xref: /third_party/ffmpeg/libavcodec/snowenc.c (revision cabdff1a)
1/*
2 * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21#include "libavutil/intmath.h"
22#include "libavutil/libm.h"
23#include "libavutil/log.h"
24#include "libavutil/opt.h"
25#include "libavutil/pixdesc.h"
26#include "avcodec.h"
27#include "codec_internal.h"
28#include "encode.h"
29#include "packet_internal.h"
30#include "snow_dwt.h"
31#include "snow.h"
32
33#include "rangecoder.h"
34#include "mathops.h"
35
36#include "mpegvideo.h"
37#include "h263enc.h"
38
39static av_cold int encode_init(AVCodecContext *avctx)
40{
41    SnowContext *s = avctx->priv_data;
42    int plane_index, ret;
43    int i;
44
45    if(s->pred == DWT_97
46       && (avctx->flags & AV_CODEC_FLAG_QSCALE)
47       && avctx->global_quality == 0){
48        av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
49        return AVERROR(EINVAL);
50    }
51
52    s->spatial_decomposition_type= s->pred; //FIXME add decorrelator type r transform_type
53
54    s->mv_scale       = (avctx->flags & AV_CODEC_FLAG_QPEL) ? 2 : 4;
55    s->block_max_depth= (avctx->flags & AV_CODEC_FLAG_4MV ) ? 1 : 0;
56
57    for(plane_index=0; plane_index<3; plane_index++){
58        s->plane[plane_index].diag_mc= 1;
59        s->plane[plane_index].htaps= 6;
60        s->plane[plane_index].hcoeff[0]=  40;
61        s->plane[plane_index].hcoeff[1]= -10;
62        s->plane[plane_index].hcoeff[2]=   2;
63        s->plane[plane_index].fast_mc= 1;
64    }
65
66    if ((ret = ff_snow_common_init(avctx)) < 0) {
67        return ret;
68    }
69    ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
70
71    ff_snow_alloc_blocks(s);
72
73    s->version=0;
74
75    s->m.avctx   = avctx;
76    s->m.bit_rate= avctx->bit_rate;
77    s->m.lmin    = avctx->mb_lmin;
78    s->m.lmax    = avctx->mb_lmax;
79    s->m.mb_num  = (avctx->width * avctx->height + 255) / 256; // For ratecontrol
80
81    s->m.me.temp      =
82    s->m.me.scratchpad = av_calloc(avctx->width + 64, 2*16*2*sizeof(uint8_t));
83    s->m.me.map       = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
84    s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
85    s->m.sc.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
86    if (!s->m.me.scratchpad || !s->m.me.map || !s->m.me.score_map || !s->m.sc.obmc_scratchpad)
87        return AVERROR(ENOMEM);
88
89    ff_h263_encode_init(&s->m); //mv_penalty
90
91    s->max_ref_frames = av_clip(avctx->refs, 1, MAX_REF_FRAMES);
92
93    if(avctx->flags&AV_CODEC_FLAG_PASS1){
94        if(!avctx->stats_out)
95            avctx->stats_out = av_mallocz(256);
96
97        if (!avctx->stats_out)
98            return AVERROR(ENOMEM);
99    }
100    if((avctx->flags&AV_CODEC_FLAG_PASS2) || !(avctx->flags&AV_CODEC_FLAG_QSCALE)){
101        ret = ff_rate_control_init(&s->m);
102        if(ret < 0)
103            return ret;
104    }
105    s->pass1_rc= !(avctx->flags & (AV_CODEC_FLAG_QSCALE|AV_CODEC_FLAG_PASS2));
106
107    switch(avctx->pix_fmt){
108    case AV_PIX_FMT_YUV444P:
109//    case AV_PIX_FMT_YUV422P:
110    case AV_PIX_FMT_YUV420P:
111//    case AV_PIX_FMT_YUV411P:
112    case AV_PIX_FMT_YUV410P:
113        s->nb_planes = 3;
114        s->colorspace_type= 0;
115        break;
116    case AV_PIX_FMT_GRAY8:
117        s->nb_planes = 1;
118        s->colorspace_type = 1;
119        break;
120/*    case AV_PIX_FMT_RGB32:
121        s->colorspace= 1;
122        break;*/
123    }
124
125    ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift,
126                                           &s->chroma_v_shift);
127    if (ret)
128        return ret;
129
130    ret  = ff_set_cmp(&s->mecc, s->mecc.me_cmp, s->avctx->me_cmp);
131    ret |= ff_set_cmp(&s->mecc, s->mecc.me_sub_cmp, s->avctx->me_sub_cmp);
132    if (ret < 0)
133        return AVERROR(EINVAL);
134
135    s->input_picture = av_frame_alloc();
136    if (!s->input_picture)
137        return AVERROR(ENOMEM);
138
139    if ((ret = ff_snow_get_buffer(s, s->input_picture)) < 0)
140        return ret;
141
142    if(s->motion_est == FF_ME_ITER){
143        int size= s->b_width * s->b_height << 2*s->block_max_depth;
144        for(i=0; i<s->max_ref_frames; i++){
145            s->ref_mvs[i]    = av_calloc(size, sizeof(*s->ref_mvs[i]));
146            s->ref_scores[i] = av_calloc(size, sizeof(*s->ref_scores[i]));
147            if (!s->ref_mvs[i] || !s->ref_scores[i])
148                return AVERROR(ENOMEM);
149        }
150    }
151
152    return 0;
153}
154
155//near copy & paste from dsputil, FIXME
156static int pix_sum(uint8_t * pix, int line_size, int w, int h)
157{
158    int s, i, j;
159
160    s = 0;
161    for (i = 0; i < h; i++) {
162        for (j = 0; j < w; j++) {
163            s += pix[0];
164            pix ++;
165        }
166        pix += line_size - w;
167    }
168    return s;
169}
170
171//near copy & paste from dsputil, FIXME
172static int pix_norm1(uint8_t * pix, int line_size, int w)
173{
174    int s, i, j;
175    const uint32_t *sq = ff_square_tab + 256;
176
177    s = 0;
178    for (i = 0; i < w; i++) {
179        for (j = 0; j < w; j ++) {
180            s += sq[pix[0]];
181            pix ++;
182        }
183        pix += line_size - w;
184    }
185    return s;
186}
187
188static inline int get_penalty_factor(int lambda, int lambda2, int type){
189    switch(type&0xFF){
190    default:
191    case FF_CMP_SAD:
192        return lambda>>FF_LAMBDA_SHIFT;
193    case FF_CMP_DCT:
194        return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
195    case FF_CMP_W53:
196        return (4*lambda)>>(FF_LAMBDA_SHIFT);
197    case FF_CMP_W97:
198        return (2*lambda)>>(FF_LAMBDA_SHIFT);
199    case FF_CMP_SATD:
200    case FF_CMP_DCT264:
201        return (2*lambda)>>FF_LAMBDA_SHIFT;
202    case FF_CMP_RD:
203    case FF_CMP_PSNR:
204    case FF_CMP_SSE:
205    case FF_CMP_NSSE:
206        return lambda2>>FF_LAMBDA_SHIFT;
207    case FF_CMP_BIT:
208        return 1;
209    }
210}
211
212//FIXME copy&paste
213#define P_LEFT P[1]
214#define P_TOP P[2]
215#define P_TOPRIGHT P[3]
216#define P_MEDIAN P[4]
217#define P_MV1 P[9]
218#define FLAG_QPEL   1 //must be 1
219
220static int encode_q_branch(SnowContext *s, int level, int x, int y){
221    uint8_t p_buffer[1024];
222    uint8_t i_buffer[1024];
223    uint8_t p_state[sizeof(s->block_state)];
224    uint8_t i_state[sizeof(s->block_state)];
225    RangeCoder pc, ic;
226    uint8_t *pbbak= s->c.bytestream;
227    uint8_t *pbbak_start= s->c.bytestream_start;
228    int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
229    const int w= s->b_width  << s->block_max_depth;
230    const int h= s->b_height << s->block_max_depth;
231    const int rem_depth= s->block_max_depth - level;
232    const int index= (x + y*w) << rem_depth;
233    const int block_w= 1<<(LOG2_MB_SIZE - level);
234    int trx= (x+1)<<rem_depth;
235    int try= (y+1)<<rem_depth;
236    const BlockNode *left  = x ? &s->block[index-1] : &null_block;
237    const BlockNode *top   = y ? &s->block[index-w] : &null_block;
238    const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
239    const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
240    const BlockNode *tl    = y && x ? &s->block[index-w-1] : left;
241    const BlockNode *tr    = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
242    int pl = left->color[0];
243    int pcb= left->color[1];
244    int pcr= left->color[2];
245    int pmx, pmy;
246    int mx=0, my=0;
247    int l,cr,cb;
248    const int stride= s->current_picture->linesize[0];
249    const int uvstride= s->current_picture->linesize[1];
250    uint8_t *current_data[3]= { s->input_picture->data[0] + (x + y*  stride)*block_w,
251                                s->input_picture->data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
252                                s->input_picture->data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
253    int P[10][2];
254    int16_t last_mv[3][2];
255    int qpel= !!(s->avctx->flags & AV_CODEC_FLAG_QPEL); //unused
256    const int shift= 1+qpel;
257    MotionEstContext *c= &s->m.me;
258    int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
259    int mx_context= av_log2(2*FFABS(left->mx - top->mx));
260    int my_context= av_log2(2*FFABS(left->my - top->my));
261    int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
262    int ref, best_ref, ref_score, ref_mx, ref_my;
263    int range = MAX_MV >> (1 + qpel);
264
265    av_assert0(sizeof(s->block_state) >= 256);
266    if(s->keyframe){
267        set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
268        return 0;
269    }
270
271//    clip predictors / edge ?
272
273    P_LEFT[0]= left->mx;
274    P_LEFT[1]= left->my;
275    P_TOP [0]= top->mx;
276    P_TOP [1]= top->my;
277    P_TOPRIGHT[0]= tr->mx;
278    P_TOPRIGHT[1]= tr->my;
279
280    last_mv[0][0]= s->block[index].mx;
281    last_mv[0][1]= s->block[index].my;
282    last_mv[1][0]= right->mx;
283    last_mv[1][1]= right->my;
284    last_mv[2][0]= bottom->mx;
285    last_mv[2][1]= bottom->my;
286
287    s->m.mb_stride=2;
288    s->m.mb_x=
289    s->m.mb_y= 0;
290    c->skip= 0;
291
292    av_assert1(c->  stride ==   stride);
293    av_assert1(c->uvstride == uvstride);
294
295    c->penalty_factor    = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
296    c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
297    c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
298    c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_DMV;
299
300    c->xmin = - x*block_w - 16+3;
301    c->ymin = - y*block_w - 16+3;
302    c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
303    c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
304
305    c->xmin = FFMAX(c->xmin, -range);
306    c->xmax = FFMIN(c->xmax, range);
307    c->ymin = FFMAX(c->ymin, -range);
308    c->ymax = FFMIN(c->ymax, range);
309
310    if(P_LEFT[0]     > (c->xmax<<shift)) P_LEFT[0]    = (c->xmax<<shift);
311    if(P_LEFT[1]     > (c->ymax<<shift)) P_LEFT[1]    = (c->ymax<<shift);
312    if(P_TOP[0]      > (c->xmax<<shift)) P_TOP[0]     = (c->xmax<<shift);
313    if(P_TOP[1]      > (c->ymax<<shift)) P_TOP[1]     = (c->ymax<<shift);
314    if(P_TOPRIGHT[0] < (c->xmin * (1<<shift))) P_TOPRIGHT[0]= (c->xmin * (1<<shift));
315    if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
316    if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
317
318    P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
319    P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
320
321    if (!y) {
322        c->pred_x= P_LEFT[0];
323        c->pred_y= P_LEFT[1];
324    } else {
325        c->pred_x = P_MEDIAN[0];
326        c->pred_y = P_MEDIAN[1];
327    }
328
329    score= INT_MAX;
330    best_ref= 0;
331    for(ref=0; ref<s->ref_frames; ref++){
332        init_ref(c, current_data, s->last_picture[ref]->data, NULL, block_w*x, block_w*y, 0);
333
334        ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
335                                         (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
336
337        av_assert2(ref_mx >= c->xmin);
338        av_assert2(ref_mx <= c->xmax);
339        av_assert2(ref_my >= c->ymin);
340        av_assert2(ref_my <= c->ymax);
341
342        ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
343        ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
344        ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
345        if(s->ref_mvs[ref]){
346            s->ref_mvs[ref][index][0]= ref_mx;
347            s->ref_mvs[ref][index][1]= ref_my;
348            s->ref_scores[ref][index]= ref_score;
349        }
350        if(score > ref_score){
351            score= ref_score;
352            best_ref= ref;
353            mx= ref_mx;
354            my= ref_my;
355        }
356    }
357    //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
358
359  //  subpel search
360    base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
361    pc= s->c;
362    pc.bytestream_start=
363    pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
364    memcpy(p_state, s->block_state, sizeof(s->block_state));
365
366    if(level!=s->block_max_depth)
367        put_rac(&pc, &p_state[4 + s_context], 1);
368    put_rac(&pc, &p_state[1 + left->type + top->type], 0);
369    if(s->ref_frames > 1)
370        put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
371    pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
372    put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
373    put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
374    p_len= pc.bytestream - pc.bytestream_start;
375    score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
376
377    block_s= block_w*block_w;
378    sum = pix_sum(current_data[0], stride, block_w, block_w);
379    l= (sum + block_s/2)/block_s;
380    iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
381
382    if (s->nb_planes > 2) {
383        block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
384        sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
385        cb= (sum + block_s/2)/block_s;
386    //    iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
387        sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
388        cr= (sum + block_s/2)/block_s;
389    //    iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
390    }else
391        cb = cr = 0;
392
393    ic= s->c;
394    ic.bytestream_start=
395    ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
396    memcpy(i_state, s->block_state, sizeof(s->block_state));
397    if(level!=s->block_max_depth)
398        put_rac(&ic, &i_state[4 + s_context], 1);
399    put_rac(&ic, &i_state[1 + left->type + top->type], 1);
400    put_symbol(&ic, &i_state[32],  l-pl , 1);
401    if (s->nb_planes > 2) {
402        put_symbol(&ic, &i_state[64], cb-pcb, 1);
403        put_symbol(&ic, &i_state[96], cr-pcr, 1);
404    }
405    i_len= ic.bytestream - ic.bytestream_start;
406    iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
407
408    av_assert1(iscore < 255*255*256 + s->lambda2*10);
409    av_assert1(iscore >= 0);
410    av_assert1(l>=0 && l<=255);
411    av_assert1(pl>=0 && pl<=255);
412
413    if(level==0){
414        int varc= iscore >> 8;
415        int vard= score >> 8;
416        if (vard <= 64 || vard < varc)
417            c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
418        else
419            c->scene_change_score+= s->m.qscale;
420    }
421
422    if(level!=s->block_max_depth){
423        put_rac(&s->c, &s->block_state[4 + s_context], 0);
424        score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
425        score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
426        score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
427        score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
428        score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
429
430        if(score2 < score && score2 < iscore)
431            return score2;
432    }
433
434    if(iscore < score){
435        pred_mv(s, &pmx, &pmy, 0, left, top, tr);
436        memcpy(pbbak, i_buffer, i_len);
437        s->c= ic;
438        s->c.bytestream_start= pbbak_start;
439        s->c.bytestream= pbbak + i_len;
440        set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
441        memcpy(s->block_state, i_state, sizeof(s->block_state));
442        return iscore;
443    }else{
444        memcpy(pbbak, p_buffer, p_len);
445        s->c= pc;
446        s->c.bytestream_start= pbbak_start;
447        s->c.bytestream= pbbak + p_len;
448        set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
449        memcpy(s->block_state, p_state, sizeof(s->block_state));
450        return score;
451    }
452}
453
454static void encode_q_branch2(SnowContext *s, int level, int x, int y){
455    const int w= s->b_width  << s->block_max_depth;
456    const int rem_depth= s->block_max_depth - level;
457    const int index= (x + y*w) << rem_depth;
458    int trx= (x+1)<<rem_depth;
459    BlockNode *b= &s->block[index];
460    const BlockNode *left  = x ? &s->block[index-1] : &null_block;
461    const BlockNode *top   = y ? &s->block[index-w] : &null_block;
462    const BlockNode *tl    = y && x ? &s->block[index-w-1] : left;
463    const BlockNode *tr    = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
464    int pl = left->color[0];
465    int pcb= left->color[1];
466    int pcr= left->color[2];
467    int pmx, pmy;
468    int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
469    int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
470    int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
471    int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
472
473    if(s->keyframe){
474        set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
475        return;
476    }
477
478    if(level!=s->block_max_depth){
479        if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
480            put_rac(&s->c, &s->block_state[4 + s_context], 1);
481        }else{
482            put_rac(&s->c, &s->block_state[4 + s_context], 0);
483            encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
484            encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
485            encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
486            encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
487            return;
488        }
489    }
490    if(b->type & BLOCK_INTRA){
491        pred_mv(s, &pmx, &pmy, 0, left, top, tr);
492        put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
493        put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
494        if (s->nb_planes > 2) {
495            put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
496            put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
497        }
498        set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
499    }else{
500        pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
501        put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
502        if(s->ref_frames > 1)
503            put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
504        put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
505        put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
506        set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
507    }
508}
509
510static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
511    int i, x2, y2;
512    Plane *p= &s->plane[plane_index];
513    const int block_size = MB_SIZE >> s->block_max_depth;
514    const int block_w    = plane_index ? block_size>>s->chroma_h_shift : block_size;
515    const int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
516    const uint8_t *obmc  = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
517    const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
518    const int ref_stride= s->current_picture->linesize[plane_index];
519    uint8_t *src= s-> input_picture->data[plane_index];
520    IDWTELEM *dst= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
521    const int b_stride = s->b_width << s->block_max_depth;
522    const int w= p->width;
523    const int h= p->height;
524    int index= mb_x + mb_y*b_stride;
525    BlockNode *b= &s->block[index];
526    BlockNode backup= *b;
527    int ab=0;
528    int aa=0;
529
530    av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
531
532    b->type|= BLOCK_INTRA;
533    b->color[plane_index]= 0;
534    memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
535
536    for(i=0; i<4; i++){
537        int mb_x2= mb_x + (i &1) - 1;
538        int mb_y2= mb_y + (i>>1) - 1;
539        int x= block_w*mb_x2 + block_w/2;
540        int y= block_h*mb_y2 + block_h/2;
541
542        add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
543                    x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
544
545        for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
546            for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
547                int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
548                int obmc_v= obmc[index];
549                int d;
550                if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
551                if(x<0) obmc_v += obmc[index + block_w];
552                if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
553                if(x+block_w>w) obmc_v += obmc[index - block_w];
554                //FIXME precalculate this or simplify it somehow else
555
556                d = -dst[index] + (1<<(FRAC_BITS-1));
557                dst[index] = d;
558                ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
559                aa += obmc_v * obmc_v; //FIXME precalculate this
560            }
561        }
562    }
563    *b= backup;
564
565    return av_clip_uint8( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa) ); //FIXME we should not need clipping
566}
567
568static inline int get_block_bits(SnowContext *s, int x, int y, int w){
569    const int b_stride = s->b_width << s->block_max_depth;
570    const int b_height = s->b_height<< s->block_max_depth;
571    int index= x + y*b_stride;
572    const BlockNode *b     = &s->block[index];
573    const BlockNode *left  = x ? &s->block[index-1] : &null_block;
574    const BlockNode *top   = y ? &s->block[index-b_stride] : &null_block;
575    const BlockNode *tl    = y && x ? &s->block[index-b_stride-1] : left;
576    const BlockNode *tr    = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
577    int dmx, dmy;
578//  int mx_context= av_log2(2*FFABS(left->mx - top->mx));
579//  int my_context= av_log2(2*FFABS(left->my - top->my));
580
581    if(x<0 || x>=b_stride || y>=b_height)
582        return 0;
583/*
5841            0      0
58501X          1-2    1
586001XX        3-6    2-3
5870001XXX      7-14   4-7
58800001XXXX   15-30   8-15
589*/
590//FIXME try accurate rate
591//FIXME intra and inter predictors if surrounding blocks are not the same type
592    if(b->type & BLOCK_INTRA){
593        return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
594                   + av_log2(2*FFABS(left->color[1] - b->color[1]))
595                   + av_log2(2*FFABS(left->color[2] - b->color[2])));
596    }else{
597        pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
598        dmx-= b->mx;
599        dmy-= b->my;
600        return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
601                    + av_log2(2*FFABS(dmy))
602                    + av_log2(2*b->ref));
603    }
604}
605
606static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
607    Plane *p= &s->plane[plane_index];
608    const int block_size = MB_SIZE >> s->block_max_depth;
609    const int block_w    = plane_index ? block_size>>s->chroma_h_shift : block_size;
610    const int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
611    const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
612    const int ref_stride= s->current_picture->linesize[plane_index];
613    uint8_t *dst= s->current_picture->data[plane_index];
614    uint8_t *src= s->  input_picture->data[plane_index];
615    IDWTELEM *pred= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4;
616    uint8_t *cur = s->scratchbuf;
617    uint8_t *tmp = s->emu_edge_buffer;
618    const int b_stride = s->b_width << s->block_max_depth;
619    const int b_height = s->b_height<< s->block_max_depth;
620    const int w= p->width;
621    const int h= p->height;
622    int distortion;
623    int rate= 0;
624    const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
625    int sx= block_w*mb_x - block_w/2;
626    int sy= block_h*mb_y - block_h/2;
627    int x0= FFMAX(0,-sx);
628    int y0= FFMAX(0,-sy);
629    int x1= FFMIN(block_w*2, w-sx);
630    int y1= FFMIN(block_h*2, h-sy);
631    int i,x,y;
632
633    av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
634
635    ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
636
637    for(y=y0; y<y1; y++){
638        const uint8_t *obmc1= obmc_edged[y];
639        const IDWTELEM *pred1 = pred + y*obmc_stride;
640        uint8_t *cur1 = cur + y*ref_stride;
641        uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
642        for(x=x0; x<x1; x++){
643#if FRAC_BITS >= LOG2_OBMC_MAX
644            int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
645#else
646            int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
647#endif
648            v = (v + pred1[x]) >> FRAC_BITS;
649            if(v&(~255)) v= ~(v>>31);
650            dst1[x] = v;
651        }
652    }
653
654    /* copy the regions where obmc[] = (uint8_t)256 */
655    if(LOG2_OBMC_MAX == 8
656        && (mb_x == 0 || mb_x == b_stride-1)
657        && (mb_y == 0 || mb_y == b_height-1)){
658        if(mb_x == 0)
659            x1 = block_w;
660        else
661            x0 = block_w;
662        if(mb_y == 0)
663            y1 = block_h;
664        else
665            y0 = block_h;
666        for(y=y0; y<y1; y++)
667            memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
668    }
669
670    if(block_w==16){
671        /* FIXME rearrange dsputil to fit 32x32 cmp functions */
672        /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
673        /* FIXME cmps overlap but do not cover the wavelet's whole support.
674         * So improving the score of one block is not strictly guaranteed
675         * to improve the score of the whole frame, thus iterative motion
676         * estimation does not always converge. */
677        if(s->avctx->me_cmp == FF_CMP_W97)
678            distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
679        else if(s->avctx->me_cmp == FF_CMP_W53)
680            distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
681        else{
682            distortion = 0;
683            for(i=0; i<4; i++){
684                int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
685                distortion += s->mecc.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
686            }
687        }
688    }else{
689        av_assert2(block_w==8);
690        distortion = s->mecc.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
691    }
692
693    if(plane_index==0){
694        for(i=0; i<4; i++){
695/* ..RRr
696 * .RXx.
697 * rxx..
698 */
699            rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
700        }
701        if(mb_x == b_stride-2)
702            rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
703    }
704    return distortion + rate*penalty_factor;
705}
706
707static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
708    int i, y2;
709    Plane *p= &s->plane[plane_index];
710    const int block_size = MB_SIZE >> s->block_max_depth;
711    const int block_w    = plane_index ? block_size>>s->chroma_h_shift : block_size;
712    const int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
713    const uint8_t *obmc  = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
714    const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
715    const int ref_stride= s->current_picture->linesize[plane_index];
716    uint8_t *dst= s->current_picture->data[plane_index];
717    uint8_t *src= s-> input_picture->data[plane_index];
718    //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
719    // const has only been removed from zero_dst to suppress a warning
720    static IDWTELEM zero_dst[4096]; //FIXME
721    const int b_stride = s->b_width << s->block_max_depth;
722    const int w= p->width;
723    const int h= p->height;
724    int distortion= 0;
725    int rate= 0;
726    const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
727
728    av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
729
730    for(i=0; i<9; i++){
731        int mb_x2= mb_x + (i%3) - 1;
732        int mb_y2= mb_y + (i/3) - 1;
733        int x= block_w*mb_x2 + block_w/2;
734        int y= block_h*mb_y2 + block_h/2;
735
736        add_yblock(s, 0, NULL, zero_dst, dst, obmc,
737                   x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
738
739        //FIXME find a cleaner/simpler way to skip the outside stuff
740        for(y2= y; y2<0; y2++)
741            memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
742        for(y2= h; y2<y+block_h; y2++)
743            memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
744        if(x<0){
745            for(y2= y; y2<y+block_h; y2++)
746                memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
747        }
748        if(x+block_w > w){
749            for(y2= y; y2<y+block_h; y2++)
750                memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
751        }
752
753        av_assert1(block_w== 8 || block_w==16);
754        distortion += s->mecc.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
755    }
756
757    if(plane_index==0){
758        BlockNode *b= &s->block[mb_x+mb_y*b_stride];
759        int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
760
761/* ..RRRr
762 * .RXXx.
763 * .RXXx.
764 * rxxx.
765 */
766        if(merged)
767            rate = get_block_bits(s, mb_x, mb_y, 2);
768        for(i=merged?4:0; i<9; i++){
769            static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
770            rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
771        }
772    }
773    return distortion + rate*penalty_factor;
774}
775
776static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
777    const int w= b->width;
778    const int h= b->height;
779    int x, y;
780
781    if(1){
782        int run=0;
783        int *runs = s->run_buffer;
784        int run_index=0;
785        int max_index;
786
787        for(y=0; y<h; y++){
788            for(x=0; x<w; x++){
789                int v, p=0;
790                int /*ll=0, */l=0, lt=0, t=0, rt=0;
791                v= src[x + y*stride];
792
793                if(y){
794                    t= src[x + (y-1)*stride];
795                    if(x){
796                        lt= src[x - 1 + (y-1)*stride];
797                    }
798                    if(x + 1 < w){
799                        rt= src[x + 1 + (y-1)*stride];
800                    }
801                }
802                if(x){
803                    l= src[x - 1 + y*stride];
804                    /*if(x > 1){
805                        if(orientation==1) ll= src[y + (x-2)*stride];
806                        else               ll= src[x - 2 + y*stride];
807                    }*/
808                }
809                if(parent){
810                    int px= x>>1;
811                    int py= y>>1;
812                    if(px<b->parent->width && py<b->parent->height)
813                        p= parent[px + py*2*stride];
814                }
815                if(!(/*ll|*/l|lt|t|rt|p)){
816                    if(v){
817                        runs[run_index++]= run;
818                        run=0;
819                    }else{
820                        run++;
821                    }
822                }
823            }
824        }
825        max_index= run_index;
826        runs[run_index++]= run;
827        run_index=0;
828        run= runs[run_index++];
829
830        put_symbol2(&s->c, b->state[30], max_index, 0);
831        if(run_index <= max_index)
832            put_symbol2(&s->c, b->state[1], run, 3);
833
834        for(y=0; y<h; y++){
835            if(s->c.bytestream_end - s->c.bytestream < w*40){
836                av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
837                return AVERROR(ENOMEM);
838            }
839            for(x=0; x<w; x++){
840                int v, p=0;
841                int /*ll=0, */l=0, lt=0, t=0, rt=0;
842                v= src[x + y*stride];
843
844                if(y){
845                    t= src[x + (y-1)*stride];
846                    if(x){
847                        lt= src[x - 1 + (y-1)*stride];
848                    }
849                    if(x + 1 < w){
850                        rt= src[x + 1 + (y-1)*stride];
851                    }
852                }
853                if(x){
854                    l= src[x - 1 + y*stride];
855                    /*if(x > 1){
856                        if(orientation==1) ll= src[y + (x-2)*stride];
857                        else               ll= src[x - 2 + y*stride];
858                    }*/
859                }
860                if(parent){
861                    int px= x>>1;
862                    int py= y>>1;
863                    if(px<b->parent->width && py<b->parent->height)
864                        p= parent[px + py*2*stride];
865                }
866                if(/*ll|*/l|lt|t|rt|p){
867                    int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
868
869                    put_rac(&s->c, &b->state[0][context], !!v);
870                }else{
871                    if(!run){
872                        run= runs[run_index++];
873
874                        if(run_index <= max_index)
875                            put_symbol2(&s->c, b->state[1], run, 3);
876                        av_assert2(v);
877                    }else{
878                        run--;
879                        av_assert2(!v);
880                    }
881                }
882                if(v){
883                    int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
884                    int l2= 2*FFABS(l) + (l<0);
885                    int t2= 2*FFABS(t) + (t<0);
886
887                    put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
888                    put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
889                }
890            }
891        }
892    }
893    return 0;
894}
895
896static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
897//    encode_subband_qtree(s, b, src, parent, stride, orientation);
898//    encode_subband_z0run(s, b, src, parent, stride, orientation);
899    return encode_subband_c0run(s, b, src, parent, stride, orientation);
900//    encode_subband_dzr(s, b, src, parent, stride, orientation);
901}
902
903static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
904    const int b_stride= s->b_width << s->block_max_depth;
905    BlockNode *block= &s->block[mb_x + mb_y * b_stride];
906    BlockNode backup= *block;
907    unsigned value;
908    int rd, index;
909
910    av_assert2(mb_x>=0 && mb_y>=0);
911    av_assert2(mb_x<b_stride);
912
913    if(intra){
914        block->color[0] = p[0];
915        block->color[1] = p[1];
916        block->color[2] = p[2];
917        block->type |= BLOCK_INTRA;
918    }else{
919        index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
920        value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
921        if(s->me_cache[index] == value)
922            return 0;
923        s->me_cache[index]= value;
924
925        block->mx= p[0];
926        block->my= p[1];
927        block->type &= ~BLOCK_INTRA;
928    }
929
930    rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged) + s->intra_penalty * !!intra;
931
932//FIXME chroma
933    if(rd < *best_rd){
934        *best_rd= rd;
935        return 1;
936    }else{
937        *block= backup;
938        return 0;
939    }
940}
941
942/* special case for int[2] args we discard afterwards,
943 * fixes compilation problem with gcc 2.95 */
944static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
945    int p[2] = {p0, p1};
946    return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
947}
948
949static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
950    const int b_stride= s->b_width << s->block_max_depth;
951    BlockNode *block= &s->block[mb_x + mb_y * b_stride];
952    BlockNode backup[4];
953    unsigned value;
954    int rd, index;
955
956    /* We don't initialize backup[] during variable declaration, because
957     * that fails to compile on MSVC: "cannot convert from 'BlockNode' to
958     * 'int16_t'". */
959    backup[0] = block[0];
960    backup[1] = block[1];
961    backup[2] = block[b_stride];
962    backup[3] = block[b_stride + 1];
963
964    av_assert2(mb_x>=0 && mb_y>=0);
965    av_assert2(mb_x<b_stride);
966    av_assert2(((mb_x|mb_y)&1) == 0);
967
968    index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
969    value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
970    if(s->me_cache[index] == value)
971        return 0;
972    s->me_cache[index]= value;
973
974    block->mx= p0;
975    block->my= p1;
976    block->ref= ref;
977    block->type &= ~BLOCK_INTRA;
978    block[1]= block[b_stride]= block[b_stride+1]= *block;
979
980    rd= get_4block_rd(s, mb_x, mb_y, 0);
981
982//FIXME chroma
983    if(rd < *best_rd){
984        *best_rd= rd;
985        return 1;
986    }else{
987        block[0]= backup[0];
988        block[1]= backup[1];
989        block[b_stride]= backup[2];
990        block[b_stride+1]= backup[3];
991        return 0;
992    }
993}
994
995static void iterative_me(SnowContext *s){
996    int pass, mb_x, mb_y;
997    const int b_width = s->b_width  << s->block_max_depth;
998    const int b_height= s->b_height << s->block_max_depth;
999    const int b_stride= b_width;
1000    int color[3];
1001
1002    {
1003        RangeCoder r = s->c;
1004        uint8_t state[sizeof(s->block_state)];
1005        memcpy(state, s->block_state, sizeof(s->block_state));
1006        for(mb_y= 0; mb_y<s->b_height; mb_y++)
1007            for(mb_x= 0; mb_x<s->b_width; mb_x++)
1008                encode_q_branch(s, 0, mb_x, mb_y);
1009        s->c = r;
1010        memcpy(s->block_state, state, sizeof(s->block_state));
1011    }
1012
1013    for(pass=0; pass<25; pass++){
1014        int change= 0;
1015
1016        for(mb_y= 0; mb_y<b_height; mb_y++){
1017            for(mb_x= 0; mb_x<b_width; mb_x++){
1018                int dia_change, i, j, ref;
1019                int best_rd= INT_MAX, ref_rd;
1020                BlockNode backup, ref_b;
1021                const int index= mb_x + mb_y * b_stride;
1022                BlockNode *block= &s->block[index];
1023                BlockNode *tb =                   mb_y            ? &s->block[index-b_stride  ] : NULL;
1024                BlockNode *lb = mb_x                              ? &s->block[index         -1] : NULL;
1025                BlockNode *rb = mb_x+1<b_width                    ? &s->block[index         +1] : NULL;
1026                BlockNode *bb =                   mb_y+1<b_height ? &s->block[index+b_stride  ] : NULL;
1027                BlockNode *tlb= mb_x           && mb_y            ? &s->block[index-b_stride-1] : NULL;
1028                BlockNode *trb= mb_x+1<b_width && mb_y            ? &s->block[index-b_stride+1] : NULL;
1029                BlockNode *blb= mb_x           && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1030                BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1031                const int b_w= (MB_SIZE >> s->block_max_depth);
1032                uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1033
1034                if(pass && (block->type & BLOCK_OPT))
1035                    continue;
1036                block->type |= BLOCK_OPT;
1037
1038                backup= *block;
1039
1040                if(!s->me_cache_generation)
1041                    memset(s->me_cache, 0, sizeof(s->me_cache));
1042                s->me_cache_generation += 1<<22;
1043
1044                //FIXME precalculate
1045                {
1046                    int x, y;
1047                    for (y = 0; y < b_w * 2; y++)
1048                        memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1049                    if(mb_x==0)
1050                        for(y=0; y<b_w*2; y++)
1051                            memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1052                    if(mb_x==b_stride-1)
1053                        for(y=0; y<b_w*2; y++)
1054                            memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1055                    if(mb_y==0){
1056                        for(x=0; x<b_w*2; x++)
1057                            obmc_edged[0][x] += obmc_edged[b_w-1][x];
1058                        for(y=1; y<b_w; y++)
1059                            memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1060                    }
1061                    if(mb_y==b_height-1){
1062                        for(x=0; x<b_w*2; x++)
1063                            obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1064                        for(y=b_w; y<b_w*2-1; y++)
1065                            memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1066                    }
1067                }
1068
1069                //skip stuff outside the picture
1070                if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1071                    uint8_t *src= s->  input_picture->data[0];
1072                    uint8_t *dst= s->current_picture->data[0];
1073                    const int stride= s->current_picture->linesize[0];
1074                    const int block_w= MB_SIZE >> s->block_max_depth;
1075                    const int block_h= MB_SIZE >> s->block_max_depth;
1076                    const int sx= block_w*mb_x - block_w/2;
1077                    const int sy= block_h*mb_y - block_h/2;
1078                    const int w= s->plane[0].width;
1079                    const int h= s->plane[0].height;
1080                    int y;
1081
1082                    for(y=sy; y<0; y++)
1083                        memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1084                    for(y=h; y<sy+block_h*2; y++)
1085                        memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1086                    if(sx<0){
1087                        for(y=sy; y<sy+block_h*2; y++)
1088                            memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1089                    }
1090                    if(sx+block_w*2 > w){
1091                        for(y=sy; y<sy+block_h*2; y++)
1092                            memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1093                    }
1094                }
1095
1096                // intra(black) = neighbors' contribution to the current block
1097                for(i=0; i < s->nb_planes; i++)
1098                    color[i]= get_dc(s, mb_x, mb_y, i);
1099
1100                // get previous score (cannot be cached due to OBMC)
1101                if(pass > 0 && (block->type&BLOCK_INTRA)){
1102                    int color0[3]= {block->color[0], block->color[1], block->color[2]};
1103                    check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1104                }else
1105                    check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1106
1107                ref_b= *block;
1108                ref_rd= best_rd;
1109                for(ref=0; ref < s->ref_frames; ref++){
1110                    int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1111                    if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1112                        continue;
1113                    block->ref= ref;
1114                    best_rd= INT_MAX;
1115
1116                    check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1117                    check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1118                    if(tb)
1119                        check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1120                    if(lb)
1121                        check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1122                    if(rb)
1123                        check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1124                    if(bb)
1125                        check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1126
1127                    /* fullpel ME */
1128                    //FIXME avoid subpel interpolation / round to nearest integer
1129                    do{
1130                        int newx = block->mx;
1131                        int newy = block->my;
1132                        int dia_size = s->iterative_dia_size ? s->iterative_dia_size : FFMAX(s->avctx->dia_size, 1);
1133                        dia_change=0;
1134                        for(i=0; i < dia_size; i++){
1135                            for(j=0; j<i; j++){
1136                                dia_change |= check_block_inter(s, mb_x, mb_y, newx+4*(i-j), newy+(4*j), obmc_edged, &best_rd);
1137                                dia_change |= check_block_inter(s, mb_x, mb_y, newx-4*(i-j), newy-(4*j), obmc_edged, &best_rd);
1138                                dia_change |= check_block_inter(s, mb_x, mb_y, newx-(4*j), newy+4*(i-j), obmc_edged, &best_rd);
1139                                dia_change |= check_block_inter(s, mb_x, mb_y, newx+(4*j), newy-4*(i-j), obmc_edged, &best_rd);
1140                            }
1141                        }
1142                    }while(dia_change);
1143                    /* subpel ME */
1144                    do{
1145                        static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1146                        dia_change=0;
1147                        for(i=0; i<8; i++)
1148                            dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1149                    }while(dia_change);
1150                    //FIXME or try the standard 2 pass qpel or similar
1151
1152                    mvr[0][0]= block->mx;
1153                    mvr[0][1]= block->my;
1154                    if(ref_rd > best_rd){
1155                        ref_rd= best_rd;
1156                        ref_b= *block;
1157                    }
1158                }
1159                best_rd= ref_rd;
1160                *block= ref_b;
1161                check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1162                //FIXME RD style color selection
1163                if(!same_block(block, &backup)){
1164                    if(tb ) tb ->type &= ~BLOCK_OPT;
1165                    if(lb ) lb ->type &= ~BLOCK_OPT;
1166                    if(rb ) rb ->type &= ~BLOCK_OPT;
1167                    if(bb ) bb ->type &= ~BLOCK_OPT;
1168                    if(tlb) tlb->type &= ~BLOCK_OPT;
1169                    if(trb) trb->type &= ~BLOCK_OPT;
1170                    if(blb) blb->type &= ~BLOCK_OPT;
1171                    if(brb) brb->type &= ~BLOCK_OPT;
1172                    change ++;
1173                }
1174            }
1175        }
1176        av_log(s->avctx, AV_LOG_DEBUG, "pass:%d changed:%d\n", pass, change);
1177        if(!change)
1178            break;
1179    }
1180
1181    if(s->block_max_depth == 1){
1182        int change= 0;
1183        for(mb_y= 0; mb_y<b_height; mb_y+=2){
1184            for(mb_x= 0; mb_x<b_width; mb_x+=2){
1185                int i;
1186                int best_rd, init_rd;
1187                const int index= mb_x + mb_y * b_stride;
1188                BlockNode *b[4];
1189
1190                b[0]= &s->block[index];
1191                b[1]= b[0]+1;
1192                b[2]= b[0]+b_stride;
1193                b[3]= b[2]+1;
1194                if(same_block(b[0], b[1]) &&
1195                   same_block(b[0], b[2]) &&
1196                   same_block(b[0], b[3]))
1197                    continue;
1198
1199                if(!s->me_cache_generation)
1200                    memset(s->me_cache, 0, sizeof(s->me_cache));
1201                s->me_cache_generation += 1<<22;
1202
1203                init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1204
1205                //FIXME more multiref search?
1206                check_4block_inter(s, mb_x, mb_y,
1207                                   (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1208                                   (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1209
1210                for(i=0; i<4; i++)
1211                    if(!(b[i]->type&BLOCK_INTRA))
1212                        check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1213
1214                if(init_rd != best_rd)
1215                    change++;
1216            }
1217        }
1218        av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1219    }
1220}
1221
1222static void encode_blocks(SnowContext *s, int search){
1223    int x, y;
1224    int w= s->b_width;
1225    int h= s->b_height;
1226
1227    if(s->motion_est == FF_ME_ITER && !s->keyframe && search)
1228        iterative_me(s);
1229
1230    for(y=0; y<h; y++){
1231        if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1232            av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1233            return;
1234        }
1235        for(x=0; x<w; x++){
1236            if(s->motion_est == FF_ME_ITER || !search)
1237                encode_q_branch2(s, 0, x, y);
1238            else
1239                encode_q_branch (s, 0, x, y);
1240        }
1241    }
1242}
1243
1244static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1245    const int w= b->width;
1246    const int h= b->height;
1247    const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1248    const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1249    int x,y, thres1, thres2;
1250
1251    if(s->qlog == LOSSLESS_QLOG){
1252        for(y=0; y<h; y++)
1253            for(x=0; x<w; x++)
1254                dst[x + y*stride]= src[x + y*stride];
1255        return;
1256    }
1257
1258    bias= bias ? 0 : (3*qmul)>>3;
1259    thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1260    thres2= 2*thres1;
1261
1262    if(!bias){
1263        for(y=0; y<h; y++){
1264            for(x=0; x<w; x++){
1265                int i= src[x + y*stride];
1266
1267                if((unsigned)(i+thres1) > thres2){
1268                    if(i>=0){
1269                        i<<= QEXPSHIFT;
1270                        i/= qmul; //FIXME optimize
1271                        dst[x + y*stride]=  i;
1272                    }else{
1273                        i= -i;
1274                        i<<= QEXPSHIFT;
1275                        i/= qmul; //FIXME optimize
1276                        dst[x + y*stride]= -i;
1277                    }
1278                }else
1279                    dst[x + y*stride]= 0;
1280            }
1281        }
1282    }else{
1283        for(y=0; y<h; y++){
1284            for(x=0; x<w; x++){
1285                int i= src[x + y*stride];
1286
1287                if((unsigned)(i+thres1) > thres2){
1288                    if(i>=0){
1289                        i<<= QEXPSHIFT;
1290                        i= (i + bias) / qmul; //FIXME optimize
1291                        dst[x + y*stride]=  i;
1292                    }else{
1293                        i= -i;
1294                        i<<= QEXPSHIFT;
1295                        i= (i + bias) / qmul; //FIXME optimize
1296                        dst[x + y*stride]= -i;
1297                    }
1298                }else
1299                    dst[x + y*stride]= 0;
1300            }
1301        }
1302    }
1303}
1304
1305static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1306    const int w= b->width;
1307    const int h= b->height;
1308    const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1309    const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1310    const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1311    int x,y;
1312
1313    if(s->qlog == LOSSLESS_QLOG) return;
1314
1315    for(y=0; y<h; y++){
1316        for(x=0; x<w; x++){
1317            int i= src[x + y*stride];
1318            if(i<0){
1319                src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1320            }else if(i>0){
1321                src[x + y*stride]=  (( i*qmul + qadd)>>(QEXPSHIFT));
1322            }
1323        }
1324    }
1325}
1326
1327static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1328    const int w= b->width;
1329    const int h= b->height;
1330    int x,y;
1331
1332    for(y=h-1; y>=0; y--){
1333        for(x=w-1; x>=0; x--){
1334            int i= x + y*stride;
1335
1336            if(x){
1337                if(use_median){
1338                    if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1339                    else  src[i] -= src[i - 1];
1340                }else{
1341                    if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1342                    else  src[i] -= src[i - 1];
1343                }
1344            }else{
1345                if(y) src[i] -= src[i - stride];
1346            }
1347        }
1348    }
1349}
1350
1351static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1352    const int w= b->width;
1353    const int h= b->height;
1354    int x,y;
1355
1356    for(y=0; y<h; y++){
1357        for(x=0; x<w; x++){
1358            int i= x + y*stride;
1359
1360            if(x){
1361                if(use_median){
1362                    if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1363                    else  src[i] += src[i - 1];
1364                }else{
1365                    if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1366                    else  src[i] += src[i - 1];
1367                }
1368            }else{
1369                if(y) src[i] += src[i - stride];
1370            }
1371        }
1372    }
1373}
1374
1375static void encode_qlogs(SnowContext *s){
1376    int plane_index, level, orientation;
1377
1378    for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1379        for(level=0; level<s->spatial_decomposition_count; level++){
1380            for(orientation=level ? 1:0; orientation<4; orientation++){
1381                if(orientation==2) continue;
1382                put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1383            }
1384        }
1385    }
1386}
1387
1388static void encode_header(SnowContext *s){
1389    int plane_index, i;
1390    uint8_t kstate[32];
1391
1392    memset(kstate, MID_STATE, sizeof(kstate));
1393
1394    put_rac(&s->c, kstate, s->keyframe);
1395    if(s->keyframe || s->always_reset){
1396        ff_snow_reset_contexts(s);
1397        s->last_spatial_decomposition_type=
1398        s->last_qlog=
1399        s->last_qbias=
1400        s->last_mv_scale=
1401        s->last_block_max_depth= 0;
1402        for(plane_index=0; plane_index<2; plane_index++){
1403            Plane *p= &s->plane[plane_index];
1404            p->last_htaps=0;
1405            p->last_diag_mc=0;
1406            memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1407        }
1408    }
1409    if(s->keyframe){
1410        put_symbol(&s->c, s->header_state, s->version, 0);
1411        put_rac(&s->c, s->header_state, s->always_reset);
1412        put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
1413        put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
1414        put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1415        put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1416        if (s->nb_planes > 2) {
1417            put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1418            put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1419        }
1420        put_rac(&s->c, s->header_state, s->spatial_scalability);
1421//        put_rac(&s->c, s->header_state, s->rate_scalability);
1422        put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1423
1424        encode_qlogs(s);
1425    }
1426
1427    if(!s->keyframe){
1428        int update_mc=0;
1429        for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1430            Plane *p= &s->plane[plane_index];
1431            update_mc |= p->last_htaps   != p->htaps;
1432            update_mc |= p->last_diag_mc != p->diag_mc;
1433            update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1434        }
1435        put_rac(&s->c, s->header_state, update_mc);
1436        if(update_mc){
1437            for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1438                Plane *p= &s->plane[plane_index];
1439                put_rac(&s->c, s->header_state, p->diag_mc);
1440                put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1441                for(i= p->htaps/2; i; i--)
1442                    put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1443            }
1444        }
1445        if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1446            put_rac(&s->c, s->header_state, 1);
1447            put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1448            encode_qlogs(s);
1449        }else
1450            put_rac(&s->c, s->header_state, 0);
1451    }
1452
1453    put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1);
1454    put_symbol(&s->c, s->header_state, s->qlog            - s->last_qlog    , 1);
1455    put_symbol(&s->c, s->header_state, s->mv_scale        - s->last_mv_scale, 1);
1456    put_symbol(&s->c, s->header_state, s->qbias           - s->last_qbias   , 1);
1457    put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1);
1458
1459}
1460
1461static void update_last_header_values(SnowContext *s){
1462    int plane_index;
1463
1464    if(!s->keyframe){
1465        for(plane_index=0; plane_index<2; plane_index++){
1466            Plane *p= &s->plane[plane_index];
1467            p->last_diag_mc= p->diag_mc;
1468            p->last_htaps  = p->htaps;
1469            memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1470        }
1471    }
1472
1473    s->last_spatial_decomposition_type  = s->spatial_decomposition_type;
1474    s->last_qlog                        = s->qlog;
1475    s->last_qbias                       = s->qbias;
1476    s->last_mv_scale                    = s->mv_scale;
1477    s->last_block_max_depth             = s->block_max_depth;
1478    s->last_spatial_decomposition_count = s->spatial_decomposition_count;
1479}
1480
1481static int qscale2qlog(int qscale){
1482    return lrint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
1483           + 61*QROOT/8; ///< 64 > 60
1484}
1485
1486static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
1487{
1488    /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1489     * FIXME we know exact mv bits at this point,
1490     * but ratecontrol isn't set up to include them. */
1491    uint32_t coef_sum= 0;
1492    int level, orientation, delta_qlog;
1493
1494    for(level=0; level<s->spatial_decomposition_count; level++){
1495        for(orientation=level ? 1 : 0; orientation<4; orientation++){
1496            SubBand *b= &s->plane[0].band[level][orientation];
1497            IDWTELEM *buf= b->ibuf;
1498            const int w= b->width;
1499            const int h= b->height;
1500            const int stride= b->stride;
1501            const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1502            const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1503            const int qdiv= (1<<16)/qmul;
1504            int x, y;
1505            //FIXME this is ugly
1506            for(y=0; y<h; y++)
1507                for(x=0; x<w; x++)
1508                    buf[x+y*stride]= b->buf[x+y*stride];
1509            if(orientation==0)
1510                decorrelate(s, b, buf, stride, 1, 0);
1511            for(y=0; y<h; y++)
1512                for(x=0; x<w; x++)
1513                    coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1514        }
1515    }
1516
1517    /* ugly, ratecontrol just takes a sqrt again */
1518    av_assert0(coef_sum < INT_MAX);
1519    coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1520
1521    if(pict->pict_type == AV_PICTURE_TYPE_I){
1522        s->m.current_picture.mb_var_sum= coef_sum;
1523        s->m.current_picture.mc_mb_var_sum= 0;
1524    }else{
1525        s->m.current_picture.mc_mb_var_sum= coef_sum;
1526        s->m.current_picture.mb_var_sum= 0;
1527    }
1528
1529    pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1530    if (pict->quality < 0)
1531        return INT_MIN;
1532    s->lambda= pict->quality * 3/2;
1533    delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1534    s->qlog+= delta_qlog;
1535    return delta_qlog;
1536}
1537
1538static void calculate_visual_weight(SnowContext *s, Plane *p){
1539    int width = p->width;
1540    int height= p->height;
1541    int level, orientation, x, y;
1542
1543    for(level=0; level<s->spatial_decomposition_count; level++){
1544        int64_t error=0;
1545        for(orientation=level ? 1 : 0; orientation<4; orientation++){
1546            SubBand *b= &p->band[level][orientation];
1547            IDWTELEM *ibuf= b->ibuf;
1548
1549            memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1550            ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1551            ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
1552            for(y=0; y<height; y++){
1553                for(x=0; x<width; x++){
1554                    int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1555                    error += d*d;
1556                }
1557            }
1558            if (orientation == 2)
1559                error /= 2;
1560            b->qlog= (int)(QROOT * log2(352256.0/sqrt(error)) + 0.5);
1561            if (orientation != 1)
1562                error = 0;
1563        }
1564        p->band[level][1].qlog = p->band[level][2].qlog;
1565    }
1566}
1567
1568static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
1569                        const AVFrame *pict, int *got_packet)
1570{
1571    SnowContext *s = avctx->priv_data;
1572    RangeCoder * const c= &s->c;
1573    AVFrame *pic;
1574    const int width= s->avctx->width;
1575    const int height= s->avctx->height;
1576    int level, orientation, plane_index, i, y, ret;
1577    uint8_t rc_header_bak[sizeof(s->header_state)];
1578    uint8_t rc_block_bak[sizeof(s->block_state)];
1579
1580    if ((ret = ff_alloc_packet(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + AV_INPUT_BUFFER_MIN_SIZE)) < 0)
1581        return ret;
1582
1583    ff_init_range_encoder(c, pkt->data, pkt->size);
1584    ff_build_rac_states(c, (1LL<<32)/20, 256-8);
1585
1586    for(i=0; i < s->nb_planes; i++){
1587        int hshift= i ? s->chroma_h_shift : 0;
1588        int vshift= i ? s->chroma_v_shift : 0;
1589        for(y=0; y<AV_CEIL_RSHIFT(height, vshift); y++)
1590            memcpy(&s->input_picture->data[i][y * s->input_picture->linesize[i]],
1591                   &pict->data[i][y * pict->linesize[i]],
1592                   AV_CEIL_RSHIFT(width, hshift));
1593        s->mpvencdsp.draw_edges(s->input_picture->data[i], s->input_picture->linesize[i],
1594                                AV_CEIL_RSHIFT(width, hshift), AV_CEIL_RSHIFT(height, vshift),
1595                                EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift,
1596                                EDGE_TOP | EDGE_BOTTOM);
1597
1598    }
1599    emms_c();
1600    pic = s->input_picture;
1601    pic->pict_type = pict->pict_type;
1602    pic->quality = pict->quality;
1603
1604    s->m.picture_number= avctx->frame_number;
1605    if(avctx->flags&AV_CODEC_FLAG_PASS2){
1606        s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type;
1607        s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1608        if(!(avctx->flags&AV_CODEC_FLAG_QSCALE)) {
1609            pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1610            if (pic->quality < 0)
1611                return -1;
1612        }
1613    }else{
1614        s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1615        s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
1616    }
1617
1618    if(s->pass1_rc && avctx->frame_number == 0)
1619        pic->quality = 2*FF_QP2LAMBDA;
1620    if (pic->quality) {
1621        s->qlog   = qscale2qlog(pic->quality);
1622        s->lambda = pic->quality * 3/2;
1623    }
1624    if (s->qlog < 0 || (!pic->quality && (avctx->flags & AV_CODEC_FLAG_QSCALE))) {
1625        s->qlog= LOSSLESS_QLOG;
1626        s->lambda = 0;
1627    }//else keep previous frame's qlog until after motion estimation
1628
1629    if (s->current_picture->data[0]) {
1630        int w = s->avctx->width;
1631        int h = s->avctx->height;
1632
1633        s->mpvencdsp.draw_edges(s->current_picture->data[0],
1634                                s->current_picture->linesize[0], w   , h   ,
1635                                EDGE_WIDTH  , EDGE_WIDTH  , EDGE_TOP | EDGE_BOTTOM);
1636        if (s->current_picture->data[2]) {
1637            s->mpvencdsp.draw_edges(s->current_picture->data[1],
1638                                    s->current_picture->linesize[1], w>>s->chroma_h_shift, h>>s->chroma_v_shift,
1639                                    EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM);
1640            s->mpvencdsp.draw_edges(s->current_picture->data[2],
1641                                    s->current_picture->linesize[2], w>>s->chroma_h_shift, h>>s->chroma_v_shift,
1642                                    EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM);
1643        }
1644        emms_c();
1645    }
1646
1647    ff_snow_frame_start(s);
1648
1649    s->m.current_picture_ptr= &s->m.current_picture;
1650    s->m.current_picture.f = s->current_picture;
1651    s->m.current_picture.f->pts = pict->pts;
1652    if(pic->pict_type == AV_PICTURE_TYPE_P){
1653        int block_width = (width +15)>>4;
1654        int block_height= (height+15)>>4;
1655        int stride= s->current_picture->linesize[0];
1656
1657        av_assert0(s->current_picture->data[0]);
1658        av_assert0(s->last_picture[0]->data[0]);
1659
1660        s->m.avctx= s->avctx;
1661        s->m.   last_picture.f = s->last_picture[0];
1662        s->m.    new_picture   = s->input_picture;
1663        s->m.   last_picture_ptr= &s->m.   last_picture;
1664        s->m.linesize = stride;
1665        s->m.uvlinesize= s->current_picture->linesize[1];
1666        s->m.width = width;
1667        s->m.height= height;
1668        s->m.mb_width = block_width;
1669        s->m.mb_height= block_height;
1670        s->m.mb_stride=   s->m.mb_width+1;
1671        s->m.b8_stride= 2*s->m.mb_width+1;
1672        s->m.f_code=1;
1673        s->m.pict_type = pic->pict_type;
1674        s->m.motion_est= s->motion_est;
1675        s->m.me.scene_change_score=0;
1676        s->m.me.dia_size = avctx->dia_size;
1677        s->m.quarter_sample= (s->avctx->flags & AV_CODEC_FLAG_QPEL)!=0;
1678        s->m.out_format= FMT_H263;
1679        s->m.unrestricted_mv= 1;
1680
1681        s->m.lambda = s->lambda;
1682        s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1683        s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1684
1685        s->m.mecc= s->mecc; //move
1686        s->m.qdsp= s->qdsp; //move
1687        s->m.hdsp = s->hdsp;
1688        ff_init_me(&s->m);
1689        s->hdsp = s->m.hdsp;
1690        s->mecc= s->m.mecc;
1691    }
1692
1693    if(s->pass1_rc){
1694        memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1695        memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1696    }
1697
1698redo_frame:
1699
1700    s->spatial_decomposition_count= 5;
1701
1702    while(   !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
1703          || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
1704        s->spatial_decomposition_count--;
1705
1706    if (s->spatial_decomposition_count <= 0) {
1707        av_log(avctx, AV_LOG_ERROR, "Resolution too low\n");
1708        return AVERROR(EINVAL);
1709    }
1710
1711    s->m.pict_type = pic->pict_type;
1712    s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1713
1714    ff_snow_common_init_after_header(avctx);
1715
1716    if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1717        for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1718            calculate_visual_weight(s, &s->plane[plane_index]);
1719        }
1720    }
1721
1722    encode_header(s);
1723    s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1724    encode_blocks(s, 1);
1725    s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1726
1727    for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1728        Plane *p= &s->plane[plane_index];
1729        int w= p->width;
1730        int h= p->height;
1731        int x, y;
1732//        int bits= put_bits_count(&s->c.pb);
1733
1734        if (!s->memc_only) {
1735            //FIXME optimize
1736            if(pict->data[plane_index]) //FIXME gray hack
1737                for(y=0; y<h; y++){
1738                    for(x=0; x<w; x++){
1739                        s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1740                    }
1741                }
1742            predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1743
1744            if(   plane_index==0
1745               && pic->pict_type == AV_PICTURE_TYPE_P
1746               && !(avctx->flags&AV_CODEC_FLAG_PASS2)
1747               && s->m.me.scene_change_score > s->scenechange_threshold){
1748                ff_init_range_encoder(c, pkt->data, pkt->size);
1749                ff_build_rac_states(c, (1LL<<32)/20, 256-8);
1750                pic->pict_type= AV_PICTURE_TYPE_I;
1751                s->keyframe=1;
1752                s->current_picture->key_frame=1;
1753                goto redo_frame;
1754            }
1755
1756            if(s->qlog == LOSSLESS_QLOG){
1757                for(y=0; y<h; y++){
1758                    for(x=0; x<w; x++){
1759                        s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1760                    }
1761                }
1762            }else{
1763                for(y=0; y<h; y++){
1764                    for(x=0; x<w; x++){
1765                        s->spatial_dwt_buffer[y*w + x]= s->spatial_idwt_buffer[y*w + x] * (1 << ENCODER_EXTRA_BITS);
1766                    }
1767                }
1768            }
1769
1770            ff_spatial_dwt(s->spatial_dwt_buffer, s->temp_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1771
1772            if(s->pass1_rc && plane_index==0){
1773                int delta_qlog = ratecontrol_1pass(s, pic);
1774                if (delta_qlog <= INT_MIN)
1775                    return -1;
1776                if(delta_qlog){
1777                    //reordering qlog in the bitstream would eliminate this reset
1778                    ff_init_range_encoder(c, pkt->data, pkt->size);
1779                    memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1780                    memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1781                    encode_header(s);
1782                    encode_blocks(s, 0);
1783                }
1784            }
1785
1786            for(level=0; level<s->spatial_decomposition_count; level++){
1787                for(orientation=level ? 1 : 0; orientation<4; orientation++){
1788                    SubBand *b= &p->band[level][orientation];
1789
1790                    quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1791                    if(orientation==0)
1792                        decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1793                    if (!s->no_bitstream)
1794                    encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1795                    av_assert0(b->parent==NULL || b->parent->stride == b->stride*2);
1796                    if(orientation==0)
1797                        correlate(s, b, b->ibuf, b->stride, 1, 0);
1798                }
1799            }
1800
1801            for(level=0; level<s->spatial_decomposition_count; level++){
1802                for(orientation=level ? 1 : 0; orientation<4; orientation++){
1803                    SubBand *b= &p->band[level][orientation];
1804
1805                    dequantize(s, b, b->ibuf, b->stride);
1806                }
1807            }
1808
1809            ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1810            if(s->qlog == LOSSLESS_QLOG){
1811                for(y=0; y<h; y++){
1812                    for(x=0; x<w; x++){
1813                        s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1814                    }
1815                }
1816            }
1817            predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1818        }else{
1819            //ME/MC only
1820            if(pic->pict_type == AV_PICTURE_TYPE_I){
1821                for(y=0; y<h; y++){
1822                    for(x=0; x<w; x++){
1823                        s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]=
1824                            pict->data[plane_index][y*pict->linesize[plane_index] + x];
1825                    }
1826                }
1827            }else{
1828                memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1829                predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1830            }
1831        }
1832        if(s->avctx->flags&AV_CODEC_FLAG_PSNR){
1833            int64_t error= 0;
1834
1835            if(pict->data[plane_index]) //FIXME gray hack
1836                for(y=0; y<h; y++){
1837                    for(x=0; x<w; x++){
1838                        int d= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1839                        error += d*d;
1840                    }
1841                }
1842            s->avctx->error[plane_index] += error;
1843            s->encoding_error[plane_index] = error;
1844        }
1845
1846    }
1847    emms_c();
1848
1849    update_last_header_values(s);
1850
1851    ff_snow_release_buffer(avctx);
1852
1853    s->current_picture->coded_picture_number = avctx->frame_number;
1854    s->current_picture->pict_type = pic->pict_type;
1855    s->current_picture->quality = pic->quality;
1856    s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1857    s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1858    s->m.current_picture.f->display_picture_number =
1859    s->m.current_picture.f->coded_picture_number   = avctx->frame_number;
1860    s->m.current_picture.f->quality                = pic->quality;
1861    s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1862    if(s->pass1_rc)
1863        if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1864            return -1;
1865    if(avctx->flags&AV_CODEC_FLAG_PASS1)
1866        ff_write_pass1_stats(&s->m);
1867    s->m.last_pict_type = s->m.pict_type;
1868
1869    emms_c();
1870
1871    ff_side_data_set_encoder_stats(pkt, s->current_picture->quality,
1872                                   s->encoding_error,
1873                                   (s->avctx->flags&AV_CODEC_FLAG_PSNR) ? SNOW_MAX_PLANES : 0,
1874                                   s->current_picture->pict_type);
1875
1876    pkt->size = ff_rac_terminate(c, 0);
1877    if (s->current_picture->key_frame)
1878        pkt->flags |= AV_PKT_FLAG_KEY;
1879    *got_packet = 1;
1880
1881    return 0;
1882}
1883
1884static av_cold int encode_end(AVCodecContext *avctx)
1885{
1886    SnowContext *s = avctx->priv_data;
1887
1888    ff_snow_common_end(s);
1889    ff_rate_control_uninit(&s->m);
1890    av_frame_free(&s->input_picture);
1891    av_freep(&avctx->stats_out);
1892
1893    return 0;
1894}
1895
1896#define OFFSET(x) offsetof(SnowContext, x)
1897#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1898static const AVOption options[] = {
1899    {"motion_est", "motion estimation algorithm", OFFSET(motion_est), AV_OPT_TYPE_INT, {.i64 = FF_ME_EPZS }, FF_ME_ZERO, FF_ME_ITER, VE, "motion_est" },
1900    { "zero", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ZERO }, 0, 0, VE, "motion_est" },
1901    { "epzs", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_EPZS }, 0, 0, VE, "motion_est" },
1902    { "xone", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_XONE }, 0, 0, VE, "motion_est" },
1903    { "iter", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ITER }, 0, 0, VE, "motion_est" },
1904    { "memc_only",      "Only do ME/MC (I frames -> ref, P frame -> ME+MC).",   OFFSET(memc_only), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
1905    { "no_bitstream",   "Skip final bitstream writeout.",                    OFFSET(no_bitstream), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
1906    { "intra_penalty",  "Penalty for intra blocks in block decission",      OFFSET(intra_penalty), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE },
1907    { "iterative_dia_size",  "Dia size for the iterative ME",          OFFSET(iterative_dia_size), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE },
1908    { "sc_threshold",   "Scene change threshold",                   OFFSET(scenechange_threshold), AV_OPT_TYPE_INT, { .i64 = 0 }, INT_MIN, INT_MAX, VE },
1909    { "pred",           "Spatial decomposition type",                                OFFSET(pred), AV_OPT_TYPE_INT, { .i64 = 0 }, DWT_97, DWT_53, VE, "pred" },
1910        { "dwt97", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, INT_MIN, INT_MAX, VE, "pred" },
1911        { "dwt53", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, INT_MIN, INT_MAX, VE, "pred" },
1912    { "rc_eq", "Set rate control equation. When computing the expression, besides the standard functions "
1913     "defined in the section 'Expression Evaluation', the following functions are available: "
1914     "bits2qp(bits), qp2bits(qp). Also the following constants are available: iTex pTex tex mv "
1915     "fCode iCount mcVar var isI isP isB avgQP qComp avgIITex avgPITex avgPPTex avgBPTex avgTex.",
1916                                                                                  OFFSET(m.rc_eq), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, VE },
1917    { NULL },
1918};
1919
1920static const AVClass snowenc_class = {
1921    .class_name = "snow encoder",
1922    .item_name  = av_default_item_name,
1923    .option     = options,
1924    .version    = LIBAVUTIL_VERSION_INT,
1925};
1926
1927const FFCodec ff_snow_encoder = {
1928    .p.name         = "snow",
1929    .p.long_name    = NULL_IF_CONFIG_SMALL("Snow"),
1930    .p.type         = AVMEDIA_TYPE_VIDEO,
1931    .p.id           = AV_CODEC_ID_SNOW,
1932    .priv_data_size = sizeof(SnowContext),
1933    .init           = encode_init,
1934    FF_CODEC_ENCODE_CB(encode_frame),
1935    .close          = encode_end,
1936    .p.pix_fmts     = (const enum AVPixelFormat[]){
1937        AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV444P,
1938        AV_PIX_FMT_GRAY8,
1939        AV_PIX_FMT_NONE
1940    },
1941    .p.priv_class   = &snowenc_class,
1942    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE |
1943                      FF_CODEC_CAP_INIT_CLEANUP,
1944};
1945