1 /*
2  * TwinVQ decoder
3  * Copyright (c) 2009 Vitor Sessak
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include <math.h>
23 #include <stdint.h>
24 
25 #include "libavutil/channel_layout.h"
26 #include "libavutil/float_dsp.h"
27 #include "avcodec.h"
28 #include "fft.h"
29 #include "internal.h"
30 #include "lsp.h"
31 #include "sinewin.h"
32 #include "twinvq.h"
33 
34 /**
35  * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
36  * spectrum pairs.
37  *
38  * @param lsp a vector of the cosine of the LSP values
39  * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
40  * @param order the order of the LSP (and the size of the *lsp buffer). Must
41  *        be a multiple of four.
42  * @return the LPC value
43  *
44  * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
45  */
eval_lpc_spectrum(const float *lsp, float cos_val, int order)46 static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
47 {
48     int j;
49     float p         = 0.5f;
50     float q         = 0.5f;
51     float two_cos_w = 2.0f * cos_val;
52 
53     for (j = 0; j + 1 < order; j += 2 * 2) {
54         // Unroll the loop once since order is a multiple of four
55         q *= lsp[j]     - two_cos_w;
56         p *= lsp[j + 1] - two_cos_w;
57 
58         q *= lsp[j + 2] - two_cos_w;
59         p *= lsp[j + 3] - two_cos_w;
60     }
61 
62     p *= p * (2.0f - two_cos_w);
63     q *= q * (2.0f + two_cos_w);
64 
65     return 0.5 / (p + q);
66 }
67 
68 /**
69  * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
70  */
eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc)71 static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc)
72 {
73     int i;
74     const TwinVQModeTab *mtab = tctx->mtab;
75     int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
76 
77     for (i = 0; i < size_s / 2; i++) {
78         float cos_i = tctx->cos_tabs[0][i];
79         lpc[i]              = eval_lpc_spectrum(cos_vals,  cos_i, mtab->n_lsp);
80         lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
81     }
82 }
83 
interpolate(float *out, float v1, float v2, int size)84 static void interpolate(float *out, float v1, float v2, int size)
85 {
86     int i;
87     float step = (v1 - v2) / (size + 1);
88 
89     for (i = 0; i < size; i++) {
90         v2    += step;
91         out[i] = v2;
92     }
93 }
94 
get_cos(int idx, int part, const float *cos_tab, int size)95 static inline float get_cos(int idx, int part, const float *cos_tab, int size)
96 {
97     return part ? -cos_tab[size - idx - 1]
98                 :  cos_tab[idx];
99 }
100 
101 /**
102  * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
103  * Probably for speed reasons, the coefficients are evaluated as
104  * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
105  * where s is an evaluated value, i is a value interpolated from the others
106  * and b might be either calculated or interpolated, depending on an
107  * unexplained condition.
108  *
109  * @param step the size of a block "siiiibiiii"
110  * @param in the cosine of the LSP data
111  * @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI
112  *        (negative cosine values)
113  * @param size the size of the whole output
114  */
eval_lpcenv_or_interp(TwinVQContext *tctx, enum TwinVQFrameType ftype, float *out, const float *in, int size, int step, int part)115 static inline void eval_lpcenv_or_interp(TwinVQContext *tctx,
116                                          enum TwinVQFrameType ftype,
117                                          float *out, const float *in,
118                                          int size, int step, int part)
119 {
120     int i;
121     const TwinVQModeTab *mtab = tctx->mtab;
122     const float *cos_tab      = tctx->cos_tabs[ftype];
123 
124     // Fill the 's'
125     for (i = 0; i < size; i += step)
126         out[i] =
127             eval_lpc_spectrum(in,
128                               get_cos(i, part, cos_tab, size),
129                               mtab->n_lsp);
130 
131     // Fill the 'iiiibiiii'
132     for (i = step; i <= size - 2 * step; i += step) {
133         if (out[i + step] + out[i - step] > 1.95 * out[i] ||
134             out[i + step]                 >= out[i - step]) {
135             interpolate(out + i - step + 1, out[i], out[i - step], step - 1);
136         } else {
137             out[i - step / 2] =
138                 eval_lpc_spectrum(in,
139                                   get_cos(i - step / 2, part, cos_tab, size),
140                                   mtab->n_lsp);
141             interpolate(out + i - step + 1, out[i - step / 2],
142                         out[i - step], step / 2 - 1);
143             interpolate(out + i - step / 2 + 1, out[i],
144                         out[i - step / 2], step / 2 - 1);
145         }
146     }
147 
148     interpolate(out + size - 2 * step + 1, out[size - step],
149                 out[size - 2 * step], step - 1);
150 }
151 
eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype, const float *buf, float *lpc, int size, int step)152 static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype,
153                                const float *buf, float *lpc,
154                                int size, int step)
155 {
156     eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0);
157     eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2,
158                           2 * step, 1);
159 
160     interpolate(lpc + size / 2 - step + 1, lpc[size / 2],
161                 lpc[size / 2 - step], step);
162 
163     twinvq_memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step],
164                         2 * step - 1);
165 }
166 
167 /**
168  * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
169  * bitstream, sum the corresponding vectors and write the result to *out
170  * after permutation.
171  */
dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out, enum TwinVQFrameType ftype, const int16_t *cb0, const int16_t *cb1, int cb_len)172 static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out,
173                     enum TwinVQFrameType ftype,
174                     const int16_t *cb0, const int16_t *cb1, int cb_len)
175 {
176     int pos = 0;
177     int i, j;
178 
179     for (i = 0; i < tctx->n_div[ftype]; i++) {
180         int tmp0, tmp1;
181         int sign0 = 1;
182         int sign1 = 1;
183         const int16_t *tab0, *tab1;
184         int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
185         int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
186 
187         int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
188         tmp0 = *cb_bits++;
189         if (bits == 7) {
190             if (tmp0 & 0x40)
191                 sign0 = -1;
192             tmp0 &= 0x3F;
193         }
194 
195         bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
196         tmp1 = *cb_bits++;
197         if (bits == 7) {
198             if (tmp1 & 0x40)
199                 sign1 = -1;
200             tmp1 &= 0x3F;
201         }
202 
203         tab0 = cb0 + tmp0 * cb_len;
204         tab1 = cb1 + tmp1 * cb_len;
205 
206         for (j = 0; j < length; j++)
207             out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] +
208                                                 sign1 * tab1[j];
209 
210         pos += length;
211     }
212 }
213 
dec_gain(TwinVQContext *tctx, enum TwinVQFrameType ftype, float *out)214 static void dec_gain(TwinVQContext *tctx,
215                      enum TwinVQFrameType ftype, float *out)
216 {
217     const TwinVQModeTab   *mtab =  tctx->mtab;
218     const TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame];
219     int i, j;
220     int channels   = tctx->avctx->ch_layout.nb_channels;
221     int sub        = mtab->fmode[ftype].sub;
222     float step     = TWINVQ_AMP_MAX     / ((1 << TWINVQ_GAIN_BITS)     - 1);
223     float sub_step = TWINVQ_SUB_AMP_MAX / ((1 << TWINVQ_SUB_GAIN_BITS) - 1);
224 
225     if (ftype == TWINVQ_FT_LONG) {
226         for (i = 0; i < channels; i++)
227             out[i] = (1.0 / (1 << 13)) *
228                      twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
229                                      TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
230     } else {
231         for (i = 0; i < channels; i++) {
232             float val = (1.0 / (1 << 23)) *
233                         twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
234                                         TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
235 
236             for (j = 0; j < sub; j++)
237                 out[i * sub + j] =
238                     val * twinvq_mulawinv(sub_step * 0.5 +
239                                           sub_step * bits->sub_gain_bits[i * sub + j],
240                                           TWINVQ_SUB_AMP_MAX, TWINVQ_MULAW_MU);
241         }
242     }
243 }
244 
245 /**
246  * Rearrange the LSP coefficients so that they have a minimum distance of
247  * min_dist. This function does it exactly as described in section of 3.2.4
248  * of the G.729 specification (but interestingly is different from what the
249  * reference decoder actually does).
250  */
rearrange_lsp(int order, float *lsp, float min_dist)251 static void rearrange_lsp(int order, float *lsp, float min_dist)
252 {
253     int i;
254     float min_dist2 = min_dist * 0.5;
255     for (i = 1; i < order; i++)
256         if (lsp[i] - lsp[i - 1] < min_dist) {
257             float avg = (lsp[i] + lsp[i - 1]) * 0.5;
258 
259             lsp[i - 1] = avg - min_dist2;
260             lsp[i]     = avg + min_dist2;
261         }
262 }
263 
decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2, int lpc_hist_idx, float *lsp, float *hist)264 static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
265                        int lpc_hist_idx, float *lsp, float *hist)
266 {
267     const TwinVQModeTab *mtab = tctx->mtab;
268     int i, j;
269 
270     const float *cb  = mtab->lspcodebook;
271     const float *cb2 = cb  + (1 << mtab->lsp_bit1) * mtab->n_lsp;
272     const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp;
273 
274     const int8_t funny_rounding[4] = {
275         -2,
276         mtab->lsp_split == 4 ? -2 : 1,
277         mtab->lsp_split == 4 ? -2 : 1,
278         0
279     };
280 
281     j = 0;
282     for (i = 0; i < mtab->lsp_split; i++) {
283         int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) /
284                         mtab->lsp_split;
285         for (; j < chunk_end; j++)
286             lsp[j] = cb[lpc_idx1     * mtab->n_lsp + j] +
287                      cb2[lpc_idx2[i] * mtab->n_lsp + j];
288     }
289 
290     rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
291 
292     for (i = 0; i < mtab->n_lsp; i++) {
293         float tmp1 = 1.0     - cb3[lpc_hist_idx * mtab->n_lsp + i];
294         float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i];
295         hist[i] = lsp[i];
296         lsp[i]  = lsp[i] * tmp1 + tmp2;
297     }
298 
299     rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
300     rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
301     ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
302 }
303 
dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp, enum TwinVQFrameType ftype, float *lpc)304 static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp,
305                                  enum TwinVQFrameType ftype, float *lpc)
306 {
307     int i;
308     int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
309 
310     for (i = 0; i < tctx->mtab->n_lsp; i++)
311         lsp[i] = 2 * cos(lsp[i]);
312 
313     switch (ftype) {
314     case TWINVQ_FT_LONG:
315         eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
316         break;
317     case TWINVQ_FT_MEDIUM:
318         eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
319         break;
320     case TWINVQ_FT_SHORT:
321         eval_lpcenv(tctx, lsp, lpc);
322         break;
323     }
324 }
325 
326 static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 };
327 
imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype, int wtype, float *in, float *prev, int ch)328 static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype,
329                              int wtype, float *in, float *prev, int ch)
330 {
331     FFTContext *mdct = &tctx->mdct_ctx[ftype];
332     const TwinVQModeTab *mtab = tctx->mtab;
333     int bsize = mtab->size / mtab->fmode[ftype].sub;
334     int size  = mtab->size;
335     float *buf1 = tctx->tmp_buf;
336     int j, first_wsize, wsize; // Window size
337     float *out  = tctx->curr_frame + 2 * ch * mtab->size;
338     float *out2 = out;
339     float *prev_buf;
340     int types_sizes[] = {
341         mtab->size /  mtab->fmode[TWINVQ_FT_LONG].sub,
342         mtab->size /  mtab->fmode[TWINVQ_FT_MEDIUM].sub,
343         mtab->size / (mtab->fmode[TWINVQ_FT_SHORT].sub * 2),
344     };
345 
346     wsize       = types_sizes[wtype_to_wsize[wtype]];
347     first_wsize = wsize;
348     prev_buf    = prev + (size - bsize) / 2;
349 
350     for (j = 0; j < mtab->fmode[ftype].sub; j++) {
351         int sub_wtype = ftype == TWINVQ_FT_MEDIUM ? 8 : wtype;
352 
353         if (!j && wtype == 4)
354             sub_wtype = 4;
355         else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7)
356             sub_wtype = 7;
357 
358         wsize = types_sizes[wtype_to_wsize[sub_wtype]];
359 
360         mdct->imdct_half(mdct, buf1 + bsize * j, in + bsize * j);
361 
362         tctx->fdsp->vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2,
363                                       buf1 + bsize * j,
364                                       ff_sine_windows[av_log2(wsize)],
365                                       wsize / 2);
366         out2 += wsize;
367 
368         memcpy(out2, buf1 + bsize * j + wsize / 2,
369                (bsize - wsize / 2) * sizeof(float));
370 
371         out2 += ftype == TWINVQ_FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize;
372 
373         prev_buf = buf1 + bsize * j + bsize / 2;
374     }
375 
376     tctx->last_block_pos[ch] = (size + first_wsize) / 2;
377 }
378 
imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype, int wtype, float **out, int offset)379 static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype,
380                          int wtype, float **out, int offset)
381 {
382     const TwinVQModeTab *mtab = tctx->mtab;
383     float *prev_buf           = tctx->prev_frame + tctx->last_block_pos[0];
384     int channels              = tctx->avctx->ch_layout.nb_channels;
385     int size1, size2, i;
386     float *out1, *out2;
387 
388     for (i = 0; i < channels; i++)
389         imdct_and_window(tctx, ftype, wtype,
390                          tctx->spectrum + i * mtab->size,
391                          prev_buf + 2 * i * mtab->size,
392                          i);
393 
394     if (!out)
395         return;
396 
397     size2 = tctx->last_block_pos[0];
398     size1 = mtab->size - size2;
399 
400     out1 = &out[0][0] + offset;
401     memcpy(out1,         prev_buf,         size1 * sizeof(*out1));
402     memcpy(out1 + size1, tctx->curr_frame, size2 * sizeof(*out1));
403 
404     if (channels == 2) {
405         out2 = &out[1][0] + offset;
406         memcpy(out2, &prev_buf[2 * mtab->size],
407                size1 * sizeof(*out2));
408         memcpy(out2 + size1, &tctx->curr_frame[2 * mtab->size],
409                size2 * sizeof(*out2));
410         tctx->fdsp->butterflies_float(out1, out2, mtab->size);
411     }
412 }
413 
read_and_decode_spectrum(TwinVQContext *tctx, float *out, enum TwinVQFrameType ftype)414 static void read_and_decode_spectrum(TwinVQContext *tctx, float *out,
415                                      enum TwinVQFrameType ftype)
416 {
417     const TwinVQModeTab *mtab = tctx->mtab;
418     TwinVQFrameData *bits     = &tctx->bits[tctx->cur_frame];
419     int channels              = tctx->avctx->ch_layout.nb_channels;
420     int sub        = mtab->fmode[ftype].sub;
421     int block_size = mtab->size / sub;
422     float gain[TWINVQ_CHANNELS_MAX * TWINVQ_SUBBLOCKS_MAX];
423     float ppc_shape[TWINVQ_PPC_SHAPE_LEN_MAX * TWINVQ_CHANNELS_MAX * 4];
424 
425     int i, j;
426 
427     dequant(tctx, bits->main_coeffs, out, ftype,
428             mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
429             mtab->fmode[ftype].cb_len_read);
430 
431     dec_gain(tctx, ftype, gain);
432 
433     if (ftype == TWINVQ_FT_LONG) {
434         int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) /
435                        tctx->n_div[3];
436         dequant(tctx, bits->ppc_coeffs, ppc_shape,
437                 TWINVQ_FT_PPC, mtab->ppc_shape_cb,
438                 mtab->ppc_shape_cb + cb_len_p * TWINVQ_PPC_SHAPE_CB_SIZE,
439                 cb_len_p);
440     }
441 
442     for (i = 0; i < channels; i++) {
443         float *chunk = out + mtab->size * i;
444         float lsp[TWINVQ_LSP_COEFS_MAX];
445 
446         for (j = 0; j < sub; j++) {
447             tctx->dec_bark_env(tctx, bits->bark1[i][j],
448                                bits->bark_use_hist[i][j], i,
449                                tctx->tmp_buf, gain[sub * i + j], ftype);
450 
451             tctx->fdsp->vector_fmul(chunk + block_size * j,
452                                    chunk + block_size * j,
453                                    tctx->tmp_buf, block_size);
454         }
455 
456         if (ftype == TWINVQ_FT_LONG)
457             tctx->decode_ppc(tctx, bits->p_coef[i], bits->g_coef[i],
458                              ppc_shape + i * mtab->ppc_shape_len, chunk);
459 
460         decode_lsp(tctx, bits->lpc_idx1[i], bits->lpc_idx2[i],
461                    bits->lpc_hist_idx[i], lsp, tctx->lsp_hist[i]);
462 
463         dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
464 
465         for (j = 0; j < mtab->fmode[ftype].sub; j++) {
466             tctx->fdsp->vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
467             chunk += block_size;
468         }
469     }
470 }
471 
472 const enum TwinVQFrameType ff_twinvq_wtype_to_ftype_table[] = {
473     TWINVQ_FT_LONG,   TWINVQ_FT_LONG, TWINVQ_FT_SHORT, TWINVQ_FT_LONG,
474     TWINVQ_FT_MEDIUM, TWINVQ_FT_LONG, TWINVQ_FT_LONG,  TWINVQ_FT_MEDIUM,
475     TWINVQ_FT_MEDIUM
476 };
477 
ff_twinvq_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt)478 int ff_twinvq_decode_frame(AVCodecContext *avctx, AVFrame *frame,
479                            int *got_frame_ptr, AVPacket *avpkt)
480 {
481     const uint8_t *buf = avpkt->data;
482     int buf_size       = avpkt->size;
483     TwinVQContext *tctx = avctx->priv_data;
484     const TwinVQModeTab *mtab = tctx->mtab;
485     float **out = NULL;
486     int ret;
487 
488     /* get output buffer */
489     if (tctx->discarded_packets >= 2) {
490         frame->nb_samples = mtab->size * tctx->frames_per_packet;
491         if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
492             return ret;
493         out = (float **)frame->extended_data;
494     }
495 
496     if (buf_size < avctx->block_align) {
497         av_log(avctx, AV_LOG_ERROR,
498                "Frame too small (%d bytes). Truncated file?\n", buf_size);
499         return AVERROR(EINVAL);
500     }
501 
502     if ((ret = tctx->read_bitstream(avctx, tctx, buf, buf_size)) < 0)
503         return ret;
504 
505     for (tctx->cur_frame = 0; tctx->cur_frame < tctx->frames_per_packet;
506          tctx->cur_frame++) {
507         read_and_decode_spectrum(tctx, tctx->spectrum,
508                                  tctx->bits[tctx->cur_frame].ftype);
509 
510         imdct_output(tctx, tctx->bits[tctx->cur_frame].ftype,
511                      tctx->bits[tctx->cur_frame].window_type, out,
512                      tctx->cur_frame * mtab->size);
513 
514         FFSWAP(float *, tctx->curr_frame, tctx->prev_frame);
515     }
516 
517     if (tctx->discarded_packets < 2) {
518         tctx->discarded_packets++;
519         *got_frame_ptr = 0;
520         return buf_size;
521     }
522 
523     *got_frame_ptr = 1;
524 
525     // VQF can deliver packets 1 byte greater than block align
526     if (buf_size == avctx->block_align + 1)
527         return buf_size;
528     return avctx->block_align;
529 }
530 
531 /**
532  * Init IMDCT and windowing tables
533  */
init_mdct_win(TwinVQContext *tctx)534 static av_cold int init_mdct_win(TwinVQContext *tctx)
535 {
536     int i, j, ret;
537     const TwinVQModeTab *mtab = tctx->mtab;
538     int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
539     int size_m = mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub;
540     int channels = tctx->avctx->ch_layout.nb_channels;
541     float norm = channels == 1 ? 2.0 : 1.0;
542     int table_size = 2 * mtab->size * channels;
543 
544     for (i = 0; i < 3; i++) {
545         int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub;
546         if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
547                                 -sqrt(norm / bsize) / (1 << 15))))
548             return ret;
549     }
550 
551     if (!FF_ALLOC_TYPED_ARRAY(tctx->tmp_buf,    mtab->size) ||
552         !FF_ALLOC_TYPED_ARRAY(tctx->spectrum,   table_size) ||
553         !FF_ALLOC_TYPED_ARRAY(tctx->curr_frame, table_size) ||
554         !FF_ALLOC_TYPED_ARRAY(tctx->prev_frame, table_size))
555         return AVERROR(ENOMEM);
556 
557     for (i = 0; i < 3; i++) {
558         int m       = 4 * mtab->size / mtab->fmode[i].sub;
559         double freq = 2 * M_PI / m;
560         if (!FF_ALLOC_TYPED_ARRAY(tctx->cos_tabs[i], m / 4))
561             return AVERROR(ENOMEM);
562         for (j = 0; j <= m / 8; j++)
563             tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq);
564         for (j = 1; j < m / 8; j++)
565             tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j];
566     }
567 
568     ff_init_ff_sine_windows(av_log2(size_m));
569     ff_init_ff_sine_windows(av_log2(size_s / 2));
570     ff_init_ff_sine_windows(av_log2(mtab->size));
571 
572     return 0;
573 }
574 
575 /**
576  * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
577  * each line do a cyclic permutation, i.e.
578  * abcdefghijklm -> defghijklmabc
579  * where the amount to be shifted is evaluated depending on the column.
580  */
permutate_in_line(int16_t *tab, int num_vect, int num_blocks, int block_size, const uint8_t line_len[2], int length_div, enum TwinVQFrameType ftype)581 static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
582                               int block_size,
583                               const uint8_t line_len[2], int length_div,
584                               enum TwinVQFrameType ftype)
585 {
586     int i, j;
587 
588     for (i = 0; i < line_len[0]; i++) {
589         int shift;
590 
591         if (num_blocks == 1                                    ||
592             (ftype == TWINVQ_FT_LONG && num_vect % num_blocks) ||
593             (ftype != TWINVQ_FT_LONG && num_vect & 1)          ||
594             i == line_len[1]) {
595             shift = 0;
596         } else if (ftype == TWINVQ_FT_LONG) {
597             shift = i;
598         } else
599             shift = i * i;
600 
601         for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++)
602             tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect;
603     }
604 }
605 
606 /**
607  * Interpret the input data as in the following table:
608  *
609  * @verbatim
610  *
611  * abcdefgh
612  * ijklmnop
613  * qrstuvw
614  * x123456
615  *
616  * @endverbatim
617  *
618  * and transpose it, giving the output
619  * aiqxbjr1cks2dlt3emu4fvn5gow6hp
620  */
transpose_perm(int16_t *out, int16_t *in, int num_vect, const uint8_t line_len[2], int length_div)621 static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
622                            const uint8_t line_len[2], int length_div)
623 {
624     int i, j;
625     int cont = 0;
626 
627     for (i = 0; i < num_vect; i++)
628         for (j = 0; j < line_len[i >= length_div]; j++)
629             out[cont++] = in[j * num_vect + i];
630 }
631 
linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)632 static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
633 {
634     int block_size = size / n_blocks;
635     int i;
636 
637     for (i = 0; i < size; i++)
638         out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
639 }
640 
construct_perm_table(TwinVQContext *tctx, enum TwinVQFrameType ftype)641 static av_cold void construct_perm_table(TwinVQContext *tctx,
642                                          enum TwinVQFrameType ftype)
643 {
644     int block_size, size;
645     const TwinVQModeTab *mtab = tctx->mtab;
646     int16_t *tmp_perm = (int16_t *)tctx->tmp_buf;
647 
648     if (ftype == TWINVQ_FT_PPC) {
649         size       = tctx->avctx->ch_layout.nb_channels;
650         block_size = mtab->ppc_shape_len;
651     } else {
652         size       = tctx->avctx->ch_layout.nb_channels * mtab->fmode[ftype].sub;
653         block_size = mtab->size / mtab->fmode[ftype].sub;
654     }
655 
656     permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
657                       block_size, tctx->length[ftype],
658                       tctx->length_change[ftype], ftype);
659 
660     transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
661                    tctx->length[ftype], tctx->length_change[ftype]);
662 
663     linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
664                 size * block_size);
665 }
666 
init_bitstream_params(TwinVQContext *tctx)667 static av_cold void init_bitstream_params(TwinVQContext *tctx)
668 {
669     const TwinVQModeTab *mtab = tctx->mtab;
670     int n_ch                  = tctx->avctx->ch_layout.nb_channels;
671     int total_fr_bits         = tctx->avctx->bit_rate * mtab->size /
672                                 tctx->avctx->sample_rate;
673 
674     int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 +
675                                      mtab->lsp_split * mtab->lsp_bit2);
676 
677     int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit +
678                            mtab->ppc_period_bit);
679 
680     int bsize_no_main_cb[3], bse_bits[3], i;
681     enum TwinVQFrameType frametype;
682 
683     for (i = 0; i < 3; i++)
684         // +1 for history usage switch
685         bse_bits[i] = n_ch *
686                       (mtab->fmode[i].bark_n_coef *
687                        mtab->fmode[i].bark_n_bit + 1);
688 
689     bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
690                           TWINVQ_WINDOW_TYPE_BITS + n_ch * TWINVQ_GAIN_BITS;
691 
692     for (i = 0; i < 2; i++)
693         bsize_no_main_cb[i] =
694             lsp_bits_per_block + n_ch * TWINVQ_GAIN_BITS +
695             TWINVQ_WINDOW_TYPE_BITS +
696             mtab->fmode[i].sub * (bse_bits[i] + n_ch * TWINVQ_SUB_GAIN_BITS);
697 
698     if (tctx->codec == TWINVQ_CODEC_METASOUND && !tctx->is_6kbps) {
699         bsize_no_main_cb[1] += 2;
700         bsize_no_main_cb[2] += 2;
701     }
702 
703     // The remaining bits are all used for the main spectrum coefficients
704     for (i = 0; i < 4; i++) {
705         int bit_size, vect_size;
706         int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
707         if (i == 3) {
708             bit_size  = n_ch * mtab->ppc_shape_bit;
709             vect_size = n_ch * mtab->ppc_shape_len;
710         } else {
711             bit_size  = total_fr_bits - bsize_no_main_cb[i];
712             vect_size = n_ch * mtab->size;
713         }
714 
715         tctx->n_div[i] = (bit_size + 13) / 14;
716 
717         rounded_up                     = (bit_size + tctx->n_div[i] - 1) /
718                                          tctx->n_div[i];
719         rounded_down                   = (bit_size) / tctx->n_div[i];
720         num_rounded_down               = rounded_up * tctx->n_div[i] - bit_size;
721         num_rounded_up                 = tctx->n_div[i] - num_rounded_down;
722         tctx->bits_main_spec[0][i][0]  = (rounded_up + 1)   / 2;
723         tctx->bits_main_spec[1][i][0]  =  rounded_up        / 2;
724         tctx->bits_main_spec[0][i][1]  = (rounded_down + 1) / 2;
725         tctx->bits_main_spec[1][i][1]  =  rounded_down      / 2;
726         tctx->bits_main_spec_change[i] = num_rounded_up;
727 
728         rounded_up             = (vect_size + tctx->n_div[i] - 1) /
729                                  tctx->n_div[i];
730         rounded_down           = (vect_size) / tctx->n_div[i];
731         num_rounded_down       = rounded_up * tctx->n_div[i] - vect_size;
732         num_rounded_up         = tctx->n_div[i] - num_rounded_down;
733         tctx->length[i][0]     = rounded_up;
734         tctx->length[i][1]     = rounded_down;
735         tctx->length_change[i] = num_rounded_up;
736     }
737 
738     for (frametype = TWINVQ_FT_SHORT; frametype <= TWINVQ_FT_PPC; frametype++)
739         construct_perm_table(tctx, frametype);
740 }
741 
ff_twinvq_decode_close(AVCodecContext *avctx)742 av_cold int ff_twinvq_decode_close(AVCodecContext *avctx)
743 {
744     TwinVQContext *tctx = avctx->priv_data;
745     int i;
746 
747     for (i = 0; i < 3; i++) {
748         ff_mdct_end(&tctx->mdct_ctx[i]);
749         av_freep(&tctx->cos_tabs[i]);
750     }
751 
752     av_freep(&tctx->curr_frame);
753     av_freep(&tctx->spectrum);
754     av_freep(&tctx->prev_frame);
755     av_freep(&tctx->tmp_buf);
756     av_freep(&tctx->fdsp);
757 
758     return 0;
759 }
760 
ff_twinvq_decode_init(AVCodecContext *avctx)761 av_cold int ff_twinvq_decode_init(AVCodecContext *avctx)
762 {
763     int ret;
764     TwinVQContext *tctx = avctx->priv_data;
765     int64_t frames_per_packet;
766 
767     tctx->avctx       = avctx;
768     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
769 
770     if (!avctx->block_align) {
771         avctx->block_align = tctx->frame_size + 7 >> 3;
772     }
773     frames_per_packet = avctx->block_align * 8LL / tctx->frame_size;
774     if (frames_per_packet <= 0) {
775         av_log(avctx, AV_LOG_ERROR, "Block align is %"PRId64" bits, expected %d\n",
776                avctx->block_align * (int64_t)8, tctx->frame_size);
777         return AVERROR_INVALIDDATA;
778     }
779     if (frames_per_packet > TWINVQ_MAX_FRAMES_PER_PACKET) {
780         av_log(avctx, AV_LOG_ERROR, "Too many frames per packet (%"PRId64")\n",
781                frames_per_packet);
782         return AVERROR_INVALIDDATA;
783     }
784     tctx->frames_per_packet = frames_per_packet;
785 
786     tctx->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
787     if (!tctx->fdsp)
788         return AVERROR(ENOMEM);
789     if ((ret = init_mdct_win(tctx))) {
790         av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
791         return ret;
792     }
793     init_bitstream_params(tctx);
794 
795     twinvq_memset_float(tctx->bark_hist[0][0], 0.1,
796                         FF_ARRAY_ELEMS(tctx->bark_hist));
797 
798     return 0;
799 }
800