1 /*
2 * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include "libavutil/intmath.h"
22 #include "libavutil/libm.h"
23 #include "libavutil/log.h"
24 #include "libavutil/opt.h"
25 #include "libavutil/pixdesc.h"
26 #include "avcodec.h"
27 #include "codec_internal.h"
28 #include "encode.h"
29 #include "packet_internal.h"
30 #include "snow_dwt.h"
31 #include "snow.h"
32
33 #include "rangecoder.h"
34 #include "mathops.h"
35
36 #include "mpegvideo.h"
37 #include "h263enc.h"
38
encode_init(AVCodecContext *avctx)39 static av_cold int encode_init(AVCodecContext *avctx)
40 {
41 SnowContext *s = avctx->priv_data;
42 int plane_index, ret;
43 int i;
44
45 if(s->pred == DWT_97
46 && (avctx->flags & AV_CODEC_FLAG_QSCALE)
47 && avctx->global_quality == 0){
48 av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
49 return AVERROR(EINVAL);
50 }
51
52 s->spatial_decomposition_type= s->pred; //FIXME add decorrelator type r transform_type
53
54 s->mv_scale = (avctx->flags & AV_CODEC_FLAG_QPEL) ? 2 : 4;
55 s->block_max_depth= (avctx->flags & AV_CODEC_FLAG_4MV ) ? 1 : 0;
56
57 for(plane_index=0; plane_index<3; plane_index++){
58 s->plane[plane_index].diag_mc= 1;
59 s->plane[plane_index].htaps= 6;
60 s->plane[plane_index].hcoeff[0]= 40;
61 s->plane[plane_index].hcoeff[1]= -10;
62 s->plane[plane_index].hcoeff[2]= 2;
63 s->plane[plane_index].fast_mc= 1;
64 }
65
66 if ((ret = ff_snow_common_init(avctx)) < 0) {
67 return ret;
68 }
69 ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
70
71 ff_snow_alloc_blocks(s);
72
73 s->version=0;
74
75 s->m.avctx = avctx;
76 s->m.bit_rate= avctx->bit_rate;
77 s->m.lmin = avctx->mb_lmin;
78 s->m.lmax = avctx->mb_lmax;
79 s->m.mb_num = (avctx->width * avctx->height + 255) / 256; // For ratecontrol
80
81 s->m.me.temp =
82 s->m.me.scratchpad = av_calloc(avctx->width + 64, 2*16*2*sizeof(uint8_t));
83 s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
84 s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
85 s->m.sc.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
86 if (!s->m.me.scratchpad || !s->m.me.map || !s->m.me.score_map || !s->m.sc.obmc_scratchpad)
87 return AVERROR(ENOMEM);
88
89 ff_h263_encode_init(&s->m); //mv_penalty
90
91 s->max_ref_frames = av_clip(avctx->refs, 1, MAX_REF_FRAMES);
92
93 if(avctx->flags&AV_CODEC_FLAG_PASS1){
94 if(!avctx->stats_out)
95 avctx->stats_out = av_mallocz(256);
96
97 if (!avctx->stats_out)
98 return AVERROR(ENOMEM);
99 }
100 if((avctx->flags&AV_CODEC_FLAG_PASS2) || !(avctx->flags&AV_CODEC_FLAG_QSCALE)){
101 ret = ff_rate_control_init(&s->m);
102 if(ret < 0)
103 return ret;
104 }
105 s->pass1_rc= !(avctx->flags & (AV_CODEC_FLAG_QSCALE|AV_CODEC_FLAG_PASS2));
106
107 switch(avctx->pix_fmt){
108 case AV_PIX_FMT_YUV444P:
109 // case AV_PIX_FMT_YUV422P:
110 case AV_PIX_FMT_YUV420P:
111 // case AV_PIX_FMT_YUV411P:
112 case AV_PIX_FMT_YUV410P:
113 s->nb_planes = 3;
114 s->colorspace_type= 0;
115 break;
116 case AV_PIX_FMT_GRAY8:
117 s->nb_planes = 1;
118 s->colorspace_type = 1;
119 break;
120 /* case AV_PIX_FMT_RGB32:
121 s->colorspace= 1;
122 break;*/
123 }
124
125 ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift,
126 &s->chroma_v_shift);
127 if (ret)
128 return ret;
129
130 ret = ff_set_cmp(&s->mecc, s->mecc.me_cmp, s->avctx->me_cmp);
131 ret |= ff_set_cmp(&s->mecc, s->mecc.me_sub_cmp, s->avctx->me_sub_cmp);
132 if (ret < 0)
133 return AVERROR(EINVAL);
134
135 s->input_picture = av_frame_alloc();
136 if (!s->input_picture)
137 return AVERROR(ENOMEM);
138
139 if ((ret = ff_snow_get_buffer(s, s->input_picture)) < 0)
140 return ret;
141
142 if(s->motion_est == FF_ME_ITER){
143 int size= s->b_width * s->b_height << 2*s->block_max_depth;
144 for(i=0; i<s->max_ref_frames; i++){
145 s->ref_mvs[i] = av_calloc(size, sizeof(*s->ref_mvs[i]));
146 s->ref_scores[i] = av_calloc(size, sizeof(*s->ref_scores[i]));
147 if (!s->ref_mvs[i] || !s->ref_scores[i])
148 return AVERROR(ENOMEM);
149 }
150 }
151
152 return 0;
153 }
154
155 //near copy & paste from dsputil, FIXME
pix_sum(uint8_t * pix, int line_size, int w, int h)156 static int pix_sum(uint8_t * pix, int line_size, int w, int h)
157 {
158 int s, i, j;
159
160 s = 0;
161 for (i = 0; i < h; i++) {
162 for (j = 0; j < w; j++) {
163 s += pix[0];
164 pix ++;
165 }
166 pix += line_size - w;
167 }
168 return s;
169 }
170
171 //near copy & paste from dsputil, FIXME
pix_norm1(uint8_t * pix, int line_size, int w)172 static int pix_norm1(uint8_t * pix, int line_size, int w)
173 {
174 int s, i, j;
175 const uint32_t *sq = ff_square_tab + 256;
176
177 s = 0;
178 for (i = 0; i < w; i++) {
179 for (j = 0; j < w; j ++) {
180 s += sq[pix[0]];
181 pix ++;
182 }
183 pix += line_size - w;
184 }
185 return s;
186 }
187
get_penalty_factor(int lambda, int lambda2, int type)188 static inline int get_penalty_factor(int lambda, int lambda2, int type){
189 switch(type&0xFF){
190 default:
191 case FF_CMP_SAD:
192 return lambda>>FF_LAMBDA_SHIFT;
193 case FF_CMP_DCT:
194 return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
195 case FF_CMP_W53:
196 return (4*lambda)>>(FF_LAMBDA_SHIFT);
197 case FF_CMP_W97:
198 return (2*lambda)>>(FF_LAMBDA_SHIFT);
199 case FF_CMP_SATD:
200 case FF_CMP_DCT264:
201 return (2*lambda)>>FF_LAMBDA_SHIFT;
202 case FF_CMP_RD:
203 case FF_CMP_PSNR:
204 case FF_CMP_SSE:
205 case FF_CMP_NSSE:
206 return lambda2>>FF_LAMBDA_SHIFT;
207 case FF_CMP_BIT:
208 return 1;
209 }
210 }
211
212 //FIXME copy&paste
213 #define P_LEFT P[1]
214 #define P_TOP P[2]
215 #define P_TOPRIGHT P[3]
216 #define P_MEDIAN P[4]
217 #define P_MV1 P[9]
218 #define FLAG_QPEL 1 //must be 1
219
encode_q_branch(SnowContext *s, int level, int x, int y)220 static int encode_q_branch(SnowContext *s, int level, int x, int y){
221 uint8_t p_buffer[1024];
222 uint8_t i_buffer[1024];
223 uint8_t p_state[sizeof(s->block_state)];
224 uint8_t i_state[sizeof(s->block_state)];
225 RangeCoder pc, ic;
226 uint8_t *pbbak= s->c.bytestream;
227 uint8_t *pbbak_start= s->c.bytestream_start;
228 int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
229 const int w= s->b_width << s->block_max_depth;
230 const int h= s->b_height << s->block_max_depth;
231 const int rem_depth= s->block_max_depth - level;
232 const int index= (x + y*w) << rem_depth;
233 const int block_w= 1<<(LOG2_MB_SIZE - level);
234 int trx= (x+1)<<rem_depth;
235 int try= (y+1)<<rem_depth;
236 const BlockNode *left = x ? &s->block[index-1] : &null_block;
237 const BlockNode *top = y ? &s->block[index-w] : &null_block;
238 const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
239 const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
240 const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
241 const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
242 int pl = left->color[0];
243 int pcb= left->color[1];
244 int pcr= left->color[2];
245 int pmx, pmy;
246 int mx=0, my=0;
247 int l,cr,cb;
248 const int stride= s->current_picture->linesize[0];
249 const int uvstride= s->current_picture->linesize[1];
250 uint8_t *current_data[3]= { s->input_picture->data[0] + (x + y* stride)*block_w,
251 s->input_picture->data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
252 s->input_picture->data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
253 int P[10][2];
254 int16_t last_mv[3][2];
255 int qpel= !!(s->avctx->flags & AV_CODEC_FLAG_QPEL); //unused
256 const int shift= 1+qpel;
257 MotionEstContext *c= &s->m.me;
258 int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
259 int mx_context= av_log2(2*FFABS(left->mx - top->mx));
260 int my_context= av_log2(2*FFABS(left->my - top->my));
261 int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
262 int ref, best_ref, ref_score, ref_mx, ref_my;
263 int range = MAX_MV >> (1 + qpel);
264
265 av_assert0(sizeof(s->block_state) >= 256);
266 if(s->keyframe){
267 set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
268 return 0;
269 }
270
271 // clip predictors / edge ?
272
273 P_LEFT[0]= left->mx;
274 P_LEFT[1]= left->my;
275 P_TOP [0]= top->mx;
276 P_TOP [1]= top->my;
277 P_TOPRIGHT[0]= tr->mx;
278 P_TOPRIGHT[1]= tr->my;
279
280 last_mv[0][0]= s->block[index].mx;
281 last_mv[0][1]= s->block[index].my;
282 last_mv[1][0]= right->mx;
283 last_mv[1][1]= right->my;
284 last_mv[2][0]= bottom->mx;
285 last_mv[2][1]= bottom->my;
286
287 s->m.mb_stride=2;
288 s->m.mb_x=
289 s->m.mb_y= 0;
290 c->skip= 0;
291
292 av_assert1(c-> stride == stride);
293 av_assert1(c->uvstride == uvstride);
294
295 c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
296 c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
297 c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
298 c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_DMV;
299
300 c->xmin = - x*block_w - 16+3;
301 c->ymin = - y*block_w - 16+3;
302 c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
303 c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
304
305 c->xmin = FFMAX(c->xmin, -range);
306 c->xmax = FFMIN(c->xmax, range);
307 c->ymin = FFMAX(c->ymin, -range);
308 c->ymax = FFMIN(c->ymax, range);
309
310 if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
311 if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
312 if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
313 if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
314 if(P_TOPRIGHT[0] < (c->xmin * (1<<shift))) P_TOPRIGHT[0]= (c->xmin * (1<<shift));
315 if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
316 if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
317
318 P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
319 P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
320
321 if (!y) {
322 c->pred_x= P_LEFT[0];
323 c->pred_y= P_LEFT[1];
324 } else {
325 c->pred_x = P_MEDIAN[0];
326 c->pred_y = P_MEDIAN[1];
327 }
328
329 score= INT_MAX;
330 best_ref= 0;
331 for(ref=0; ref<s->ref_frames; ref++){
332 init_ref(c, current_data, s->last_picture[ref]->data, NULL, block_w*x, block_w*y, 0);
333
334 ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
335 (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
336
337 av_assert2(ref_mx >= c->xmin);
338 av_assert2(ref_mx <= c->xmax);
339 av_assert2(ref_my >= c->ymin);
340 av_assert2(ref_my <= c->ymax);
341
342 ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
343 ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
344 ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
345 if(s->ref_mvs[ref]){
346 s->ref_mvs[ref][index][0]= ref_mx;
347 s->ref_mvs[ref][index][1]= ref_my;
348 s->ref_scores[ref][index]= ref_score;
349 }
350 if(score > ref_score){
351 score= ref_score;
352 best_ref= ref;
353 mx= ref_mx;
354 my= ref_my;
355 }
356 }
357 //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
358
359 // subpel search
360 base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
361 pc= s->c;
362 pc.bytestream_start=
363 pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
364 memcpy(p_state, s->block_state, sizeof(s->block_state));
365
366 if(level!=s->block_max_depth)
367 put_rac(&pc, &p_state[4 + s_context], 1);
368 put_rac(&pc, &p_state[1 + left->type + top->type], 0);
369 if(s->ref_frames > 1)
370 put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
371 pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
372 put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
373 put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
374 p_len= pc.bytestream - pc.bytestream_start;
375 score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
376
377 block_s= block_w*block_w;
378 sum = pix_sum(current_data[0], stride, block_w, block_w);
379 l= (sum + block_s/2)/block_s;
380 iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
381
382 if (s->nb_planes > 2) {
383 block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
384 sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
385 cb= (sum + block_s/2)/block_s;
386 // iscore += pix_norm1(¤t_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
387 sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
388 cr= (sum + block_s/2)/block_s;
389 // iscore += pix_norm1(¤t_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
390 }else
391 cb = cr = 0;
392
393 ic= s->c;
394 ic.bytestream_start=
395 ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
396 memcpy(i_state, s->block_state, sizeof(s->block_state));
397 if(level!=s->block_max_depth)
398 put_rac(&ic, &i_state[4 + s_context], 1);
399 put_rac(&ic, &i_state[1 + left->type + top->type], 1);
400 put_symbol(&ic, &i_state[32], l-pl , 1);
401 if (s->nb_planes > 2) {
402 put_symbol(&ic, &i_state[64], cb-pcb, 1);
403 put_symbol(&ic, &i_state[96], cr-pcr, 1);
404 }
405 i_len= ic.bytestream - ic.bytestream_start;
406 iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
407
408 av_assert1(iscore < 255*255*256 + s->lambda2*10);
409 av_assert1(iscore >= 0);
410 av_assert1(l>=0 && l<=255);
411 av_assert1(pl>=0 && pl<=255);
412
413 if(level==0){
414 int varc= iscore >> 8;
415 int vard= score >> 8;
416 if (vard <= 64 || vard < varc)
417 c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
418 else
419 c->scene_change_score+= s->m.qscale;
420 }
421
422 if(level!=s->block_max_depth){
423 put_rac(&s->c, &s->block_state[4 + s_context], 0);
424 score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
425 score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
426 score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
427 score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
428 score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
429
430 if(score2 < score && score2 < iscore)
431 return score2;
432 }
433
434 if(iscore < score){
435 pred_mv(s, &pmx, &pmy, 0, left, top, tr);
436 memcpy(pbbak, i_buffer, i_len);
437 s->c= ic;
438 s->c.bytestream_start= pbbak_start;
439 s->c.bytestream= pbbak + i_len;
440 set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
441 memcpy(s->block_state, i_state, sizeof(s->block_state));
442 return iscore;
443 }else{
444 memcpy(pbbak, p_buffer, p_len);
445 s->c= pc;
446 s->c.bytestream_start= pbbak_start;
447 s->c.bytestream= pbbak + p_len;
448 set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
449 memcpy(s->block_state, p_state, sizeof(s->block_state));
450 return score;
451 }
452 }
453
encode_q_branch2(SnowContext *s, int level, int x, int y)454 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
455 const int w= s->b_width << s->block_max_depth;
456 const int rem_depth= s->block_max_depth - level;
457 const int index= (x + y*w) << rem_depth;
458 int trx= (x+1)<<rem_depth;
459 BlockNode *b= &s->block[index];
460 const BlockNode *left = x ? &s->block[index-1] : &null_block;
461 const BlockNode *top = y ? &s->block[index-w] : &null_block;
462 const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
463 const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
464 int pl = left->color[0];
465 int pcb= left->color[1];
466 int pcr= left->color[2];
467 int pmx, pmy;
468 int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
469 int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
470 int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
471 int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
472
473 if(s->keyframe){
474 set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
475 return;
476 }
477
478 if(level!=s->block_max_depth){
479 if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
480 put_rac(&s->c, &s->block_state[4 + s_context], 1);
481 }else{
482 put_rac(&s->c, &s->block_state[4 + s_context], 0);
483 encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
484 encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
485 encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
486 encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
487 return;
488 }
489 }
490 if(b->type & BLOCK_INTRA){
491 pred_mv(s, &pmx, &pmy, 0, left, top, tr);
492 put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
493 put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
494 if (s->nb_planes > 2) {
495 put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
496 put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
497 }
498 set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
499 }else{
500 pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
501 put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
502 if(s->ref_frames > 1)
503 put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
504 put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
505 put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
506 set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
507 }
508 }
509
get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index)510 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
511 int i, x2, y2;
512 Plane *p= &s->plane[plane_index];
513 const int block_size = MB_SIZE >> s->block_max_depth;
514 const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
515 const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
516 const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
517 const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
518 const int ref_stride= s->current_picture->linesize[plane_index];
519 uint8_t *src= s-> input_picture->data[plane_index];
520 IDWTELEM *dst= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
521 const int b_stride = s->b_width << s->block_max_depth;
522 const int w= p->width;
523 const int h= p->height;
524 int index= mb_x + mb_y*b_stride;
525 BlockNode *b= &s->block[index];
526 BlockNode backup= *b;
527 int ab=0;
528 int aa=0;
529
530 av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
531
532 b->type|= BLOCK_INTRA;
533 b->color[plane_index]= 0;
534 memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
535
536 for(i=0; i<4; i++){
537 int mb_x2= mb_x + (i &1) - 1;
538 int mb_y2= mb_y + (i>>1) - 1;
539 int x= block_w*mb_x2 + block_w/2;
540 int y= block_h*mb_y2 + block_h/2;
541
542 add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
543 x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
544
545 for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
546 for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
547 int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
548 int obmc_v= obmc[index];
549 int d;
550 if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
551 if(x<0) obmc_v += obmc[index + block_w];
552 if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
553 if(x+block_w>w) obmc_v += obmc[index - block_w];
554 //FIXME precalculate this or simplify it somehow else
555
556 d = -dst[index] + (1<<(FRAC_BITS-1));
557 dst[index] = d;
558 ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
559 aa += obmc_v * obmc_v; //FIXME precalculate this
560 }
561 }
562 }
563 *b= backup;
564
565 return av_clip_uint8( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa) ); //FIXME we should not need clipping
566 }
567
get_block_bits(SnowContext *s, int x, int y, int w)568 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
569 const int b_stride = s->b_width << s->block_max_depth;
570 const int b_height = s->b_height<< s->block_max_depth;
571 int index= x + y*b_stride;
572 const BlockNode *b = &s->block[index];
573 const BlockNode *left = x ? &s->block[index-1] : &null_block;
574 const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
575 const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
576 const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
577 int dmx, dmy;
578 // int mx_context= av_log2(2*FFABS(left->mx - top->mx));
579 // int my_context= av_log2(2*FFABS(left->my - top->my));
580
581 if(x<0 || x>=b_stride || y>=b_height)
582 return 0;
583 /*
584 1 0 0
585 01X 1-2 1
586 001XX 3-6 2-3
587 0001XXX 7-14 4-7
588 00001XXXX 15-30 8-15
589 */
590 //FIXME try accurate rate
591 //FIXME intra and inter predictors if surrounding blocks are not the same type
592 if(b->type & BLOCK_INTRA){
593 return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
594 + av_log2(2*FFABS(left->color[1] - b->color[1]))
595 + av_log2(2*FFABS(left->color[2] - b->color[2])));
596 }else{
597 pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
598 dmx-= b->mx;
599 dmy-= b->my;
600 return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
601 + av_log2(2*FFABS(dmy))
602 + av_log2(2*b->ref));
603 }
604 }
605
get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2])606 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
607 Plane *p= &s->plane[plane_index];
608 const int block_size = MB_SIZE >> s->block_max_depth;
609 const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
610 const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
611 const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
612 const int ref_stride= s->current_picture->linesize[plane_index];
613 uint8_t *dst= s->current_picture->data[plane_index];
614 uint8_t *src= s-> input_picture->data[plane_index];
615 IDWTELEM *pred= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4;
616 uint8_t *cur = s->scratchbuf;
617 uint8_t *tmp = s->emu_edge_buffer;
618 const int b_stride = s->b_width << s->block_max_depth;
619 const int b_height = s->b_height<< s->block_max_depth;
620 const int w= p->width;
621 const int h= p->height;
622 int distortion;
623 int rate= 0;
624 const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
625 int sx= block_w*mb_x - block_w/2;
626 int sy= block_h*mb_y - block_h/2;
627 int x0= FFMAX(0,-sx);
628 int y0= FFMAX(0,-sy);
629 int x1= FFMIN(block_w*2, w-sx);
630 int y1= FFMIN(block_h*2, h-sy);
631 int i,x,y;
632
633 av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
634
635 ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
636
637 for(y=y0; y<y1; y++){
638 const uint8_t *obmc1= obmc_edged[y];
639 const IDWTELEM *pred1 = pred + y*obmc_stride;
640 uint8_t *cur1 = cur + y*ref_stride;
641 uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
642 for(x=x0; x<x1; x++){
643 #if FRAC_BITS >= LOG2_OBMC_MAX
644 int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
645 #else
646 int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
647 #endif
648 v = (v + pred1[x]) >> FRAC_BITS;
649 if(v&(~255)) v= ~(v>>31);
650 dst1[x] = v;
651 }
652 }
653
654 /* copy the regions where obmc[] = (uint8_t)256 */
655 if(LOG2_OBMC_MAX == 8
656 && (mb_x == 0 || mb_x == b_stride-1)
657 && (mb_y == 0 || mb_y == b_height-1)){
658 if(mb_x == 0)
659 x1 = block_w;
660 else
661 x0 = block_w;
662 if(mb_y == 0)
663 y1 = block_h;
664 else
665 y0 = block_h;
666 for(y=y0; y<y1; y++)
667 memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
668 }
669
670 if(block_w==16){
671 /* FIXME rearrange dsputil to fit 32x32 cmp functions */
672 /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
673 /* FIXME cmps overlap but do not cover the wavelet's whole support.
674 * So improving the score of one block is not strictly guaranteed
675 * to improve the score of the whole frame, thus iterative motion
676 * estimation does not always converge. */
677 if(s->avctx->me_cmp == FF_CMP_W97)
678 distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
679 else if(s->avctx->me_cmp == FF_CMP_W53)
680 distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
681 else{
682 distortion = 0;
683 for(i=0; i<4; i++){
684 int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
685 distortion += s->mecc.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
686 }
687 }
688 }else{
689 av_assert2(block_w==8);
690 distortion = s->mecc.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
691 }
692
693 if(plane_index==0){
694 for(i=0; i<4; i++){
695 /* ..RRr
696 * .RXx.
697 * rxx..
698 */
699 rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
700 }
701 if(mb_x == b_stride-2)
702 rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
703 }
704 return distortion + rate*penalty_factor;
705 }
706
get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index)707 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
708 int i, y2;
709 Plane *p= &s->plane[plane_index];
710 const int block_size = MB_SIZE >> s->block_max_depth;
711 const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
712 const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
713 const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
714 const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
715 const int ref_stride= s->current_picture->linesize[plane_index];
716 uint8_t *dst= s->current_picture->data[plane_index];
717 uint8_t *src= s-> input_picture->data[plane_index];
718 //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
719 // const has only been removed from zero_dst to suppress a warning
720 static IDWTELEM zero_dst[4096]; //FIXME
721 const int b_stride = s->b_width << s->block_max_depth;
722 const int w= p->width;
723 const int h= p->height;
724 int distortion= 0;
725 int rate= 0;
726 const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
727
728 av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
729
730 for(i=0; i<9; i++){
731 int mb_x2= mb_x + (i%3) - 1;
732 int mb_y2= mb_y + (i/3) - 1;
733 int x= block_w*mb_x2 + block_w/2;
734 int y= block_h*mb_y2 + block_h/2;
735
736 add_yblock(s, 0, NULL, zero_dst, dst, obmc,
737 x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
738
739 //FIXME find a cleaner/simpler way to skip the outside stuff
740 for(y2= y; y2<0; y2++)
741 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
742 for(y2= h; y2<y+block_h; y2++)
743 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
744 if(x<0){
745 for(y2= y; y2<y+block_h; y2++)
746 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
747 }
748 if(x+block_w > w){
749 for(y2= y; y2<y+block_h; y2++)
750 memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
751 }
752
753 av_assert1(block_w== 8 || block_w==16);
754 distortion += s->mecc.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
755 }
756
757 if(plane_index==0){
758 BlockNode *b= &s->block[mb_x+mb_y*b_stride];
759 int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
760
761 /* ..RRRr
762 * .RXXx.
763 * .RXXx.
764 * rxxx.
765 */
766 if(merged)
767 rate = get_block_bits(s, mb_x, mb_y, 2);
768 for(i=merged?4:0; i<9; i++){
769 static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
770 rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
771 }
772 }
773 return distortion + rate*penalty_factor;
774 }
775
encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation)776 static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
777 const int w= b->width;
778 const int h= b->height;
779 int x, y;
780
781 if(1){
782 int run=0;
783 int *runs = s->run_buffer;
784 int run_index=0;
785 int max_index;
786
787 for(y=0; y<h; y++){
788 for(x=0; x<w; x++){
789 int v, p=0;
790 int /*ll=0, */l=0, lt=0, t=0, rt=0;
791 v= src[x + y*stride];
792
793 if(y){
794 t= src[x + (y-1)*stride];
795 if(x){
796 lt= src[x - 1 + (y-1)*stride];
797 }
798 if(x + 1 < w){
799 rt= src[x + 1 + (y-1)*stride];
800 }
801 }
802 if(x){
803 l= src[x - 1 + y*stride];
804 /*if(x > 1){
805 if(orientation==1) ll= src[y + (x-2)*stride];
806 else ll= src[x - 2 + y*stride];
807 }*/
808 }
809 if(parent){
810 int px= x>>1;
811 int py= y>>1;
812 if(px<b->parent->width && py<b->parent->height)
813 p= parent[px + py*2*stride];
814 }
815 if(!(/*ll|*/l|lt|t|rt|p)){
816 if(v){
817 runs[run_index++]= run;
818 run=0;
819 }else{
820 run++;
821 }
822 }
823 }
824 }
825 max_index= run_index;
826 runs[run_index++]= run;
827 run_index=0;
828 run= runs[run_index++];
829
830 put_symbol2(&s->c, b->state[30], max_index, 0);
831 if(run_index <= max_index)
832 put_symbol2(&s->c, b->state[1], run, 3);
833
834 for(y=0; y<h; y++){
835 if(s->c.bytestream_end - s->c.bytestream < w*40){
836 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
837 return AVERROR(ENOMEM);
838 }
839 for(x=0; x<w; x++){
840 int v, p=0;
841 int /*ll=0, */l=0, lt=0, t=0, rt=0;
842 v= src[x + y*stride];
843
844 if(y){
845 t= src[x + (y-1)*stride];
846 if(x){
847 lt= src[x - 1 + (y-1)*stride];
848 }
849 if(x + 1 < w){
850 rt= src[x + 1 + (y-1)*stride];
851 }
852 }
853 if(x){
854 l= src[x - 1 + y*stride];
855 /*if(x > 1){
856 if(orientation==1) ll= src[y + (x-2)*stride];
857 else ll= src[x - 2 + y*stride];
858 }*/
859 }
860 if(parent){
861 int px= x>>1;
862 int py= y>>1;
863 if(px<b->parent->width && py<b->parent->height)
864 p= parent[px + py*2*stride];
865 }
866 if(/*ll|*/l|lt|t|rt|p){
867 int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
868
869 put_rac(&s->c, &b->state[0][context], !!v);
870 }else{
871 if(!run){
872 run= runs[run_index++];
873
874 if(run_index <= max_index)
875 put_symbol2(&s->c, b->state[1], run, 3);
876 av_assert2(v);
877 }else{
878 run--;
879 av_assert2(!v);
880 }
881 }
882 if(v){
883 int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
884 int l2= 2*FFABS(l) + (l<0);
885 int t2= 2*FFABS(t) + (t<0);
886
887 put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
888 put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
889 }
890 }
891 }
892 }
893 return 0;
894 }
895
encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation)896 static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
897 // encode_subband_qtree(s, b, src, parent, stride, orientation);
898 // encode_subband_z0run(s, b, src, parent, stride, orientation);
899 return encode_subband_c0run(s, b, src, parent, stride, orientation);
900 // encode_subband_dzr(s, b, src, parent, stride, orientation);
901 }
902
check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd)903 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
904 const int b_stride= s->b_width << s->block_max_depth;
905 BlockNode *block= &s->block[mb_x + mb_y * b_stride];
906 BlockNode backup= *block;
907 unsigned value;
908 int rd, index;
909
910 av_assert2(mb_x>=0 && mb_y>=0);
911 av_assert2(mb_x<b_stride);
912
913 if(intra){
914 block->color[0] = p[0];
915 block->color[1] = p[1];
916 block->color[2] = p[2];
917 block->type |= BLOCK_INTRA;
918 }else{
919 index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
920 value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
921 if(s->me_cache[index] == value)
922 return 0;
923 s->me_cache[index]= value;
924
925 block->mx= p[0];
926 block->my= p[1];
927 block->type &= ~BLOCK_INTRA;
928 }
929
930 rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged) + s->intra_penalty * !!intra;
931
932 //FIXME chroma
933 if(rd < *best_rd){
934 *best_rd= rd;
935 return 1;
936 }else{
937 *block= backup;
938 return 0;
939 }
940 }
941
942 /* special case for int[2] args we discard afterwards,
943 * fixes compilation problem with gcc 2.95 */
check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd)944 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
945 int p[2] = {p0, p1};
946 return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
947 }
948
check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd)949 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
950 const int b_stride= s->b_width << s->block_max_depth;
951 BlockNode *block= &s->block[mb_x + mb_y * b_stride];
952 BlockNode backup[4];
953 unsigned value;
954 int rd, index;
955
956 /* We don't initialize backup[] during variable declaration, because
957 * that fails to compile on MSVC: "cannot convert from 'BlockNode' to
958 * 'int16_t'". */
959 backup[0] = block[0];
960 backup[1] = block[1];
961 backup[2] = block[b_stride];
962 backup[3] = block[b_stride + 1];
963
964 av_assert2(mb_x>=0 && mb_y>=0);
965 av_assert2(mb_x<b_stride);
966 av_assert2(((mb_x|mb_y)&1) == 0);
967
968 index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
969 value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
970 if(s->me_cache[index] == value)
971 return 0;
972 s->me_cache[index]= value;
973
974 block->mx= p0;
975 block->my= p1;
976 block->ref= ref;
977 block->type &= ~BLOCK_INTRA;
978 block[1]= block[b_stride]= block[b_stride+1]= *block;
979
980 rd= get_4block_rd(s, mb_x, mb_y, 0);
981
982 //FIXME chroma
983 if(rd < *best_rd){
984 *best_rd= rd;
985 return 1;
986 }else{
987 block[0]= backup[0];
988 block[1]= backup[1];
989 block[b_stride]= backup[2];
990 block[b_stride+1]= backup[3];
991 return 0;
992 }
993 }
994
iterative_me(SnowContext *s)995 static void iterative_me(SnowContext *s){
996 int pass, mb_x, mb_y;
997 const int b_width = s->b_width << s->block_max_depth;
998 const int b_height= s->b_height << s->block_max_depth;
999 const int b_stride= b_width;
1000 int color[3];
1001
1002 {
1003 RangeCoder r = s->c;
1004 uint8_t state[sizeof(s->block_state)];
1005 memcpy(state, s->block_state, sizeof(s->block_state));
1006 for(mb_y= 0; mb_y<s->b_height; mb_y++)
1007 for(mb_x= 0; mb_x<s->b_width; mb_x++)
1008 encode_q_branch(s, 0, mb_x, mb_y);
1009 s->c = r;
1010 memcpy(s->block_state, state, sizeof(s->block_state));
1011 }
1012
1013 for(pass=0; pass<25; pass++){
1014 int change= 0;
1015
1016 for(mb_y= 0; mb_y<b_height; mb_y++){
1017 for(mb_x= 0; mb_x<b_width; mb_x++){
1018 int dia_change, i, j, ref;
1019 int best_rd= INT_MAX, ref_rd;
1020 BlockNode backup, ref_b;
1021 const int index= mb_x + mb_y * b_stride;
1022 BlockNode *block= &s->block[index];
1023 BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
1024 BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
1025 BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
1026 BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
1027 BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
1028 BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
1029 BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1030 BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1031 const int b_w= (MB_SIZE >> s->block_max_depth);
1032 uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1033
1034 if(pass && (block->type & BLOCK_OPT))
1035 continue;
1036 block->type |= BLOCK_OPT;
1037
1038 backup= *block;
1039
1040 if(!s->me_cache_generation)
1041 memset(s->me_cache, 0, sizeof(s->me_cache));
1042 s->me_cache_generation += 1<<22;
1043
1044 //FIXME precalculate
1045 {
1046 int x, y;
1047 for (y = 0; y < b_w * 2; y++)
1048 memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1049 if(mb_x==0)
1050 for(y=0; y<b_w*2; y++)
1051 memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1052 if(mb_x==b_stride-1)
1053 for(y=0; y<b_w*2; y++)
1054 memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1055 if(mb_y==0){
1056 for(x=0; x<b_w*2; x++)
1057 obmc_edged[0][x] += obmc_edged[b_w-1][x];
1058 for(y=1; y<b_w; y++)
1059 memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1060 }
1061 if(mb_y==b_height-1){
1062 for(x=0; x<b_w*2; x++)
1063 obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1064 for(y=b_w; y<b_w*2-1; y++)
1065 memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1066 }
1067 }
1068
1069 //skip stuff outside the picture
1070 if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1071 uint8_t *src= s-> input_picture->data[0];
1072 uint8_t *dst= s->current_picture->data[0];
1073 const int stride= s->current_picture->linesize[0];
1074 const int block_w= MB_SIZE >> s->block_max_depth;
1075 const int block_h= MB_SIZE >> s->block_max_depth;
1076 const int sx= block_w*mb_x - block_w/2;
1077 const int sy= block_h*mb_y - block_h/2;
1078 const int w= s->plane[0].width;
1079 const int h= s->plane[0].height;
1080 int y;
1081
1082 for(y=sy; y<0; y++)
1083 memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1084 for(y=h; y<sy+block_h*2; y++)
1085 memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1086 if(sx<0){
1087 for(y=sy; y<sy+block_h*2; y++)
1088 memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1089 }
1090 if(sx+block_w*2 > w){
1091 for(y=sy; y<sy+block_h*2; y++)
1092 memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1093 }
1094 }
1095
1096 // intra(black) = neighbors' contribution to the current block
1097 for(i=0; i < s->nb_planes; i++)
1098 color[i]= get_dc(s, mb_x, mb_y, i);
1099
1100 // get previous score (cannot be cached due to OBMC)
1101 if(pass > 0 && (block->type&BLOCK_INTRA)){
1102 int color0[3]= {block->color[0], block->color[1], block->color[2]};
1103 check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1104 }else
1105 check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1106
1107 ref_b= *block;
1108 ref_rd= best_rd;
1109 for(ref=0; ref < s->ref_frames; ref++){
1110 int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1111 if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1112 continue;
1113 block->ref= ref;
1114 best_rd= INT_MAX;
1115
1116 check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1117 check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1118 if(tb)
1119 check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1120 if(lb)
1121 check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1122 if(rb)
1123 check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1124 if(bb)
1125 check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1126
1127 /* fullpel ME */
1128 //FIXME avoid subpel interpolation / round to nearest integer
1129 do{
1130 int newx = block->mx;
1131 int newy = block->my;
1132 int dia_size = s->iterative_dia_size ? s->iterative_dia_size : FFMAX(s->avctx->dia_size, 1);
1133 dia_change=0;
1134 for(i=0; i < dia_size; i++){
1135 for(j=0; j<i; j++){
1136 dia_change |= check_block_inter(s, mb_x, mb_y, newx+4*(i-j), newy+(4*j), obmc_edged, &best_rd);
1137 dia_change |= check_block_inter(s, mb_x, mb_y, newx-4*(i-j), newy-(4*j), obmc_edged, &best_rd);
1138 dia_change |= check_block_inter(s, mb_x, mb_y, newx-(4*j), newy+4*(i-j), obmc_edged, &best_rd);
1139 dia_change |= check_block_inter(s, mb_x, mb_y, newx+(4*j), newy-4*(i-j), obmc_edged, &best_rd);
1140 }
1141 }
1142 }while(dia_change);
1143 /* subpel ME */
1144 do{
1145 static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1146 dia_change=0;
1147 for(i=0; i<8; i++)
1148 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1149 }while(dia_change);
1150 //FIXME or try the standard 2 pass qpel or similar
1151
1152 mvr[0][0]= block->mx;
1153 mvr[0][1]= block->my;
1154 if(ref_rd > best_rd){
1155 ref_rd= best_rd;
1156 ref_b= *block;
1157 }
1158 }
1159 best_rd= ref_rd;
1160 *block= ref_b;
1161 check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1162 //FIXME RD style color selection
1163 if(!same_block(block, &backup)){
1164 if(tb ) tb ->type &= ~BLOCK_OPT;
1165 if(lb ) lb ->type &= ~BLOCK_OPT;
1166 if(rb ) rb ->type &= ~BLOCK_OPT;
1167 if(bb ) bb ->type &= ~BLOCK_OPT;
1168 if(tlb) tlb->type &= ~BLOCK_OPT;
1169 if(trb) trb->type &= ~BLOCK_OPT;
1170 if(blb) blb->type &= ~BLOCK_OPT;
1171 if(brb) brb->type &= ~BLOCK_OPT;
1172 change ++;
1173 }
1174 }
1175 }
1176 av_log(s->avctx, AV_LOG_DEBUG, "pass:%d changed:%d\n", pass, change);
1177 if(!change)
1178 break;
1179 }
1180
1181 if(s->block_max_depth == 1){
1182 int change= 0;
1183 for(mb_y= 0; mb_y<b_height; mb_y+=2){
1184 for(mb_x= 0; mb_x<b_width; mb_x+=2){
1185 int i;
1186 int best_rd, init_rd;
1187 const int index= mb_x + mb_y * b_stride;
1188 BlockNode *b[4];
1189
1190 b[0]= &s->block[index];
1191 b[1]= b[0]+1;
1192 b[2]= b[0]+b_stride;
1193 b[3]= b[2]+1;
1194 if(same_block(b[0], b[1]) &&
1195 same_block(b[0], b[2]) &&
1196 same_block(b[0], b[3]))
1197 continue;
1198
1199 if(!s->me_cache_generation)
1200 memset(s->me_cache, 0, sizeof(s->me_cache));
1201 s->me_cache_generation += 1<<22;
1202
1203 init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1204
1205 //FIXME more multiref search?
1206 check_4block_inter(s, mb_x, mb_y,
1207 (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1208 (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1209
1210 for(i=0; i<4; i++)
1211 if(!(b[i]->type&BLOCK_INTRA))
1212 check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1213
1214 if(init_rd != best_rd)
1215 change++;
1216 }
1217 }
1218 av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1219 }
1220 }
1221
encode_blocks(SnowContext *s, int search)1222 static void encode_blocks(SnowContext *s, int search){
1223 int x, y;
1224 int w= s->b_width;
1225 int h= s->b_height;
1226
1227 if(s->motion_est == FF_ME_ITER && !s->keyframe && search)
1228 iterative_me(s);
1229
1230 for(y=0; y<h; y++){
1231 if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1232 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1233 return;
1234 }
1235 for(x=0; x<w; x++){
1236 if(s->motion_est == FF_ME_ITER || !search)
1237 encode_q_branch2(s, 0, x, y);
1238 else
1239 encode_q_branch (s, 0, x, y);
1240 }
1241 }
1242 }
1243
quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias)1244 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1245 const int w= b->width;
1246 const int h= b->height;
1247 const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1248 const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1249 int x,y, thres1, thres2;
1250
1251 if(s->qlog == LOSSLESS_QLOG){
1252 for(y=0; y<h; y++)
1253 for(x=0; x<w; x++)
1254 dst[x + y*stride]= src[x + y*stride];
1255 return;
1256 }
1257
1258 bias= bias ? 0 : (3*qmul)>>3;
1259 thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1260 thres2= 2*thres1;
1261
1262 if(!bias){
1263 for(y=0; y<h; y++){
1264 for(x=0; x<w; x++){
1265 int i= src[x + y*stride];
1266
1267 if((unsigned)(i+thres1) > thres2){
1268 if(i>=0){
1269 i<<= QEXPSHIFT;
1270 i/= qmul; //FIXME optimize
1271 dst[x + y*stride]= i;
1272 }else{
1273 i= -i;
1274 i<<= QEXPSHIFT;
1275 i/= qmul; //FIXME optimize
1276 dst[x + y*stride]= -i;
1277 }
1278 }else
1279 dst[x + y*stride]= 0;
1280 }
1281 }
1282 }else{
1283 for(y=0; y<h; y++){
1284 for(x=0; x<w; x++){
1285 int i= src[x + y*stride];
1286
1287 if((unsigned)(i+thres1) > thres2){
1288 if(i>=0){
1289 i<<= QEXPSHIFT;
1290 i= (i + bias) / qmul; //FIXME optimize
1291 dst[x + y*stride]= i;
1292 }else{
1293 i= -i;
1294 i<<= QEXPSHIFT;
1295 i= (i + bias) / qmul; //FIXME optimize
1296 dst[x + y*stride]= -i;
1297 }
1298 }else
1299 dst[x + y*stride]= 0;
1300 }
1301 }
1302 }
1303 }
1304
dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride)1305 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1306 const int w= b->width;
1307 const int h= b->height;
1308 const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1309 const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1310 const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1311 int x,y;
1312
1313 if(s->qlog == LOSSLESS_QLOG) return;
1314
1315 for(y=0; y<h; y++){
1316 for(x=0; x<w; x++){
1317 int i= src[x + y*stride];
1318 if(i<0){
1319 src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1320 }else if(i>0){
1321 src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
1322 }
1323 }
1324 }
1325 }
1326
decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median)1327 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1328 const int w= b->width;
1329 const int h= b->height;
1330 int x,y;
1331
1332 for(y=h-1; y>=0; y--){
1333 for(x=w-1; x>=0; x--){
1334 int i= x + y*stride;
1335
1336 if(x){
1337 if(use_median){
1338 if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1339 else src[i] -= src[i - 1];
1340 }else{
1341 if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1342 else src[i] -= src[i - 1];
1343 }
1344 }else{
1345 if(y) src[i] -= src[i - stride];
1346 }
1347 }
1348 }
1349 }
1350
correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median)1351 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1352 const int w= b->width;
1353 const int h= b->height;
1354 int x,y;
1355
1356 for(y=0; y<h; y++){
1357 for(x=0; x<w; x++){
1358 int i= x + y*stride;
1359
1360 if(x){
1361 if(use_median){
1362 if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1363 else src[i] += src[i - 1];
1364 }else{
1365 if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1366 else src[i] += src[i - 1];
1367 }
1368 }else{
1369 if(y) src[i] += src[i - stride];
1370 }
1371 }
1372 }
1373 }
1374
encode_qlogs(SnowContext *s)1375 static void encode_qlogs(SnowContext *s){
1376 int plane_index, level, orientation;
1377
1378 for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1379 for(level=0; level<s->spatial_decomposition_count; level++){
1380 for(orientation=level ? 1:0; orientation<4; orientation++){
1381 if(orientation==2) continue;
1382 put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1383 }
1384 }
1385 }
1386 }
1387
encode_header(SnowContext *s)1388 static void encode_header(SnowContext *s){
1389 int plane_index, i;
1390 uint8_t kstate[32];
1391
1392 memset(kstate, MID_STATE, sizeof(kstate));
1393
1394 put_rac(&s->c, kstate, s->keyframe);
1395 if(s->keyframe || s->always_reset){
1396 ff_snow_reset_contexts(s);
1397 s->last_spatial_decomposition_type=
1398 s->last_qlog=
1399 s->last_qbias=
1400 s->last_mv_scale=
1401 s->last_block_max_depth= 0;
1402 for(plane_index=0; plane_index<2; plane_index++){
1403 Plane *p= &s->plane[plane_index];
1404 p->last_htaps=0;
1405 p->last_diag_mc=0;
1406 memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1407 }
1408 }
1409 if(s->keyframe){
1410 put_symbol(&s->c, s->header_state, s->version, 0);
1411 put_rac(&s->c, s->header_state, s->always_reset);
1412 put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
1413 put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
1414 put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1415 put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1416 if (s->nb_planes > 2) {
1417 put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1418 put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1419 }
1420 put_rac(&s->c, s->header_state, s->spatial_scalability);
1421 // put_rac(&s->c, s->header_state, s->rate_scalability);
1422 put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1423
1424 encode_qlogs(s);
1425 }
1426
1427 if(!s->keyframe){
1428 int update_mc=0;
1429 for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1430 Plane *p= &s->plane[plane_index];
1431 update_mc |= p->last_htaps != p->htaps;
1432 update_mc |= p->last_diag_mc != p->diag_mc;
1433 update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1434 }
1435 put_rac(&s->c, s->header_state, update_mc);
1436 if(update_mc){
1437 for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1438 Plane *p= &s->plane[plane_index];
1439 put_rac(&s->c, s->header_state, p->diag_mc);
1440 put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1441 for(i= p->htaps/2; i; i--)
1442 put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1443 }
1444 }
1445 if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1446 put_rac(&s->c, s->header_state, 1);
1447 put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1448 encode_qlogs(s);
1449 }else
1450 put_rac(&s->c, s->header_state, 0);
1451 }
1452
1453 put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1);
1454 put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
1455 put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
1456 put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
1457 put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1);
1458
1459 }
1460
update_last_header_values(SnowContext *s)1461 static void update_last_header_values(SnowContext *s){
1462 int plane_index;
1463
1464 if(!s->keyframe){
1465 for(plane_index=0; plane_index<2; plane_index++){
1466 Plane *p= &s->plane[plane_index];
1467 p->last_diag_mc= p->diag_mc;
1468 p->last_htaps = p->htaps;
1469 memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1470 }
1471 }
1472
1473 s->last_spatial_decomposition_type = s->spatial_decomposition_type;
1474 s->last_qlog = s->qlog;
1475 s->last_qbias = s->qbias;
1476 s->last_mv_scale = s->mv_scale;
1477 s->last_block_max_depth = s->block_max_depth;
1478 s->last_spatial_decomposition_count = s->spatial_decomposition_count;
1479 }
1480
qscale2qlog(int qscale)1481 static int qscale2qlog(int qscale){
1482 return lrint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
1483 + 61*QROOT/8; ///< 64 > 60
1484 }
1485
ratecontrol_1pass(SnowContext *s, AVFrame *pict)1486 static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
1487 {
1488 /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1489 * FIXME we know exact mv bits at this point,
1490 * but ratecontrol isn't set up to include them. */
1491 uint32_t coef_sum= 0;
1492 int level, orientation, delta_qlog;
1493
1494 for(level=0; level<s->spatial_decomposition_count; level++){
1495 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1496 SubBand *b= &s->plane[0].band[level][orientation];
1497 IDWTELEM *buf= b->ibuf;
1498 const int w= b->width;
1499 const int h= b->height;
1500 const int stride= b->stride;
1501 const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1502 const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1503 const int qdiv= (1<<16)/qmul;
1504 int x, y;
1505 //FIXME this is ugly
1506 for(y=0; y<h; y++)
1507 for(x=0; x<w; x++)
1508 buf[x+y*stride]= b->buf[x+y*stride];
1509 if(orientation==0)
1510 decorrelate(s, b, buf, stride, 1, 0);
1511 for(y=0; y<h; y++)
1512 for(x=0; x<w; x++)
1513 coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1514 }
1515 }
1516
1517 /* ugly, ratecontrol just takes a sqrt again */
1518 av_assert0(coef_sum < INT_MAX);
1519 coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1520
1521 if(pict->pict_type == AV_PICTURE_TYPE_I){
1522 s->m.current_picture.mb_var_sum= coef_sum;
1523 s->m.current_picture.mc_mb_var_sum= 0;
1524 }else{
1525 s->m.current_picture.mc_mb_var_sum= coef_sum;
1526 s->m.current_picture.mb_var_sum= 0;
1527 }
1528
1529 pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1530 if (pict->quality < 0)
1531 return INT_MIN;
1532 s->lambda= pict->quality * 3/2;
1533 delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1534 s->qlog+= delta_qlog;
1535 return delta_qlog;
1536 }
1537
calculate_visual_weight(SnowContext *s, Plane *p)1538 static void calculate_visual_weight(SnowContext *s, Plane *p){
1539 int width = p->width;
1540 int height= p->height;
1541 int level, orientation, x, y;
1542
1543 for(level=0; level<s->spatial_decomposition_count; level++){
1544 int64_t error=0;
1545 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1546 SubBand *b= &p->band[level][orientation];
1547 IDWTELEM *ibuf= b->ibuf;
1548
1549 memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1550 ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1551 ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
1552 for(y=0; y<height; y++){
1553 for(x=0; x<width; x++){
1554 int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1555 error += d*d;
1556 }
1557 }
1558 if (orientation == 2)
1559 error /= 2;
1560 b->qlog= (int)(QROOT * log2(352256.0/sqrt(error)) + 0.5);
1561 if (orientation != 1)
1562 error = 0;
1563 }
1564 p->band[level][1].qlog = p->band[level][2].qlog;
1565 }
1566 }
1567
encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet)1568 static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
1569 const AVFrame *pict, int *got_packet)
1570 {
1571 SnowContext *s = avctx->priv_data;
1572 RangeCoder * const c= &s->c;
1573 AVFrame *pic;
1574 const int width= s->avctx->width;
1575 const int height= s->avctx->height;
1576 int level, orientation, plane_index, i, y, ret;
1577 uint8_t rc_header_bak[sizeof(s->header_state)];
1578 uint8_t rc_block_bak[sizeof(s->block_state)];
1579
1580 if ((ret = ff_alloc_packet(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + AV_INPUT_BUFFER_MIN_SIZE)) < 0)
1581 return ret;
1582
1583 ff_init_range_encoder(c, pkt->data, pkt->size);
1584 ff_build_rac_states(c, (1LL<<32)/20, 256-8);
1585
1586 for(i=0; i < s->nb_planes; i++){
1587 int hshift= i ? s->chroma_h_shift : 0;
1588 int vshift= i ? s->chroma_v_shift : 0;
1589 for(y=0; y<AV_CEIL_RSHIFT(height, vshift); y++)
1590 memcpy(&s->input_picture->data[i][y * s->input_picture->linesize[i]],
1591 &pict->data[i][y * pict->linesize[i]],
1592 AV_CEIL_RSHIFT(width, hshift));
1593 s->mpvencdsp.draw_edges(s->input_picture->data[i], s->input_picture->linesize[i],
1594 AV_CEIL_RSHIFT(width, hshift), AV_CEIL_RSHIFT(height, vshift),
1595 EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift,
1596 EDGE_TOP | EDGE_BOTTOM);
1597
1598 }
1599 emms_c();
1600 pic = s->input_picture;
1601 pic->pict_type = pict->pict_type;
1602 pic->quality = pict->quality;
1603
1604 s->m.picture_number= avctx->frame_number;
1605 if(avctx->flags&AV_CODEC_FLAG_PASS2){
1606 s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type;
1607 s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1608 if(!(avctx->flags&AV_CODEC_FLAG_QSCALE)) {
1609 pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1610 if (pic->quality < 0)
1611 return -1;
1612 }
1613 }else{
1614 s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1615 s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
1616 }
1617
1618 if(s->pass1_rc && avctx->frame_number == 0)
1619 pic->quality = 2*FF_QP2LAMBDA;
1620 if (pic->quality) {
1621 s->qlog = qscale2qlog(pic->quality);
1622 s->lambda = pic->quality * 3/2;
1623 }
1624 if (s->qlog < 0 || (!pic->quality && (avctx->flags & AV_CODEC_FLAG_QSCALE))) {
1625 s->qlog= LOSSLESS_QLOG;
1626 s->lambda = 0;
1627 }//else keep previous frame's qlog until after motion estimation
1628
1629 if (s->current_picture->data[0]) {
1630 int w = s->avctx->width;
1631 int h = s->avctx->height;
1632
1633 s->mpvencdsp.draw_edges(s->current_picture->data[0],
1634 s->current_picture->linesize[0], w , h ,
1635 EDGE_WIDTH , EDGE_WIDTH , EDGE_TOP | EDGE_BOTTOM);
1636 if (s->current_picture->data[2]) {
1637 s->mpvencdsp.draw_edges(s->current_picture->data[1],
1638 s->current_picture->linesize[1], w>>s->chroma_h_shift, h>>s->chroma_v_shift,
1639 EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM);
1640 s->mpvencdsp.draw_edges(s->current_picture->data[2],
1641 s->current_picture->linesize[2], w>>s->chroma_h_shift, h>>s->chroma_v_shift,
1642 EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM);
1643 }
1644 emms_c();
1645 }
1646
1647 ff_snow_frame_start(s);
1648
1649 s->m.current_picture_ptr= &s->m.current_picture;
1650 s->m.current_picture.f = s->current_picture;
1651 s->m.current_picture.f->pts = pict->pts;
1652 if(pic->pict_type == AV_PICTURE_TYPE_P){
1653 int block_width = (width +15)>>4;
1654 int block_height= (height+15)>>4;
1655 int stride= s->current_picture->linesize[0];
1656
1657 av_assert0(s->current_picture->data[0]);
1658 av_assert0(s->last_picture[0]->data[0]);
1659
1660 s->m.avctx= s->avctx;
1661 s->m. last_picture.f = s->last_picture[0];
1662 s->m. new_picture = s->input_picture;
1663 s->m. last_picture_ptr= &s->m. last_picture;
1664 s->m.linesize = stride;
1665 s->m.uvlinesize= s->current_picture->linesize[1];
1666 s->m.width = width;
1667 s->m.height= height;
1668 s->m.mb_width = block_width;
1669 s->m.mb_height= block_height;
1670 s->m.mb_stride= s->m.mb_width+1;
1671 s->m.b8_stride= 2*s->m.mb_width+1;
1672 s->m.f_code=1;
1673 s->m.pict_type = pic->pict_type;
1674 s->m.motion_est= s->motion_est;
1675 s->m.me.scene_change_score=0;
1676 s->m.me.dia_size = avctx->dia_size;
1677 s->m.quarter_sample= (s->avctx->flags & AV_CODEC_FLAG_QPEL)!=0;
1678 s->m.out_format= FMT_H263;
1679 s->m.unrestricted_mv= 1;
1680
1681 s->m.lambda = s->lambda;
1682 s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1683 s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1684
1685 s->m.mecc= s->mecc; //move
1686 s->m.qdsp= s->qdsp; //move
1687 s->m.hdsp = s->hdsp;
1688 ff_init_me(&s->m);
1689 s->hdsp = s->m.hdsp;
1690 s->mecc= s->m.mecc;
1691 }
1692
1693 if(s->pass1_rc){
1694 memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1695 memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1696 }
1697
1698 redo_frame:
1699
1700 s->spatial_decomposition_count= 5;
1701
1702 while( !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
1703 || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
1704 s->spatial_decomposition_count--;
1705
1706 if (s->spatial_decomposition_count <= 0) {
1707 av_log(avctx, AV_LOG_ERROR, "Resolution too low\n");
1708 return AVERROR(EINVAL);
1709 }
1710
1711 s->m.pict_type = pic->pict_type;
1712 s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1713
1714 ff_snow_common_init_after_header(avctx);
1715
1716 if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1717 for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1718 calculate_visual_weight(s, &s->plane[plane_index]);
1719 }
1720 }
1721
1722 encode_header(s);
1723 s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1724 encode_blocks(s, 1);
1725 s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1726
1727 for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1728 Plane *p= &s->plane[plane_index];
1729 int w= p->width;
1730 int h= p->height;
1731 int x, y;
1732 // int bits= put_bits_count(&s->c.pb);
1733
1734 if (!s->memc_only) {
1735 //FIXME optimize
1736 if(pict->data[plane_index]) //FIXME gray hack
1737 for(y=0; y<h; y++){
1738 for(x=0; x<w; x++){
1739 s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1740 }
1741 }
1742 predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1743
1744 if( plane_index==0
1745 && pic->pict_type == AV_PICTURE_TYPE_P
1746 && !(avctx->flags&AV_CODEC_FLAG_PASS2)
1747 && s->m.me.scene_change_score > s->scenechange_threshold){
1748 ff_init_range_encoder(c, pkt->data, pkt->size);
1749 ff_build_rac_states(c, (1LL<<32)/20, 256-8);
1750 pic->pict_type= AV_PICTURE_TYPE_I;
1751 s->keyframe=1;
1752 s->current_picture->key_frame=1;
1753 goto redo_frame;
1754 }
1755
1756 if(s->qlog == LOSSLESS_QLOG){
1757 for(y=0; y<h; y++){
1758 for(x=0; x<w; x++){
1759 s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1760 }
1761 }
1762 }else{
1763 for(y=0; y<h; y++){
1764 for(x=0; x<w; x++){
1765 s->spatial_dwt_buffer[y*w + x]= s->spatial_idwt_buffer[y*w + x] * (1 << ENCODER_EXTRA_BITS);
1766 }
1767 }
1768 }
1769
1770 ff_spatial_dwt(s->spatial_dwt_buffer, s->temp_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1771
1772 if(s->pass1_rc && plane_index==0){
1773 int delta_qlog = ratecontrol_1pass(s, pic);
1774 if (delta_qlog <= INT_MIN)
1775 return -1;
1776 if(delta_qlog){
1777 //reordering qlog in the bitstream would eliminate this reset
1778 ff_init_range_encoder(c, pkt->data, pkt->size);
1779 memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1780 memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1781 encode_header(s);
1782 encode_blocks(s, 0);
1783 }
1784 }
1785
1786 for(level=0; level<s->spatial_decomposition_count; level++){
1787 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1788 SubBand *b= &p->band[level][orientation];
1789
1790 quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1791 if(orientation==0)
1792 decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1793 if (!s->no_bitstream)
1794 encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1795 av_assert0(b->parent==NULL || b->parent->stride == b->stride*2);
1796 if(orientation==0)
1797 correlate(s, b, b->ibuf, b->stride, 1, 0);
1798 }
1799 }
1800
1801 for(level=0; level<s->spatial_decomposition_count; level++){
1802 for(orientation=level ? 1 : 0; orientation<4; orientation++){
1803 SubBand *b= &p->band[level][orientation];
1804
1805 dequantize(s, b, b->ibuf, b->stride);
1806 }
1807 }
1808
1809 ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1810 if(s->qlog == LOSSLESS_QLOG){
1811 for(y=0; y<h; y++){
1812 for(x=0; x<w; x++){
1813 s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1814 }
1815 }
1816 }
1817 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1818 }else{
1819 //ME/MC only
1820 if(pic->pict_type == AV_PICTURE_TYPE_I){
1821 for(y=0; y<h; y++){
1822 for(x=0; x<w; x++){
1823 s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]=
1824 pict->data[plane_index][y*pict->linesize[plane_index] + x];
1825 }
1826 }
1827 }else{
1828 memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1829 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1830 }
1831 }
1832 if(s->avctx->flags&AV_CODEC_FLAG_PSNR){
1833 int64_t error= 0;
1834
1835 if(pict->data[plane_index]) //FIXME gray hack
1836 for(y=0; y<h; y++){
1837 for(x=0; x<w; x++){
1838 int d= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1839 error += d*d;
1840 }
1841 }
1842 s->avctx->error[plane_index] += error;
1843 s->encoding_error[plane_index] = error;
1844 }
1845
1846 }
1847 emms_c();
1848
1849 update_last_header_values(s);
1850
1851 ff_snow_release_buffer(avctx);
1852
1853 s->current_picture->coded_picture_number = avctx->frame_number;
1854 s->current_picture->pict_type = pic->pict_type;
1855 s->current_picture->quality = pic->quality;
1856 s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1857 s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1858 s->m.current_picture.f->display_picture_number =
1859 s->m.current_picture.f->coded_picture_number = avctx->frame_number;
1860 s->m.current_picture.f->quality = pic->quality;
1861 s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1862 if(s->pass1_rc)
1863 if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1864 return -1;
1865 if(avctx->flags&AV_CODEC_FLAG_PASS1)
1866 ff_write_pass1_stats(&s->m);
1867 s->m.last_pict_type = s->m.pict_type;
1868
1869 emms_c();
1870
1871 ff_side_data_set_encoder_stats(pkt, s->current_picture->quality,
1872 s->encoding_error,
1873 (s->avctx->flags&AV_CODEC_FLAG_PSNR) ? SNOW_MAX_PLANES : 0,
1874 s->current_picture->pict_type);
1875
1876 pkt->size = ff_rac_terminate(c, 0);
1877 if (s->current_picture->key_frame)
1878 pkt->flags |= AV_PKT_FLAG_KEY;
1879 *got_packet = 1;
1880
1881 return 0;
1882 }
1883
encode_end(AVCodecContext *avctx)1884 static av_cold int encode_end(AVCodecContext *avctx)
1885 {
1886 SnowContext *s = avctx->priv_data;
1887
1888 ff_snow_common_end(s);
1889 ff_rate_control_uninit(&s->m);
1890 av_frame_free(&s->input_picture);
1891 av_freep(&avctx->stats_out);
1892
1893 return 0;
1894 }
1895
1896 #define OFFSET(x) offsetof(SnowContext, x)
1897 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1898 static const AVOption options[] = {
1899 {"motion_est", "motion estimation algorithm", OFFSET(motion_est), AV_OPT_TYPE_INT, {.i64 = FF_ME_EPZS }, FF_ME_ZERO, FF_ME_ITER, VE, "motion_est" },
1900 { "zero", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ZERO }, 0, 0, VE, "motion_est" },
1901 { "epzs", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_EPZS }, 0, 0, VE, "motion_est" },
1902 { "xone", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_XONE }, 0, 0, VE, "motion_est" },
1903 { "iter", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ITER }, 0, 0, VE, "motion_est" },
1904 { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
1905 { "no_bitstream", "Skip final bitstream writeout.", OFFSET(no_bitstream), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
1906 { "intra_penalty", "Penalty for intra blocks in block decission", OFFSET(intra_penalty), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE },
1907 { "iterative_dia_size", "Dia size for the iterative ME", OFFSET(iterative_dia_size), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE },
1908 { "sc_threshold", "Scene change threshold", OFFSET(scenechange_threshold), AV_OPT_TYPE_INT, { .i64 = 0 }, INT_MIN, INT_MAX, VE },
1909 { "pred", "Spatial decomposition type", OFFSET(pred), AV_OPT_TYPE_INT, { .i64 = 0 }, DWT_97, DWT_53, VE, "pred" },
1910 { "dwt97", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, INT_MIN, INT_MAX, VE, "pred" },
1911 { "dwt53", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, INT_MIN, INT_MAX, VE, "pred" },
1912 { "rc_eq", "Set rate control equation. When computing the expression, besides the standard functions "
1913 "defined in the section 'Expression Evaluation', the following functions are available: "
1914 "bits2qp(bits), qp2bits(qp). Also the following constants are available: iTex pTex tex mv "
1915 "fCode iCount mcVar var isI isP isB avgQP qComp avgIITex avgPITex avgPPTex avgBPTex avgTex.",
1916 OFFSET(m.rc_eq), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, VE },
1917 { NULL },
1918 };
1919
1920 static const AVClass snowenc_class = {
1921 .class_name = "snow encoder",
1922 .item_name = av_default_item_name,
1923 .option = options,
1924 .version = LIBAVUTIL_VERSION_INT,
1925 };
1926
1927 const FFCodec ff_snow_encoder = {
1928 .p.name = "snow",
1929 .p.long_name = NULL_IF_CONFIG_SMALL("Snow"),
1930 .p.type = AVMEDIA_TYPE_VIDEO,
1931 .p.id = AV_CODEC_ID_SNOW,
1932 .priv_data_size = sizeof(SnowContext),
1933 .init = encode_init,
1934 FF_CODEC_ENCODE_CB(encode_frame),
1935 .close = encode_end,
1936 .p.pix_fmts = (const enum AVPixelFormat[]){
1937 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV444P,
1938 AV_PIX_FMT_GRAY8,
1939 AV_PIX_FMT_NONE
1940 },
1941 .p.priv_class = &snowenc_class,
1942 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
1943 FF_CODEC_CAP_INIT_CLEANUP,
1944 };
1945