1 /*
2 * SVQ1 Encoder
3 * Copyright (C) 2004 Mike Melanson <melanson@pcisys.net>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * Sorenson Vector Quantizer #1 (SVQ1) video codec.
25 * For more information of the SVQ1 algorithm, visit:
26 * http://www.pcisys.net/~melanson/codecs/
27 */
28
29 #include "avcodec.h"
30 #include "codec_internal.h"
31 #include "encode.h"
32 #include "hpeldsp.h"
33 #include "me_cmp.h"
34 #include "mpegvideo.h"
35 #include "h263.h"
36 #include "h263enc.h"
37 #include "internal.h"
38 #include "mpegutils.h"
39 #include "packet_internal.h"
40 #include "svq1.h"
41 #include "svq1enc.h"
42 #include "svq1enc_cb.h"
43 #include "libavutil/avassert.h"
44
45
svq1_write_header(SVQ1EncContext *s, int frame_type)46 static void svq1_write_header(SVQ1EncContext *s, int frame_type)
47 {
48 int i;
49
50 /* frame code */
51 put_bits(&s->pb, 22, 0x20);
52
53 /* temporal reference (sure hope this is a "don't care") */
54 put_bits(&s->pb, 8, 0x00);
55
56 /* frame type */
57 put_bits(&s->pb, 2, frame_type - 1);
58
59 if (frame_type == AV_PICTURE_TYPE_I) {
60 /* no checksum since frame code is 0x20 */
61 /* no embedded string either */
62 /* output 5 unknown bits (2 + 2 + 1) */
63 put_bits(&s->pb, 5, 2); /* 2 needed by quicktime decoder */
64
65 i = ff_match_2uint16((void*)ff_svq1_frame_size_table,
66 FF_ARRAY_ELEMS(ff_svq1_frame_size_table),
67 s->frame_width, s->frame_height);
68 put_bits(&s->pb, 3, i);
69
70 if (i == 7) {
71 put_bits(&s->pb, 12, s->frame_width);
72 put_bits(&s->pb, 12, s->frame_height);
73 }
74 }
75
76 /* no checksum or extra data (next 2 bits get 0) */
77 put_bits(&s->pb, 2, 0);
78 }
79
80 #define QUALITY_THRESHOLD 100
81 #define THRESHOLD_MULTIPLIER 0.6
82
ssd_int8_vs_int16_c(const int8_t *pix1, const int16_t *pix2, intptr_t size)83 static int ssd_int8_vs_int16_c(const int8_t *pix1, const int16_t *pix2,
84 intptr_t size)
85 {
86 int score = 0, i;
87
88 for (i = 0; i < size; i++)
89 score += (pix1[i] - pix2[i]) * (pix1[i] - pix2[i]);
90 return score;
91 }
92
encode_block(SVQ1EncContext *s, uint8_t *src, uint8_t *ref, uint8_t *decoded, int stride, int level, int threshold, int lambda, int intra)93 static int encode_block(SVQ1EncContext *s, uint8_t *src, uint8_t *ref,
94 uint8_t *decoded, int stride, int level,
95 int threshold, int lambda, int intra)
96 {
97 int count, y, x, i, j, split, best_mean, best_score, best_count;
98 int best_vector[6];
99 int block_sum[7] = { 0, 0, 0, 0, 0, 0 };
100 int w = 2 << (level + 2 >> 1);
101 int h = 2 << (level + 1 >> 1);
102 int size = w * h;
103 int16_t (*block)[256] = s->encoded_block_levels[level];
104 const int8_t *codebook_sum, *codebook;
105 const uint16_t(*mean_vlc)[2];
106 const uint8_t(*multistage_vlc)[2];
107
108 best_score = 0;
109 // FIXME: Optimize, this does not need to be done multiple times.
110 if (intra) {
111 // level is 5 when encode_block is called from svq1_encode_plane
112 // and always < 4 when called recursively from this function.
113 codebook_sum = level < 4 ? svq1_intra_codebook_sum[level] : NULL;
114 codebook = ff_svq1_intra_codebooks[level];
115 mean_vlc = ff_svq1_intra_mean_vlc;
116 multistage_vlc = ff_svq1_intra_multistage_vlc[level];
117 for (y = 0; y < h; y++) {
118 for (x = 0; x < w; x++) {
119 int v = src[x + y * stride];
120 block[0][x + w * y] = v;
121 best_score += v * v;
122 block_sum[0] += v;
123 }
124 }
125 } else {
126 // level is 5 or < 4, see above for details.
127 codebook_sum = level < 4 ? svq1_inter_codebook_sum[level] : NULL;
128 codebook = ff_svq1_inter_codebooks[level];
129 mean_vlc = ff_svq1_inter_mean_vlc + 256;
130 multistage_vlc = ff_svq1_inter_multistage_vlc[level];
131 for (y = 0; y < h; y++) {
132 for (x = 0; x < w; x++) {
133 int v = src[x + y * stride] - ref[x + y * stride];
134 block[0][x + w * y] = v;
135 best_score += v * v;
136 block_sum[0] += v;
137 }
138 }
139 }
140
141 best_count = 0;
142 best_score -= (int)((unsigned)block_sum[0] * block_sum[0] >> (level + 3));
143 best_mean = block_sum[0] + (size >> 1) >> (level + 3);
144
145 if (level < 4) {
146 for (count = 1; count < 7; count++) {
147 int best_vector_score = INT_MAX;
148 int best_vector_sum = -999, best_vector_mean = -999;
149 const int stage = count - 1;
150 const int8_t *vector;
151
152 for (i = 0; i < 16; i++) {
153 int sum = codebook_sum[stage * 16 + i];
154 int sqr, diff, score;
155
156 vector = codebook + stage * size * 16 + i * size;
157 sqr = s->ssd_int8_vs_int16(vector, block[stage], size);
158 diff = block_sum[stage] - sum;
159 score = sqr - (diff * (int64_t)diff >> (level + 3)); // FIXME: 64 bits slooow
160 if (score < best_vector_score) {
161 int mean = diff + (size >> 1) >> (level + 3);
162 av_assert2(mean > -300 && mean < 300);
163 mean = av_clip(mean, intra ? 0 : -256, 255);
164 best_vector_score = score;
165 best_vector[stage] = i;
166 best_vector_sum = sum;
167 best_vector_mean = mean;
168 }
169 }
170 av_assert0(best_vector_mean != -999);
171 vector = codebook + stage * size * 16 + best_vector[stage] * size;
172 for (j = 0; j < size; j++)
173 block[stage + 1][j] = block[stage][j] - vector[j];
174 block_sum[stage + 1] = block_sum[stage] - best_vector_sum;
175 best_vector_score += lambda *
176 (+1 + 4 * count +
177 multistage_vlc[1 + count][1]
178 + mean_vlc[best_vector_mean][1]);
179
180 if (best_vector_score < best_score) {
181 best_score = best_vector_score;
182 best_count = count;
183 best_mean = best_vector_mean;
184 }
185 }
186 }
187
188 split = 0;
189 if (best_score > threshold && level) {
190 int score = 0;
191 int offset = level & 1 ? stride * h / 2 : w / 2;
192 PutBitContext backup[6];
193
194 for (i = level - 1; i >= 0; i--)
195 backup[i] = s->reorder_pb[i];
196 score += encode_block(s, src, ref, decoded, stride, level - 1,
197 threshold >> 1, lambda, intra);
198 score += encode_block(s, src + offset, ref + offset, decoded + offset,
199 stride, level - 1, threshold >> 1, lambda, intra);
200 score += lambda;
201
202 if (score < best_score) {
203 best_score = score;
204 split = 1;
205 } else {
206 for (i = level - 1; i >= 0; i--)
207 s->reorder_pb[i] = backup[i];
208 }
209 }
210 if (level > 0)
211 put_bits(&s->reorder_pb[level], 1, split);
212
213 if (!split) {
214 av_assert1(best_mean >= 0 && best_mean < 256 || !intra);
215 av_assert1(best_mean >= -256 && best_mean < 256);
216 av_assert1(best_count >= 0 && best_count < 7);
217 av_assert1(level < 4 || best_count == 0);
218
219 /* output the encoding */
220 put_bits(&s->reorder_pb[level],
221 multistage_vlc[1 + best_count][1],
222 multistage_vlc[1 + best_count][0]);
223 put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1],
224 mean_vlc[best_mean][0]);
225
226 for (i = 0; i < best_count; i++) {
227 av_assert2(best_vector[i] >= 0 && best_vector[i] < 16);
228 put_bits(&s->reorder_pb[level], 4, best_vector[i]);
229 }
230
231 for (y = 0; y < h; y++)
232 for (x = 0; x < w; x++)
233 decoded[x + y * stride] = src[x + y * stride] -
234 block[best_count][x + w * y] +
235 best_mean;
236 }
237
238 return best_score;
239 }
240
init_block_index(MpegEncContext *s)241 static void init_block_index(MpegEncContext *s){
242 s->block_index[0]= s->b8_stride*(s->mb_y*2 ) + s->mb_x*2;
243 s->block_index[1]= s->b8_stride*(s->mb_y*2 ) + 1 + s->mb_x*2;
244 s->block_index[2]= s->b8_stride*(s->mb_y*2 + 1) + s->mb_x*2;
245 s->block_index[3]= s->b8_stride*(s->mb_y*2 + 1) + 1 + s->mb_x*2;
246 s->block_index[4]= s->mb_stride*(s->mb_y + 1) + s->b8_stride*s->mb_height*2 + s->mb_x;
247 s->block_index[5]= s->mb_stride*(s->mb_y + s->mb_height + 2) + s->b8_stride*s->mb_height*2 + s->mb_x;
248 }
249
svq1_encode_plane(SVQ1EncContext *s, int plane, unsigned char *src_plane, unsigned char *ref_plane, unsigned char *decoded_plane, int width, int height, int src_stride, int stride)250 static int svq1_encode_plane(SVQ1EncContext *s, int plane,
251 unsigned char *src_plane,
252 unsigned char *ref_plane,
253 unsigned char *decoded_plane,
254 int width, int height, int src_stride, int stride)
255 {
256 int x, y;
257 int i;
258 int block_width, block_height;
259 int level;
260 int threshold[6];
261 uint8_t *src = s->scratchbuf + stride * 32;
262 const int lambda = (s->quality * s->quality) >>
263 (2 * FF_LAMBDA_SHIFT);
264
265 /* figure out the acceptable level thresholds in advance */
266 threshold[5] = QUALITY_THRESHOLD;
267 for (level = 4; level >= 0; level--)
268 threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER;
269
270 block_width = (width + 15) / 16;
271 block_height = (height + 15) / 16;
272
273 if (s->pict_type == AV_PICTURE_TYPE_P) {
274 s->m.avctx = s->avctx;
275 s->m.current_picture_ptr = &s->m.current_picture;
276 s->m.last_picture_ptr = &s->m.last_picture;
277 s->m.last_picture.f->data[0] = ref_plane;
278 s->m.linesize =
279 s->m.last_picture.f->linesize[0] =
280 s->m.new_picture->linesize[0] =
281 s->m.current_picture.f->linesize[0] = stride;
282 s->m.width = width;
283 s->m.height = height;
284 s->m.mb_width = block_width;
285 s->m.mb_height = block_height;
286 s->m.mb_stride = s->m.mb_width + 1;
287 s->m.b8_stride = 2 * s->m.mb_width + 1;
288 s->m.f_code = 1;
289 s->m.pict_type = s->pict_type;
290 s->m.motion_est = s->motion_est;
291 s->m.me.scene_change_score = 0;
292 // s->m.out_format = FMT_H263;
293 // s->m.unrestricted_mv = 1;
294 s->m.lambda = s->quality;
295 s->m.qscale = s->m.lambda * 139 +
296 FF_LAMBDA_SCALE * 64 >>
297 FF_LAMBDA_SHIFT + 7;
298 s->m.lambda2 = s->m.lambda * s->m.lambda +
299 FF_LAMBDA_SCALE / 2 >>
300 FF_LAMBDA_SHIFT;
301
302 if (!s->motion_val8[plane]) {
303 s->motion_val8[plane] = av_mallocz((s->m.b8_stride *
304 block_height * 2 + 2) *
305 2 * sizeof(int16_t));
306 s->motion_val16[plane] = av_mallocz((s->m.mb_stride *
307 (block_height + 2) + 1) *
308 2 * sizeof(int16_t));
309 if (!s->motion_val8[plane] || !s->motion_val16[plane])
310 return AVERROR(ENOMEM);
311 }
312
313 s->m.mb_type = s->mb_type;
314
315 // dummies, to avoid segfaults
316 s->m.current_picture.mb_mean = (uint8_t *)s->dummy;
317 s->m.current_picture.mb_var = (uint16_t *)s->dummy;
318 s->m.current_picture.mc_mb_var = (uint16_t *)s->dummy;
319 s->m.current_picture.mb_type = s->dummy;
320
321 s->m.current_picture.motion_val[0] = s->motion_val8[plane] + 2;
322 s->m.p_mv_table = s->motion_val16[plane] +
323 s->m.mb_stride + 1;
324 s->m.mecc = s->mecc; // move
325 ff_init_me(&s->m);
326
327 s->m.me.dia_size = s->avctx->dia_size;
328 s->m.first_slice_line = 1;
329 for (y = 0; y < block_height; y++) {
330 s->m.new_picture->data[0] = src - y * 16 * stride; // ugly
331 s->m.mb_y = y;
332
333 for (i = 0; i < 16 && i + 16 * y < height; i++) {
334 memcpy(&src[i * stride], &src_plane[(i + 16 * y) * src_stride],
335 width);
336 for (x = width; x < 16 * block_width; x++)
337 src[i * stride + x] = src[i * stride + x - 1];
338 }
339 for (; i < 16 && i + 16 * y < 16 * block_height; i++)
340 memcpy(&src[i * stride], &src[(i - 1) * stride],
341 16 * block_width);
342
343 for (x = 0; x < block_width; x++) {
344 s->m.mb_x = x;
345 init_block_index(&s->m);
346
347 ff_estimate_p_frame_motion(&s->m, x, y);
348 }
349 s->m.first_slice_line = 0;
350 }
351
352 ff_fix_long_p_mvs(&s->m, CANDIDATE_MB_TYPE_INTRA);
353 ff_fix_long_mvs(&s->m, NULL, 0, s->m.p_mv_table, s->m.f_code,
354 CANDIDATE_MB_TYPE_INTER, 0);
355 }
356
357 s->m.first_slice_line = 1;
358 for (y = 0; y < block_height; y++) {
359 for (i = 0; i < 16 && i + 16 * y < height; i++) {
360 memcpy(&src[i * stride], &src_plane[(i + 16 * y) * src_stride],
361 width);
362 for (x = width; x < 16 * block_width; x++)
363 src[i * stride + x] = src[i * stride + x - 1];
364 }
365 for (; i < 16 && i + 16 * y < 16 * block_height; i++)
366 memcpy(&src[i * stride], &src[(i - 1) * stride], 16 * block_width);
367
368 s->m.mb_y = y;
369 for (x = 0; x < block_width; x++) {
370 uint8_t reorder_buffer[2][6][7 * 32];
371 int count[2][6];
372 int offset = y * 16 * stride + x * 16;
373 uint8_t *decoded = decoded_plane + offset;
374 uint8_t *ref = ref_plane + offset;
375 int score[4] = { 0, 0, 0, 0 }, best;
376 uint8_t *temp = s->scratchbuf;
377
378 if (put_bytes_left(&s->pb, 0) < 3000) { // FIXME: check size
379 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
380 return -1;
381 }
382
383 s->m.mb_x = x;
384 init_block_index(&s->m);
385
386 if (s->pict_type == AV_PICTURE_TYPE_I ||
387 (s->m.mb_type[x + y * s->m.mb_stride] &
388 CANDIDATE_MB_TYPE_INTRA)) {
389 for (i = 0; i < 6; i++)
390 init_put_bits(&s->reorder_pb[i], reorder_buffer[0][i],
391 7 * 32);
392 if (s->pict_type == AV_PICTURE_TYPE_P) {
393 const uint8_t *vlc = ff_svq1_block_type_vlc[SVQ1_BLOCK_INTRA];
394 put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
395 score[0] = vlc[1] * lambda;
396 }
397 score[0] += encode_block(s, src + 16 * x, NULL, temp, stride,
398 5, 64, lambda, 1);
399 for (i = 0; i < 6; i++) {
400 count[0][i] = put_bits_count(&s->reorder_pb[i]);
401 flush_put_bits(&s->reorder_pb[i]);
402 }
403 } else
404 score[0] = INT_MAX;
405
406 best = 0;
407
408 if (s->pict_type == AV_PICTURE_TYPE_P) {
409 const uint8_t *vlc = ff_svq1_block_type_vlc[SVQ1_BLOCK_INTER];
410 int mx, my, pred_x, pred_y, dxy;
411 int16_t *motion_ptr;
412
413 motion_ptr = ff_h263_pred_motion(&s->m, 0, 0, &pred_x, &pred_y);
414 if (s->m.mb_type[x + y * s->m.mb_stride] &
415 CANDIDATE_MB_TYPE_INTER) {
416 for (i = 0; i < 6; i++)
417 init_put_bits(&s->reorder_pb[i], reorder_buffer[1][i],
418 7 * 32);
419
420 put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
421
422 s->m.pb = s->reorder_pb[5];
423 mx = motion_ptr[0];
424 my = motion_ptr[1];
425 av_assert1(mx >= -32 && mx <= 31);
426 av_assert1(my >= -32 && my <= 31);
427 av_assert1(pred_x >= -32 && pred_x <= 31);
428 av_assert1(pred_y >= -32 && pred_y <= 31);
429 ff_h263_encode_motion(&s->m.pb, mx - pred_x, 1);
430 ff_h263_encode_motion(&s->m.pb, my - pred_y, 1);
431 s->reorder_pb[5] = s->m.pb;
432 score[1] += lambda * put_bits_count(&s->reorder_pb[5]);
433
434 dxy = (mx & 1) + 2 * (my & 1);
435
436 s->hdsp.put_pixels_tab[0][dxy](temp + 16*stride,
437 ref + (mx >> 1) +
438 stride * (my >> 1),
439 stride, 16);
440
441 score[1] += encode_block(s, src + 16 * x, temp + 16*stride,
442 decoded, stride, 5, 64, lambda, 0);
443 best = score[1] <= score[0];
444
445 vlc = ff_svq1_block_type_vlc[SVQ1_BLOCK_SKIP];
446 score[2] = s->mecc.sse[0](NULL, src + 16 * x, ref,
447 stride, 16);
448 score[2] += vlc[1] * lambda;
449 if (score[2] < score[best] && mx == 0 && my == 0) {
450 best = 2;
451 s->hdsp.put_pixels_tab[0][0](decoded, ref, stride, 16);
452 put_bits(&s->pb, vlc[1], vlc[0]);
453 }
454 }
455
456 if (best == 1) {
457 for (i = 0; i < 6; i++) {
458 count[1][i] = put_bits_count(&s->reorder_pb[i]);
459 flush_put_bits(&s->reorder_pb[i]);
460 }
461 } else {
462 motion_ptr[0] =
463 motion_ptr[1] =
464 motion_ptr[2] =
465 motion_ptr[3] =
466 motion_ptr[0 + 2 * s->m.b8_stride] =
467 motion_ptr[1 + 2 * s->m.b8_stride] =
468 motion_ptr[2 + 2 * s->m.b8_stride] =
469 motion_ptr[3 + 2 * s->m.b8_stride] = 0;
470 }
471 }
472
473 s->rd_total += score[best];
474
475 if (best != 2)
476 for (i = 5; i >= 0; i--)
477 ff_copy_bits(&s->pb, reorder_buffer[best][i],
478 count[best][i]);
479 if (best == 0)
480 s->hdsp.put_pixels_tab[0][0](decoded, temp, stride, 16);
481 }
482 s->m.first_slice_line = 0;
483 }
484 return 0;
485 }
486
svq1_encode_end(AVCodecContext *avctx)487 static av_cold int svq1_encode_end(AVCodecContext *avctx)
488 {
489 SVQ1EncContext *const s = avctx->priv_data;
490 int i;
491
492 if (avctx->frame_number)
493 av_log(avctx, AV_LOG_DEBUG, "RD: %f\n",
494 s->rd_total / (double)(avctx->width * avctx->height *
495 avctx->frame_number));
496
497 s->m.mb_type = NULL;
498 ff_mpv_common_end(&s->m);
499
500 av_freep(&s->m.me.scratchpad);
501 av_freep(&s->m.me.map);
502 av_freep(&s->m.me.score_map);
503 av_freep(&s->mb_type);
504 av_freep(&s->dummy);
505 av_freep(&s->scratchbuf);
506
507 for (i = 0; i < 3; i++) {
508 av_freep(&s->motion_val8[i]);
509 av_freep(&s->motion_val16[i]);
510 }
511
512 av_frame_free(&s->current_picture);
513 av_frame_free(&s->last_picture);
514
515 return 0;
516 }
517
svq1_encode_init(AVCodecContext *avctx)518 static av_cold int svq1_encode_init(AVCodecContext *avctx)
519 {
520 SVQ1EncContext *const s = avctx->priv_data;
521 int ret;
522
523 if (avctx->width >= 4096 || avctx->height >= 4096) {
524 av_log(avctx, AV_LOG_ERROR, "Dimensions too large, maximum is 4095x4095\n");
525 return AVERROR(EINVAL);
526 }
527
528 ff_hpeldsp_init(&s->hdsp, avctx->flags);
529 ff_me_cmp_init(&s->mecc, avctx);
530 ff_mpegvideoencdsp_init(&s->m.mpvencdsp, avctx);
531
532 s->current_picture = av_frame_alloc();
533 s->last_picture = av_frame_alloc();
534 if (!s->current_picture || !s->last_picture) {
535 return AVERROR(ENOMEM);
536 }
537
538 s->frame_width = avctx->width;
539 s->frame_height = avctx->height;
540
541 s->y_block_width = (s->frame_width + 15) / 16;
542 s->y_block_height = (s->frame_height + 15) / 16;
543
544 s->c_block_width = (s->frame_width / 4 + 15) / 16;
545 s->c_block_height = (s->frame_height / 4 + 15) / 16;
546
547 s->avctx = avctx;
548 s->m.avctx = avctx;
549
550 if ((ret = ff_mpv_common_init(&s->m)) < 0) {
551 return ret;
552 }
553
554 s->m.picture_structure = PICT_FRAME;
555 s->m.me.temp =
556 s->m.me.scratchpad = av_mallocz((avctx->width + 64) *
557 2 * 16 * 2 * sizeof(uint8_t));
558 s->m.me.map = av_mallocz(ME_MAP_SIZE * sizeof(uint32_t));
559 s->m.me.score_map = av_mallocz(ME_MAP_SIZE * sizeof(uint32_t));
560 s->mb_type = av_mallocz((s->y_block_width + 1) *
561 s->y_block_height * sizeof(int16_t));
562 s->dummy = av_mallocz((s->y_block_width + 1) *
563 s->y_block_height * sizeof(int32_t));
564 s->ssd_int8_vs_int16 = ssd_int8_vs_int16_c;
565
566 if (!s->m.me.temp || !s->m.me.scratchpad || !s->m.me.map ||
567 !s->m.me.score_map || !s->mb_type || !s->dummy) {
568 return AVERROR(ENOMEM);
569 }
570
571 #if ARCH_PPC
572 ff_svq1enc_init_ppc(s);
573 #elif ARCH_X86
574 ff_svq1enc_init_x86(s);
575 #endif
576
577 ff_h263_encode_init(&s->m); // mv_penalty
578
579 return 0;
580 }
581
svq1_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet)582 static int svq1_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
583 const AVFrame *pict, int *got_packet)
584 {
585 SVQ1EncContext *const s = avctx->priv_data;
586 int i, ret;
587
588 ret = ff_alloc_packet(avctx, pkt, s->y_block_width * s->y_block_height *
589 MAX_MB_BYTES * 3 + AV_INPUT_BUFFER_MIN_SIZE);
590 if (ret < 0)
591 return ret;
592
593 if (avctx->pix_fmt != AV_PIX_FMT_YUV410P) {
594 av_log(avctx, AV_LOG_ERROR, "unsupported pixel format\n");
595 return -1;
596 }
597
598 if (!s->current_picture->data[0]) {
599 if ((ret = ff_encode_alloc_frame(avctx, s->current_picture)) < 0) {
600 return ret;
601 }
602 }
603 if (!s->last_picture->data[0]) {
604 ret = ff_encode_alloc_frame(avctx, s->last_picture);
605 if (ret < 0)
606 return ret;
607 }
608 if (!s->scratchbuf) {
609 s->scratchbuf = av_malloc_array(s->current_picture->linesize[0], 16 * 3);
610 if (!s->scratchbuf)
611 return AVERROR(ENOMEM);
612 }
613
614 FFSWAP(AVFrame*, s->current_picture, s->last_picture);
615
616 init_put_bits(&s->pb, pkt->data, pkt->size);
617
618 if (avctx->gop_size && (avctx->frame_number % avctx->gop_size))
619 s->pict_type = AV_PICTURE_TYPE_P;
620 else
621 s->pict_type = AV_PICTURE_TYPE_I;
622 s->quality = pict->quality;
623
624 ff_side_data_set_encoder_stats(pkt, pict->quality, NULL, 0, s->pict_type);
625
626 svq1_write_header(s, s->pict_type);
627 for (i = 0; i < 3; i++) {
628 int ret = svq1_encode_plane(s, i,
629 pict->data[i],
630 s->last_picture->data[i],
631 s->current_picture->data[i],
632 s->frame_width / (i ? 4 : 1),
633 s->frame_height / (i ? 4 : 1),
634 pict->linesize[i],
635 s->current_picture->linesize[i]);
636 emms_c();
637 if (ret < 0) {
638 int j;
639 for (j = 0; j < i; j++) {
640 av_freep(&s->motion_val8[j]);
641 av_freep(&s->motion_val16[j]);
642 }
643 av_freep(&s->scratchbuf);
644 return -1;
645 }
646 }
647
648 // align_put_bits(&s->pb);
649 while (put_bits_count(&s->pb) & 31)
650 put_bits(&s->pb, 1, 0);
651
652 flush_put_bits(&s->pb);
653
654 pkt->size = put_bytes_output(&s->pb);
655 if (s->pict_type == AV_PICTURE_TYPE_I)
656 pkt->flags |= AV_PKT_FLAG_KEY;
657 *got_packet = 1;
658
659 return 0;
660 }
661
662 #define OFFSET(x) offsetof(struct SVQ1EncContext, x)
663 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
664 static const AVOption options[] = {
665 { "motion-est", "Motion estimation algorithm", OFFSET(motion_est), AV_OPT_TYPE_INT, { .i64 = FF_ME_EPZS }, FF_ME_ZERO, FF_ME_XONE, VE, "motion-est"},
666 { "zero", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ZERO }, 0, 0, FF_MPV_OPT_FLAGS, "motion-est" },
667 { "epzs", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_EPZS }, 0, 0, FF_MPV_OPT_FLAGS, "motion-est" },
668 { "xone", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_XONE }, 0, 0, FF_MPV_OPT_FLAGS, "motion-est" },
669
670 { NULL },
671 };
672
673 static const AVClass svq1enc_class = {
674 .class_name = "svq1enc",
675 .item_name = av_default_item_name,
676 .option = options,
677 .version = LIBAVUTIL_VERSION_INT,
678 };
679
680 const FFCodec ff_svq1_encoder = {
681 .p.name = "svq1",
682 .p.long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1"),
683 .p.type = AVMEDIA_TYPE_VIDEO,
684 .p.id = AV_CODEC_ID_SVQ1,
685 .priv_data_size = sizeof(SVQ1EncContext),
686 .p.priv_class = &svq1enc_class,
687 .init = svq1_encode_init,
688 FF_CODEC_ENCODE_CB(svq1_encode_frame),
689 .close = svq1_encode_end,
690 .p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUV410P,
691 AV_PIX_FMT_NONE },
692 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
693 };
694