ff_sine_windows[av_log2(wsize)], 365 wsize / 2); 366 out2 += wsize; 367 368 memcpy(out2, buf1 + bsize * j + wsize / 2, 369 (bsize - wsize / 2) * sizeof(float)); 370 371 out2 += ftype == TWINVQ_FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize; 372 373 prev_buf = buf1 + bsize * j + bsize / 2; 374 } 375 376 tctx->last_block_pos[ch] = (size + first_wsize) / 2; 377} 378 379static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype, 380 int wtype, float **out, int offset) 381{ 382 const TwinVQModeTab *mtab = tctx->mtab; 383 float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0]; 384 int channels = tctx->avctx->ch_layout.nb_channels; 385 int size1, size2, i; 386 float *out1, *out2; 387 388 for (i = 0; i < channels; i++) 389 imdct_and_window(tctx, ftype, wtype, 390 tctx->spectrum + i * mtab->size, 391 prev_buf + 2 * i * mtab->size, 392 i); 393 394 if (!out) 395 return; 396 397 size2 = tctx->last_block_pos[0]; 398 size1 = mtab->size - size2; 399 400 out1 = &out[0][0] + offset; 401 memcpy(out1, prev_buf, size1 * sizeof(*out1)); 402 memcpy(out1 + size1, tctx->curr_frame, size2 * sizeof(*out1)); 403 404 if (channels == 2) { 405 out2 = &out[1][0] + offset; 406 memcpy(out2, &prev_buf[2 * mtab->size], 407 size1 * sizeof(*out2)); 408 memcpy(out2 + size1, &tctx->curr_frame[2 * mtab->size], 409 size2 * sizeof(*out2)); 410 tctx->fdsp->butterflies_float(out1, out2, mtab->size); 411 } 412} 413 414static void read_and_decode_spectrum(TwinVQContext *tctx, float *out, 415 enum TwinVQFrameType ftype) 416{ 417 const TwinVQModeTab *mtab = tctx->mtab; 418 TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame]; 419 int channels = tctx->avctx->ch_layout.nb_channels; 420 int sub = mtab->fmode[ftype].sub; 421 int block_size = mtab->size / sub; 422 float gain[TWINVQ_CHANNELS_MAX * TWINVQ_SUBBLOCKS_MAX]; 423 float ppc_shape[TWINVQ_PPC_SHAPE_LEN_MAX * TWINVQ_CHANNELS_MAX * 4]; 424 425 int i, j; 426 427 dequant(tctx, bits->main_coeffs, out, ftype, 428 mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1, 429 mtab->fmode[ftype].cb_len_read); 430 431 dec_gain(tctx, ftype, gain); 432 433 if (ftype == TWINVQ_FT_LONG) { 434 int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) / 435 tctx->n_div[3]; 436 dequant(tctx, bits->ppc_coeffs, ppc_shape, 437 TWINVQ_FT_PPC, mtab->ppc_shape_cb, 438 mtab->ppc_shape_cb + cb_len_p * TWINVQ_PPC_SHAPE_CB_SIZE, 439 cb_len_p); 440 } 441 442 for (i = 0; i < channels; i++) { 443 float *chunk = out + mtab->size * i; 444 float lsp[TWINVQ_LSP_COEFS_MAX]; 445 446 for (j = 0; j < sub; j++) { 447 tctx->dec_bark_env(tctx, bits->bark1[i][j], 448 bits->bark_use_hist[i][j], i, 449 tctx->tmp_buf, gain[sub * i + j], ftype); 450 451 tctx->fdsp->vector_fmul(chunk + block_size * j, 452 chunk + block_size * j, 453 tctx->tmp_buf, block_size); 454 } 455 456 if (ftype == TWINVQ_FT_LONG) 457 tctx->decode_ppc(tctx, bits->p_coef[i], bits->g_coef[i], 458 ppc_shape + i * mtab->ppc_shape_len, chunk); 459 460 decode_lsp(tctx, bits->lpc_idx1[i], bits->lpc_idx2[i], 461 bits->lpc_hist_idx[i], lsp, tctx->lsp_hist[i]); 462 463 dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf); 464 465 for (j = 0; j < mtab->fmode[ftype].sub; j++) { 466 tctx->fdsp->vector_fmul(chunk, chunk, tctx->tmp_buf, block_size); 467 chunk += block_size; 468 } 469 } 470} 471 472const enum TwinVQFrameType ff_twinvq_wtype_to_ftype_table[] = { 473 TWINVQ_FT_LONG, TWINVQ_FT_LONG, TWINVQ_FT_SHORT, TWINVQ_FT_LONG, 474 TWINVQ_FT_MEDIUM, TWINVQ_FT_LONG, TWINVQ_FT_LONG, TWINVQ_FT_MEDIUM, 475 TWINVQ_FT_MEDIUM 476}; 477 478int ff_twinvq_decode_frame(AVCodecContext *avctx, AVFrame *frame, 479 int *got_frame_ptr, AVPacket *avpkt) 480{ 481 const uint8_t *buf = avpkt->data; 482 int buf_size = avpkt->size; 483 TwinVQContext *tctx = avctx->priv_data; 484 const TwinVQModeTab *mtab = tctx->mtab; 485 float **out = NULL; 486 int ret; 487 488 /* get output buffer */ 489 if (tctx->discarded_packets >= 2) { 490 frame->nb_samples = mtab->size * tctx->frames_per_packet; 491 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) 492 return ret; 493 out = (float **)frame->extended_data; 494 } 495 496 if (buf_size < avctx->block_align) { 497 av_log(avctx, AV_LOG_ERROR, 498 "Frame too small (%d bytes). Truncated file?\n", buf_size); 499 return AVERROR(EINVAL); 500 } 501 502 if ((ret = tctx->read_bitstream(avctx, tctx, buf, buf_size)) < 0) 503 return ret; 504 505 for (tctx->cur_frame = 0; tctx->cur_frame < tctx->frames_per_packet; 506 tctx->cur_frame++) { 507 read_and_decode_spectrum(tctx, tctx->spectrum, 508 tctx->bits[tctx->cur_frame].ftype); 509 510 imdct_output(tctx, tctx->bits[tctx->cur_frame].ftype, 511 tctx->bits[tctx->cur_frame].window_type, out, 512 tctx->cur_frame * mtab->size); 513 514 FFSWAP(float *, tctx->curr_frame, tctx->prev_frame); 515 } 516 517 if (tctx->discarded_packets < 2) { 518 tctx->discarded_packets++; 519 *got_frame_ptr = 0; 520 return buf_size; 521 } 522 523 *got_frame_ptr = 1; 524 525 // VQF can deliver packets 1 byte greater than block align 526 if (buf_size == avctx->block_align + 1) 527 return buf_size; 528 return avctx->block_align; 529} 530 531/** 532 * Init IMDCT and windowing tables 533 */ 534static av_cold int init_mdct_win(TwinVQContext *tctx) 535{ 536 int i, j, ret; 537 const TwinVQModeTab *mtab = tctx->mtab; 538 int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub; 539 int size_m = mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub; 540 int channels = tctx->avctx->ch_layout.nb_channels; 541 float norm = channels == 1 ? 2.0 : 1.0; 542 int table_size = 2 * mtab->size * channels; 543 544 for (i = 0; i < 3; i++) { 545 int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub; 546 if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1, 547 -sqrt(norm / bsize) / (1 << 15)))) 548 return ret; 549 } 550 551 if (!FF_ALLOC_TYPED_ARRAY(tctx->tmp_buf, mtab->size) || 552 !FF_ALLOC_TYPED_ARRAY(tctx->spectrum, table_size) || 553 !FF_ALLOC_TYPED_ARRAY(tctx->curr_frame, table_size) || 554 !FF_ALLOC_TYPED_ARRAY(tctx->prev_frame, table_size)) 555 return AVERROR(ENOMEM); 556 557 for (i = 0; i < 3; i++) { 558 int m = 4 * mtab->size / mtab->fmode[i].sub; 559 double freq = 2 * M_PI / m; 560 if (!FF_ALLOC_TYPED_ARRAY(tctx->cos_tabs[i], m / 4)) 561 return AVERROR(ENOMEM); 562 for (j = 0; j <= m / 8; j++) 563 tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq); 564 for (j = 1; j < m / 8; j++) 565 tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j]; 566 } 567 568 ff_init_ff_sine_windows(av_log2(size_m)); 569 ff_init_ff_sine_windows(av_log2(size_s / 2)); 570 ff_init_ff_sine_windows(av_log2(mtab->size)); 571 572 return 0; 573} 574 575/** 576 * Interpret the data as if it were a num_blocks x line_len[0] matrix and for 577 * each line do a cyclic permutation, i.e. 578 * abcdefghijklm -> defghijklmabc 579 * where the amount to be shifted is evaluated depending on the column. 580 */ 581static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks, 582 int block_size, 583 const uint8_t line_len[2], int length_div, 584 enum TwinVQFrameType ftype) 585{ 586 int i, j; 587 588 for (i = 0; i < line_len[0]; i++) { 589 int shift; 590 591 if (num_blocks == 1 || 592 (ftype == TWINVQ_FT_LONG && num_vect % num_blocks) || 593 (ftype != TWINVQ_FT_LONG && num_vect & 1) || 594 i == line_len[1]) { 595 shift = 0; 596 } else if (ftype == TWINVQ_FT_LONG) { 597 shift = i; 598 } else 599 shift = i * i; 600 601 for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++) 602 tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect; 603 } 604} 605 606/** 607 * Interpret the input data as in the following table: 608 * 609 * @verbatim 610 * 611 * abcdefgh 612 * ijklmnop 613 * qrstuvw 614 * x123456 615 * 616 * @endverbatim 617 * 618 * and transpose it, giving the output 619 * aiqxbjr1cks2dlt3emu4fvn5gow6hp 620 */ 621static void transpose_perm(int16_t *out, int16_t *in, int num_vect, 622 const uint8_t line_len[2], int length_div) 623{ 624 int i, j; 625 int cont = 0; 626 627 for (i = 0; i < num_vect; i++) 628 for (j = 0; j < line_len[i >= length_div]; j++) 629 out[cont++] = in[j * num_vect + i]; 630} 631 632static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size) 633{ 634 int block_size = size / n_blocks; 635 int i; 636 637 for (i = 0; i < size; i++) 638 out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks; 639} 640 641static av_cold void construct_perm_table(TwinVQContext *tctx, 642 enum TwinVQFrameType ftype) 643{ 644 int block_size, size; 645 const TwinVQModeTab *mtab = tctx->mtab; 646 int16_t *tmp_perm = (int16_t *)tctx->tmp_buf; 647 648 if (ftype == TWINVQ_FT_PPC) { 649 size = tctx->avctx->ch_layout.nb_channels; 650 block_size = mtab->ppc_shape_len; 651 } else { 652 size = tctx->avctx->ch_layout.nb_channels * mtab->fmode[ftype].sub; 653 block_size = mtab->size / mtab->fmode[ftype].sub; 654 } 655 656 permutate_in_line(tmp_perm, tctx->n_div[ftype], size, 657 block_size, tctx->length[ftype], 658 tctx->length_change[ftype], ftype); 659 660 transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype], 661 tctx->length[ftype], tctx->length_change[ftype]); 662 663 linear_perm(tctx->permut[ftype], tctx->permut[ftype], size, 664 size * block_size); 665} 666 667static av_cold void init_bitstream_params(TwinVQContext *tctx) 668{ 669 const TwinVQModeTab *mtab = tctx->mtab; 670 int n_ch = tctx->avctx->ch_layout.nb_channels; 671 int total_fr_bits = tctx->avctx->bit_rate * mtab->size / 672 tctx->avctx->sample_rate; 673 674 int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 + 675 mtab->lsp_split * mtab->lsp_bit2); 676 677 int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit + 678 mtab->ppc_period_bit); 679 680 int bsize_no_main_cb[3], bse_bits[3], i; 681 enum TwinVQFrameType frametype; 682 683 for (i = 0; i < 3; i++) 684 // +1 for history usage switch 685 bse_bits[i] = n_ch * 686 (mtab->fmode[i].bark_n_coef * 687 mtab->fmode[i].bark_n_bit + 1); 688 689 bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits + 690 TWINVQ_WINDOW_TYPE_BITS + n_ch * TWINVQ_GAIN_BITS; 691 692 for (i = 0; i < 2; i++) 693 bsize_no_main_cb[i] = 694 lsp_bits_per_block + n_ch * TWINVQ_GAIN_BITS + 695 TWINVQ_WINDOW_TYPE_BITS + 696 mtab->fmode[i].sub * (bse_bits[i] + n_ch * TWINVQ_SUB_GAIN_BITS); 697 698 if (tctx->codec == TWINVQ_CODEC_METASOUND && !tctx->is_6kbps) { 699 bsize_no_main_cb[1] += 2; 700 bsize_no_main_cb[2] += 2; 701 } 702 703 // The remaining bits are all used for the main spectrum coefficients 704 for (i = 0; i < 4; i++) { 705 int bit_size, vect_size; 706 int rounded_up, rounded_down, num_rounded_down, num_rounded_up; 707 if (i == 3) { 708 bit_size = n_ch * mtab->ppc_shape_bit; 709 vect_size = n_ch * mtab->ppc_shape_len; 710 } else { 711 bit_size = total_fr_bits - bsize_no_main_cb[i]; 712 vect_size = n_ch * mtab->size; 713 } 714 715 tctx->n_div[i] = (bit_size + 13) / 14; 716 717 rounded_up = (bit_size + tctx->n_div[i] - 1) / 718 tctx->n_div[i]; 719 rounded_down = (bit_size) / tctx->n_div[i]; 720 num_rounded_down = rounded_up * tctx->n_div[i] - bit_size; 721 num_rounded_up = tctx->n_div[i] - num_rounded_down; 722 tctx->bits_main_spec[0][i][0] = (rounded_up + 1) / 2; 723 tctx->bits_main_spec[1][i][0] = rounded_up / 2; 724 tctx->bits_main_spec[0][i][1] = (rounded_down + 1) / 2; 725 tctx->bits_main_spec[1][i][1] = rounded_down / 2; 726 tctx->bits_main_spec_change[i] = num_rounded_up; 727 728 rounded_up = (vect_size + tctx->n_div[i] - 1) / 729 tctx->n_div[i]; 730 rounded_down = (vect_size) / tctx->n_div[i]; 731 num_rounded_down = rounded_up * tctx->n_div[i] - vect_size; 732 num_rounded_up = tctx->n_div[i] - num_rounded_down; 733 tctx->length[i][0] = rounded_up; 734 tctx->length[i][1] = rounded_down; 735 tctx->length_change[i] = num_rounded_up; 736 } 737 738 for (frametype = TWINVQ_FT_SHORT; frametype <= TWINVQ_FT_PPC; frametype++) 739 construct_perm_table(tctx, frametype); 740} 741 742av_cold int ff_twinvq_decode_close(AVCodecContext *avctx) 743{ 744 TwinVQContext *tctx = avctx->priv_data; 745 int i; 746 747 for (i = 0; i < 3; i++) { 748 ff_mdct_end(&tctx->mdct_ctx[i]); 749 av_freep(&tctx->cos_tabs[i]); 750 } 751 752 av_freep(&tctx->curr_frame); 753 av_freep(&tctx->spectrum); 754 av_freep(&tctx->prev_frame); 755 av_freep(&tctx->tmp_buf); 756 av_freep(&tctx->fdsp); 757 758 return 0; 759} 760 761av_cold int ff_twinvq_decode_init(AVCodecContext *avctx) 762{ 763 int ret; 764 TwinVQContext *tctx = avctx->priv_data; 765 int64_t frames_per_packet; 766 767 tctx->avctx = avctx; 768 avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; 769 770 if (!avctx->block_align) { 771 avctx->block_align = tctx->frame_size + 7 >> 3; 772 } 773 frames_per_packet = avctx->block_align * 8LL / tctx->frame_size; 774 if (frames_per_packet <= 0) { 775 av_log(avctx, AV_LOG_ERROR, "Block align is %"PRId64" bits, expected %d\n", 776 avctx->block_align * (int64_t)8, tctx->frame_size); 777 return AVERROR_INVALIDDATA; 778 } 779 if (frames_per_packet > TWINVQ_MAX_FRAMES_PER_PACKET) { 780 av_log(avctx, AV_LOG_ERROR, "Too many frames per packet (%"PRId64")\n", 781 frames_per_packet); 782 return AVERROR_INVALIDDATA; 783 } 784 tctx->frames_per_packet = frames_per_packet; 785 786 tctx->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); 787 if (!tctx->fdsp) 788 return AVERROR(ENOMEM); 789 if ((ret = init_mdct_win(tctx))) { 790 av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n"); 791 return ret; 792 } 793 init_bitstream_params(tctx); 794 795 twinvq_memset_float(tctx->bark_hist[0][0], 0.1, 796 FF_ARRAY_ELEMS(tctx->bark_hist)); 797 798 return 0; 799} 800