1 /*
2  * Copyright (c) 2001, 2002 Fabrice Bellard
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include <stdint.h>
22 
23 #include "libavutil/attributes.h"
24 #include "libavutil/mem_internal.h"
25 #include "libavutil/thread.h"
26 
27 #include "dct32.h"
28 #include "mathops.h"
29 #include "mpegaudiodsp.h"
30 #include "mpegaudio.h"
31 
32 #if USE_FLOATS
33 #define RENAME(n) n##_float
34 
round_sample(float *sum)35 static inline float round_sample(float *sum)
36 {
37     float sum1=*sum;
38     *sum = 0;
39     return sum1;
40 }
41 
42 #define MACS(rt, ra, rb) rt+=(ra)*(rb)
43 #define MULS(ra, rb) ((ra)*(rb))
44 #define MULH3(x, y, s) ((s)*(y)*(x))
45 #define MLSS(rt, ra, rb) rt-=(ra)*(rb)
46 #define MULLx(x, y, s) ((y)*(x))
47 #define FIXHR(x)        ((float)(x))
48 #define FIXR(x)        ((float)(x))
49 #define SHR(a,b)       ((a)*(1.0f/(1<<(b))))
50 
51 #else
52 
53 #define RENAME(n) n##_fixed
54 #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
55 
round_sample(int64_t *sum)56 static inline int round_sample(int64_t *sum)
57 {
58     int sum1;
59     sum1 = (int)((*sum) >> OUT_SHIFT);
60     *sum &= (1<<OUT_SHIFT)-1;
61     return av_clip_int16(sum1);
62 }
63 
64 #   define MULS(ra, rb) MUL64(ra, rb)
65 #   define MACS(rt, ra, rb) MAC64(rt, ra, rb)
66 #   define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
67 #   define MULH3(x, y, s) MULH((s)*(x), y)
68 #   define MULLx(x, y, s) MULL((int)(x),(y),s)
69 #   define SHR(a,b)       (((int)(a))>>(b))
70 #   define FIXR(a)        ((int)((a) * FRAC_ONE + 0.5))
71 #   define FIXHR(a)       ((int)((a) * (1LL<<32) + 0.5))
72 #endif
73 
74 /** Window for MDCT. Actually only the elements in [0,17] and
75     [MDCT_BUF_SIZE/2, MDCT_BUF_SIZE/2 + 17] are actually used. The rest
76     is just to preserve alignment for SIMD implementations.
77 */
78 DECLARE_ALIGNED(16, INTFLOAT, RENAME(ff_mdct_win))[8][MDCT_BUF_SIZE];
79 
80 DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
81 
82 #define SUM8(op, sum, w, p)               \
83 {                                         \
84     op(sum, (w)[0 * 64], (p)[0 * 64]);    \
85     op(sum, (w)[1 * 64], (p)[1 * 64]);    \
86     op(sum, (w)[2 * 64], (p)[2 * 64]);    \
87     op(sum, (w)[3 * 64], (p)[3 * 64]);    \
88     op(sum, (w)[4 * 64], (p)[4 * 64]);    \
89     op(sum, (w)[5 * 64], (p)[5 * 64]);    \
90     op(sum, (w)[6 * 64], (p)[6 * 64]);    \
91     op(sum, (w)[7 * 64], (p)[7 * 64]);    \
92 }
93 
94 #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
95 {                                               \
96     INTFLOAT tmp;\
97     tmp = p[0 * 64];\
98     op1(sum1, (w1)[0 * 64], tmp);\
99     op2(sum2, (w2)[0 * 64], tmp);\
100     tmp = p[1 * 64];\
101     op1(sum1, (w1)[1 * 64], tmp);\
102     op2(sum2, (w2)[1 * 64], tmp);\
103     tmp = p[2 * 64];\
104     op1(sum1, (w1)[2 * 64], tmp);\
105     op2(sum2, (w2)[2 * 64], tmp);\
106     tmp = p[3 * 64];\
107     op1(sum1, (w1)[3 * 64], tmp);\
108     op2(sum2, (w2)[3 * 64], tmp);\
109     tmp = p[4 * 64];\
110     op1(sum1, (w1)[4 * 64], tmp);\
111     op2(sum2, (w2)[4 * 64], tmp);\
112     tmp = p[5 * 64];\
113     op1(sum1, (w1)[5 * 64], tmp);\
114     op2(sum2, (w2)[5 * 64], tmp);\
115     tmp = p[6 * 64];\
116     op1(sum1, (w1)[6 * 64], tmp);\
117     op2(sum2, (w2)[6 * 64], tmp);\
118     tmp = p[7 * 64];\
119     op1(sum1, (w1)[7 * 64], tmp);\
120     op2(sum2, (w2)[7 * 64], tmp);\
121 }
122 
ff_mpadsp_apply_window(MPA_INT *synth_buf, MPA_INT *window, int *dither_state, OUT_INT *samples, ptrdiff_t incr)123 void RENAME(ff_mpadsp_apply_window)(MPA_INT *synth_buf, MPA_INT *window,
124                                   int *dither_state, OUT_INT *samples,
125                                   ptrdiff_t incr)
126 {
127     register const MPA_INT *w, *w2, *p;
128     int j;
129     OUT_INT *samples2;
130 #if USE_FLOATS
131     float sum, sum2;
132 #else
133     int64_t sum, sum2;
134 #endif
135 
136     /* copy to avoid wrap */
137     memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
138 
139     samples2 = samples + 31 * incr;
140     w = window;
141     w2 = window + 31;
142 
143     sum = *dither_state;
144     p = synth_buf + 16;
145     SUM8(MACS, sum, w, p);
146     p = synth_buf + 48;
147     SUM8(MLSS, sum, w + 32, p);
148     *samples = round_sample(&sum);
149     samples += incr;
150     w++;
151 
152     /* we calculate two samples at the same time to avoid one memory
153        access per two sample */
154     for(j=1;j<16;j++) {
155         sum2 = 0;
156         p = synth_buf + 16 + j;
157         SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
158         p = synth_buf + 48 - j;
159         SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
160 
161         *samples = round_sample(&sum);
162         samples += incr;
163         sum += sum2;
164         *samples2 = round_sample(&sum);
165         samples2 -= incr;
166         w++;
167         w2--;
168     }
169 
170     p = synth_buf + 32;
171     SUM8(MLSS, sum, w + 32, p);
172     *samples = round_sample(&sum);
173     *dither_state= sum;
174 }
175 
176 /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
177    32 samples. */
ff_mpa_synth_filter(MPADSPContext *s, MPA_INT *synth_buf_ptr, int *synth_buf_offset, MPA_INT *window, int *dither_state, OUT_INT *samples, ptrdiff_t incr, MPA_INT *sb_samples)178 void RENAME(ff_mpa_synth_filter)(MPADSPContext *s, MPA_INT *synth_buf_ptr,
179                                  int *synth_buf_offset,
180                                  MPA_INT *window, int *dither_state,
181                                  OUT_INT *samples, ptrdiff_t incr,
182                                  MPA_INT *sb_samples)
183 {
184     MPA_INT *synth_buf;
185     int offset;
186 
187     offset = *synth_buf_offset;
188     synth_buf = synth_buf_ptr + offset;
189 
190     s->RENAME(dct32)(synth_buf, sb_samples);
191     s->RENAME(apply_window)(synth_buf, window, dither_state, samples, incr);
192 
193     offset = (offset - 32) & 511;
194     *synth_buf_offset = offset;
195 }
196 
mpa_synth_init(MPA_INT *window)197 static av_cold void mpa_synth_init(MPA_INT *window)
198 {
199     int i, j;
200 
201     /* max = 18760, max sum over all 16 coefs : 44736 */
202     for(i=0;i<257;i++) {
203         INTFLOAT v;
204         v = ff_mpa_enwindow[i];
205 #if USE_FLOATS
206         v *= 1.0 / (1LL<<(16 + FRAC_BITS));
207 #endif
208         window[i] = v;
209         if ((i & 63) != 0)
210             v = -v;
211         if (i != 0)
212             window[512 - i] = v;
213     }
214 
215 
216     // Needed for avoiding shuffles in ASM implementations
217     for(i=0; i < 8; i++)
218         for(j=0; j < 16; j++)
219             window[512+16*i+j] = window[64*i+32-j];
220 
221     for(i=0; i < 8; i++)
222         for(j=0; j < 16; j++)
223             window[512+128+16*i+j] = window[64*i+48-j];
224 }
225 
mpa_synth_window_init(void)226 static av_cold void mpa_synth_window_init(void)
227 {
228     mpa_synth_init(RENAME(ff_mpa_synth_window));
229 }
230 
ff_mpa_synth_init(void)231 av_cold void RENAME(ff_mpa_synth_init)(void)
232 {
233     static AVOnce init_static_once = AV_ONCE_INIT;
234     ff_thread_once(&init_static_once, mpa_synth_window_init);
235 }
236 
237 /* cos(pi*i/18) */
238 #define C1 FIXHR(0.98480775301220805936/2)
239 #define C2 FIXHR(0.93969262078590838405/2)
240 #define C3 FIXHR(0.86602540378443864676/2)
241 #define C4 FIXHR(0.76604444311897803520/2)
242 #define C5 FIXHR(0.64278760968653932632/2)
243 #define C6 FIXHR(0.5/2)
244 #define C7 FIXHR(0.34202014332566873304/2)
245 #define C8 FIXHR(0.17364817766693034885/2)
246 
247 /* 0.5 / cos(pi*(2*i+1)/36) */
248 static const INTFLOAT icos36[9] = {
249     FIXR(0.50190991877167369479),
250     FIXR(0.51763809020504152469), //0
251     FIXR(0.55168895948124587824),
252     FIXR(0.61038729438072803416),
253     FIXR(0.70710678118654752439), //1
254     FIXR(0.87172339781054900991),
255     FIXR(1.18310079157624925896),
256     FIXR(1.93185165257813657349), //2
257     FIXR(5.73685662283492756461),
258 };
259 
260 /* 0.5 / cos(pi*(2*i+1)/36) */
261 static const INTFLOAT icos36h[9] = {
262     FIXHR(0.50190991877167369479/2),
263     FIXHR(0.51763809020504152469/2), //0
264     FIXHR(0.55168895948124587824/2),
265     FIXHR(0.61038729438072803416/2),
266     FIXHR(0.70710678118654752439/2), //1
267     FIXHR(0.87172339781054900991/2),
268     FIXHR(1.18310079157624925896/4),
269     FIXHR(1.93185165257813657349/4), //2
270 //    FIXHR(5.73685662283492756461),
271 };
272 
273 /* using Lee like decomposition followed by hand coded 9 points DCT */
imdct36(INTFLOAT *out, INTFLOAT *buf, SUINTFLOAT *in, INTFLOAT *win)274 static void imdct36(INTFLOAT *out, INTFLOAT *buf, SUINTFLOAT *in, INTFLOAT *win)
275 {
276     int i, j;
277     SUINTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
278     SUINTFLOAT tmp[18], *tmp1, *in1;
279 
280     for (i = 17; i >= 1; i--)
281         in[i] += in[i-1];
282     for (i = 17; i >= 3; i -= 2)
283         in[i] += in[i-2];
284 
285     for (j = 0; j < 2; j++) {
286         tmp1 = tmp + j;
287         in1 = in + j;
288 
289         t2 = in1[2*4] + in1[2*8] - in1[2*2];
290 
291         t3 = in1[2*0] + SHR(in1[2*6],1);
292         t1 = in1[2*0] - in1[2*6];
293         tmp1[ 6] = t1 - SHR(t2,1);
294         tmp1[16] = t1 + t2;
295 
296         t0 = MULH3(in1[2*2] + in1[2*4] ,    C2, 2);
297         t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
298         t2 = MULH3(in1[2*2] + in1[2*8] ,   -C4, 2);
299 
300         tmp1[10] = t3 - t0 - t2;
301         tmp1[ 2] = t3 + t0 + t1;
302         tmp1[14] = t3 + t2 - t1;
303 
304         tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
305         t2 = MULH3(in1[2*1] + in1[2*5],    C1, 2);
306         t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
307         t0 = MULH3(in1[2*3], C3, 2);
308 
309         t1 = MULH3(in1[2*1] + in1[2*7],   -C5, 2);
310 
311         tmp1[ 0] = t2 + t3 + t0;
312         tmp1[12] = t2 + t1 - t0;
313         tmp1[ 8] = t3 - t1 - t0;
314     }
315 
316     i = 0;
317     for (j = 0; j < 4; j++) {
318         t0 = tmp[i];
319         t1 = tmp[i + 2];
320         s0 = t1 + t0;
321         s2 = t1 - t0;
322 
323         t2 = tmp[i + 1];
324         t3 = tmp[i + 3];
325         s1 = MULH3(t3 + t2, icos36h[    j], 2);
326         s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS);
327 
328         t0 = s0 + s1;
329         t1 = s0 - s1;
330         out[(9 + j) * SBLIMIT] = MULH3(t1, win[     9 + j], 1) + buf[4*(9 + j)];
331         out[(8 - j) * SBLIMIT] = MULH3(t1, win[     8 - j], 1) + buf[4*(8 - j)];
332         buf[4 * ( 9 + j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + j], 1);
333         buf[4 * ( 8 - j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - j], 1);
334 
335         t0 = s2 + s3;
336         t1 = s2 - s3;
337         out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[     9 + 8 - j], 1) + buf[4*(9 + 8 - j)];
338         out[         j  * SBLIMIT] = MULH3(t1, win[             j], 1) + buf[4*(        j)];
339         buf[4 * ( 9 + 8 - j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 8 - j], 1);
340         buf[4 * (         j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2         + j], 1);
341         i += 4;
342     }
343 
344     s0 = tmp[16];
345     s1 = MULH3(tmp[17], icos36h[4], 2);
346     t0 = s0 + s1;
347     t1 = s0 - s1;
348     out[(9 + 4) * SBLIMIT] = MULH3(t1, win[     9 + 4], 1) + buf[4*(9 + 4)];
349     out[(8 - 4) * SBLIMIT] = MULH3(t1, win[     8 - 4], 1) + buf[4*(8 - 4)];
350     buf[4 * ( 9 + 4     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 4], 1);
351     buf[4 * ( 8 - 4     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - 4], 1);
352 }
353 
ff_imdct36_blocks(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, int count, int switch_point, int block_type)354 void RENAME(ff_imdct36_blocks)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in,
355                                int count, int switch_point, int block_type)
356 {
357     int j;
358     for (j=0 ; j < count; j++) {
359         /* apply window & overlap with previous buffer */
360 
361         /* select window */
362         int win_idx = (switch_point && j < 2) ? 0 : block_type;
363         INTFLOAT *win = RENAME(ff_mdct_win)[win_idx + (4 & -(j & 1))];
364 
365         imdct36(out, buf, in, win);
366 
367         in  += 18;
368         buf += ((j&3) != 3 ? 1 : (72-3));
369         out++;
370     }
371 }
372 
373