1/* 2 * Copyright (c) 2001, 2002 Fabrice Bellard 3 * 4 * This file is part of FFmpeg. 5 * 6 * FFmpeg is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * FFmpeg is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with FFmpeg; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 19 */ 20 21#include <stdint.h> 22 23#include "libavutil/attributes.h" 24#include "libavutil/mem_internal.h" 25#include "libavutil/thread.h" 26 27#include "dct32.h" 28#include "mathops.h" 29#include "mpegaudiodsp.h" 30#include "mpegaudio.h" 31 32#if USE_FLOATS 33#define RENAME(n) n##_float 34 35static inline float round_sample(float *sum) 36{ 37 float sum1=*sum; 38 *sum = 0; 39 return sum1; 40} 41 42#define MACS(rt, ra, rb) rt+=(ra)*(rb) 43#define MULS(ra, rb) ((ra)*(rb)) 44#define MULH3(x, y, s) ((s)*(y)*(x)) 45#define MLSS(rt, ra, rb) rt-=(ra)*(rb) 46#define MULLx(x, y, s) ((y)*(x)) 47#define FIXHR(x) ((float)(x)) 48#define FIXR(x) ((float)(x)) 49#define SHR(a,b) ((a)*(1.0f/(1<<(b)))) 50 51#else 52 53#define RENAME(n) n##_fixed 54#define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15) 55 56static inline int round_sample(int64_t *sum) 57{ 58 int sum1; 59 sum1 = (int)((*sum) >> OUT_SHIFT); 60 *sum &= (1<<OUT_SHIFT)-1; 61 return av_clip_int16(sum1); 62} 63 64# define MULS(ra, rb) MUL64(ra, rb) 65# define MACS(rt, ra, rb) MAC64(rt, ra, rb) 66# define MLSS(rt, ra, rb) MLS64(rt, ra, rb) 67# define MULH3(x, y, s) MULH((s)*(x), y) 68# define MULLx(x, y, s) MULL((int)(x),(y),s) 69# define SHR(a,b) (((int)(a))>>(b)) 70# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) 71# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5)) 72#endif 73 74/** Window for MDCT. Actually only the elements in [0,17] and 75 [MDCT_BUF_SIZE/2, MDCT_BUF_SIZE/2 + 17] are actually used. The rest 76 is just to preserve alignment for SIMD implementations. 77*/ 78DECLARE_ALIGNED(16, INTFLOAT, RENAME(ff_mdct_win))[8][MDCT_BUF_SIZE]; 79 80DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256]; 81 82#define SUM8(op, sum, w, p) \ 83{ \ 84 op(sum, (w)[0 * 64], (p)[0 * 64]); \ 85 op(sum, (w)[1 * 64], (p)[1 * 64]); \ 86 op(sum, (w)[2 * 64], (p)[2 * 64]); \ 87 op(sum, (w)[3 * 64], (p)[3 * 64]); \ 88 op(sum, (w)[4 * 64], (p)[4 * 64]); \ 89 op(sum, (w)[5 * 64], (p)[5 * 64]); \ 90 op(sum, (w)[6 * 64], (p)[6 * 64]); \ 91 op(sum, (w)[7 * 64], (p)[7 * 64]); \ 92} 93 94#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \ 95{ \ 96 INTFLOAT tmp;\ 97 tmp = p[0 * 64];\ 98 op1(sum1, (w1)[0 * 64], tmp);\ 99 op2(sum2, (w2)[0 * 64], tmp);\ 100 tmp = p[1 * 64];\ 101 op1(sum1, (w1)[1 * 64], tmp);\ 102 op2(sum2, (w2)[1 * 64], tmp);\ 103 tmp = p[2 * 64];\ 104 op1(sum1, (w1)[2 * 64], tmp);\ 105 op2(sum2, (w2)[2 * 64], tmp);\ 106 tmp = p[3 * 64];\ 107 op1(sum1, (w1)[3 * 64], tmp);\ 108 op2(sum2, (w2)[3 * 64], tmp);\ 109 tmp = p[4 * 64];\ 110 op1(sum1, (w1)[4 * 64], tmp);\ 111 op2(sum2, (w2)[4 * 64], tmp);\ 112 tmp = p[5 * 64];\ 113 op1(sum1, (w1)[5 * 64], tmp);\ 114 op2(sum2, (w2)[5 * 64], tmp);\ 115 tmp = p[6 * 64];\ 116 op1(sum1, (w1)[6 * 64], tmp);\ 117 op2(sum2, (w2)[6 * 64], tmp);\ 118 tmp = p[7 * 64];\ 119 op1(sum1, (w1)[7 * 64], tmp);\ 120 op2(sum2, (w2)[7 * 64], tmp);\ 121} 122 123void RENAME(ff_mpadsp_apply_window)(MPA_INT *synth_buf, MPA_INT *window, 124 int *dither_state, OUT_INT *samples, 125 ptrdiff_t incr) 126{ 127 register const MPA_INT *w, *w2, *p; 128 int j; 129 OUT_INT *samples2; 130#if USE_FLOATS 131 float sum, sum2; 132#else 133 int64_t sum, sum2; 134#endif 135 136 /* copy to avoid wrap */ 137 memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf)); 138 139 samples2 = samples + 31 * incr; 140 w = window; 141 w2 = window + 31; 142 143 sum = *dither_state; 144 p = synth_buf + 16; 145 SUM8(MACS, sum, w, p); 146 p = synth_buf + 48; 147 SUM8(MLSS, sum, w + 32, p); 148 *samples = round_sample(&sum); 149 samples += incr; 150 w++; 151 152 /* we calculate two samples at the same time to avoid one memory 153 access per two sample */ 154 for(j=1;j<16;j++) { 155 sum2 = 0; 156 p = synth_buf + 16 + j; 157 SUM8P2(sum, MACS, sum2, MLSS, w, w2, p); 158 p = synth_buf + 48 - j; 159 SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p); 160 161 *samples = round_sample(&sum); 162 samples += incr; 163 sum += sum2; 164 *samples2 = round_sample(&sum); 165 samples2 -= incr; 166 w++; 167 w2--; 168 } 169 170 p = synth_buf + 32; 171 SUM8(MLSS, sum, w + 32, p); 172 *samples = round_sample(&sum); 173 *dither_state= sum; 174} 175 176/* 32 sub band synthesis filter. Input: 32 sub band samples, Output: 177 32 samples. */ 178void RENAME(ff_mpa_synth_filter)(MPADSPContext *s, MPA_INT *synth_buf_ptr, 179 int *synth_buf_offset, 180 MPA_INT *window, int *dither_state, 181 OUT_INT *samples, ptrdiff_t incr, 182 MPA_INT *sb_samples) 183{ 184 MPA_INT *synth_buf; 185 int offset; 186 187 offset = *synth_buf_offset; 188 synth_buf = synth_buf_ptr + offset; 189 190 s->RENAME(dct32)(synth_buf, sb_samples); 191 s->RENAME(apply_window)(synth_buf, window, dither_state, samples, incr); 192 193 offset = (offset - 32) & 511; 194 *synth_buf_offset = offset; 195} 196 197static av_cold void mpa_synth_init(MPA_INT *window) 198{ 199 int i, j; 200 201 /* max = 18760, max sum over all 16 coefs : 44736 */ 202 for(i=0;i<257;i++) { 203 INTFLOAT v; 204 v = ff_mpa_enwindow[i]; 205#if USE_FLOATS 206 v *= 1.0 / (1LL<<(16 + FRAC_BITS)); 207#endif 208 window[i] = v; 209 if ((i & 63) != 0) 210 v = -v; 211 if (i != 0) 212 window[512 - i] = v; 213 } 214 215 216 // Needed for avoiding shuffles in ASM implementations 217 for(i=0; i < 8; i++) 218 for(j=0; j < 16; j++) 219 window[512+16*i+j] = window[64*i+32-j]; 220 221 for(i=0; i < 8; i++) 222 for(j=0; j < 16; j++) 223 window[512+128+16*i+j] = window[64*i+48-j]; 224} 225 226static av_cold void mpa_synth_window_init(void) 227{ 228 mpa_synth_init(RENAME(ff_mpa_synth_window)); 229} 230 231av_cold void RENAME(ff_mpa_synth_init)(void) 232{ 233 static AVOnce init_static_once = AV_ONCE_INIT; 234 ff_thread_once(&init_static_once, mpa_synth_window_init); 235} 236 237/* cos(pi*i/18) */ 238#define C1 FIXHR(0.98480775301220805936/2) 239#define C2 FIXHR(0.93969262078590838405/2) 240#define C3 FIXHR(0.86602540378443864676/2) 241#define C4 FIXHR(0.76604444311897803520/2) 242#define C5 FIXHR(0.64278760968653932632/2) 243#define C6 FIXHR(0.5/2) 244#define C7 FIXHR(0.34202014332566873304/2) 245#define C8 FIXHR(0.17364817766693034885/2) 246 247/* 0.5 / cos(pi*(2*i+1)/36) */ 248static const INTFLOAT icos36[9] = { 249 FIXR(0.50190991877167369479), 250 FIXR(0.51763809020504152469), //0 251 FIXR(0.55168895948124587824), 252 FIXR(0.61038729438072803416), 253 FIXR(0.70710678118654752439), //1 254 FIXR(0.87172339781054900991), 255 FIXR(1.18310079157624925896), 256 FIXR(1.93185165257813657349), //2 257 FIXR(5.73685662283492756461), 258}; 259 260/* 0.5 / cos(pi*(2*i+1)/36) */ 261static const INTFLOAT icos36h[9] = { 262 FIXHR(0.50190991877167369479/2), 263 FIXHR(0.51763809020504152469/2), //0 264 FIXHR(0.55168895948124587824/2), 265 FIXHR(0.61038729438072803416/2), 266 FIXHR(0.70710678118654752439/2), //1 267 FIXHR(0.87172339781054900991/2), 268 FIXHR(1.18310079157624925896/4), 269 FIXHR(1.93185165257813657349/4), //2 270// FIXHR(5.73685662283492756461), 271}; 272 273/* using Lee like decomposition followed by hand coded 9 points DCT */ 274static void imdct36(INTFLOAT *out, INTFLOAT *buf, SUINTFLOAT *in, INTFLOAT *win) 275{ 276 int i, j; 277 SUINTFLOAT t0, t1, t2, t3, s0, s1, s2, s3; 278 SUINTFLOAT tmp[18], *tmp1, *in1; 279 280 for (i = 17; i >= 1; i--) 281 in[i] += in[i-1]; 282 for (i = 17; i >= 3; i -= 2) 283 in[i] += in[i-2]; 284 285 for (j = 0; j < 2; j++) { 286 tmp1 = tmp + j; 287 in1 = in + j; 288 289 t2 = in1[2*4] + in1[2*8] - in1[2*2]; 290 291 t3 = in1[2*0] + SHR(in1[2*6],1); 292 t1 = in1[2*0] - in1[2*6]; 293 tmp1[ 6] = t1 - SHR(t2,1); 294 tmp1[16] = t1 + t2; 295 296 t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2); 297 t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1); 298 t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2); 299 300 tmp1[10] = t3 - t0 - t2; 301 tmp1[ 2] = t3 + t0 + t1; 302 tmp1[14] = t3 + t2 - t1; 303 304 tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2); 305 t2 = MULH3(in1[2*1] + in1[2*5], C1, 2); 306 t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1); 307 t0 = MULH3(in1[2*3], C3, 2); 308 309 t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2); 310 311 tmp1[ 0] = t2 + t3 + t0; 312 tmp1[12] = t2 + t1 - t0; 313 tmp1[ 8] = t3 - t1 - t0; 314 } 315 316 i = 0; 317 for (j = 0; j < 4; j++) { 318 t0 = tmp[i]; 319 t1 = tmp[i + 2]; 320 s0 = t1 + t0; 321 s2 = t1 - t0; 322 323 t2 = tmp[i + 1]; 324 t3 = tmp[i + 3]; 325 s1 = MULH3(t3 + t2, icos36h[ j], 2); 326 s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS); 327 328 t0 = s0 + s1; 329 t1 = s0 - s1; 330 out[(9 + j) * SBLIMIT] = MULH3(t1, win[ 9 + j], 1) + buf[4*(9 + j)]; 331 out[(8 - j) * SBLIMIT] = MULH3(t1, win[ 8 - j], 1) + buf[4*(8 - j)]; 332 buf[4 * ( 9 + j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + j], 1); 333 buf[4 * ( 8 - j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - j], 1); 334 335 t0 = s2 + s3; 336 t1 = s2 - s3; 337 out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[ 9 + 8 - j], 1) + buf[4*(9 + 8 - j)]; 338 out[ j * SBLIMIT] = MULH3(t1, win[ j], 1) + buf[4*( j)]; 339 buf[4 * ( 9 + 8 - j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 8 - j], 1); 340 buf[4 * ( j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + j], 1); 341 i += 4; 342 } 343 344 s0 = tmp[16]; 345 s1 = MULH3(tmp[17], icos36h[4], 2); 346 t0 = s0 + s1; 347 t1 = s0 - s1; 348 out[(9 + 4) * SBLIMIT] = MULH3(t1, win[ 9 + 4], 1) + buf[4*(9 + 4)]; 349 out[(8 - 4) * SBLIMIT] = MULH3(t1, win[ 8 - 4], 1) + buf[4*(8 - 4)]; 350 buf[4 * ( 9 + 4 )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 4], 1); 351 buf[4 * ( 8 - 4 )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - 4], 1); 352} 353 354void RENAME(ff_imdct36_blocks)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, 355 int count, int switch_point, int block_type) 356{ 357 int j; 358 for (j=0 ; j < count; j++) { 359 /* apply window & overlap with previous buffer */ 360 361 /* select window */ 362 int win_idx = (switch_point && j < 2) ? 0 : block_type; 363 INTFLOAT *win = RENAME(ff_mdct_win)[win_idx + (4 & -(j & 1))]; 364 365 imdct36(out, buf, in, win); 366 367 in += 18; 368 buf += ((j&3) != 3 ? 1 : (72-3)); 369 out++; 370 } 371} 372 373