1 /*
2  * QCELP decoder
3  * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * QCELP decoder
25  * @author Reynaldo H. Verdejo Pinochet
26  * @remark FFmpeg merging spearheaded by Kenan Gillet
27  * @remark Development mentored by Benjamin Larson
28  */
29 
30 #include <stddef.h>
31 
32 #include "libavutil/avassert.h"
33 #include "libavutil/channel_layout.h"
34 #include "libavutil/float_dsp.h"
35 #include "avcodec.h"
36 #include "codec_internal.h"
37 #include "internal.h"
38 #include "get_bits.h"
39 #include "qcelpdata.h"
40 #include "celp_filters.h"
41 #include "acelp_filters.h"
42 #include "acelp_vectors.h"
43 #include "lsp.h"
44 
45 typedef enum {
46     I_F_Q = -1,    /**< insufficient frame quality */
47     SILENCE,
48     RATE_OCTAVE,
49     RATE_QUARTER,
50     RATE_HALF,
51     RATE_FULL
52 } qcelp_packet_rate;
53 
54 typedef struct QCELPContext {
55     GetBitContext     gb;
56     qcelp_packet_rate bitrate;
57     QCELPFrame        frame;    /**< unpacked data frame */
58 
59     uint8_t  erasure_count;
60     uint8_t  octave_count;      /**< count the consecutive RATE_OCTAVE frames */
61     float    prev_lspf[10];
62     float    predictor_lspf[10];/**< LSP predictor for RATE_OCTAVE and I_F_Q */
63     float    pitch_synthesis_filter_mem[303];
64     float    pitch_pre_filter_mem[303];
65     float    rnd_fir_filter_mem[180];
66     float    formant_mem[170];
67     float    last_codebook_gain;
68     int      prev_g1[2];
69     int      prev_bitrate;
70     float    pitch_gain[4];
71     uint8_t  pitch_lag[4];
72     uint16_t first16bits;
73     uint8_t  warned_buf_mismatch_bitrate;
74 
75     /* postfilter */
76     float    postfilter_synth_mem[10];
77     float    postfilter_agc_mem;
78     float    postfilter_tilt_mem;
79 } QCELPContext;
80 
81 /**
82  * Initialize the speech codec according to the specification.
83  *
84  * TIA/EIA/IS-733 2.4.9
85  */
qcelp_decode_init(AVCodecContext *avctx)86 static av_cold int qcelp_decode_init(AVCodecContext *avctx)
87 {
88     QCELPContext *q = avctx->priv_data;
89     int i;
90 
91     av_channel_layout_uninit(&avctx->ch_layout);
92     avctx->ch_layout      = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO;
93     avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
94 
95     for (i = 0; i < 10; i++)
96         q->prev_lspf[i] = (i + 1) / 11.0;
97 
98     return 0;
99 }
100 
101 /**
102  * Decode the 10 quantized LSP frequencies from the LSPV/LSP
103  * transmission codes of any bitrate and check for badly received packets.
104  *
105  * @param q the context
106  * @param lspf line spectral pair frequencies
107  *
108  * @return 0 on success, -1 if the packet is badly received
109  *
110  * TIA/EIA/IS-733 2.4.3.2.6.2-2, 2.4.8.7.3
111  */
decode_lspf(QCELPContext *q, float *lspf)112 static int decode_lspf(QCELPContext *q, float *lspf)
113 {
114     int i;
115     float tmp_lspf, smooth, erasure_coeff;
116     const float *predictors;
117 
118     if (q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q) {
119         predictors = q->prev_bitrate != RATE_OCTAVE &&
120                      q->prev_bitrate != I_F_Q ? q->prev_lspf
121                                               : q->predictor_lspf;
122 
123         if (q->bitrate == RATE_OCTAVE) {
124             q->octave_count++;
125 
126             for (i = 0; i < 10; i++) {
127                 q->predictor_lspf[i] =
128                              lspf[i] = (q->frame.lspv[i] ?  QCELP_LSP_SPREAD_FACTOR
129                                                          : -QCELP_LSP_SPREAD_FACTOR) +
130                                         predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR   +
131                                         (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR) / 11);
132             }
133             smooth = q->octave_count < 10 ? .875 : 0.1;
134         } else {
135             erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
136 
137             av_assert2(q->bitrate == I_F_Q);
138 
139             if (q->erasure_count > 1)
140                 erasure_coeff *= q->erasure_count < 4 ? 0.9 : 0.7;
141 
142             for (i = 0; i < 10; i++) {
143                 q->predictor_lspf[i] =
144                              lspf[i] = (i + 1) * (1 - erasure_coeff) / 11 +
145                                        erasure_coeff * predictors[i];
146             }
147             smooth = 0.125;
148         }
149 
150         // Check the stability of the LSP frequencies.
151         lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
152         for (i = 1; i < 10; i++)
153             lspf[i] = FFMAX(lspf[i], lspf[i - 1] + QCELP_LSP_SPREAD_FACTOR);
154 
155         lspf[9] = FFMIN(lspf[9], 1.0 - QCELP_LSP_SPREAD_FACTOR);
156         for (i = 9; i > 0; i--)
157             lspf[i - 1] = FFMIN(lspf[i - 1], lspf[i] - QCELP_LSP_SPREAD_FACTOR);
158 
159         // Low-pass filter the LSP frequencies.
160         ff_weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0 - smooth, 10);
161     } else {
162         q->octave_count = 0;
163 
164         tmp_lspf = 0.0;
165         for (i = 0; i < 5; i++) {
166             lspf[2 * i + 0] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][0] * 0.0001;
167             lspf[2 * i + 1] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][1] * 0.0001;
168         }
169 
170         // Check for badly received packets.
171         if (q->bitrate == RATE_QUARTER) {
172             if (lspf[9] <= .70 || lspf[9] >= .97)
173                 return -1;
174             for (i = 3; i < 10; i++)
175                 if (fabs(lspf[i] - lspf[i - 2]) < .08)
176                     return -1;
177         } else {
178             if (lspf[9] <= .66 || lspf[9] >= .985)
179                 return -1;
180             for (i = 4; i < 10; i++)
181                 if (fabs(lspf[i] - lspf[i - 4]) < .0931)
182                     return -1;
183         }
184     }
185     return 0;
186 }
187 
188 /**
189  * Convert codebook transmission codes to GAIN and INDEX.
190  *
191  * @param q the context
192  * @param gain array holding the decoded gain
193  *
194  * TIA/EIA/IS-733 2.4.6.2
195  */
decode_gain_and_index(QCELPContext *q, float *gain)196 static void decode_gain_and_index(QCELPContext *q, float *gain)
197 {
198     int i, subframes_count, g1[16];
199     float slope;
200 
201     if (q->bitrate >= RATE_QUARTER) {
202         switch (q->bitrate) {
203         case RATE_FULL: subframes_count = 16; break;
204         case RATE_HALF: subframes_count =  4; break;
205         default:        subframes_count =  5;
206         }
207         for (i = 0; i < subframes_count; i++) {
208             g1[i] = 4 * q->frame.cbgain[i];
209             if (q->bitrate == RATE_FULL && !((i + 1) & 3)) {
210                 g1[i] += av_clip((g1[i - 1] + g1[i - 2] + g1[i - 3]) / 3 - 6, 0, 32);
211             }
212 
213             gain[i] = qcelp_g12ga[g1[i]];
214 
215             if (q->frame.cbsign[i]) {
216                 gain[i] = -gain[i];
217                 q->frame.cindex[i] = (q->frame.cindex[i] - 89) & 127;
218             }
219         }
220 
221         q->prev_g1[0]         = g1[i - 2];
222         q->prev_g1[1]         = g1[i - 1];
223         q->last_codebook_gain = qcelp_g12ga[g1[i - 1]];
224 
225         if (q->bitrate == RATE_QUARTER) {
226             // Provide smoothing of the unvoiced excitation energy.
227             gain[7] =       gain[4];
228             gain[6] = 0.4 * gain[3] + 0.6 * gain[4];
229             gain[5] =       gain[3];
230             gain[4] = 0.8 * gain[2] + 0.2 * gain[3];
231             gain[3] = 0.2 * gain[1] + 0.8 * gain[2];
232             gain[2] =       gain[1];
233             gain[1] = 0.6 * gain[0] + 0.4 * gain[1];
234         }
235     } else if (q->bitrate != SILENCE) {
236         if (q->bitrate == RATE_OCTAVE) {
237             g1[0] = 2 * q->frame.cbgain[0] +
238                     av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54);
239             subframes_count = 8;
240         } else {
241             av_assert2(q->bitrate == I_F_Q);
242 
243             g1[0] = q->prev_g1[1];
244             switch (q->erasure_count) {
245             case 1 : break;
246             case 2 : g1[0] -= 1; break;
247             case 3 : g1[0] -= 2; break;
248             default: g1[0] -= 6;
249             }
250             if (g1[0] < 0)
251                 g1[0] = 0;
252             subframes_count = 4;
253         }
254         // This interpolation is done to produce smoother background noise.
255         slope = 0.5 * (qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count;
256         for (i = 1; i <= subframes_count; i++)
257                 gain[i - 1] = q->last_codebook_gain + slope * i;
258 
259         q->last_codebook_gain = gain[i - 2];
260         q->prev_g1[0]         = q->prev_g1[1];
261         q->prev_g1[1]         = g1[0];
262     }
263 }
264 
265 /**
266  * If the received packet is Rate 1/4 a further sanity check is made of the
267  * codebook gain.
268  *
269  * @param cbgain the unpacked cbgain array
270  * @return -1 if the sanity check fails, 0 otherwise
271  *
272  * TIA/EIA/IS-733 2.4.8.7.3
273  */
codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)274 static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
275 {
276     int i, diff, prev_diff = 0;
277 
278     for (i = 1; i < 5; i++) {
279         diff = cbgain[i] - cbgain[i-1];
280         if (FFABS(diff) > 10)
281             return -1;
282         else if (FFABS(diff - prev_diff) > 12)
283             return -1;
284         prev_diff = diff;
285     }
286     return 0;
287 }
288 
289 /**
290  * Compute the scaled codebook vector Cdn From INDEX and GAIN
291  * for all rates.
292  *
293  * The specification lacks some information here.
294  *
295  * TIA/EIA/IS-733 has an omission on the codebook index determination
296  * formula for RATE_FULL and RATE_HALF frames at section 2.4.8.1.1. It says
297  * you have to subtract the decoded index parameter from the given scaled
298  * codebook vector index 'n' to get the desired circular codebook index, but
299  * it does not mention that you have to clamp 'n' to [0-9] in order to get
300  * RI-compliant results.
301  *
302  * The reason for this mistake seems to be the fact they forgot to mention you
303  * have to do these calculations per codebook subframe and adjust given
304  * equation values accordingly.
305  *
306  * @param q the context
307  * @param gain array holding the 4 pitch subframe gain values
308  * @param cdn_vector array for the generated scaled codebook vector
309  */
compute_svector(QCELPContext *q, const float *gain, float *cdn_vector)310 static void compute_svector(QCELPContext *q, const float *gain,
311                             float *cdn_vector)
312 {
313     int i, j, k;
314     uint16_t cbseed, cindex;
315     float *rnd, tmp_gain, fir_filter_value;
316 
317     switch (q->bitrate) {
318     case RATE_FULL:
319         for (i = 0; i < 16; i++) {
320             tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
321             cindex   = -q->frame.cindex[i];
322             for (j = 0; j < 10; j++)
323                 *cdn_vector++ = tmp_gain *
324                                 qcelp_rate_full_codebook[cindex++ & 127];
325         }
326         break;
327     case RATE_HALF:
328         for (i = 0; i < 4; i++) {
329             tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO;
330             cindex   = -q->frame.cindex[i];
331             for (j = 0; j < 40; j++)
332                 *cdn_vector++ = tmp_gain *
333                                 qcelp_rate_half_codebook[cindex++ & 127];
334         }
335         break;
336     case RATE_QUARTER:
337         cbseed = (0x0003 & q->frame.lspv[4]) << 14 |
338                  (0x003F & q->frame.lspv[3]) <<  8 |
339                  (0x0060 & q->frame.lspv[2]) <<  1 |
340                  (0x0007 & q->frame.lspv[1]) <<  3 |
341                  (0x0038 & q->frame.lspv[0]) >>  3;
342         rnd    = q->rnd_fir_filter_mem + 20;
343         for (i = 0; i < 8; i++) {
344             tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
345             for (k = 0; k < 20; k++) {
346                 cbseed = 521 * cbseed + 259;
347                 *rnd   = (int16_t) cbseed;
348 
349                     // FIR filter
350                 fir_filter_value = 0.0;
351                 for (j = 0; j < 10; j++)
352                     fir_filter_value += qcelp_rnd_fir_coefs[j] *
353                                         (rnd[-j] + rnd[-20+j]);
354 
355                 fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
356                 *cdn_vector++     = tmp_gain * fir_filter_value;
357                 rnd++;
358             }
359         }
360         memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160,
361                20 * sizeof(float));
362         break;
363     case RATE_OCTAVE:
364         cbseed = q->first16bits;
365         for (i = 0; i < 8; i++) {
366             tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
367             for (j = 0; j < 20; j++) {
368                 cbseed        = 521 * cbseed + 259;
369                 *cdn_vector++ = tmp_gain * (int16_t) cbseed;
370             }
371         }
372         break;
373     case I_F_Q:
374         cbseed = -44; // random codebook index
375         for (i = 0; i < 4; i++) {
376             tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
377             for (j = 0; j < 40; j++)
378                 *cdn_vector++ = tmp_gain *
379                                 qcelp_rate_full_codebook[cbseed++ & 127];
380         }
381         break;
382     case SILENCE:
383         memset(cdn_vector, 0, 160 * sizeof(float));
384         break;
385     }
386 }
387 
388 /**
389  * Apply generic gain control.
390  *
391  * @param v_out output vector
392  * @param v_in gain-controlled vector
393  * @param v_ref vector to control gain of
394  *
395  * TIA/EIA/IS-733 2.4.8.3, 2.4.8.6
396  */
apply_gain_ctrl(float *v_out, const float *v_ref, const float *v_in)397 static void apply_gain_ctrl(float *v_out, const float *v_ref, const float *v_in)
398 {
399     int i;
400 
401     for (i = 0; i < 160; i += 40) {
402         float res = avpriv_scalarproduct_float_c(v_ref + i, v_ref + i, 40);
403         ff_scale_vector_to_given_sum_of_squares(v_out + i, v_in + i, res, 40);
404     }
405 }
406 
407 /**
408  * Apply filter in pitch-subframe steps.
409  *
410  * @param memory buffer for the previous state of the filter
411  *        - must be able to contain 303 elements
412  *        - the 143 first elements are from the previous state
413  *        - the next 160 are for output
414  * @param v_in input filter vector
415  * @param gain per-subframe gain array, each element is between 0.0 and 2.0
416  * @param lag per-subframe lag array, each element is
417  *        - between 16 and 143 if its corresponding pfrac is 0,
418  *        - between 16 and 139 otherwise
419  * @param pfrac per-subframe boolean array, 1 if the lag is fractional, 0
420  *        otherwise
421  *
422  * @return filter output vector
423  */
do_pitchfilter(float memory[303], const float v_in[160], const float gain[4], const uint8_t *lag, const uint8_t pfrac[4])424 static const float *do_pitchfilter(float memory[303], const float v_in[160],
425                                    const float gain[4], const uint8_t *lag,
426                                    const uint8_t pfrac[4])
427 {
428     int i, j;
429     float *v_lag, *v_out;
430     const float *v_len;
431 
432     v_out = memory + 143; // Output vector starts at memory[143].
433 
434     for (i = 0; i < 4; i++) {
435         if (gain[i]) {
436             v_lag = memory + 143 + 40 * i - lag[i];
437             for (v_len = v_in + 40; v_in < v_len; v_in++) {
438                 if (pfrac[i]) { // If it is a fractional lag...
439                     for (j = 0, *v_out = 0.0; j < 4; j++)
440                         *v_out += qcelp_hammsinc_table[j] *
441                                   (v_lag[j - 4] + v_lag[3 - j]);
442                 } else
443                     *v_out = *v_lag;
444 
445                 *v_out = *v_in + gain[i] * *v_out;
446 
447                 v_lag++;
448                 v_out++;
449             }
450         } else {
451             memcpy(v_out, v_in, 40 * sizeof(float));
452             v_in  += 40;
453             v_out += 40;
454         }
455     }
456 
457     memmove(memory, memory + 160, 143 * sizeof(float));
458     return memory + 143;
459 }
460 
461 /**
462  * Apply pitch synthesis filter and pitch prefilter to the scaled codebook vector.
463  * TIA/EIA/IS-733 2.4.5.2, 2.4.8.7.2
464  *
465  * @param q the context
466  * @param cdn_vector the scaled codebook vector
467  */
apply_pitch_filters(QCELPContext *q, float *cdn_vector)468 static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
469 {
470     int i;
471     const float *v_synthesis_filtered, *v_pre_filtered;
472 
473     if (q->bitrate >= RATE_HALF || q->bitrate == SILENCE ||
474         (q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF))) {
475 
476         if (q->bitrate >= RATE_HALF) {
477             // Compute gain & lag for the whole frame.
478             for (i = 0; i < 4; i++) {
479                 q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0;
480 
481                 q->pitch_lag[i] = q->frame.plag[i] + 16;
482             }
483         } else {
484             float max_pitch_gain;
485 
486             if (q->bitrate == I_F_Q) {
487                   if (q->erasure_count < 3)
488                       max_pitch_gain = 0.9 - 0.3 * (q->erasure_count - 1);
489                   else
490                       max_pitch_gain = 0.0;
491             } else {
492                 av_assert2(q->bitrate == SILENCE);
493                 max_pitch_gain = 1.0;
494             }
495             for (i = 0; i < 4; i++)
496                 q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain);
497 
498             memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac));
499         }
500 
501         // pitch synthesis filter
502         v_synthesis_filtered = do_pitchfilter(q->pitch_synthesis_filter_mem,
503                                               cdn_vector, q->pitch_gain,
504                                               q->pitch_lag, q->frame.pfrac);
505 
506         // pitch prefilter update
507         for (i = 0; i < 4; i++)
508             q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0);
509 
510         v_pre_filtered       = do_pitchfilter(q->pitch_pre_filter_mem,
511                                               v_synthesis_filtered,
512                                               q->pitch_gain, q->pitch_lag,
513                                               q->frame.pfrac);
514 
515         apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered);
516     } else {
517         memcpy(q->pitch_synthesis_filter_mem,
518                cdn_vector + 17, 143 * sizeof(float));
519         memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float));
520         memset(q->pitch_gain, 0, sizeof(q->pitch_gain));
521         memset(q->pitch_lag,  0, sizeof(q->pitch_lag));
522     }
523 }
524 
525 /**
526  * Reconstruct LPC coefficients from the line spectral pair frequencies
527  * and perform bandwidth expansion.
528  *
529  * @param lspf line spectral pair frequencies
530  * @param lpc linear predictive coding coefficients
531  *
532  * @note: bandwidth_expansion_coeff could be precalculated into a table
533  *        but it seems to be slower on x86
534  *
535  * TIA/EIA/IS-733 2.4.3.3.5
536  */
lspf2lpc(const float *lspf, float *lpc)537 static void lspf2lpc(const float *lspf, float *lpc)
538 {
539     double lsp[10];
540     double bandwidth_expansion_coeff = QCELP_BANDWIDTH_EXPANSION_COEFF;
541     int i;
542 
543     for (i = 0; i < 10; i++)
544         lsp[i] = cos(M_PI * lspf[i]);
545 
546     ff_acelp_lspd2lpc(lsp, lpc, 5);
547 
548     for (i = 0; i < 10; i++) {
549         lpc[i]                    *= bandwidth_expansion_coeff;
550         bandwidth_expansion_coeff *= QCELP_BANDWIDTH_EXPANSION_COEFF;
551     }
552 }
553 
554 /**
555  * Interpolate LSP frequencies and compute LPC coefficients
556  * for a given bitrate & pitch subframe.
557  *
558  * TIA/EIA/IS-733 2.4.3.3.4, 2.4.8.7.2
559  *
560  * @param q the context
561  * @param curr_lspf LSP frequencies vector of the current frame
562  * @param lpc float vector for the resulting LPC
563  * @param subframe_num frame number in decoded stream
564  */
interpolate_lpc(QCELPContext *q, const float *curr_lspf, float *lpc, const int subframe_num)565 static void interpolate_lpc(QCELPContext *q, const float *curr_lspf,
566                             float *lpc, const int subframe_num)
567 {
568     float interpolated_lspf[10];
569     float weight;
570 
571     if (q->bitrate >= RATE_QUARTER)
572         weight = 0.25 * (subframe_num + 1);
573     else if (q->bitrate == RATE_OCTAVE && !subframe_num)
574         weight = 0.625;
575     else
576         weight = 1.0;
577 
578     if (weight != 1.0) {
579         ff_weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
580                                 weight, 1.0 - weight, 10);
581         lspf2lpc(interpolated_lspf, lpc);
582     } else if (q->bitrate >= RATE_QUARTER ||
583                (q->bitrate == I_F_Q && !subframe_num))
584         lspf2lpc(curr_lspf, lpc);
585     else if (q->bitrate == SILENCE && !subframe_num)
586         lspf2lpc(q->prev_lspf, lpc);
587 }
588 
buf_size2bitrate(const int buf_size)589 static qcelp_packet_rate buf_size2bitrate(const int buf_size)
590 {
591     switch (buf_size) {
592     case 35: return RATE_FULL;
593     case 17: return RATE_HALF;
594     case  8: return RATE_QUARTER;
595     case  4: return RATE_OCTAVE;
596     case  1: return SILENCE;
597     }
598 
599     return I_F_Q;
600 }
601 
602 /**
603  * Determine the bitrate from the frame size and/or the first byte of the frame.
604  *
605  * @param avctx the AV codec context
606  * @param buf_size length of the buffer
607  * @param buf the buffer
608  *
609  * @return the bitrate on success,
610  *         I_F_Q  if the bitrate cannot be satisfactorily determined
611  *
612  * TIA/EIA/IS-733 2.4.8.7.1
613  */
determine_bitrate(AVCodecContext *avctx, const int buf_size, const uint8_t **buf)614 static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx,
615                                            const int buf_size,
616                                            const uint8_t **buf)
617 {
618     qcelp_packet_rate bitrate;
619 
620     if ((bitrate = buf_size2bitrate(buf_size)) >= 0) {
621         if (bitrate > **buf) {
622             QCELPContext *q = avctx->priv_data;
623             if (!q->warned_buf_mismatch_bitrate) {
624             av_log(avctx, AV_LOG_WARNING,
625                    "Claimed bitrate and buffer size mismatch.\n");
626                 q->warned_buf_mismatch_bitrate = 1;
627             }
628             bitrate = **buf;
629         } else if (bitrate < **buf) {
630             av_log(avctx, AV_LOG_ERROR,
631                    "Buffer is too small for the claimed bitrate.\n");
632             return I_F_Q;
633         }
634         (*buf)++;
635     } else if ((bitrate = buf_size2bitrate(buf_size + 1)) >= 0) {
636         av_log(avctx, AV_LOG_WARNING,
637                "Bitrate byte missing, guessing bitrate from packet size.\n");
638     } else
639         return I_F_Q;
640 
641     if (bitrate == SILENCE) {
642         // FIXME: Remove this warning when tested with samples.
643         avpriv_request_sample(avctx, "Blank frame handling");
644     }
645     return bitrate;
646 }
647 
warn_insufficient_frame_quality(AVCodecContext *avctx, const char *message)648 static void warn_insufficient_frame_quality(AVCodecContext *avctx,
649                                             const char *message)
650 {
651     av_log(avctx, AV_LOG_WARNING, "Frame #%d, IFQ: %s\n",
652            avctx->frame_number, message);
653 }
654 
postfilter(QCELPContext *q, float *samples, float *lpc)655 static void postfilter(QCELPContext *q, float *samples, float *lpc)
656 {
657     static const float pow_0_775[10] = {
658         0.775000, 0.600625, 0.465484, 0.360750, 0.279582,
659         0.216676, 0.167924, 0.130141, 0.100859, 0.078166
660     }, pow_0_625[10] = {
661         0.625000, 0.390625, 0.244141, 0.152588, 0.095367,
662         0.059605, 0.037253, 0.023283, 0.014552, 0.009095
663     };
664     float lpc_s[10], lpc_p[10], pole_out[170], zero_out[160];
665     int n;
666 
667     for (n = 0; n < 10; n++) {
668         lpc_s[n] = lpc[n] * pow_0_625[n];
669         lpc_p[n] = lpc[n] * pow_0_775[n];
670     }
671 
672     ff_celp_lp_zero_synthesis_filterf(zero_out, lpc_s,
673                                       q->formant_mem + 10, 160, 10);
674     memcpy(pole_out, q->postfilter_synth_mem, sizeof(float) * 10);
675     ff_celp_lp_synthesis_filterf(pole_out + 10, lpc_p, zero_out, 160, 10);
676     memcpy(q->postfilter_synth_mem, pole_out + 160, sizeof(float) * 10);
677 
678     ff_tilt_compensation(&q->postfilter_tilt_mem, 0.3, pole_out + 10, 160);
679 
680     ff_adaptive_gain_control(samples, pole_out + 10,
681                              avpriv_scalarproduct_float_c(q->formant_mem + 10,
682                                                           q->formant_mem + 10,
683                                                           160),
684                              160, 0.9375, &q->postfilter_agc_mem);
685 }
686 
qcelp_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt)687 static int qcelp_decode_frame(AVCodecContext *avctx, AVFrame *frame,
688                               int *got_frame_ptr, AVPacket *avpkt)
689 {
690     const uint8_t *buf = avpkt->data;
691     int buf_size       = avpkt->size;
692     QCELPContext *q    = avctx->priv_data;
693     float *outbuffer;
694     int   i, ret;
695     float quantized_lspf[10], lpc[10];
696     float gain[16];
697     float *formant_mem;
698 
699     /* get output buffer */
700     frame->nb_samples = 160;
701     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
702         return ret;
703     outbuffer = (float *)frame->data[0];
704 
705     if ((q->bitrate = determine_bitrate(avctx, buf_size, &buf)) == I_F_Q) {
706         warn_insufficient_frame_quality(avctx, "Bitrate cannot be determined.");
707         goto erasure;
708     }
709 
710     if (q->bitrate == RATE_OCTAVE &&
711         (q->first16bits = AV_RB16(buf)) == 0xFFFF) {
712         warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on.");
713         goto erasure;
714     }
715 
716     if (q->bitrate > SILENCE) {
717         const QCELPBitmap *bitmaps     = qcelp_unpacking_bitmaps_per_rate[q->bitrate];
718         const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate] +
719                                          qcelp_unpacking_bitmaps_lengths[q->bitrate];
720         uint8_t *unpacked_data         = (uint8_t *)&q->frame;
721 
722         if ((ret = init_get_bits8(&q->gb, buf, buf_size)) < 0)
723             return ret;
724 
725         memset(&q->frame, 0, sizeof(QCELPFrame));
726 
727         for (; bitmaps < bitmaps_end; bitmaps++)
728             unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos;
729 
730         // Check for erasures/blanks on rates 1, 1/4 and 1/8.
731         if (q->frame.reserved) {
732             warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area.");
733             goto erasure;
734         }
735         if (q->bitrate == RATE_QUARTER &&
736             codebook_sanity_check_for_rate_quarter(q->frame.cbgain)) {
737             warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed.");
738             goto erasure;
739         }
740 
741         if (q->bitrate >= RATE_HALF) {
742             for (i = 0; i < 4; i++) {
743                 if (q->frame.pfrac[i] && q->frame.plag[i] >= 124) {
744                     warn_insufficient_frame_quality(avctx, "Cannot initialize pitch filter.");
745                     goto erasure;
746                 }
747             }
748         }
749     }
750 
751     decode_gain_and_index(q, gain);
752     compute_svector(q, gain, outbuffer);
753 
754     if (decode_lspf(q, quantized_lspf) < 0) {
755         warn_insufficient_frame_quality(avctx, "Badly received packets in frame.");
756         goto erasure;
757     }
758 
759     apply_pitch_filters(q, outbuffer);
760 
761     if (q->bitrate == I_F_Q) {
762 erasure:
763         q->bitrate = I_F_Q;
764         q->erasure_count++;
765         decode_gain_and_index(q, gain);
766         compute_svector(q, gain, outbuffer);
767         decode_lspf(q, quantized_lspf);
768         apply_pitch_filters(q, outbuffer);
769     } else
770         q->erasure_count = 0;
771 
772     formant_mem = q->formant_mem + 10;
773     for (i = 0; i < 4; i++) {
774         interpolate_lpc(q, quantized_lspf, lpc, i);
775         ff_celp_lp_synthesis_filterf(formant_mem, lpc,
776                                      outbuffer + i * 40, 40, 10);
777         formant_mem += 40;
778     }
779 
780     // postfilter, as per TIA/EIA/IS-733 2.4.8.6
781     postfilter(q, outbuffer, lpc);
782 
783     memcpy(q->formant_mem, q->formant_mem + 160, 10 * sizeof(float));
784 
785     memcpy(q->prev_lspf, quantized_lspf, sizeof(q->prev_lspf));
786     q->prev_bitrate  = q->bitrate;
787 
788     *got_frame_ptr = 1;
789 
790     return buf_size;
791 }
792 
793 const FFCodec ff_qcelp_decoder = {
794     .p.name         = "qcelp",
795     .p.long_name    = NULL_IF_CONFIG_SMALL("QCELP / PureVoice"),
796     .p.type         = AVMEDIA_TYPE_AUDIO,
797     .p.id           = AV_CODEC_ID_QCELP,
798     .init           = qcelp_decode_init,
799     FF_CODEC_DECODE_CB(qcelp_decode_frame),
800     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
801     .priv_data_size = sizeof(QCELPContext),
802     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
803 };
804