xref: /third_party/ffmpeg/libavcodec/lagarith.c (revision cabdff1a)
1/*
2 * Lagarith lossless decoder
3 * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * Lagarith lossless decoder
25 * @author Nathan Caldwell
26 */
27
28#include <inttypes.h>
29
30#include "avcodec.h"
31#include "codec_internal.h"
32#include "get_bits.h"
33#include "mathops.h"
34#include "lagarithrac.h"
35#include "lossless_videodsp.h"
36#include "thread.h"
37
38enum LagarithFrameType {
39    FRAME_RAW           = 1,    /**< uncompressed */
40    FRAME_U_RGB24       = 2,    /**< unaligned RGB24 */
41    FRAME_ARITH_YUY2    = 3,    /**< arithmetic coded YUY2 */
42    FRAME_ARITH_RGB24   = 4,    /**< arithmetic coded RGB24 */
43    FRAME_SOLID_GRAY    = 5,    /**< solid grayscale color frame */
44    FRAME_SOLID_COLOR   = 6,    /**< solid non-grayscale color frame */
45    FRAME_OLD_ARITH_RGB = 7,    /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
46    FRAME_ARITH_RGBA    = 8,    /**< arithmetic coded RGBA */
47    FRAME_SOLID_RGBA    = 9,    /**< solid RGBA color frame */
48    FRAME_ARITH_YV12    = 10,   /**< arithmetic coded YV12 */
49    FRAME_REDUCED_RES   = 11,   /**< reduced resolution YV12 frame */
50};
51
52typedef struct LagarithContext {
53    AVCodecContext *avctx;
54    LLVidDSPContext llviddsp;
55    int zeros;                  /**< number of consecutive zero bytes encountered */
56    int zeros_rem;              /**< number of zero bytes remaining to output */
57} LagarithContext;
58
59/**
60 * Compute the 52-bit mantissa of 1/(double)denom.
61 * This crazy format uses floats in an entropy coder and we have to match x86
62 * rounding exactly, thus ordinary floats aren't portable enough.
63 * @param denom denominator
64 * @return 52-bit mantissa
65 * @see softfloat_mul
66 */
67static uint64_t softfloat_reciprocal(uint32_t denom)
68{
69    int shift = av_log2(denom - 1) + 1;
70    uint64_t ret = (1ULL << 52) / denom;
71    uint64_t err = (1ULL << 52) - ret * denom;
72    ret <<= shift;
73    err <<= shift;
74    err +=  denom / 2;
75    return ret + err / denom;
76}
77
78/**
79 * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
80 * Used in combination with softfloat_reciprocal computes x/(double)denom.
81 * @param x 32-bit integer factor
82 * @param mantissa mantissa of f with exponent 0
83 * @return 32-bit integer value (x*f)
84 * @see softfloat_reciprocal
85 */
86static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
87{
88    uint64_t l = x * (mantissa & 0xffffffff);
89    uint64_t h = x * (mantissa >> 32);
90    h += l >> 32;
91    l &= 0xffffffff;
92    l += 1LL << av_log2(h >> 21);
93    h += l >> 32;
94    return h >> 20;
95}
96
97static uint8_t lag_calc_zero_run(int8_t x)
98{
99    return (x * 2) ^ (x >> 7);
100}
101
102static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
103{
104    static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
105    int i;
106    int bit     = 0;
107    int bits    = 0;
108    int prevbit = 0;
109    unsigned val;
110
111    for (i = 0; i < 7; i++) {
112        if (prevbit && bit)
113            break;
114        prevbit = bit;
115        bit = get_bits1(gb);
116        if (bit && !prevbit)
117            bits += series[i];
118    }
119    bits--;
120    if (bits < 0 || bits > 31) {
121        *value = 0;
122        return AVERROR_INVALIDDATA;
123    } else if (bits == 0) {
124        *value = 0;
125        return 0;
126    }
127
128    val  = get_bits_long(gb, bits);
129    val |= 1U << bits;
130
131    *value = val - 1;
132
133    return 0;
134}
135
136static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
137{
138    int i, j, scale_factor;
139    unsigned prob, cumulative_target;
140    unsigned cumul_prob = 0;
141    unsigned scaled_cumul_prob = 0;
142    int nnz = 0;
143
144    rac->prob[0] = 0;
145    rac->prob[257] = UINT_MAX;
146    /* Read probabilities from bitstream */
147    for (i = 1; i < 257; i++) {
148        if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
149            av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
150            return AVERROR_INVALIDDATA;
151        }
152        if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
153            av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
154            return AVERROR_INVALIDDATA;
155        }
156        cumul_prob += rac->prob[i];
157        if (!rac->prob[i]) {
158            if (lag_decode_prob(gb, &prob)) {
159                av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
160                return AVERROR_INVALIDDATA;
161            }
162            if (prob > 256 - i)
163                prob = 256 - i;
164            for (j = 0; j < prob; j++)
165                rac->prob[++i] = 0;
166        }else {
167            nnz++;
168        }
169    }
170
171    if (!cumul_prob) {
172        av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
173        return AVERROR_INVALIDDATA;
174    }
175
176    if (nnz == 1 && (show_bits_long(gb, 32) & 0xFFFFFF)) {
177        return AVERROR_INVALIDDATA;
178    }
179
180    /* Scale probabilities so cumulative probability is an even power of 2. */
181    scale_factor = av_log2(cumul_prob);
182
183    if (cumul_prob & (cumul_prob - 1)) {
184        uint64_t mul = softfloat_reciprocal(cumul_prob);
185        for (i = 1; i <= 128; i++) {
186            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
187            scaled_cumul_prob += rac->prob[i];
188        }
189        if (scaled_cumul_prob <= 0) {
190            av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n");
191            return AVERROR_INVALIDDATA;
192        }
193        for (; i < 257; i++) {
194            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
195            scaled_cumul_prob += rac->prob[i];
196        }
197
198        scale_factor++;
199        if (scale_factor >= 32U)
200            return AVERROR_INVALIDDATA;
201        cumulative_target = 1U << scale_factor;
202
203        if (scaled_cumul_prob > cumulative_target) {
204            av_log(rac->avctx, AV_LOG_ERROR,
205                   "Scaled probabilities are larger than target!\n");
206            return AVERROR_INVALIDDATA;
207        }
208
209        scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
210
211        for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
212            if (rac->prob[i]) {
213                rac->prob[i]++;
214                scaled_cumul_prob--;
215            }
216            /* Comment from reference source:
217             * if (b & 0x80 == 0) {     // order of operations is 'wrong'; it has been left this way
218             *                          // since the compression change is negligible and fixing it
219             *                          // breaks backwards compatibility
220             *      b =- (signed int)b;
221             *      b &= 0xFF;
222             * } else {
223             *      b++;
224             *      b &= 0x7f;
225             * }
226             */
227        }
228    }
229
230    if (scale_factor > 23)
231        return AVERROR_INVALIDDATA;
232
233    rac->scale = scale_factor;
234
235    /* Fill probability array with cumulative probability for each symbol. */
236    for (i = 1; i < 257; i++)
237        rac->prob[i] += rac->prob[i - 1];
238
239    return 0;
240}
241
242static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
243                                      uint8_t *diff, int w, int *left,
244                                      int *left_top)
245{
246    /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
247     * However the &0xFF on the gradient predictor yields incorrect output
248     * for lagarith.
249     */
250    int i;
251    uint8_t l, lt;
252
253    l  = *left;
254    lt = *left_top;
255
256    for (i = 0; i < w; i++) {
257        l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
258        lt = src1[i];
259        dst[i] = l;
260    }
261
262    *left     = l;
263    *left_top = lt;
264}
265
266static void lag_pred_line(LagarithContext *l, uint8_t *buf,
267                          int width, int stride, int line)
268{
269    int L, TL;
270
271    if (!line) {
272        /* Left prediction only for first line */
273        L = l->llviddsp.add_left_pred(buf, buf, width, 0);
274    } else {
275        /* Left pixel is actually prev_row[width] */
276        L = buf[width - stride - 1];
277
278        if (line == 1) {
279            /* Second line, left predict first pixel, the rest of the line is median predicted
280             * NOTE: In the case of RGB this pixel is top predicted */
281            TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
282        } else {
283            /* Top left is 2 rows back, last pixel */
284            TL = buf[width - (2 * stride) - 1];
285        }
286
287        add_lag_median_prediction(buf, buf - stride, buf,
288                                  width, &L, &TL);
289    }
290}
291
292static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
293                               int width, int stride, int line,
294                               int is_luma)
295{
296    int L, TL;
297
298    if (!line) {
299        L= buf[0];
300        if (is_luma)
301            buf[0] = 0;
302        l->llviddsp.add_left_pred(buf, buf, width, 0);
303        if (is_luma)
304            buf[0] = L;
305        return;
306    }
307    if (line == 1) {
308        const int HEAD = is_luma ? 4 : 2;
309        int i;
310
311        L  = buf[width - stride - 1];
312        TL = buf[HEAD  - stride - 1];
313        for (i = 0; i < HEAD; i++) {
314            L += buf[i];
315            buf[i] = L;
316        }
317        for (; i < width; i++) {
318            L      = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
319            TL     = buf[i - stride];
320            buf[i] = L;
321        }
322    } else {
323        TL = buf[width - (2 * stride) - 1];
324        L  = buf[width - stride - 1];
325        l->llviddsp.add_median_pred(buf, buf - stride, buf, width, &L, &TL);
326    }
327}
328
329static int lag_decode_line(LagarithContext *l, lag_rac *rac,
330                           uint8_t *dst, int width, int stride,
331                           int esc_count)
332{
333    int i = 0;
334    int ret = 0;
335
336    if (!esc_count)
337        esc_count = -1;
338
339    /* Output any zeros remaining from the previous run */
340handle_zeros:
341    if (l->zeros_rem) {
342        int count = FFMIN(l->zeros_rem, width - i);
343        memset(dst + i, 0, count);
344        i += count;
345        l->zeros_rem -= count;
346    }
347
348    while (i < width) {
349        dst[i] = lag_get_rac(rac);
350        ret++;
351
352        if (dst[i])
353            l->zeros = 0;
354        else
355            l->zeros++;
356
357        i++;
358        if (l->zeros == esc_count) {
359            int index = lag_get_rac(rac);
360            ret++;
361
362            l->zeros = 0;
363
364            l->zeros_rem = lag_calc_zero_run(index);
365            goto handle_zeros;
366        }
367    }
368    return ret;
369}
370
371static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
372                                    const uint8_t *src, const uint8_t *src_end,
373                                    int width, int esc_count)
374{
375    int i = 0;
376    int count;
377    uint8_t zero_run = 0;
378    const uint8_t *src_start = src;
379    uint8_t mask1 = -(esc_count < 2);
380    uint8_t mask2 = -(esc_count < 3);
381    uint8_t *end = dst + (width - 2);
382
383    avpriv_request_sample(l->avctx, "zero_run_line");
384
385    memset(dst, 0, width);
386
387output_zeros:
388    if (l->zeros_rem) {
389        count = FFMIN(l->zeros_rem, width - i);
390        if (end - dst < count) {
391            av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
392            return AVERROR_INVALIDDATA;
393        }
394
395        memset(dst, 0, count);
396        l->zeros_rem -= count;
397        dst += count;
398    }
399
400    while (dst < end) {
401        i = 0;
402        while (!zero_run && dst + i < end) {
403            i++;
404            if (i+2 >= src_end - src)
405                return AVERROR_INVALIDDATA;
406            zero_run =
407                !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
408        }
409        if (zero_run) {
410            zero_run = 0;
411            i += esc_count;
412            if (i >  end - dst ||
413                i >= src_end - src)
414                return AVERROR_INVALIDDATA;
415            memcpy(dst, src, i);
416            dst += i;
417            l->zeros_rem = lag_calc_zero_run(src[i]);
418
419            src += i + 1;
420            goto output_zeros;
421        } else {
422            memcpy(dst, src, i);
423            src += i;
424            dst += i;
425        }
426    }
427    return  src - src_start;
428}
429
430
431
432static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
433                                  int width, int height, int stride,
434                                  const uint8_t *src, int src_size)
435{
436    int i = 0;
437    int read = 0;
438    uint32_t length;
439    uint32_t offset = 1;
440    int esc_count;
441    GetBitContext gb;
442    lag_rac rac;
443    const uint8_t *src_end = src + src_size;
444    int ret;
445
446    rac.avctx = l->avctx;
447    l->zeros = 0;
448
449    if(src_size < 2)
450        return AVERROR_INVALIDDATA;
451
452    esc_count = src[0];
453    if (esc_count < 4) {
454        length = width * height;
455        if(src_size < 5)
456            return AVERROR_INVALIDDATA;
457        if (esc_count && AV_RL32(src + 1) < length) {
458            length = AV_RL32(src + 1);
459            offset += 4;
460        }
461
462        if ((ret = init_get_bits8(&gb, src + offset, src_size - offset)) < 0)
463            return ret;
464
465        if ((ret = lag_read_prob_header(&rac, &gb)) < 0)
466            return ret;
467
468        ff_lag_rac_init(&rac, &gb, length - stride);
469        for (i = 0; i < height; i++) {
470            if (rac.overread > MAX_OVERREAD)
471                return AVERROR_INVALIDDATA;
472            read += lag_decode_line(l, &rac, dst + (i * stride), width,
473                                    stride, esc_count);
474        }
475
476        if (read > length)
477            av_log(l->avctx, AV_LOG_WARNING,
478                   "Output more bytes than length (%d of %"PRIu32")\n", read,
479                   length);
480    } else if (esc_count < 8) {
481        esc_count -= 4;
482        src ++;
483        src_size --;
484        if (esc_count > 0) {
485            /* Zero run coding only, no range coding. */
486            for (i = 0; i < height; i++) {
487                int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
488                                                   src_end, width, esc_count);
489                if (res < 0)
490                    return res;
491                src += res;
492            }
493        } else {
494            if (src_size < width * height)
495                return AVERROR_INVALIDDATA; // buffer not big enough
496            /* Plane is stored uncompressed */
497            for (i = 0; i < height; i++) {
498                memcpy(dst + (i * stride), src, width);
499                src += width;
500            }
501        }
502    } else if (esc_count == 0xff) {
503        /* Plane is a solid run of given value */
504        for (i = 0; i < height; i++)
505            memset(dst + i * stride, src[1], width);
506        /* Do not apply prediction.
507           Note: memset to 0 above, setting first value to src[1]
508           and applying prediction gives the same result. */
509        return 0;
510    } else {
511        av_log(l->avctx, AV_LOG_ERROR,
512               "Invalid zero run escape code! (%#x)\n", esc_count);
513        return AVERROR_INVALIDDATA;
514    }
515
516    if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
517        for (i = 0; i < height; i++) {
518            lag_pred_line(l, dst, width, stride, i);
519            dst += stride;
520        }
521    } else {
522        for (i = 0; i < height; i++) {
523            lag_pred_line_yuy2(l, dst, width, stride, i,
524                               width == l->avctx->width);
525            dst += stride;
526        }
527    }
528
529    return 0;
530}
531
532/**
533 * Decode a frame.
534 * @param avctx codec context
535 * @param data output AVFrame
536 * @param data_size size of output data or 0 if no picture is returned
537 * @param avpkt input packet
538 * @return number of consumed bytes on success or negative if decode fails
539 */
540static int lag_decode_frame(AVCodecContext *avctx, AVFrame *p,
541                            int *got_frame, AVPacket *avpkt)
542{
543    const uint8_t *buf = avpkt->data;
544    unsigned int buf_size = avpkt->size;
545    LagarithContext *l = avctx->priv_data;
546    uint8_t frametype;
547    uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
548    uint32_t offs[4];
549    uint8_t *srcs[4];
550    int i, j, planes = 3;
551    int ret = 0;
552
553    p->key_frame = 1;
554    p->pict_type = AV_PICTURE_TYPE_I;
555
556    frametype = buf[0];
557
558    offset_gu = AV_RL32(buf + 1);
559    offset_bv = AV_RL32(buf + 5);
560
561    switch (frametype) {
562    case FRAME_SOLID_RGBA:
563        avctx->pix_fmt = AV_PIX_FMT_GBRAP;
564    case FRAME_SOLID_GRAY:
565        if (frametype == FRAME_SOLID_GRAY)
566            if (avctx->bits_per_coded_sample == 24) {
567                avctx->pix_fmt = AV_PIX_FMT_GBRP;
568            } else {
569                avctx->pix_fmt = AV_PIX_FMT_GBRAP;
570                planes = 4;
571            }
572
573        if ((ret = ff_thread_get_buffer(avctx, p, 0)) < 0)
574            return ret;
575
576        if (frametype == FRAME_SOLID_RGBA) {
577            for (i = 0; i < avctx->height; i++) {
578                memset(p->data[0] + i * p->linesize[0], buf[2], avctx->width);
579                memset(p->data[1] + i * p->linesize[1], buf[1], avctx->width);
580                memset(p->data[2] + i * p->linesize[2], buf[3], avctx->width);
581                memset(p->data[3] + i * p->linesize[3], buf[4], avctx->width);
582            }
583        } else {
584            for (i = 0; i < avctx->height; i++) {
585                for (j = 0; j < planes; j++)
586                    memset(p->data[j] + i * p->linesize[j], buf[1], avctx->width);
587            }
588        }
589        break;
590    case FRAME_SOLID_COLOR:
591        if (avctx->bits_per_coded_sample == 24) {
592            avctx->pix_fmt = AV_PIX_FMT_GBRP;
593        } else {
594            avctx->pix_fmt = AV_PIX_FMT_GBRAP;
595        }
596
597        if ((ret = ff_thread_get_buffer(avctx, p,0)) < 0)
598            return ret;
599
600        for (i = 0; i < avctx->height; i++) {
601            memset(p->data[0] + i * p->linesize[0], buf[2], avctx->width);
602            memset(p->data[1] + i * p->linesize[1], buf[1], avctx->width);
603            memset(p->data[2] + i * p->linesize[2], buf[3], avctx->width);
604            if (avctx->pix_fmt == AV_PIX_FMT_GBRAP)
605                memset(p->data[3] + i * p->linesize[3], 0xFFu, avctx->width);
606        }
607        break;
608    case FRAME_ARITH_RGBA:
609        avctx->pix_fmt = AV_PIX_FMT_GBRAP;
610        planes = 4;
611        offset_ry += 4;
612        offs[3] = AV_RL32(buf + 9);
613    case FRAME_ARITH_RGB24:
614    case FRAME_U_RGB24:
615        if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
616            avctx->pix_fmt = AV_PIX_FMT_GBRP;
617
618        if ((ret = ff_thread_get_buffer(avctx, p, 0)) < 0)
619            return ret;
620
621        offs[0] = offset_bv;
622        offs[1] = offset_gu;
623        offs[2] = offset_ry;
624
625        for (i = 0; i < planes; i++)
626            srcs[i] = p->data[i] + (avctx->height - 1) * p->linesize[i];
627        for (i = 0; i < planes; i++)
628            if (buf_size <= offs[i]) {
629                av_log(avctx, AV_LOG_ERROR,
630                        "Invalid frame offsets\n");
631                return AVERROR_INVALIDDATA;
632            }
633
634        for (i = 0; i < planes; i++) {
635            ret = lag_decode_arith_plane(l, srcs[i],
636                                   avctx->width, avctx->height,
637                                   -p->linesize[i], buf + offs[i],
638                                   buf_size - offs[i]);
639            if (ret < 0)
640                return ret;
641        }
642        for (i = 0; i < avctx->height; i++) {
643            l->llviddsp.add_bytes(p->data[0] + i * p->linesize[0], p->data[1] + i * p->linesize[1], avctx->width);
644            l->llviddsp.add_bytes(p->data[2] + i * p->linesize[2], p->data[1] + i * p->linesize[1], avctx->width);
645        }
646        FFSWAP(uint8_t*, p->data[0], p->data[1]);
647        FFSWAP(int, p->linesize[0], p->linesize[1]);
648        FFSWAP(uint8_t*, p->data[2], p->data[1]);
649        FFSWAP(int, p->linesize[2], p->linesize[1]);
650        break;
651    case FRAME_ARITH_YUY2:
652        avctx->pix_fmt = AV_PIX_FMT_YUV422P;
653
654        if ((ret = ff_thread_get_buffer(avctx, p, 0)) < 0)
655            return ret;
656
657        if (offset_ry >= buf_size ||
658            offset_gu >= buf_size ||
659            offset_bv >= buf_size) {
660            av_log(avctx, AV_LOG_ERROR,
661                   "Invalid frame offsets\n");
662            return AVERROR_INVALIDDATA;
663        }
664
665        ret = lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
666                               p->linesize[0], buf + offset_ry,
667                               buf_size - offset_ry);
668        if (ret < 0)
669            return ret;
670        ret = lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
671                               avctx->height, p->linesize[1],
672                               buf + offset_gu, buf_size - offset_gu);
673        if (ret < 0)
674            return ret;
675        ret = lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
676                               avctx->height, p->linesize[2],
677                               buf + offset_bv, buf_size - offset_bv);
678        break;
679    case FRAME_ARITH_YV12:
680        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
681
682        if ((ret = ff_thread_get_buffer(avctx, p, 0)) < 0)
683            return ret;
684
685        if (offset_ry >= buf_size ||
686            offset_gu >= buf_size ||
687            offset_bv >= buf_size) {
688            av_log(avctx, AV_LOG_ERROR,
689                   "Invalid frame offsets\n");
690            return AVERROR_INVALIDDATA;
691        }
692
693        ret = lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
694                               p->linesize[0], buf + offset_ry,
695                               buf_size - offset_ry);
696        if (ret < 0)
697            return ret;
698        ret = lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
699                               (avctx->height + 1) / 2, p->linesize[2],
700                               buf + offset_gu, buf_size - offset_gu);
701        if (ret < 0)
702            return ret;
703        ret = lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
704                               (avctx->height + 1) / 2, p->linesize[1],
705                               buf + offset_bv, buf_size - offset_bv);
706        break;
707    default:
708        av_log(avctx, AV_LOG_ERROR,
709               "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
710        return AVERROR_PATCHWELCOME;
711    }
712
713    if (ret < 0)
714        return ret;
715
716    *got_frame = 1;
717
718    return buf_size;
719}
720
721static av_cold int lag_decode_init(AVCodecContext *avctx)
722{
723    LagarithContext *l = avctx->priv_data;
724    l->avctx = avctx;
725
726    ff_llviddsp_init(&l->llviddsp);
727
728    return 0;
729}
730
731const FFCodec ff_lagarith_decoder = {
732    .p.name         = "lagarith",
733    .p.long_name    = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
734    .p.type         = AVMEDIA_TYPE_VIDEO,
735    .p.id           = AV_CODEC_ID_LAGARITH,
736    .priv_data_size = sizeof(LagarithContext),
737    .init           = lag_decode_init,
738    FF_CODEC_DECODE_CB(lag_decode_frame),
739    .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
740    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
741};
742