1 /*
2  * Lagarith lossless decoder
3  * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Lagarith lossless decoder
25  * @author Nathan Caldwell
26  */
27 
28 #include <inttypes.h>
29 
30 #include "avcodec.h"
31 #include "codec_internal.h"
32 #include "get_bits.h"
33 #include "mathops.h"
34 #include "lagarithrac.h"
35 #include "lossless_videodsp.h"
36 #include "thread.h"
37 
38 enum LagarithFrameType {
39     FRAME_RAW           = 1,    /**< uncompressed */
40     FRAME_U_RGB24       = 2,    /**< unaligned RGB24 */
41     FRAME_ARITH_YUY2    = 3,    /**< arithmetic coded YUY2 */
42     FRAME_ARITH_RGB24   = 4,    /**< arithmetic coded RGB24 */
43     FRAME_SOLID_GRAY    = 5,    /**< solid grayscale color frame */
44     FRAME_SOLID_COLOR   = 6,    /**< solid non-grayscale color frame */
45     FRAME_OLD_ARITH_RGB = 7,    /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
46     FRAME_ARITH_RGBA    = 8,    /**< arithmetic coded RGBA */
47     FRAME_SOLID_RGBA    = 9,    /**< solid RGBA color frame */
48     FRAME_ARITH_YV12    = 10,   /**< arithmetic coded YV12 */
49     FRAME_REDUCED_RES   = 11,   /**< reduced resolution YV12 frame */
50 };
51 
52 typedef struct LagarithContext {
53     AVCodecContext *avctx;
54     LLVidDSPContext llviddsp;
55     int zeros;                  /**< number of consecutive zero bytes encountered */
56     int zeros_rem;              /**< number of zero bytes remaining to output */
57 } LagarithContext;
58 
59 /**
60  * Compute the 52-bit mantissa of 1/(double)denom.
61  * This crazy format uses floats in an entropy coder and we have to match x86
62  * rounding exactly, thus ordinary floats aren't portable enough.
63  * @param denom denominator
64  * @return 52-bit mantissa
65  * @see softfloat_mul
66  */
softfloat_reciprocal(uint32_t denom)67 static uint64_t softfloat_reciprocal(uint32_t denom)
68 {
69     int shift = av_log2(denom - 1) + 1;
70     uint64_t ret = (1ULL << 52) / denom;
71     uint64_t err = (1ULL << 52) - ret * denom;
72     ret <<= shift;
73     err <<= shift;
74     err +=  denom / 2;
75     return ret + err / denom;
76 }
77 
78 /**
79  * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
80  * Used in combination with softfloat_reciprocal computes x/(double)denom.
81  * @param x 32-bit integer factor
82  * @param mantissa mantissa of f with exponent 0
83  * @return 32-bit integer value (x*f)
84  * @see softfloat_reciprocal
85  */
softfloat_mul(uint32_t x, uint64_t mantissa)86 static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
87 {
88     uint64_t l = x * (mantissa & 0xffffffff);
89     uint64_t h = x * (mantissa >> 32);
90     h += l >> 32;
91     l &= 0xffffffff;
92     l += 1LL << av_log2(h >> 21);
93     h += l >> 32;
94     return h >> 20;
95 }
96 
lag_calc_zero_run(int8_t x)97 static uint8_t lag_calc_zero_run(int8_t x)
98 {
99     return (x * 2) ^ (x >> 7);
100 }
101 
lag_decode_prob(GetBitContext *gb, uint32_t *value)102 static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
103 {
104     static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
105     int i;
106     int bit     = 0;
107     int bits    = 0;
108     int prevbit = 0;
109     unsigned val;
110 
111     for (i = 0; i < 7; i++) {
112         if (prevbit && bit)
113             break;
114         prevbit = bit;
115         bit = get_bits1(gb);
116         if (bit && !prevbit)
117             bits += series[i];
118     }
119     bits--;
120     if (bits < 0 || bits > 31) {
121         *value = 0;
122         return AVERROR_INVALIDDATA;
123     } else if (bits == 0) {
124         *value = 0;
125         return 0;
126     }
127 
128     val  = get_bits_long(gb, bits);
129     val |= 1U << bits;
130 
131     *value = val - 1;
132 
133     return 0;
134 }
135 
lag_read_prob_header(lag_rac *rac, GetBitContext *gb)136 static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
137 {
138     int i, j, scale_factor;
139     unsigned prob, cumulative_target;
140     unsigned cumul_prob = 0;
141     unsigned scaled_cumul_prob = 0;
142     int nnz = 0;
143 
144     rac->prob[0] = 0;
145     rac->prob[257] = UINT_MAX;
146     /* Read probabilities from bitstream */
147     for (i = 1; i < 257; i++) {
148         if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
149             av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
150             return AVERROR_INVALIDDATA;
151         }
152         if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
153             av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
154             return AVERROR_INVALIDDATA;
155         }
156         cumul_prob += rac->prob[i];
157         if (!rac->prob[i]) {
158             if (lag_decode_prob(gb, &prob)) {
159                 av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
160                 return AVERROR_INVALIDDATA;
161             }
162             if (prob > 256 - i)
163                 prob = 256 - i;
164             for (j = 0; j < prob; j++)
165                 rac->prob[++i] = 0;
166         }else {
167             nnz++;
168         }
169     }
170 
171     if (!cumul_prob) {
172         av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
173         return AVERROR_INVALIDDATA;
174     }
175 
176     if (nnz == 1 && (show_bits_long(gb, 32) & 0xFFFFFF)) {
177         return AVERROR_INVALIDDATA;
178     }
179 
180     /* Scale probabilities so cumulative probability is an even power of 2. */
181     scale_factor = av_log2(cumul_prob);
182 
183     if (cumul_prob & (cumul_prob - 1)) {
184         uint64_t mul = softfloat_reciprocal(cumul_prob);
185         for (i = 1; i <= 128; i++) {
186             rac->prob[i] = softfloat_mul(rac->prob[i], mul);
187             scaled_cumul_prob += rac->prob[i];
188         }
189         if (scaled_cumul_prob <= 0) {
190             av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n");
191             return AVERROR_INVALIDDATA;
192         }
193         for (; i < 257; i++) {
194             rac->prob[i] = softfloat_mul(rac->prob[i], mul);
195             scaled_cumul_prob += rac->prob[i];
196         }
197 
198         scale_factor++;
199         if (scale_factor >= 32U)
200             return AVERROR_INVALIDDATA;
201         cumulative_target = 1U << scale_factor;
202 
203         if (scaled_cumul_prob > cumulative_target) {
204             av_log(rac->avctx, AV_LOG_ERROR,
205                    "Scaled probabilities are larger than target!\n");
206             return AVERROR_INVALIDDATA;
207         }
208 
209         scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
210 
211         for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
212             if (rac->prob[i]) {
213                 rac->prob[i]++;
214                 scaled_cumul_prob--;
215             }
216             /* Comment from reference source:
217              * if (b & 0x80 == 0) {     // order of operations is 'wrong'; it has been left this way
218              *                          // since the compression change is negligible and fixing it
219              *                          // breaks backwards compatibility
220              *      b =- (signed int)b;
221              *      b &= 0xFF;
222              * } else {
223              *      b++;
224              *      b &= 0x7f;
225              * }
226              */
227         }
228     }
229 
230     if (scale_factor > 23)
231         return AVERROR_INVALIDDATA;
232 
233     rac->scale = scale_factor;
234 
235     /* Fill probability array with cumulative probability for each symbol. */
236     for (i = 1; i < 257; i++)
237         rac->prob[i] += rac->prob[i - 1];
238 
239     return 0;
240 }
241 
add_lag_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top)242 static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
243                                       uint8_t *diff, int w, int *left,
244                                       int *left_top)
245 {
246     /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
247      * However the &0xFF on the gradient predictor yields incorrect output
248      * for lagarith.
249      */
250     int i;
251     uint8_t l, lt;
252 
253     l  = *left;
254     lt = *left_top;
255 
256     for (i = 0; i < w; i++) {
257         l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
258         lt = src1[i];
259         dst[i] = l;
260     }
261 
262     *left     = l;
263     *left_top = lt;
264 }
265 
lag_pred_line(LagarithContext *l, uint8_t *buf, int width, int stride, int line)266 static void lag_pred_line(LagarithContext *l, uint8_t *buf,
267                           int width, int stride, int line)
268 {
269     int L, TL;
270 
271     if (!line) {
272         /* Left prediction only for first line */
273         L = l->llviddsp.add_left_pred(buf, buf, width, 0);
274     } else {
275         /* Left pixel is actually prev_row[width] */
276         L = buf[width - stride - 1];
277 
278         if (line == 1) {
279             /* Second line, left predict first pixel, the rest of the line is median predicted
280              * NOTE: In the case of RGB this pixel is top predicted */
281             TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
282         } else {
283             /* Top left is 2 rows back, last pixel */
284             TL = buf[width - (2 * stride) - 1];
285         }
286 
287         add_lag_median_prediction(buf, buf - stride, buf,
288                                   width, &L, &TL);
289     }
290 }
291 
lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf, int width, int stride, int line, int is_luma)292 static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
293                                int width, int stride, int line,
294                                int is_luma)
295 {
296     int L, TL;
297 
298     if (!line) {
299         L= buf[0];
300         if (is_luma)
301             buf[0] = 0;
302         l->llviddsp.add_left_pred(buf, buf, width, 0);
303         if (is_luma)
304             buf[0] = L;
305         return;
306     }
307     if (line == 1) {
308         const int HEAD = is_luma ? 4 : 2;
309         int i;
310 
311         L  = buf[width - stride - 1];
312         TL = buf[HEAD  - stride - 1];
313         for (i = 0; i < HEAD; i++) {
314             L += buf[i];
315             buf[i] = L;
316         }
317         for (; i < width; i++) {
318             L      = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
319             TL     = buf[i - stride];
320             buf[i] = L;
321         }
322     } else {
323         TL = buf[width - (2 * stride) - 1];
324         L  = buf[width - stride - 1];
325         l->llviddsp.add_median_pred(buf, buf - stride, buf, width, &L, &TL);
326     }
327 }
328 
lag_decode_line(LagarithContext *l, lag_rac *rac, uint8_t *dst, int width, int stride, int esc_count)329 static int lag_decode_line(LagarithContext *l, lag_rac *rac,
330                            uint8_t *dst, int width, int stride,
331                            int esc_count)
332 {
333     int i = 0;
334     int ret = 0;
335 
336     if (!esc_count)
337         esc_count = -1;
338 
339     /* Output any zeros remaining from the previous run */
340 handle_zeros:
341     if (l->zeros_rem) {
342         int count = FFMIN(l->zeros_rem, width - i);
343         memset(dst + i, 0, count);
344         i += count;
345         l->zeros_rem -= count;
346     }
347 
348     while (i < width) {
349         dst[i] = lag_get_rac(rac);
350         ret++;
351 
352         if (dst[i])
353             l->zeros = 0;
354         else
355             l->zeros++;
356 
357         i++;
358         if (l->zeros == esc_count) {
359             int index = lag_get_rac(rac);
360             ret++;
361 
362             l->zeros = 0;
363 
364             l->zeros_rem = lag_calc_zero_run(index);
365             goto handle_zeros;
366         }
367     }
368     return ret;
369 }
370 
lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst, const uint8_t *src, const uint8_t *src_end, int width, int esc_count)371 static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
372                                     const uint8_t *src, const uint8_t *src_end,
373                                     int width, int esc_count)
374 {
375     int i = 0;
376     int count;
377     uint8_t zero_run = 0;
378     const uint8_t *src_start = src;
379     uint8_t mask1 = -(esc_count < 2);
380     uint8_t mask2 = -(esc_count < 3);
381     uint8_t *end = dst + (width - 2);
382 
383     avpriv_request_sample(l->avctx, "zero_run_line");
384 
385     memset(dst, 0, width);
386 
387 output_zeros:
388     if (l->zeros_rem) {
389         count = FFMIN(l->zeros_rem, width - i);
390         if (end - dst < count) {
391             av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
392             return AVERROR_INVALIDDATA;
393         }
394 
395         memset(dst, 0, count);
396         l->zeros_rem -= count;
397         dst += count;
398     }
399 
400     while (dst < end) {
401         i = 0;
402         while (!zero_run && dst + i < end) {
403             i++;
404             if (i+2 >= src_end - src)
405                 return AVERROR_INVALIDDATA;
406             zero_run =
407                 !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
408         }
409         if (zero_run) {
410             zero_run = 0;
411             i += esc_count;
412             if (i >  end - dst ||
413                 i >= src_end - src)
414                 return AVERROR_INVALIDDATA;
415             memcpy(dst, src, i);
416             dst += i;
417             l->zeros_rem = lag_calc_zero_run(src[i]);
418 
419             src += i + 1;
420             goto output_zeros;
421         } else {
422             memcpy(dst, src, i);
423             src += i;
424             dst += i;
425         }
426     }
427     return  src - src_start;
428 }
429 
430 
431 
lag_decode_arith_plane(LagarithContext *l, uint8_t *dst, int width, int height, int stride, const uint8_t *src, int src_size)432 static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
433                                   int width, int height, int stride,
434                                   const uint8_t *src, int src_size)
435 {
436     int i = 0;
437     int read = 0;
438     uint32_t length;
439     uint32_t offset = 1;
440     int esc_count;
441     GetBitContext gb;
442     lag_rac rac;
443     const uint8_t *src_end = src + src_size;
444     int ret;
445 
446     rac.avctx = l->avctx;
447     l->zeros = 0;
448 
449     if(src_size < 2)
450         return AVERROR_INVALIDDATA;
451 
452     esc_count = src[0];
453     if (esc_count < 4) {
454         length = width * height;
455         if(src_size < 5)
456             return AVERROR_INVALIDDATA;
457         if (esc_count && AV_RL32(src + 1) < length) {
458             length = AV_RL32(src + 1);
459             offset += 4;
460         }
461 
462         if ((ret = init_get_bits8(&gb, src + offset, src_size - offset)) < 0)
463             return ret;
464 
465         if ((ret = lag_read_prob_header(&rac, &gb)) < 0)
466             return ret;
467 
468         ff_lag_rac_init(&rac, &gb, length - stride);
469         for (i = 0; i < height; i++) {
470             if (rac.overread > MAX_OVERREAD)
471                 return AVERROR_INVALIDDATA;
472             read += lag_decode_line(l, &rac, dst + (i * stride), width,
473                                     stride, esc_count);
474         }
475 
476         if (read > length)
477             av_log(l->avctx, AV_LOG_WARNING,
478                    "Output more bytes than length (%d of %"PRIu32")\n", read,
479                    length);
480     } else if (esc_count < 8) {
481         esc_count -= 4;
482         src ++;
483         src_size --;
484         if (esc_count > 0) {
485             /* Zero run coding only, no range coding. */
486             for (i = 0; i < height; i++) {
487                 int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
488                                                    src_end, width, esc_count);
489                 if (res < 0)
490                     return res;
491                 src += res;
492             }
493         } else {
494             if (src_size < width * height)
495                 return AVERROR_INVALIDDATA; // buffer not big enough
496             /* Plane is stored uncompressed */
497             for (i = 0; i < height; i++) {
498                 memcpy(dst + (i * stride), src, width);
499                 src += width;
500             }
501         }
502     } else if (esc_count == 0xff) {
503         /* Plane is a solid run of given value */
504         for (i = 0; i < height; i++)
505             memset(dst + i * stride, src[1], width);
506         /* Do not apply prediction.
507            Note: memset to 0 above, setting first value to src[1]
508            and applying prediction gives the same result. */
509         return 0;
510     } else {
511         av_log(l->avctx, AV_LOG_ERROR,
512                "Invalid zero run escape code! (%#x)\n", esc_count);
513         return AVERROR_INVALIDDATA;
514     }
515 
516     if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
517         for (i = 0; i < height; i++) {
518             lag_pred_line(l, dst, width, stride, i);
519             dst += stride;
520         }
521     } else {
522         for (i = 0; i < height; i++) {
523             lag_pred_line_yuy2(l, dst, width, stride, i,
524                                width == l->avctx->width);
525             dst += stride;
526         }
527     }
528 
529     return 0;
530 }
531 
532 /**
533  * Decode a frame.
534  * @param avctx codec context
535  * @param data output AVFrame
536  * @param data_size size of output data or 0 if no picture is returned
537  * @param avpkt input packet
538  * @return number of consumed bytes on success or negative if decode fails
539  */
lag_decode_frame(AVCodecContext *avctx, AVFrame *p, int *got_frame, AVPacket *avpkt)540 static int lag_decode_frame(AVCodecContext *avctx, AVFrame *p,
541                             int *got_frame, AVPacket *avpkt)
542 {
543     const uint8_t *buf = avpkt->data;
544     unsigned int buf_size = avpkt->size;
545     LagarithContext *l = avctx->priv_data;
546     uint8_t frametype;
547     uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
548     uint32_t offs[4];
549     uint8_t *srcs[4];
550     int i, j, planes = 3;
551     int ret = 0;
552 
553     p->key_frame = 1;
554     p->pict_type = AV_PICTURE_TYPE_I;
555 
556     frametype = buf[0];
557 
558     offset_gu = AV_RL32(buf + 1);
559     offset_bv = AV_RL32(buf + 5);
560 
561     switch (frametype) {
562     case FRAME_SOLID_RGBA:
563         avctx->pix_fmt = AV_PIX_FMT_GBRAP;
564     case FRAME_SOLID_GRAY:
565         if (frametype == FRAME_SOLID_GRAY)
566             if (avctx->bits_per_coded_sample == 24) {
567                 avctx->pix_fmt = AV_PIX_FMT_GBRP;
568             } else {
569                 avctx->pix_fmt = AV_PIX_FMT_GBRAP;
570                 planes = 4;
571             }
572 
573         if ((ret = ff_thread_get_buffer(avctx, p, 0)) < 0)
574             return ret;
575 
576         if (frametype == FRAME_SOLID_RGBA) {
577             for (i = 0; i < avctx->height; i++) {
578                 memset(p->data[0] + i * p->linesize[0], buf[2], avctx->width);
579                 memset(p->data[1] + i * p->linesize[1], buf[1], avctx->width);
580                 memset(p->data[2] + i * p->linesize[2], buf[3], avctx->width);
581                 memset(p->data[3] + i * p->linesize[3], buf[4], avctx->width);
582             }
583         } else {
584             for (i = 0; i < avctx->height; i++) {
585                 for (j = 0; j < planes; j++)
586                     memset(p->data[j] + i * p->linesize[j], buf[1], avctx->width);
587             }
588         }
589         break;
590     case FRAME_SOLID_COLOR:
591         if (avctx->bits_per_coded_sample == 24) {
592             avctx->pix_fmt = AV_PIX_FMT_GBRP;
593         } else {
594             avctx->pix_fmt = AV_PIX_FMT_GBRAP;
595         }
596 
597         if ((ret = ff_thread_get_buffer(avctx, p,0)) < 0)
598             return ret;
599 
600         for (i = 0; i < avctx->height; i++) {
601             memset(p->data[0] + i * p->linesize[0], buf[2], avctx->width);
602             memset(p->data[1] + i * p->linesize[1], buf[1], avctx->width);
603             memset(p->data[2] + i * p->linesize[2], buf[3], avctx->width);
604             if (avctx->pix_fmt == AV_PIX_FMT_GBRAP)
605                 memset(p->data[3] + i * p->linesize[3], 0xFFu, avctx->width);
606         }
607         break;
608     case FRAME_ARITH_RGBA:
609         avctx->pix_fmt = AV_PIX_FMT_GBRAP;
610         planes = 4;
611         offset_ry += 4;
612         offs[3] = AV_RL32(buf + 9);
613     case FRAME_ARITH_RGB24:
614     case FRAME_U_RGB24:
615         if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
616             avctx->pix_fmt = AV_PIX_FMT_GBRP;
617 
618         if ((ret = ff_thread_get_buffer(avctx, p, 0)) < 0)
619             return ret;
620 
621         offs[0] = offset_bv;
622         offs[1] = offset_gu;
623         offs[2] = offset_ry;
624 
625         for (i = 0; i < planes; i++)
626             srcs[i] = p->data[i] + (avctx->height - 1) * p->linesize[i];
627         for (i = 0; i < planes; i++)
628             if (buf_size <= offs[i]) {
629                 av_log(avctx, AV_LOG_ERROR,
630                         "Invalid frame offsets\n");
631                 return AVERROR_INVALIDDATA;
632             }
633 
634         for (i = 0; i < planes; i++) {
635             ret = lag_decode_arith_plane(l, srcs[i],
636                                    avctx->width, avctx->height,
637                                    -p->linesize[i], buf + offs[i],
638                                    buf_size - offs[i]);
639             if (ret < 0)
640                 return ret;
641         }
642         for (i = 0; i < avctx->height; i++) {
643             l->llviddsp.add_bytes(p->data[0] + i * p->linesize[0], p->data[1] + i * p->linesize[1], avctx->width);
644             l->llviddsp.add_bytes(p->data[2] + i * p->linesize[2], p->data[1] + i * p->linesize[1], avctx->width);
645         }
646         FFSWAP(uint8_t*, p->data[0], p->data[1]);
647         FFSWAP(int, p->linesize[0], p->linesize[1]);
648         FFSWAP(uint8_t*, p->data[2], p->data[1]);
649         FFSWAP(int, p->linesize[2], p->linesize[1]);
650         break;
651     case FRAME_ARITH_YUY2:
652         avctx->pix_fmt = AV_PIX_FMT_YUV422P;
653 
654         if ((ret = ff_thread_get_buffer(avctx, p, 0)) < 0)
655             return ret;
656 
657         if (offset_ry >= buf_size ||
658             offset_gu >= buf_size ||
659             offset_bv >= buf_size) {
660             av_log(avctx, AV_LOG_ERROR,
661                    "Invalid frame offsets\n");
662             return AVERROR_INVALIDDATA;
663         }
664 
665         ret = lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
666                                p->linesize[0], buf + offset_ry,
667                                buf_size - offset_ry);
668         if (ret < 0)
669             return ret;
670         ret = lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
671                                avctx->height, p->linesize[1],
672                                buf + offset_gu, buf_size - offset_gu);
673         if (ret < 0)
674             return ret;
675         ret = lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
676                                avctx->height, p->linesize[2],
677                                buf + offset_bv, buf_size - offset_bv);
678         break;
679     case FRAME_ARITH_YV12:
680         avctx->pix_fmt = AV_PIX_FMT_YUV420P;
681 
682         if ((ret = ff_thread_get_buffer(avctx, p, 0)) < 0)
683             return ret;
684 
685         if (offset_ry >= buf_size ||
686             offset_gu >= buf_size ||
687             offset_bv >= buf_size) {
688             av_log(avctx, AV_LOG_ERROR,
689                    "Invalid frame offsets\n");
690             return AVERROR_INVALIDDATA;
691         }
692 
693         ret = lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
694                                p->linesize[0], buf + offset_ry,
695                                buf_size - offset_ry);
696         if (ret < 0)
697             return ret;
698         ret = lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
699                                (avctx->height + 1) / 2, p->linesize[2],
700                                buf + offset_gu, buf_size - offset_gu);
701         if (ret < 0)
702             return ret;
703         ret = lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
704                                (avctx->height + 1) / 2, p->linesize[1],
705                                buf + offset_bv, buf_size - offset_bv);
706         break;
707     default:
708         av_log(avctx, AV_LOG_ERROR,
709                "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
710         return AVERROR_PATCHWELCOME;
711     }
712 
713     if (ret < 0)
714         return ret;
715 
716     *got_frame = 1;
717 
718     return buf_size;
719 }
720 
lag_decode_init(AVCodecContext *avctx)721 static av_cold int lag_decode_init(AVCodecContext *avctx)
722 {
723     LagarithContext *l = avctx->priv_data;
724     l->avctx = avctx;
725 
726     ff_llviddsp_init(&l->llviddsp);
727 
728     return 0;
729 }
730 
731 const FFCodec ff_lagarith_decoder = {
732     .p.name         = "lagarith",
733     .p.long_name    = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
734     .p.type         = AVMEDIA_TYPE_VIDEO,
735     .p.id           = AV_CODEC_ID_LAGARITH,
736     .priv_data_size = sizeof(LagarithContext),
737     .init           = lag_decode_init,
738     FF_CODEC_DECODE_CB(lag_decode_frame),
739     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
740     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
741 };
742