1 /*
2 * RV40 decoder
3 * Copyright (c) 2007 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * RV40 decoder
25 */
26
27 #include "config.h"
28
29 #include "libavutil/imgutils.h"
30 #include "libavutil/thread.h"
31
32 #include "avcodec.h"
33 #include "codec_internal.h"
34 #include "mpegutils.h"
35 #include "mpegvideo.h"
36 #include "mpegvideodec.h"
37 #include "golomb.h"
38
39 #include "rv34.h"
40 #include "rv40vlc2.h"
41 #include "rv40data.h"
42
43 static VLC aic_top_vlc;
44 static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
45 static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
46
rv40_init_table(VLC *vlc, unsigned *offset, int nb_bits, int nb_codes, const uint8_t (*tab)[2])47 static av_cold void rv40_init_table(VLC *vlc, unsigned *offset, int nb_bits,
48 int nb_codes, const uint8_t (*tab)[2])
49 {
50 static VLCElem vlc_buf[11776];
51
52 vlc->table = &vlc_buf[*offset];
53 vlc->table_allocated = 1 << nb_bits;
54 *offset += 1 << nb_bits;
55
56 ff_init_vlc_from_lengths(vlc, nb_bits, nb_codes,
57 &tab[0][1], 2, &tab[0][0], 2, 1,
58 0, INIT_VLC_USE_NEW_STATIC, NULL);
59 }
60
61 /**
62 * Initialize all tables.
63 */
rv40_init_tables(void)64 static av_cold void rv40_init_tables(void)
65 {
66 int i, offset = 0;
67 static VLCElem aic_mode2_table[11814];
68
69 rv40_init_table(&aic_top_vlc, &offset, AIC_TOP_BITS, AIC_TOP_SIZE,
70 rv40_aic_top_vlc_tab);
71 for(i = 0; i < AIC_MODE1_NUM; i++){
72 // Every tenth VLC table is empty
73 if((i % 10) == 9) continue;
74 rv40_init_table(&aic_mode1_vlc[i], &offset, AIC_MODE1_BITS,
75 AIC_MODE1_SIZE, aic_mode1_vlc_tabs[i]);
76 }
77 for (unsigned i = 0, offset = 0; i < AIC_MODE2_NUM; i++){
78 uint16_t syms[AIC_MODE2_SIZE];
79
80 for (int j = 0; j < AIC_MODE2_SIZE; j++) {
81 int first = aic_mode2_vlc_syms[i][j] >> 4;
82 int second = aic_mode2_vlc_syms[i][j] & 0xF;
83 if (HAVE_BIGENDIAN)
84 syms[j] = (first << 8) | second;
85 else
86 syms[j] = first | (second << 8);
87 }
88 aic_mode2_vlc[i].table = &aic_mode2_table[offset];
89 aic_mode2_vlc[i].table_allocated = FF_ARRAY_ELEMS(aic_mode2_table) - offset;
90 ff_init_vlc_from_lengths(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
91 aic_mode2_vlc_bits[i], 1,
92 syms, 2, 2, 0, INIT_VLC_STATIC_OVERLONG, NULL);
93 offset += aic_mode2_vlc[i].table_size;
94 }
95 for(i = 0; i < NUM_PTYPE_VLCS; i++){
96 rv40_init_table(&ptype_vlc[i], &offset, PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
97 ptype_vlc_tabs[i]);
98 }
99 for(i = 0; i < NUM_BTYPE_VLCS; i++){
100 rv40_init_table(&btype_vlc[i], &offset, BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
101 btype_vlc_tabs[i]);
102 }
103 }
104
105 /**
106 * Get stored dimension from bitstream.
107 *
108 * If the width/height is the standard one then it's coded as a 3-bit index.
109 * Otherwise it is coded as escaped 8-bit portions.
110 */
get_dimension(GetBitContext *gb, const int *dim)111 static int get_dimension(GetBitContext *gb, const int *dim)
112 {
113 int t = get_bits(gb, 3);
114 int val = dim[t];
115 if(val < 0)
116 val = dim[get_bits1(gb) - val];
117 if(!val){
118 do{
119 if (get_bits_left(gb) < 8)
120 return AVERROR_INVALIDDATA;
121 t = get_bits(gb, 8);
122 val += t << 2;
123 }while(t == 0xFF);
124 }
125 return val;
126 }
127
128 /**
129 * Get encoded picture size - usually this is called from rv40_parse_slice_header.
130 */
rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)131 static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
132 {
133 *w = get_dimension(gb, rv40_standard_widths);
134 *h = get_dimension(gb, rv40_standard_heights);
135 }
136
rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)137 static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
138 {
139 int mb_bits;
140 int w = r->s.width, h = r->s.height;
141 int mb_size;
142 int ret;
143
144 memset(si, 0, sizeof(SliceInfo));
145 if(get_bits1(gb))
146 return AVERROR_INVALIDDATA;
147 si->type = get_bits(gb, 2);
148 if(si->type == 1) si->type = 0;
149 si->quant = get_bits(gb, 5);
150 if(get_bits(gb, 2))
151 return AVERROR_INVALIDDATA;
152 si->vlc_set = get_bits(gb, 2);
153 skip_bits1(gb);
154 si->pts = get_bits(gb, 13);
155 if(!si->type || !get_bits1(gb))
156 rv40_parse_picture_size(gb, &w, &h);
157 if ((ret = av_image_check_size(w, h, 0, r->s.avctx)) < 0)
158 return ret;
159 si->width = w;
160 si->height = h;
161 mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
162 mb_bits = ff_rv34_get_start_offset(gb, mb_size);
163 si->start = get_bits(gb, mb_bits);
164
165 return 0;
166 }
167
168 /**
169 * Decode 4x4 intra types array.
170 */
rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)171 static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
172 {
173 MpegEncContext *s = &r->s;
174 int i, j, k, v;
175 int A, B, C;
176 int pattern;
177 int8_t *ptr;
178
179 for(i = 0; i < 4; i++, dst += r->intra_types_stride){
180 if(!i && s->first_slice_line){
181 pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
182 dst[0] = (pattern >> 2) & 2;
183 dst[1] = (pattern >> 1) & 2;
184 dst[2] = pattern & 2;
185 dst[3] = (pattern << 1) & 2;
186 continue;
187 }
188 ptr = dst;
189 for(j = 0; j < 4; j++){
190 /* Coefficients are read using VLC chosen by the prediction pattern
191 * The first one (used for retrieving a pair of coefficients) is
192 * constructed from the top, top right and left coefficients
193 * The second one (used for retrieving only one coefficient) is
194 * top + 10 * left.
195 */
196 A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
197 B = ptr[-r->intra_types_stride];
198 C = ptr[-1];
199 pattern = A + B * (1 << 4) + C * (1 << 8);
200 for(k = 0; k < MODE2_PATTERNS_NUM; k++)
201 if(pattern == rv40_aic_table_index[k])
202 break;
203 if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
204 AV_WN16(ptr, get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2));
205 ptr += 2;
206 j++;
207 }else{
208 if(B != -1 && C != -1)
209 v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
210 else{ // tricky decoding
211 v = 0;
212 switch(C){
213 case -1: // code 0 -> 1, 1 -> 0
214 if(B < 2)
215 v = get_bits1(gb) ^ 1;
216 break;
217 case 0:
218 case 2: // code 0 -> 2, 1 -> 0
219 v = (get_bits1(gb) ^ 1) << 1;
220 break;
221 }
222 }
223 *ptr++ = v;
224 }
225 }
226 }
227 return 0;
228 }
229
230 /**
231 * Decode macroblock information.
232 */
rv40_decode_mb_info(RV34DecContext *r)233 static int rv40_decode_mb_info(RV34DecContext *r)
234 {
235 MpegEncContext *s = &r->s;
236 GetBitContext *gb = &s->gb;
237 int q, i;
238 int prev_type = 0;
239 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
240
241 if(!r->s.mb_skip_run) {
242 r->s.mb_skip_run = get_interleaved_ue_golomb(gb) + 1;
243 if(r->s.mb_skip_run > (unsigned)s->mb_num)
244 return -1;
245 }
246
247 if(--r->s.mb_skip_run)
248 return RV34_MB_SKIP;
249
250 if(r->avail_cache[6-4]){
251 int blocks[RV34_MB_TYPES] = {0};
252 int count = 0;
253 if(r->avail_cache[6-1])
254 blocks[r->mb_type[mb_pos - 1]]++;
255 blocks[r->mb_type[mb_pos - s->mb_stride]]++;
256 if(r->avail_cache[6-2])
257 blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
258 if(r->avail_cache[6-5])
259 blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
260 for(i = 0; i < RV34_MB_TYPES; i++){
261 if(blocks[i] > count){
262 count = blocks[i];
263 prev_type = i;
264 if(count>1)
265 break;
266 }
267 }
268 } else if (r->avail_cache[6-1])
269 prev_type = r->mb_type[mb_pos - 1];
270
271 if(s->pict_type == AV_PICTURE_TYPE_P){
272 prev_type = block_num_to_ptype_vlc_num[prev_type];
273 q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
274 if(q < PBTYPE_ESCAPE)
275 return q;
276 q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
277 av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
278 }else{
279 prev_type = block_num_to_btype_vlc_num[prev_type];
280 q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
281 if(q < PBTYPE_ESCAPE)
282 return q;
283 q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
284 av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
285 }
286 return 0;
287 }
288
289 enum RV40BlockPos{
290 POS_CUR,
291 POS_TOP,
292 POS_LEFT,
293 POS_BOTTOM,
294 };
295
296 #define MASK_CUR 0x0001
297 #define MASK_RIGHT 0x0008
298 #define MASK_BOTTOM 0x0010
299 #define MASK_TOP 0x1000
300 #define MASK_Y_TOP_ROW 0x000F
301 #define MASK_Y_LAST_ROW 0xF000
302 #define MASK_Y_LEFT_COL 0x1111
303 #define MASK_Y_RIGHT_COL 0x8888
304 #define MASK_C_TOP_ROW 0x0003
305 #define MASK_C_LAST_ROW 0x000C
306 #define MASK_C_LEFT_COL 0x0005
307 #define MASK_C_RIGHT_COL 0x000A
308
309 static const int neighbour_offs_x[4] = { 0, 0, -1, 0 };
310 static const int neighbour_offs_y[4] = { 0, -1, 0, 1 };
311
rv40_adaptive_loop_filter(RV34DSPContext *rdsp, uint8_t *src, int stride, int dmode, int lim_q1, int lim_p1, int alpha, int beta, int beta2, int chroma, int edge, int dir)312 static void rv40_adaptive_loop_filter(RV34DSPContext *rdsp,
313 uint8_t *src, int stride, int dmode,
314 int lim_q1, int lim_p1,
315 int alpha, int beta, int beta2,
316 int chroma, int edge, int dir)
317 {
318 int filter_p1, filter_q1;
319 int strong;
320 int lims;
321
322 strong = rdsp->rv40_loop_filter_strength[dir](src, stride, beta, beta2,
323 edge, &filter_p1, &filter_q1);
324
325 lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
326
327 if (strong) {
328 rdsp->rv40_strong_loop_filter[dir](src, stride, alpha,
329 lims, dmode, chroma);
330 } else if (filter_p1 & filter_q1) {
331 rdsp->rv40_weak_loop_filter[dir](src, stride, 1, 1, alpha, beta,
332 lims, lim_q1, lim_p1);
333 } else if (filter_p1 | filter_q1) {
334 rdsp->rv40_weak_loop_filter[dir](src, stride, filter_p1, filter_q1,
335 alpha, beta, lims >> 1, lim_q1 >> 1,
336 lim_p1 >> 1);
337 }
338 }
339
340 /**
341 * RV40 loop filtering function
342 */
rv40_loop_filter(RV34DecContext *r, int row)343 static void rv40_loop_filter(RV34DecContext *r, int row)
344 {
345 MpegEncContext *s = &r->s;
346 int mb_pos, mb_x;
347 int i, j, k;
348 uint8_t *Y, *C;
349 int alpha, beta, betaY, betaC;
350 int q;
351 int mbtype[4]; ///< current macroblock and its neighbours types
352 /**
353 * flags indicating that macroblock can be filtered with strong filter
354 * it is set only for intra coded MB and MB with DCs coded separately
355 */
356 int mb_strong[4];
357 int clip[4]; ///< MB filter clipping value calculated from filtering strength
358 /**
359 * coded block patterns for luma part of current macroblock and its neighbours
360 * Format:
361 * LSB corresponds to the top left block,
362 * each nibble represents one row of subblocks.
363 */
364 int cbp[4];
365 /**
366 * coded block patterns for chroma part of current macroblock and its neighbours
367 * Format is the same as for luma with two subblocks in a row.
368 */
369 int uvcbp[4][2];
370 /**
371 * This mask represents the pattern of luma subblocks that should be filtered
372 * in addition to the coded ones because they lie at the edge of
373 * 8x8 block with different enough motion vectors
374 */
375 unsigned mvmasks[4];
376
377 mb_pos = row * s->mb_stride;
378 for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
379 int mbtype = s->current_picture_ptr->mb_type[mb_pos];
380 if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
381 r->cbp_luma [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
382 if(IS_INTRA(mbtype))
383 r->cbp_chroma[mb_pos] = 0xFF;
384 }
385 mb_pos = row * s->mb_stride;
386 for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
387 int y_h_deblock, y_v_deblock;
388 int c_v_deblock[2], c_h_deblock[2];
389 int clip_left;
390 int avail[4];
391 unsigned y_to_deblock;
392 int c_to_deblock[2];
393
394 q = s->current_picture_ptr->qscale_table[mb_pos];
395 alpha = rv40_alpha_tab[q];
396 beta = rv40_beta_tab [q];
397 betaY = betaC = beta * 3;
398 if(s->width * s->height <= 176*144)
399 betaY += beta;
400
401 avail[0] = 1;
402 avail[1] = row;
403 avail[2] = mb_x;
404 avail[3] = row < s->mb_height - 1;
405 for(i = 0; i < 4; i++){
406 if(avail[i]){
407 int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
408 mvmasks[i] = r->deblock_coefs[pos];
409 mbtype [i] = s->current_picture_ptr->mb_type[pos];
410 cbp [i] = r->cbp_luma[pos];
411 uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
412 uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
413 }else{
414 mvmasks[i] = 0;
415 mbtype [i] = mbtype[0];
416 cbp [i] = 0;
417 uvcbp[i][0] = uvcbp[i][1] = 0;
418 }
419 mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
420 clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
421 }
422 y_to_deblock = mvmasks[POS_CUR]
423 | (mvmasks[POS_BOTTOM] << 16);
424 /* This pattern contains bits signalling that horizontal edges of
425 * the current block can be filtered.
426 * That happens when either of adjacent subblocks is coded or lies on
427 * the edge of 8x8 blocks with motion vectors differing by more than
428 * 3/4 pel in any component (any edge orientation for some reason).
429 */
430 y_h_deblock = y_to_deblock
431 | ((cbp[POS_CUR] << 4) & ~MASK_Y_TOP_ROW)
432 | ((cbp[POS_TOP] & MASK_Y_LAST_ROW) >> 12);
433 /* This pattern contains bits signalling that vertical edges of
434 * the current block can be filtered.
435 * That happens when either of adjacent subblocks is coded or lies on
436 * the edge of 8x8 blocks with motion vectors differing by more than
437 * 3/4 pel in any component (any edge orientation for some reason).
438 */
439 y_v_deblock = y_to_deblock
440 | ((cbp[POS_CUR] << 1) & ~MASK_Y_LEFT_COL)
441 | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
442 if(!mb_x)
443 y_v_deblock &= ~MASK_Y_LEFT_COL;
444 if(!row)
445 y_h_deblock &= ~MASK_Y_TOP_ROW;
446 if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
447 y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
448 /* Calculating chroma patterns is similar and easier since there is
449 * no motion vector pattern for them.
450 */
451 for(i = 0; i < 2; i++){
452 c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
453 c_v_deblock[i] = c_to_deblock[i]
454 | ((uvcbp[POS_CUR] [i] << 1) & ~MASK_C_LEFT_COL)
455 | ((uvcbp[POS_LEFT][i] & MASK_C_RIGHT_COL) >> 1);
456 c_h_deblock[i] = c_to_deblock[i]
457 | ((uvcbp[POS_TOP][i] & MASK_C_LAST_ROW) >> 2)
458 | (uvcbp[POS_CUR][i] << 2);
459 if(!mb_x)
460 c_v_deblock[i] &= ~MASK_C_LEFT_COL;
461 if(!row)
462 c_h_deblock[i] &= ~MASK_C_TOP_ROW;
463 if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
464 c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
465 }
466
467 for(j = 0; j < 16; j += 4){
468 Y = s->current_picture_ptr->f->data[0] + mb_x*16 + (row*16 + j) * s->linesize;
469 for(i = 0; i < 4; i++, Y += 4){
470 int ij = i + j;
471 int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
472 int dither = j ? ij : i*4;
473
474 // if bottom block is coded then we can filter its top edge
475 // (or bottom edge of this block, which is the same)
476 if(y_h_deblock & (MASK_BOTTOM << ij)){
477 rv40_adaptive_loop_filter(&r->rdsp, Y+4*s->linesize,
478 s->linesize, dither,
479 y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
480 clip_cur, alpha, beta, betaY,
481 0, 0, 0);
482 }
483 // filter left block edge in ordinary mode (with low filtering strength)
484 if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
485 if(!i)
486 clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
487 else
488 clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
489 rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
490 clip_cur,
491 clip_left,
492 alpha, beta, betaY, 0, 0, 1);
493 }
494 // filter top edge of the current macroblock when filtering strength is high
495 if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
496 rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
497 clip_cur,
498 mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
499 alpha, beta, betaY, 0, 1, 0);
500 }
501 // filter left block edge in edge mode (with high filtering strength)
502 if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
503 clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
504 rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
505 clip_cur,
506 clip_left,
507 alpha, beta, betaY, 0, 1, 1);
508 }
509 }
510 }
511 for(k = 0; k < 2; k++){
512 for(j = 0; j < 2; j++){
513 C = s->current_picture_ptr->f->data[k + 1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
514 for(i = 0; i < 2; i++, C += 4){
515 int ij = i + j*2;
516 int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
517 if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
518 int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
519 rv40_adaptive_loop_filter(&r->rdsp, C+4*s->uvlinesize, s->uvlinesize, i*8,
520 clip_bot,
521 clip_cur,
522 alpha, beta, betaC, 1, 0, 0);
523 }
524 if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
525 if(!i)
526 clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
527 else
528 clip_left = c_to_deblock[k] & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
529 rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
530 clip_cur,
531 clip_left,
532 alpha, beta, betaC, 1, 0, 1);
533 }
534 if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
535 int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
536 rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, i*8,
537 clip_cur,
538 clip_top,
539 alpha, beta, betaC, 1, 1, 0);
540 }
541 if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
542 clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
543 rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
544 clip_cur,
545 clip_left,
546 alpha, beta, betaC, 1, 1, 1);
547 }
548 }
549 }
550 }
551 }
552 }
553
554 /**
555 * Initialize decoder.
556 */
rv40_decode_init(AVCodecContext *avctx)557 static av_cold int rv40_decode_init(AVCodecContext *avctx)
558 {
559 static AVOnce init_static_once = AV_ONCE_INIT;
560 RV34DecContext *r = avctx->priv_data;
561 int ret;
562
563 r->rv30 = 0;
564 if ((ret = ff_rv34_decode_init(avctx)) < 0)
565 return ret;
566 r->parse_slice_header = rv40_parse_slice_header;
567 r->decode_intra_types = rv40_decode_intra_types;
568 r->decode_mb_info = rv40_decode_mb_info;
569 r->loop_filter = rv40_loop_filter;
570 r->luma_dc_quant_i = rv40_luma_dc_quant[0];
571 r->luma_dc_quant_p = rv40_luma_dc_quant[1];
572 ff_rv40dsp_init(&r->rdsp);
573 ff_thread_once(&init_static_once, rv40_init_tables);
574 return 0;
575 }
576
577 const FFCodec ff_rv40_decoder = {
578 .p.name = "rv40",
579 .p.long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
580 .p.type = AVMEDIA_TYPE_VIDEO,
581 .p.id = AV_CODEC_ID_RV40,
582 .priv_data_size = sizeof(RV34DecContext),
583 .init = rv40_decode_init,
584 .close = ff_rv34_decode_end,
585 FF_CODEC_DECODE_CB(ff_rv34_decode_frame),
586 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
587 AV_CODEC_CAP_FRAME_THREADS,
588 .flush = ff_mpeg_flush,
589 .p.pix_fmts = (const enum AVPixelFormat[]) {
590 AV_PIX_FMT_YUV420P,
591 AV_PIX_FMT_NONE
592 },
593 .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_update_thread_context),
594 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
595 FF_CODEC_CAP_ALLOCATE_PROGRESS,
596 };
597