1 /*
2  * RV40 decoder
3  * Copyright (c) 2007 Konstantin Shishkov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * RV40 decoder
25  */
26 
27 #include "config.h"
28 
29 #include "libavutil/imgutils.h"
30 #include "libavutil/thread.h"
31 
32 #include "avcodec.h"
33 #include "codec_internal.h"
34 #include "mpegutils.h"
35 #include "mpegvideo.h"
36 #include "mpegvideodec.h"
37 #include "golomb.h"
38 
39 #include "rv34.h"
40 #include "rv40vlc2.h"
41 #include "rv40data.h"
42 
43 static VLC aic_top_vlc;
44 static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
45 static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
46 
rv40_init_table(VLC *vlc, unsigned *offset, int nb_bits, int nb_codes, const uint8_t (*tab)[2])47 static av_cold void rv40_init_table(VLC *vlc, unsigned *offset, int nb_bits,
48                                     int nb_codes, const uint8_t (*tab)[2])
49 {
50     static VLCElem vlc_buf[11776];
51 
52     vlc->table           = &vlc_buf[*offset];
53     vlc->table_allocated = 1 << nb_bits;
54     *offset             += 1 << nb_bits;
55 
56     ff_init_vlc_from_lengths(vlc, nb_bits, nb_codes,
57                              &tab[0][1], 2, &tab[0][0], 2, 1,
58                              0, INIT_VLC_USE_NEW_STATIC, NULL);
59 }
60 
61 /**
62  * Initialize all tables.
63  */
rv40_init_tables(void)64 static av_cold void rv40_init_tables(void)
65 {
66     int i, offset = 0;
67     static VLCElem aic_mode2_table[11814];
68 
69     rv40_init_table(&aic_top_vlc, &offset, AIC_TOP_BITS, AIC_TOP_SIZE,
70                     rv40_aic_top_vlc_tab);
71     for(i = 0; i < AIC_MODE1_NUM; i++){
72         // Every tenth VLC table is empty
73         if((i % 10) == 9) continue;
74         rv40_init_table(&aic_mode1_vlc[i], &offset, AIC_MODE1_BITS,
75                         AIC_MODE1_SIZE, aic_mode1_vlc_tabs[i]);
76     }
77     for (unsigned i = 0, offset = 0; i < AIC_MODE2_NUM; i++){
78         uint16_t syms[AIC_MODE2_SIZE];
79 
80         for (int j = 0; j < AIC_MODE2_SIZE; j++) {
81             int first  = aic_mode2_vlc_syms[i][j] >> 4;
82             int second = aic_mode2_vlc_syms[i][j] & 0xF;
83             if (HAVE_BIGENDIAN)
84                 syms[j] = (first << 8) | second;
85             else
86                 syms[j] = first | (second << 8);
87         }
88         aic_mode2_vlc[i].table           = &aic_mode2_table[offset];
89         aic_mode2_vlc[i].table_allocated = FF_ARRAY_ELEMS(aic_mode2_table) - offset;
90         ff_init_vlc_from_lengths(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
91                                  aic_mode2_vlc_bits[i], 1,
92                                  syms, 2, 2, 0, INIT_VLC_STATIC_OVERLONG, NULL);
93         offset += aic_mode2_vlc[i].table_size;
94     }
95     for(i = 0; i < NUM_PTYPE_VLCS; i++){
96         rv40_init_table(&ptype_vlc[i], &offset, PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
97                         ptype_vlc_tabs[i]);
98     }
99     for(i = 0; i < NUM_BTYPE_VLCS; i++){
100         rv40_init_table(&btype_vlc[i], &offset, BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
101                         btype_vlc_tabs[i]);
102     }
103 }
104 
105 /**
106  * Get stored dimension from bitstream.
107  *
108  * If the width/height is the standard one then it's coded as a 3-bit index.
109  * Otherwise it is coded as escaped 8-bit portions.
110  */
get_dimension(GetBitContext *gb, const int *dim)111 static int get_dimension(GetBitContext *gb, const int *dim)
112 {
113     int t   = get_bits(gb, 3);
114     int val = dim[t];
115     if(val < 0)
116         val = dim[get_bits1(gb) - val];
117     if(!val){
118         do{
119             if (get_bits_left(gb) < 8)
120                 return AVERROR_INVALIDDATA;
121             t = get_bits(gb, 8);
122             val += t << 2;
123         }while(t == 0xFF);
124     }
125     return val;
126 }
127 
128 /**
129  * Get encoded picture size - usually this is called from rv40_parse_slice_header.
130  */
rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)131 static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
132 {
133     *w = get_dimension(gb, rv40_standard_widths);
134     *h = get_dimension(gb, rv40_standard_heights);
135 }
136 
rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)137 static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
138 {
139     int mb_bits;
140     int w = r->s.width, h = r->s.height;
141     int mb_size;
142     int ret;
143 
144     memset(si, 0, sizeof(SliceInfo));
145     if(get_bits1(gb))
146         return AVERROR_INVALIDDATA;
147     si->type = get_bits(gb, 2);
148     if(si->type == 1) si->type = 0;
149     si->quant = get_bits(gb, 5);
150     if(get_bits(gb, 2))
151         return AVERROR_INVALIDDATA;
152     si->vlc_set = get_bits(gb, 2);
153     skip_bits1(gb);
154     si->pts = get_bits(gb, 13);
155     if(!si->type || !get_bits1(gb))
156         rv40_parse_picture_size(gb, &w, &h);
157     if ((ret = av_image_check_size(w, h, 0, r->s.avctx)) < 0)
158         return ret;
159     si->width  = w;
160     si->height = h;
161     mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
162     mb_bits = ff_rv34_get_start_offset(gb, mb_size);
163     si->start = get_bits(gb, mb_bits);
164 
165     return 0;
166 }
167 
168 /**
169  * Decode 4x4 intra types array.
170  */
rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)171 static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
172 {
173     MpegEncContext *s = &r->s;
174     int i, j, k, v;
175     int A, B, C;
176     int pattern;
177     int8_t *ptr;
178 
179     for(i = 0; i < 4; i++, dst += r->intra_types_stride){
180         if(!i && s->first_slice_line){
181             pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
182             dst[0] = (pattern >> 2) & 2;
183             dst[1] = (pattern >> 1) & 2;
184             dst[2] =  pattern       & 2;
185             dst[3] = (pattern << 1) & 2;
186             continue;
187         }
188         ptr = dst;
189         for(j = 0; j < 4; j++){
190             /* Coefficients are read using VLC chosen by the prediction pattern
191              * The first one (used for retrieving a pair of coefficients) is
192              * constructed from the top, top right and left coefficients
193              * The second one (used for retrieving only one coefficient) is
194              * top + 10 * left.
195              */
196             A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
197             B = ptr[-r->intra_types_stride];
198             C = ptr[-1];
199             pattern = A + B * (1 << 4) + C * (1 << 8);
200             for(k = 0; k < MODE2_PATTERNS_NUM; k++)
201                 if(pattern == rv40_aic_table_index[k])
202                     break;
203             if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
204                 AV_WN16(ptr, get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2));
205                 ptr += 2;
206                 j++;
207             }else{
208                 if(B != -1 && C != -1)
209                     v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
210                 else{ // tricky decoding
211                     v = 0;
212                     switch(C){
213                     case -1: // code 0 -> 1, 1 -> 0
214                         if(B < 2)
215                             v = get_bits1(gb) ^ 1;
216                         break;
217                     case  0:
218                     case  2: // code 0 -> 2, 1 -> 0
219                         v = (get_bits1(gb) ^ 1) << 1;
220                         break;
221                     }
222                 }
223                 *ptr++ = v;
224             }
225         }
226     }
227     return 0;
228 }
229 
230 /**
231  * Decode macroblock information.
232  */
rv40_decode_mb_info(RV34DecContext *r)233 static int rv40_decode_mb_info(RV34DecContext *r)
234 {
235     MpegEncContext *s = &r->s;
236     GetBitContext *gb = &s->gb;
237     int q, i;
238     int prev_type = 0;
239     int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
240 
241     if(!r->s.mb_skip_run) {
242         r->s.mb_skip_run = get_interleaved_ue_golomb(gb) + 1;
243         if(r->s.mb_skip_run > (unsigned)s->mb_num)
244             return -1;
245     }
246 
247     if(--r->s.mb_skip_run)
248          return RV34_MB_SKIP;
249 
250     if(r->avail_cache[6-4]){
251         int blocks[RV34_MB_TYPES] = {0};
252         int count = 0;
253         if(r->avail_cache[6-1])
254             blocks[r->mb_type[mb_pos - 1]]++;
255         blocks[r->mb_type[mb_pos - s->mb_stride]]++;
256         if(r->avail_cache[6-2])
257             blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
258         if(r->avail_cache[6-5])
259             blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
260         for(i = 0; i < RV34_MB_TYPES; i++){
261             if(blocks[i] > count){
262                 count = blocks[i];
263                 prev_type = i;
264                 if(count>1)
265                     break;
266             }
267         }
268     } else if (r->avail_cache[6-1])
269         prev_type = r->mb_type[mb_pos - 1];
270 
271     if(s->pict_type == AV_PICTURE_TYPE_P){
272         prev_type = block_num_to_ptype_vlc_num[prev_type];
273         q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
274         if(q < PBTYPE_ESCAPE)
275             return q;
276         q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
277         av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
278     }else{
279         prev_type = block_num_to_btype_vlc_num[prev_type];
280         q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
281         if(q < PBTYPE_ESCAPE)
282             return q;
283         q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
284         av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
285     }
286     return 0;
287 }
288 
289 enum RV40BlockPos{
290     POS_CUR,
291     POS_TOP,
292     POS_LEFT,
293     POS_BOTTOM,
294 };
295 
296 #define MASK_CUR          0x0001
297 #define MASK_RIGHT        0x0008
298 #define MASK_BOTTOM       0x0010
299 #define MASK_TOP          0x1000
300 #define MASK_Y_TOP_ROW    0x000F
301 #define MASK_Y_LAST_ROW   0xF000
302 #define MASK_Y_LEFT_COL   0x1111
303 #define MASK_Y_RIGHT_COL  0x8888
304 #define MASK_C_TOP_ROW    0x0003
305 #define MASK_C_LAST_ROW   0x000C
306 #define MASK_C_LEFT_COL   0x0005
307 #define MASK_C_RIGHT_COL  0x000A
308 
309 static const int neighbour_offs_x[4] = { 0,  0, -1, 0 };
310 static const int neighbour_offs_y[4] = { 0, -1,  0, 1 };
311 
rv40_adaptive_loop_filter(RV34DSPContext *rdsp, uint8_t *src, int stride, int dmode, int lim_q1, int lim_p1, int alpha, int beta, int beta2, int chroma, int edge, int dir)312 static void rv40_adaptive_loop_filter(RV34DSPContext *rdsp,
313                                       uint8_t *src, int stride, int dmode,
314                                       int lim_q1, int lim_p1,
315                                       int alpha, int beta, int beta2,
316                                       int chroma, int edge, int dir)
317 {
318     int filter_p1, filter_q1;
319     int strong;
320     int lims;
321 
322     strong = rdsp->rv40_loop_filter_strength[dir](src, stride, beta, beta2,
323                                                   edge, &filter_p1, &filter_q1);
324 
325     lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
326 
327     if (strong) {
328         rdsp->rv40_strong_loop_filter[dir](src, stride, alpha,
329                                            lims, dmode, chroma);
330     } else if (filter_p1 & filter_q1) {
331         rdsp->rv40_weak_loop_filter[dir](src, stride, 1, 1, alpha, beta,
332                                          lims, lim_q1, lim_p1);
333     } else if (filter_p1 | filter_q1) {
334         rdsp->rv40_weak_loop_filter[dir](src, stride, filter_p1, filter_q1,
335                                          alpha, beta, lims >> 1, lim_q1 >> 1,
336                                          lim_p1 >> 1);
337     }
338 }
339 
340 /**
341  * RV40 loop filtering function
342  */
rv40_loop_filter(RV34DecContext *r, int row)343 static void rv40_loop_filter(RV34DecContext *r, int row)
344 {
345     MpegEncContext *s = &r->s;
346     int mb_pos, mb_x;
347     int i, j, k;
348     uint8_t *Y, *C;
349     int alpha, beta, betaY, betaC;
350     int q;
351     int mbtype[4];   ///< current macroblock and its neighbours types
352     /**
353      * flags indicating that macroblock can be filtered with strong filter
354      * it is set only for intra coded MB and MB with DCs coded separately
355      */
356     int mb_strong[4];
357     int clip[4];     ///< MB filter clipping value calculated from filtering strength
358     /**
359      * coded block patterns for luma part of current macroblock and its neighbours
360      * Format:
361      * LSB corresponds to the top left block,
362      * each nibble represents one row of subblocks.
363      */
364     int cbp[4];
365     /**
366      * coded block patterns for chroma part of current macroblock and its neighbours
367      * Format is the same as for luma with two subblocks in a row.
368      */
369     int uvcbp[4][2];
370     /**
371      * This mask represents the pattern of luma subblocks that should be filtered
372      * in addition to the coded ones because they lie at the edge of
373      * 8x8 block with different enough motion vectors
374      */
375     unsigned mvmasks[4];
376 
377     mb_pos = row * s->mb_stride;
378     for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
379         int mbtype = s->current_picture_ptr->mb_type[mb_pos];
380         if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
381             r->cbp_luma  [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
382         if(IS_INTRA(mbtype))
383             r->cbp_chroma[mb_pos] = 0xFF;
384     }
385     mb_pos = row * s->mb_stride;
386     for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
387         int y_h_deblock, y_v_deblock;
388         int c_v_deblock[2], c_h_deblock[2];
389         int clip_left;
390         int avail[4];
391         unsigned y_to_deblock;
392         int c_to_deblock[2];
393 
394         q = s->current_picture_ptr->qscale_table[mb_pos];
395         alpha = rv40_alpha_tab[q];
396         beta  = rv40_beta_tab [q];
397         betaY = betaC = beta * 3;
398         if(s->width * s->height <= 176*144)
399             betaY += beta;
400 
401         avail[0] = 1;
402         avail[1] = row;
403         avail[2] = mb_x;
404         avail[3] = row < s->mb_height - 1;
405         for(i = 0; i < 4; i++){
406             if(avail[i]){
407                 int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
408                 mvmasks[i] = r->deblock_coefs[pos];
409                 mbtype [i] = s->current_picture_ptr->mb_type[pos];
410                 cbp    [i] = r->cbp_luma[pos];
411                 uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
412                 uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
413             }else{
414                 mvmasks[i] = 0;
415                 mbtype [i] = mbtype[0];
416                 cbp    [i] = 0;
417                 uvcbp[i][0] = uvcbp[i][1] = 0;
418             }
419             mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
420             clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
421         }
422         y_to_deblock =  mvmasks[POS_CUR]
423                      | (mvmasks[POS_BOTTOM] << 16);
424         /* This pattern contains bits signalling that horizontal edges of
425          * the current block can be filtered.
426          * That happens when either of adjacent subblocks is coded or lies on
427          * the edge of 8x8 blocks with motion vectors differing by more than
428          * 3/4 pel in any component (any edge orientation for some reason).
429          */
430         y_h_deblock =   y_to_deblock
431                     | ((cbp[POS_CUR]                           <<  4) & ~MASK_Y_TOP_ROW)
432                     | ((cbp[POS_TOP]        & MASK_Y_LAST_ROW) >> 12);
433         /* This pattern contains bits signalling that vertical edges of
434          * the current block can be filtered.
435          * That happens when either of adjacent subblocks is coded or lies on
436          * the edge of 8x8 blocks with motion vectors differing by more than
437          * 3/4 pel in any component (any edge orientation for some reason).
438          */
439         y_v_deblock =   y_to_deblock
440                     | ((cbp[POS_CUR]                      << 1) & ~MASK_Y_LEFT_COL)
441                     | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
442         if(!mb_x)
443             y_v_deblock &= ~MASK_Y_LEFT_COL;
444         if(!row)
445             y_h_deblock &= ~MASK_Y_TOP_ROW;
446         if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
447             y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
448         /* Calculating chroma patterns is similar and easier since there is
449          * no motion vector pattern for them.
450          */
451         for(i = 0; i < 2; i++){
452             c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
453             c_v_deblock[i] =   c_to_deblock[i]
454                            | ((uvcbp[POS_CUR] [i]                       << 1) & ~MASK_C_LEFT_COL)
455                            | ((uvcbp[POS_LEFT][i]   & MASK_C_RIGHT_COL) >> 1);
456             c_h_deblock[i] =   c_to_deblock[i]
457                            | ((uvcbp[POS_TOP][i]    & MASK_C_LAST_ROW)  >> 2)
458                            |  (uvcbp[POS_CUR][i]                        << 2);
459             if(!mb_x)
460                 c_v_deblock[i] &= ~MASK_C_LEFT_COL;
461             if(!row)
462                 c_h_deblock[i] &= ~MASK_C_TOP_ROW;
463             if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
464                 c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
465         }
466 
467         for(j = 0; j < 16; j += 4){
468             Y = s->current_picture_ptr->f->data[0] + mb_x*16 + (row*16 + j) * s->linesize;
469             for(i = 0; i < 4; i++, Y += 4){
470                 int ij = i + j;
471                 int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
472                 int dither = j ? ij : i*4;
473 
474                 // if bottom block is coded then we can filter its top edge
475                 // (or bottom edge of this block, which is the same)
476                 if(y_h_deblock & (MASK_BOTTOM << ij)){
477                     rv40_adaptive_loop_filter(&r->rdsp, Y+4*s->linesize,
478                                               s->linesize, dither,
479                                               y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
480                                               clip_cur, alpha, beta, betaY,
481                                               0, 0, 0);
482                 }
483                 // filter left block edge in ordinary mode (with low filtering strength)
484                 if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
485                     if(!i)
486                         clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
487                     else
488                         clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
489                     rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
490                                               clip_cur,
491                                               clip_left,
492                                               alpha, beta, betaY, 0, 0, 1);
493                 }
494                 // filter top edge of the current macroblock when filtering strength is high
495                 if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
496                     rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
497                                        clip_cur,
498                                        mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
499                                        alpha, beta, betaY, 0, 1, 0);
500                 }
501                 // filter left block edge in edge mode (with high filtering strength)
502                 if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
503                     clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
504                     rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
505                                        clip_cur,
506                                        clip_left,
507                                        alpha, beta, betaY, 0, 1, 1);
508                 }
509             }
510         }
511         for(k = 0; k < 2; k++){
512             for(j = 0; j < 2; j++){
513                 C = s->current_picture_ptr->f->data[k + 1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
514                 for(i = 0; i < 2; i++, C += 4){
515                     int ij = i + j*2;
516                     int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
517                     if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
518                         int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
519                         rv40_adaptive_loop_filter(&r->rdsp, C+4*s->uvlinesize, s->uvlinesize, i*8,
520                                            clip_bot,
521                                            clip_cur,
522                                            alpha, beta, betaC, 1, 0, 0);
523                     }
524                     if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
525                         if(!i)
526                             clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
527                         else
528                             clip_left = c_to_deblock[k]    & (MASK_CUR << (ij-1))  ? clip[POS_CUR]  : 0;
529                         rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
530                                            clip_cur,
531                                            clip_left,
532                                            alpha, beta, betaC, 1, 0, 1);
533                     }
534                     if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
535                         int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
536                         rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, i*8,
537                                            clip_cur,
538                                            clip_top,
539                                            alpha, beta, betaC, 1, 1, 0);
540                     }
541                     if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
542                         clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
543                         rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
544                                            clip_cur,
545                                            clip_left,
546                                            alpha, beta, betaC, 1, 1, 1);
547                     }
548                 }
549             }
550         }
551     }
552 }
553 
554 /**
555  * Initialize decoder.
556  */
rv40_decode_init(AVCodecContext *avctx)557 static av_cold int rv40_decode_init(AVCodecContext *avctx)
558 {
559     static AVOnce init_static_once = AV_ONCE_INIT;
560     RV34DecContext *r = avctx->priv_data;
561     int ret;
562 
563     r->rv30 = 0;
564     if ((ret = ff_rv34_decode_init(avctx)) < 0)
565         return ret;
566     r->parse_slice_header = rv40_parse_slice_header;
567     r->decode_intra_types = rv40_decode_intra_types;
568     r->decode_mb_info     = rv40_decode_mb_info;
569     r->loop_filter        = rv40_loop_filter;
570     r->luma_dc_quant_i = rv40_luma_dc_quant[0];
571     r->luma_dc_quant_p = rv40_luma_dc_quant[1];
572     ff_rv40dsp_init(&r->rdsp);
573     ff_thread_once(&init_static_once, rv40_init_tables);
574     return 0;
575 }
576 
577 const FFCodec ff_rv40_decoder = {
578     .p.name                = "rv40",
579     .p.long_name           = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
580     .p.type                = AVMEDIA_TYPE_VIDEO,
581     .p.id                  = AV_CODEC_ID_RV40,
582     .priv_data_size        = sizeof(RV34DecContext),
583     .init                  = rv40_decode_init,
584     .close                 = ff_rv34_decode_end,
585     FF_CODEC_DECODE_CB(ff_rv34_decode_frame),
586     .p.capabilities        = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
587                              AV_CODEC_CAP_FRAME_THREADS,
588     .flush                 = ff_mpeg_flush,
589     .p.pix_fmts            = (const enum AVPixelFormat[]) {
590         AV_PIX_FMT_YUV420P,
591         AV_PIX_FMT_NONE
592     },
593     .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_update_thread_context),
594     .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE |
595                              FF_CODEC_CAP_ALLOCATE_PROGRESS,
596 };
597