1/* 2 * SVQ1 Encoder 3 * Copyright (C) 2004 Mike Melanson <melanson@pcisys.net> 4 * 5 * This file is part of FFmpeg. 6 * 7 * FFmpeg is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2.1 of the License, or (at your option) any later version. 11 * 12 * FFmpeg is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with FFmpeg; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 20 */ 21 22/** 23 * @file 24 * Sorenson Vector Quantizer #1 (SVQ1) video codec. 25 * For more information of the SVQ1 algorithm, visit: 26 * http://www.pcisys.net/~melanson/codecs/ 27 */ 28 29#include "avcodec.h" 30#include "codec_internal.h" 31#include "encode.h" 32#include "hpeldsp.h" 33#include "me_cmp.h" 34#include "mpegvideo.h" 35#include "h263.h" 36#include "h263enc.h" 37#include "internal.h" 38#include "mpegutils.h" 39#include "packet_internal.h" 40#include "svq1.h" 41#include "svq1enc.h" 42#include "svq1enc_cb.h" 43#include "libavutil/avassert.h" 44 45 46static void svq1_write_header(SVQ1EncContext *s, int frame_type) 47{ 48 int i; 49 50 /* frame code */ 51 put_bits(&s->pb, 22, 0x20); 52 53 /* temporal reference (sure hope this is a "don't care") */ 54 put_bits(&s->pb, 8, 0x00); 55 56 /* frame type */ 57 put_bits(&s->pb, 2, frame_type - 1); 58 59 if (frame_type == AV_PICTURE_TYPE_I) { 60 /* no checksum since frame code is 0x20 */ 61 /* no embedded string either */ 62 /* output 5 unknown bits (2 + 2 + 1) */ 63 put_bits(&s->pb, 5, 2); /* 2 needed by quicktime decoder */ 64 65 i = ff_match_2uint16((void*)ff_svq1_frame_size_table, 66 FF_ARRAY_ELEMS(ff_svq1_frame_size_table), 67 s->frame_width, s->frame_height); 68 put_bits(&s->pb, 3, i); 69 70 if (i == 7) { 71 put_bits(&s->pb, 12, s->frame_width); 72 put_bits(&s->pb, 12, s->frame_height); 73 } 74 } 75 76 /* no checksum or extra data (next 2 bits get 0) */ 77 put_bits(&s->pb, 2, 0); 78} 79 80#define QUALITY_THRESHOLD 100 81#define THRESHOLD_MULTIPLIER 0.6 82 83static int ssd_int8_vs_int16_c(const int8_t *pix1, const int16_t *pix2, 84 intptr_t size) 85{ 86 int score = 0, i; 87 88 for (i = 0; i < size; i++) 89 score += (pix1[i] - pix2[i]) * (pix1[i] - pix2[i]); 90 return score; 91} 92 93static int encode_block(SVQ1EncContext *s, uint8_t *src, uint8_t *ref, 94 uint8_t *decoded, int stride, int level, 95 int threshold, int lambda, int intra) 96{ 97 int count, y, x, i, j, split, best_mean, best_score, best_count; 98 int best_vector[6]; 99 int block_sum[7] = { 0, 0, 0, 0, 0, 0 }; 100 int w = 2 << (level + 2 >> 1); 101 int h = 2 << (level + 1 >> 1); 102 int size = w * h; 103 int16_t (*block)[256] = s->encoded_block_levels[level]; 104 const int8_t *codebook_sum, *codebook; 105 const uint16_t(*mean_vlc)[2]; 106 const uint8_t(*multistage_vlc)[2]; 107 108 best_score = 0; 109 // FIXME: Optimize, this does not need to be done multiple times. 110 if (intra) { 111 // level is 5 when encode_block is called from svq1_encode_plane 112 // and always < 4 when called recursively from this function. 113 codebook_sum = level < 4 ? svq1_intra_codebook_sum[level] : NULL; 114 codebook = ff_svq1_intra_codebooks[level]; 115 mean_vlc = ff_svq1_intra_mean_vlc; 116 multistage_vlc = ff_svq1_intra_multistage_vlc[level]; 117 for (y = 0; y < h; y++) { 118 for (x = 0; x < w; x++) { 119 int v = src[x + y * stride]; 120 block[0][x + w * y] = v; 121 best_score += v * v; 122 block_sum[0] += v; 123 } 124 } 125 } else { 126 // level is 5 or < 4, see above for details. 127 codebook_sum = level < 4 ? svq1_inter_codebook_sum[level] : NULL; 128 codebook = ff_svq1_inter_codebooks[level]; 129 mean_vlc = ff_svq1_inter_mean_vlc + 256; 130 multistage_vlc = ff_svq1_inter_multistage_vlc[level]; 131 for (y = 0; y < h; y++) { 132 for (x = 0; x < w; x++) { 133 int v = src[x + y * stride] - ref[x + y * stride]; 134 block[0][x + w * y] = v; 135 best_score += v * v; 136 block_sum[0] += v; 137 } 138 } 139 } 140 141 best_count = 0; 142 best_score -= (int)((unsigned)block_sum[0] * block_sum[0] >> (level + 3)); 143 best_mean = block_sum[0] + (size >> 1) >> (level + 3); 144 145 if (level < 4) { 146 for (count = 1; count < 7; count++) { 147 int best_vector_score = INT_MAX; 148 int best_vector_sum = -999, best_vector_mean = -999; 149 const int stage = count - 1; 150 const int8_t *vector; 151 152 for (i = 0; i < 16; i++) { 153 int sum = codebook_sum[stage * 16 + i]; 154 int sqr, diff, score; 155 156 vector = codebook + stage * size * 16 + i * size; 157 sqr = s->ssd_int8_vs_int16(vector, block[stage], size); 158 diff = block_sum[stage] - sum; 159 score = sqr - (diff * (int64_t)diff >> (level + 3)); // FIXME: 64 bits slooow 160 if (score < best_vector_score) { 161 int mean = diff + (size >> 1) >> (level + 3); 162 av_assert2(mean > -300 && mean < 300); 163 mean = av_clip(mean, intra ? 0 : -256, 255); 164 best_vector_score = score; 165 best_vector[stage] = i; 166 best_vector_sum = sum; 167 best_vector_mean = mean; 168 } 169 } 170 av_assert0(best_vector_mean != -999); 171 vector = codebook + stage * size * 16 + best_vector[stage] * size; 172 for (j = 0; j < size; j++) 173 block[stage + 1][j] = block[stage][j] - vector[j]; 174 block_sum[stage + 1] = block_sum[stage] - best_vector_sum; 175 best_vector_score += lambda * 176 (+1 + 4 * count + 177 multistage_vlc[1 + count][1] 178 + mean_vlc[best_vector_mean][1]); 179 180 if (best_vector_score < best_score) { 181 best_score = best_vector_score; 182 best_count = count; 183 best_mean = best_vector_mean; 184 } 185 } 186 } 187 188 split = 0; 189 if (best_score > threshold && level) { 190 int score = 0; 191 int offset = level & 1 ? stride * h / 2 : w / 2; 192 PutBitContext backup[6]; 193 194 for (i = level - 1; i >= 0; i--) 195 backup[i] = s->reorder_pb[i]; 196 score += encode_block(s, src, ref, decoded, stride, level - 1, 197 threshold >> 1, lambda, intra); 198 score += encode_block(s, src + offset, ref + offset, decoded + offset, 199 stride, level - 1, threshold >> 1, lambda, intra); 200 score += lambda; 201 202 if (score < best_score) { 203 best_score = score; 204 split = 1; 205 } else { 206 for (i = level - 1; i >= 0; i--) 207 s->reorder_pb[i] = backup[i]; 208 } 209 } 210 if (level > 0) 211 put_bits(&s->reorder_pb[level], 1, split); 212 213 if (!split) { 214 av_assert1(best_mean >= 0 && best_mean < 256 || !intra); 215 av_assert1(best_mean >= -256 && best_mean < 256); 216 av_assert1(best_count >= 0 && best_count < 7); 217 av_assert1(level < 4 || best_count == 0); 218 219 /* output the encoding */ 220 put_bits(&s->reorder_pb[level], 221 multistage_vlc[1 + best_count][1], 222 multistage_vlc[1 + best_count][0]); 223 put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1], 224 mean_vlc[best_mean][0]); 225 226 for (i = 0; i < best_count; i++) { 227 av_assert2(best_vector[i] >= 0 && best_vector[i] < 16); 228 put_bits(&s->reorder_pb[level], 4, best_vector[i]); 229 } 230 231 for (y = 0; y < h; y++) 232 for (x = 0; x < w; x++) 233 decoded[x + y * stride] = src[x + y * stride] - 234 block[best_count][x + w * y] + 235 best_mean; 236 } 237 238 return best_score; 239} 240 241static void init_block_index(MpegEncContext *s){ 242 s->block_index[0]= s->b8_stride*(s->mb_y*2 ) + s->mb_x*2; 243 s->block_index[1]= s->b8_stride*(s->mb_y*2 ) + 1 + s->mb_x*2; 244 s->block_index[2]= s->b8_stride*(s->mb_y*2 + 1) + s->mb_x*2; 245 s->block_index[3]= s->b8_stride*(s->mb_y*2 + 1) + 1 + s->mb_x*2; 246 s->block_index[4]= s->mb_stride*(s->mb_y + 1) + s->b8_stride*s->mb_height*2 + s->mb_x; 247 s->block_index[5]= s->mb_stride*(s->mb_y + s->mb_height + 2) + s->b8_stride*s->mb_height*2 + s->mb_x; 248} 249 250static int svq1_encode_plane(SVQ1EncContext *s, int plane, 251 unsigned char *src_plane, 252 unsigned char *ref_plane, 253 unsigned char *decoded_plane, 254 int width, int height, int src_stride, int stride) 255{ 256 int x, y; 257 int i; 258 int block_width, block_height; 259 int level; 260 int threshold[6]; 261 uint8_t *src = s->scratchbuf + stride * 32; 262 const int lambda = (s->quality * s->quality) >> 263 (2 * FF_LAMBDA_SHIFT); 264 265 /* figure out the acceptable level thresholds in advance */ 266 threshold[5] = QUALITY_THRESHOLD; 267 for (level = 4; level >= 0; level--) 268 threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER; 269 270 block_width = (width + 15) / 16; 271 block_height = (height + 15) / 16; 272 273 if (s->pict_type == AV_PICTURE_TYPE_P) { 274 s->m.avctx = s->avctx; 275 s->m.current_picture_ptr = &s->m.current_picture; 276 s->m.last_picture_ptr = &s->m.last_picture; 277 s->m.last_picture.f->data[0] = ref_plane; 278 s->m.linesize = 279 s->m.last_picture.f->linesize[0] = 280 s->m.new_picture->linesize[0] = 281 s->m.current_picture.f->linesize[0] = stride; 282 s->m.width = width; 283 s->m.height = height; 284 s->m.mb_width = block_width; 285 s->m.mb_height = block_height; 286 s->m.mb_stride = s->m.mb_width + 1; 287 s->m.b8_stride = 2 * s->m.mb_width + 1; 288 s->m.f_code = 1; 289 s->m.pict_type = s->pict_type; 290 s->m.motion_est = s->motion_est; 291 s->m.me.scene_change_score = 0; 292 // s->m.out_format = FMT_H263; 293 // s->m.unrestricted_mv = 1; 294 s->m.lambda = s->quality; 295 s->m.qscale = s->m.lambda * 139 + 296 FF_LAMBDA_SCALE * 64 >> 297 FF_LAMBDA_SHIFT + 7; 298 s->m.lambda2 = s->m.lambda * s->m.lambda + 299 FF_LAMBDA_SCALE / 2 >> 300 FF_LAMBDA_SHIFT; 301 302 if (!s->motion_val8[plane]) { 303 s->motion_val8[plane] = av_mallocz((s->m.b8_stride * 304 block_height * 2 + 2) * 305 2 * sizeof(int16_t)); 306 s->motion_val16[plane] = av_mallocz((s->m.mb_stride * 307 (block_height + 2) + 1) * 308 2 * sizeof(int16_t)); 309 if (!s->motion_val8[plane] || !s->motion_val16[plane]) 310 return AVERROR(ENOMEM); 311 } 312 313 s->m.mb_type = s->mb_type; 314 315 // dummies, to avoid segfaults 316 s->m.current_picture.mb_mean = (uint8_t *)s->dummy; 317 s->m.current_picture.mb_var = (uint16_t *)s->dummy; 318 s->m.current_picture.mc_mb_var = (uint16_t *)s->dummy; 319 s->m.current_picture.mb_type = s->dummy; 320 321 s->m.current_picture.motion_val[0] = s->motion_val8[plane] + 2; 322 s->m.p_mv_table = s->motion_val16[plane] + 323 s->m.mb_stride + 1; 324 s->m.mecc = s->mecc; // move 325 ff_init_me(&s->m); 326 327 s->m.me.dia_size = s->avctx->dia_size; 328 s->m.first_slice_line = 1; 329 for (y = 0; y < block_height; y++) { 330 s->m.new_picture->data[0] = src - y * 16 * stride; // ugly 331 s->m.mb_y = y; 332 333 for (i = 0; i < 16 && i + 16 * y < height; i++) { 334 memcpy(&src[i * stride], &src_plane[(i + 16 * y) * src_stride], 335 width); 336 for (x = width; x < 16 * block_width; x++) 337 src[i * stride + x] = src[i * stride + x - 1]; 338 } 339 for (; i < 16 && i + 16 * y < 16 * block_height; i++) 340 memcpy(&src[i * stride], &src[(i - 1) * stride], 341 16 * block_width); 342 343 for (x = 0; x < block_width; x++) { 344 s->m.mb_x = x; 345 init_block_index(&s->m); 346 347 ff_estimate_p_frame_motion(&s->m, x, y); 348 } 349 s->m.first_slice_line = 0; 350 } 351 352 ff_fix_long_p_mvs(&s->m, CANDIDATE_MB_TYPE_INTRA); 353 ff_fix_long_mvs(&s->m, NULL, 0, s->m.p_mv_table, s->m.f_code, 354 CANDIDATE_MB_TYPE_INTER, 0); 355 } 356 357 s->m.first_slice_line = 1; 358 for (y = 0; y < block_height; y++) { 359 for (i = 0; i < 16 && i + 16 * y < height; i++) { 360 memcpy(&src[i * stride], &src_plane[(i + 16 * y) * src_stride], 361 width); 362 for (x = width; x < 16 * block_width; x++) 363 src[i * stride + x] = src[i * stride + x - 1]; 364 } 365 for (; i < 16 && i + 16 * y < 16 * block_height; i++) 366 memcpy(&src[i * stride], &src[(i - 1) * stride], 16 * block_width); 367 368 s->m.mb_y = y; 369 for (x = 0; x < block_width; x++) { 370 uint8_t reorder_buffer[2][6][7 * 32]; 371 int count[2][6]; 372 int offset = y * 16 * stride + x * 16; 373 uint8_t *decoded = decoded_plane + offset; 374 uint8_t *ref = ref_plane + offset; 375 int score[4] = { 0, 0, 0, 0 }, best; 376 uint8_t *temp = s->scratchbuf; 377 378 if (put_bytes_left(&s->pb, 0) < 3000) { // FIXME: check size 379 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); 380 return -1; 381 } 382 383 s->m.mb_x = x; 384 init_block_index(&s->m); 385 386 if (s->pict_type == AV_PICTURE_TYPE_I || 387 (s->m.mb_type[x + y * s->m.mb_stride] & 388 CANDIDATE_MB_TYPE_INTRA)) { 389 for (i = 0; i < 6; i++) 390 init_put_bits(&s->reorder_pb[i], reorder_buffer[0][i], 391 7 * 32); 392 if (s->pict_type == AV_PICTURE_TYPE_P) { 393 const uint8_t *vlc = ff_svq1_block_type_vlc[SVQ1_BLOCK_INTRA]; 394 put_bits(&s->reorder_pb[5], vlc[1], vlc[0]); 395 score[0] = vlc[1] * lambda; 396 } 397 score[0] += encode_block(s, src + 16 * x, NULL, temp, stride, 398 5, 64, lambda, 1); 399 for (i = 0; i < 6; i++) { 400 count[0][i] = put_bits_count(&s->reorder_pb[i]); 401 flush_put_bits(&s->reorder_pb[i]); 402 } 403 } else 404 score[0] = INT_MAX; 405 406 best = 0; 407 408 if (s->pict_type == AV_PICTURE_TYPE_P) { 409 const uint8_t *vlc = ff_svq1_block_type_vlc[SVQ1_BLOCK_INTER]; 410 int mx, my, pred_x, pred_y, dxy; 411 int16_t *motion_ptr; 412 413 motion_ptr = ff_h263_pred_motion(&s->m, 0, 0, &pred_x, &pred_y); 414 if (s->m.mb_type[x + y * s->m.mb_stride] & 415 CANDIDATE_MB_TYPE_INTER) { 416 for (i = 0; i < 6; i++) 417 init_put_bits(&s->reorder_pb[i], reorder_buffer[1][i], 418 7 * 32); 419 420 put_bits(&s->reorder_pb[5], vlc[1], vlc[0]); 421 422 s->m.pb = s->reorder_pb[5]; 423 mx = motion_ptr[0]; 424 my = motion_ptr[1]; 425 av_assert1(mx >= -32 && mx <= 31); 426 av_assert1(my >= -32 && my <= 31); 427 av_assert1(pred_x >= -32 && pred_x <= 31); 428 av_assert1(pred_y >= -32 && pred_y <= 31); 429 ff_h263_encode_motion(&s->m.pb, mx - pred_x, 1); 430 ff_h263_encode_motion(&s->m.pb, my - pred_y, 1); 431 s->reorder_pb[5] = s->m.pb; 432 score[1] += lambda * put_bits_count(&s->reorder_pb[5]); 433 434 dxy = (mx & 1) + 2 * (my & 1); 435 436 s->hdsp.put_pixels_tab[0][dxy](temp + 16*stride, 437 ref + (mx >> 1) + 438 stride * (my >> 1), 439 stride, 16); 440 441 score[1] += encode_block(s, src + 16 * x, temp + 16*stride, 442 decoded, stride, 5, 64, lambda, 0); 443 best = score[1] <= score[0]; 444 445 vlc = ff_svq1_block_type_vlc[SVQ1_BLOCK_SKIP]; 446 score[2] = s->mecc.sse[0](NULL, src + 16 * x, ref, 447 stride, 16); 448 score[2] += vlc[1] * lambda; 449 if (score[2] < score[best] && mx == 0 && my == 0) { 450 best = 2; 451 s->hdsp.put_pixels_tab[0][0](decoded, ref, stride, 16); 452 put_bits(&s->pb, vlc[1], vlc[0]); 453 } 454 } 455 456 if (best == 1) { 457 for (i = 0; i < 6; i++) { 458 count[1][i] = put_bits_count(&s->reorder_pb[i]); 459 flush_put_bits(&s->reorder_pb[i]); 460 } 461 } else { 462 motion_ptr[0] = 463 motion_ptr[1] = 464 motion_ptr[2] = 465 motion_ptr[3] = 466 motion_ptr[0 + 2 * s->m.b8_stride] = 467 motion_ptr[1 + 2 * s->m.b8_stride] = 468 motion_ptr[2 + 2 * s->m.b8_stride] = 469 motion_ptr[3 + 2 * s->m.b8_stride] = 0; 470 } 471 } 472 473 s->rd_total += score[best]; 474 475 if (best != 2) 476 for (i = 5; i >= 0; i--) 477 ff_copy_bits(&s->pb, reorder_buffer[best][i], 478 count[best][i]); 479 if (best == 0) 480 s->hdsp.put_pixels_tab[0][0](decoded, temp, stride, 16); 481 } 482 s->m.first_slice_line = 0; 483 } 484 return 0; 485} 486 487static av_cold int svq1_encode_end(AVCodecContext *avctx) 488{ 489 SVQ1EncContext *const s = avctx->priv_data; 490 int i; 491 492 if (avctx->frame_number) 493 av_log(avctx, AV_LOG_DEBUG, "RD: %f\n", 494 s->rd_total / (double)(avctx->width * avctx->height * 495 avctx->frame_number)); 496 497 s->m.mb_type = NULL; 498 ff_mpv_common_end(&s->m); 499 500 av_freep(&s->m.me.scratchpad); 501 av_freep(&s->m.me.map); 502 av_freep(&s->m.me.score_map); 503 av_freep(&s->mb_type); 504 av_freep(&s->dummy); 505 av_freep(&s->scratchbuf); 506 507 for (i = 0; i < 3; i++) { 508 av_freep(&s->motion_val8[i]); 509 av_freep(&s->motion_val16[i]); 510 } 511 512 av_frame_free(&s->current_picture); 513 av_frame_free(&s->last_picture); 514 515 return 0; 516} 517 518static av_cold int svq1_encode_init(AVCodecContext *avctx) 519{ 520 SVQ1EncContext *const s = avctx->priv_data; 521 int ret; 522 523 if (avctx->width >= 4096 || avctx->height >= 4096) { 524 av_log(avctx, AV_LOG_ERROR, "Dimensions too large, maximum is 4095x4095\n"); 525 return AVERROR(EINVAL); 526 } 527 528 ff_hpeldsp_init(&s->hdsp, avctx->flags); 529 ff_me_cmp_init(&s->mecc, avctx); 530 ff_mpegvideoencdsp_init(&s->m.mpvencdsp, avctx); 531 532 s->current_picture = av_frame_alloc(); 533 s->last_picture = av_frame_alloc(); 534 if (!s->current_picture || !s->last_picture) { 535 return AVERROR(ENOMEM); 536 } 537 538 s->frame_width = avctx->width; 539 s->frame_height = avctx->height; 540 541 s->y_block_width = (s->frame_width + 15) / 16; 542 s->y_block_height = (s->frame_height + 15) / 16; 543 544 s->c_block_width = (s->frame_width / 4 + 15) / 16; 545 s->c_block_height = (s->frame_height / 4 + 15) / 16; 546 547 s->avctx = avctx; 548 s->m.avctx = avctx; 549 550 if ((ret = ff_mpv_common_init(&s->m)) < 0) { 551 return ret; 552 } 553 554 s->m.picture_structure = PICT_FRAME; 555 s->m.me.temp = 556 s->m.me.scratchpad = av_mallocz((avctx->width + 64) * 557 2 * 16 * 2 * sizeof(uint8_t)); 558 s->m.me.map = av_mallocz(ME_MAP_SIZE * sizeof(uint32_t)); 559 s->m.me.score_map = av_mallocz(ME_MAP_SIZE * sizeof(uint32_t)); 560 s->mb_type = av_mallocz((s->y_block_width + 1) * 561 s->y_block_height * sizeof(int16_t)); 562 s->dummy = av_mallocz((s->y_block_width + 1) * 563 s->y_block_height * sizeof(int32_t)); 564 s->ssd_int8_vs_int16 = ssd_int8_vs_int16_c; 565 566 if (!s->m.me.temp || !s->m.me.scratchpad || !s->m.me.map || 567 !s->m.me.score_map || !s->mb_type || !s->dummy) { 568 return AVERROR(ENOMEM); 569 } 570 571#if ARCH_PPC 572 ff_svq1enc_init_ppc(s); 573#elif ARCH_X86 574 ff_svq1enc_init_x86(s); 575#endif 576 577 ff_h263_encode_init(&s->m); // mv_penalty 578 579 return 0; 580} 581 582static int svq1_encode_frame(AVCodecContext *avctx, AVPacket *pkt, 583 const AVFrame *pict, int *got_packet) 584{ 585 SVQ1EncContext *const s = avctx->priv_data; 586 int i, ret; 587 588 ret = ff_alloc_packet(avctx, pkt, s->y_block_width * s->y_block_height * 589 MAX_MB_BYTES * 3 + AV_INPUT_BUFFER_MIN_SIZE); 590 if (ret < 0) 591 return ret; 592 593 if (avctx->pix_fmt != AV_PIX_FMT_YUV410P) { 594 av_log(avctx, AV_LOG_ERROR, "unsupported pixel format\n"); 595 return -1; 596 } 597 598 if (!s->current_picture->data[0]) { 599 if ((ret = ff_encode_alloc_frame(avctx, s->current_picture)) < 0) { 600 return ret; 601 } 602 } 603 if (!s->last_picture->data[0]) { 604 ret = ff_encode_alloc_frame(avctx, s->last_picture); 605 if (ret < 0) 606 return ret; 607 } 608 if (!s->scratchbuf) { 609 s->scratchbuf = av_malloc_array(s->current_picture->linesize[0], 16 * 3); 610 if (!s->scratchbuf) 611 return AVERROR(ENOMEM); 612 } 613 614 FFSWAP(AVFrame*, s->current_picture, s->last_picture); 615 616 init_put_bits(&s->pb, pkt->data, pkt->size); 617 618 if (avctx->gop_size && (avctx->frame_number % avctx->gop_size)) 619 s->pict_type = AV_PICTURE_TYPE_P; 620 else 621 s->pict_type = AV_PICTURE_TYPE_I; 622 s->quality = pict->quality; 623 624 ff_side_data_set_encoder_stats(pkt, pict->quality, NULL, 0, s->pict_type); 625 626 svq1_write_header(s, s->pict_type); 627 for (i = 0; i < 3; i++) { 628 int ret = svq1_encode_plane(s, i, 629 pict->data[i], 630 s->last_picture->data[i], 631 s->current_picture->data[i], 632 s->frame_width / (i ? 4 : 1), 633 s->frame_height / (i ? 4 : 1), 634 pict->linesize[i], 635 s->current_picture->linesize[i]); 636 emms_c(); 637 if (ret < 0) { 638 int j; 639 for (j = 0; j < i; j++) { 640 av_freep(&s->motion_val8[j]); 641 av_freep(&s->motion_val16[j]); 642 } 643 av_freep(&s->scratchbuf); 644 return -1; 645 } 646 } 647 648 // align_put_bits(&s->pb); 649 while (put_bits_count(&s->pb) & 31) 650 put_bits(&s->pb, 1, 0); 651 652 flush_put_bits(&s->pb); 653 654 pkt->size = put_bytes_output(&s->pb); 655 if (s->pict_type == AV_PICTURE_TYPE_I) 656 pkt->flags |= AV_PKT_FLAG_KEY; 657 *got_packet = 1; 658 659 return 0; 660} 661 662#define OFFSET(x) offsetof(struct SVQ1EncContext, x) 663#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM 664static const AVOption options[] = { 665 { "motion-est", "Motion estimation algorithm", OFFSET(motion_est), AV_OPT_TYPE_INT, { .i64 = FF_ME_EPZS }, FF_ME_ZERO, FF_ME_XONE, VE, "motion-est"}, 666 { "zero", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ZERO }, 0, 0, FF_MPV_OPT_FLAGS, "motion-est" }, 667 { "epzs", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_EPZS }, 0, 0, FF_MPV_OPT_FLAGS, "motion-est" }, 668 { "xone", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_XONE }, 0, 0, FF_MPV_OPT_FLAGS, "motion-est" }, 669 670 { NULL }, 671}; 672 673static const AVClass svq1enc_class = { 674 .class_name = "svq1enc", 675 .item_name = av_default_item_name, 676 .option = options, 677 .version = LIBAVUTIL_VERSION_INT, 678}; 679 680const FFCodec ff_svq1_encoder = { 681 .p.name = "svq1", 682 .p.long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1"), 683 .p.type = AVMEDIA_TYPE_VIDEO, 684 .p.id = AV_CODEC_ID_SVQ1, 685 .priv_data_size = sizeof(SVQ1EncContext), 686 .p.priv_class = &svq1enc_class, 687 .init = svq1_encode_init, 688 FF_CODEC_ENCODE_CB(svq1_encode_frame), 689 .close = svq1_encode_end, 690 .p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUV410P, 691 AV_PIX_FMT_NONE }, 692 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, 693}; 694