1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2013 Anand Meher Kotra
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 #include "hevc.h"
25 #include "hevcdec.h"
26 #include "threadframe.h"
27 
28 static const uint8_t l0_l1_cand_idx[12][2] = {
29     { 0, 1, },
30     { 1, 0, },
31     { 0, 2, },
32     { 2, 0, },
33     { 1, 2, },
34     { 2, 1, },
35     { 0, 3, },
36     { 3, 0, },
37     { 1, 3, },
38     { 3, 1, },
39     { 2, 3, },
40     { 3, 2, },
41 };
42 
ff_hevc_set_neighbour_available(HEVCContext *s, int x0, int y0, int nPbW, int nPbH)43 void ff_hevc_set_neighbour_available(HEVCContext *s, int x0, int y0,
44                                      int nPbW, int nPbH)
45 {
46     HEVCLocalContext *lc = s->HEVClc;
47     int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
48     int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
49 
50     lc->na.cand_up       = (lc->ctb_up_flag   || y0b);
51     lc->na.cand_left     = (lc->ctb_left_flag || x0b);
52     lc->na.cand_up_left  = (x0b || y0b) ? lc->na.cand_left && lc->na.cand_up : lc->ctb_up_left_flag;
53     lc->na.cand_up_right_sap =
54             (x0b + nPbW == 1 << s->ps.sps->log2_ctb_size) ?
55                     lc->ctb_up_right_flag && !y0b : lc->na.cand_up;
56     lc->na.cand_up_right =
57             lc->na.cand_up_right_sap
58                      && (x0 + nPbW) < lc->end_of_tiles_x;
59     lc->na.cand_bottom_left = ((y0 + nPbH) >= lc->end_of_tiles_y) ? 0 : lc->na.cand_left;
60 }
61 
62 /*
63  * 6.4.1 Derivation process for z-scan order block availability
64  */
z_scan_block_avail(HEVCContext *s, int xCurr, int yCurr, int xN, int yN)65 static av_always_inline int z_scan_block_avail(HEVCContext *s, int xCurr, int yCurr,
66                               int xN, int yN)
67 {
68 #define MIN_TB_ADDR_ZS(x, y)                                            \
69     s->ps.pps->min_tb_addr_zs[(y) * (s->ps.sps->tb_mask+2) + (x)]
70 
71     int xCurr_ctb = xCurr >> s->ps.sps->log2_ctb_size;
72     int yCurr_ctb = yCurr >> s->ps.sps->log2_ctb_size;
73     int xN_ctb    = xN    >> s->ps.sps->log2_ctb_size;
74     int yN_ctb    = yN    >> s->ps.sps->log2_ctb_size;
75     if( yN_ctb < yCurr_ctb || xN_ctb < xCurr_ctb )
76         return 1;
77     else {
78         int Curr = MIN_TB_ADDR_ZS((xCurr >> s->ps.sps->log2_min_tb_size) & s->ps.sps->tb_mask,
79                 (yCurr >> s->ps.sps->log2_min_tb_size) & s->ps.sps->tb_mask);
80         int N    = MIN_TB_ADDR_ZS((xN >> s->ps.sps->log2_min_tb_size) & s->ps.sps->tb_mask,
81                 (yN >> s->ps.sps->log2_min_tb_size) & s->ps.sps->tb_mask);
82         return N <= Curr;
83     }
84 }
85 
86 //check if the two luma locations belong to the same motion estimation region
is_diff_mer(HEVCContext *s, int xN, int yN, int xP, int yP)87 static av_always_inline int is_diff_mer(HEVCContext *s, int xN, int yN, int xP, int yP)
88 {
89     uint8_t plevel = s->ps.pps->log2_parallel_merge_level;
90 
91     return xN >> plevel == xP >> plevel &&
92            yN >> plevel == yP >> plevel;
93 }
94 
95 #define MATCH_MV(x) (AV_RN32A(&A.x) == AV_RN32A(&B.x))
96 #define MATCH(x) (A.x == B.x)
97 
98 // check if the mv's and refidx are the same between A and B
compare_mv_ref_idx(struct MvField A, struct MvField B)99 static av_always_inline int compare_mv_ref_idx(struct MvField A, struct MvField B)
100 {
101     int a_pf = A.pred_flag;
102     int b_pf = B.pred_flag;
103     if (a_pf == b_pf) {
104         if (a_pf == PF_BI) {
105             return MATCH(ref_idx[0]) && MATCH_MV(mv[0]) &&
106                    MATCH(ref_idx[1]) && MATCH_MV(mv[1]);
107         } else if (a_pf == PF_L0) {
108             return MATCH(ref_idx[0]) && MATCH_MV(mv[0]);
109         } else if (a_pf == PF_L1) {
110             return MATCH(ref_idx[1]) && MATCH_MV(mv[1]);
111         }
112     }
113     return 0;
114 }
115 
mv_scale(Mv *dst, const Mv *src, int td, int tb)116 static av_always_inline void mv_scale(Mv *dst, const Mv *src, int td, int tb)
117 {
118     int tx, scale_factor;
119 
120     td = av_clip_int8(td);
121     tb = av_clip_int8(tb);
122     tx = (0x4000 + abs(td / 2)) / td;
123     scale_factor = av_clip_intp2((tb * tx + 32) >> 6, 12);
124     dst->x = av_clip_int16((scale_factor * src->x + 127 +
125                            (scale_factor * src->x < 0)) >> 8);
126     dst->y = av_clip_int16((scale_factor * src->y + 127 +
127                            (scale_factor * src->y < 0)) >> 8);
128 }
129 
check_mvset(Mv *mvLXCol, const Mv *mvCol, int colPic, int poc, const RefPicList *refPicList, int X, int refIdxLx, const RefPicList *refPicList_col, int listCol, int refidxCol)130 static int check_mvset(Mv *mvLXCol, const Mv *mvCol,
131                        int colPic, int poc,
132                        const RefPicList *refPicList, int X, int refIdxLx,
133                        const RefPicList *refPicList_col, int listCol, int refidxCol)
134 {
135     int cur_lt = refPicList[X].isLongTerm[refIdxLx];
136     int col_lt = refPicList_col[listCol].isLongTerm[refidxCol];
137     int col_poc_diff, cur_poc_diff;
138 
139     if (cur_lt != col_lt) {
140         mvLXCol->x = 0;
141         mvLXCol->y = 0;
142         return 0;
143     }
144 
145     col_poc_diff = colPic - refPicList_col[listCol].list[refidxCol];
146     cur_poc_diff = poc    - refPicList[X].list[refIdxLx];
147 
148     if (cur_lt || col_poc_diff == cur_poc_diff || !col_poc_diff) {
149         mvLXCol->x = mvCol->x;
150         mvLXCol->y = mvCol->y;
151     } else {
152         mv_scale(mvLXCol, mvCol, col_poc_diff, cur_poc_diff);
153     }
154     return 1;
155 }
156 
157 #define CHECK_MVSET(l)                                          \
158     check_mvset(mvLXCol, temp_col.mv + l,                       \
159                 colPic, s->poc,                                 \
160                 refPicList, X, refIdxLx,                        \
161                 refPicList_col, L ## l, temp_col.ref_idx[l])
162 
163 // derive the motion vectors section 8.5.3.1.8
derive_temporal_colocated_mvs(HEVCContext *s, MvField temp_col, int refIdxLx, Mv *mvLXCol, int X, int colPic, const RefPicList *refPicList_col)164 static int derive_temporal_colocated_mvs(HEVCContext *s, MvField temp_col,
165                                          int refIdxLx, Mv *mvLXCol, int X,
166                                          int colPic, const RefPicList *refPicList_col)
167 {
168     RefPicList *refPicList = s->ref->refPicList;
169 
170     if (temp_col.pred_flag == PF_INTRA)
171         return 0;
172 
173     if (!(temp_col.pred_flag & PF_L0))
174         return CHECK_MVSET(1);
175     else if (temp_col.pred_flag == PF_L0)
176         return CHECK_MVSET(0);
177     else if (temp_col.pred_flag == PF_BI) {
178         int check_diffpicount = 0;
179         int i, j;
180         for (j = 0; j < 2; j++) {
181             for (i = 0; i < refPicList[j].nb_refs; i++) {
182                 if (refPicList[j].list[i] > s->poc) {
183                     check_diffpicount++;
184                     break;
185                 }
186             }
187         }
188         if (!check_diffpicount) {
189             if (X==0)
190                 return CHECK_MVSET(0);
191             else
192                 return CHECK_MVSET(1);
193         } else {
194             if (s->sh.collocated_list == L1)
195                 return CHECK_MVSET(0);
196             else
197                 return CHECK_MVSET(1);
198         }
199     }
200 
201     return 0;
202 }
203 
204 #define TAB_MVF(x, y)                                                   \
205     tab_mvf[(y) * min_pu_width + x]
206 
207 #define TAB_MVF_PU(v)                                                   \
208     TAB_MVF(((x ## v) >> s->ps.sps->log2_min_pu_size),                     \
209             ((y ## v) >> s->ps.sps->log2_min_pu_size))
210 
211 #define DERIVE_TEMPORAL_COLOCATED_MVS                                   \
212     derive_temporal_colocated_mvs(s, temp_col,                          \
213                                   refIdxLx, mvLXCol, X, colPic,         \
214                                   ff_hevc_get_ref_list(s, ref, x, y))
215 
216 /*
217  * 8.5.3.1.7  temporal luma motion vector prediction
218  */
temporal_luma_motion_vector(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int refIdxLx, Mv *mvLXCol, int X)219 static int temporal_luma_motion_vector(HEVCContext *s, int x0, int y0,
220                                        int nPbW, int nPbH, int refIdxLx,
221                                        Mv *mvLXCol, int X)
222 {
223     MvField *tab_mvf;
224     MvField temp_col;
225     int x, y, x_pu, y_pu;
226     int min_pu_width = s->ps.sps->min_pu_width;
227     int availableFlagLXCol = 0;
228     int colPic;
229 
230     HEVCFrame *ref = s->ref->collocated_ref;
231 
232     if (!ref) {
233         memset(mvLXCol, 0, sizeof(*mvLXCol));
234         return 0;
235     }
236 
237     tab_mvf = ref->tab_mvf;
238     colPic  = ref->poc;
239 
240     //bottom right collocated motion vector
241     x = x0 + nPbW;
242     y = y0 + nPbH;
243 
244     if (tab_mvf &&
245         (y0 >> s->ps.sps->log2_ctb_size) == (y >> s->ps.sps->log2_ctb_size) &&
246         y < s->ps.sps->height &&
247         x < s->ps.sps->width) {
248         x                 &= ~15;
249         y                 &= ~15;
250         if (s->threads_type == FF_THREAD_FRAME)
251             ff_thread_await_progress(&ref->tf, y, 0);
252         x_pu               = x >> s->ps.sps->log2_min_pu_size;
253         y_pu               = y >> s->ps.sps->log2_min_pu_size;
254         temp_col           = TAB_MVF(x_pu, y_pu);
255         availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS;
256     }
257 
258     // derive center collocated motion vector
259     if (tab_mvf && !availableFlagLXCol) {
260         x                  = x0 + (nPbW >> 1);
261         y                  = y0 + (nPbH >> 1);
262         x                 &= ~15;
263         y                 &= ~15;
264         if (s->threads_type == FF_THREAD_FRAME)
265             ff_thread_await_progress(&ref->tf, y, 0);
266         x_pu               = x >> s->ps.sps->log2_min_pu_size;
267         y_pu               = y >> s->ps.sps->log2_min_pu_size;
268         temp_col           = TAB_MVF(x_pu, y_pu);
269         availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS;
270     }
271     return availableFlagLXCol;
272 }
273 
274 #define AVAILABLE(cand, v)                                      \
275     (cand && !(TAB_MVF_PU(v).pred_flag == PF_INTRA))
276 
277 #define PRED_BLOCK_AVAILABLE(v)                                 \
278     z_scan_block_avail(s, x0, y0, x ## v, y ## v)
279 
280 #define COMPARE_MV_REFIDX(a, b)                                 \
281     compare_mv_ref_idx(TAB_MVF_PU(a), TAB_MVF_PU(b))
282 
283 /*
284  * 8.5.3.1.2  Derivation process for spatial merging candidates
285  */
derive_spatial_merge_candidates(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int singleMCLFlag, int part_idx, int merge_idx, struct MvField mergecandlist[])286 static void derive_spatial_merge_candidates(HEVCContext *s, int x0, int y0,
287                                             int nPbW, int nPbH,
288                                             int log2_cb_size,
289                                             int singleMCLFlag, int part_idx,
290                                             int merge_idx,
291                                             struct MvField mergecandlist[])
292 {
293     HEVCLocalContext *lc   = s->HEVClc;
294     RefPicList *refPicList = s->ref->refPicList;
295     MvField *tab_mvf       = s->ref->tab_mvf;
296 
297     const int min_pu_width = s->ps.sps->min_pu_width;
298 
299     const int cand_bottom_left = lc->na.cand_bottom_left;
300     const int cand_left        = lc->na.cand_left;
301     const int cand_up_left     = lc->na.cand_up_left;
302     const int cand_up          = lc->na.cand_up;
303     const int cand_up_right    = lc->na.cand_up_right_sap;
304 
305     const int xA1    = x0 - 1;
306     const int yA1    = y0 + nPbH - 1;
307 
308     const int xB1    = x0 + nPbW - 1;
309     const int yB1    = y0 - 1;
310 
311     const int xB0    = x0 + nPbW;
312     const int yB0    = y0 - 1;
313 
314     const int xA0    = x0 - 1;
315     const int yA0    = y0 + nPbH;
316 
317     const int xB2    = x0 - 1;
318     const int yB2    = y0 - 1;
319 
320     const int nb_refs = (s->sh.slice_type == HEVC_SLICE_P) ?
321                         s->sh.nb_refs[0] : FFMIN(s->sh.nb_refs[0], s->sh.nb_refs[1]);
322 
323     int zero_idx = 0;
324 
325     int nb_merge_cand = 0;
326     int nb_orig_merge_cand = 0;
327 
328     int is_available_a0;
329     int is_available_a1;
330     int is_available_b0;
331     int is_available_b1;
332     int is_available_b2;
333 
334 
335     if (!singleMCLFlag && part_idx == 1 &&
336         (lc->cu.part_mode == PART_Nx2N ||
337          lc->cu.part_mode == PART_nLx2N ||
338          lc->cu.part_mode == PART_nRx2N) ||
339         is_diff_mer(s, xA1, yA1, x0, y0)) {
340         is_available_a1 = 0;
341     } else {
342         is_available_a1 = AVAILABLE(cand_left, A1);
343         if (is_available_a1) {
344             mergecandlist[nb_merge_cand] = TAB_MVF_PU(A1);
345             if (merge_idx == 0)
346                 return;
347             nb_merge_cand++;
348         }
349     }
350 
351     if (!singleMCLFlag && part_idx == 1 &&
352         (lc->cu.part_mode == PART_2NxN ||
353          lc->cu.part_mode == PART_2NxnU ||
354          lc->cu.part_mode == PART_2NxnD) ||
355         is_diff_mer(s, xB1, yB1, x0, y0)) {
356         is_available_b1 = 0;
357     } else {
358         is_available_b1 = AVAILABLE(cand_up, B1);
359         if (is_available_b1 &&
360             !(is_available_a1 && COMPARE_MV_REFIDX(B1, A1))) {
361             mergecandlist[nb_merge_cand] = TAB_MVF_PU(B1);
362             if (merge_idx == nb_merge_cand)
363                 return;
364             nb_merge_cand++;
365         }
366     }
367 
368     // above right spatial merge candidate
369     is_available_b0 = AVAILABLE(cand_up_right, B0) &&
370                       xB0 < s->ps.sps->width &&
371                       PRED_BLOCK_AVAILABLE(B0) &&
372                       !is_diff_mer(s, xB0, yB0, x0, y0);
373 
374     if (is_available_b0 &&
375         !(is_available_b1 && COMPARE_MV_REFIDX(B0, B1))) {
376         mergecandlist[nb_merge_cand] = TAB_MVF_PU(B0);
377         if (merge_idx == nb_merge_cand)
378             return;
379         nb_merge_cand++;
380     }
381 
382     // left bottom spatial merge candidate
383     is_available_a0 = AVAILABLE(cand_bottom_left, A0) &&
384                       yA0 < s->ps.sps->height &&
385                       PRED_BLOCK_AVAILABLE(A0) &&
386                       !is_diff_mer(s, xA0, yA0, x0, y0);
387 
388     if (is_available_a0 &&
389         !(is_available_a1 && COMPARE_MV_REFIDX(A0, A1))) {
390         mergecandlist[nb_merge_cand] = TAB_MVF_PU(A0);
391         if (merge_idx == nb_merge_cand)
392             return;
393         nb_merge_cand++;
394     }
395 
396     // above left spatial merge candidate
397     is_available_b2 = AVAILABLE(cand_up_left, B2) &&
398                       !is_diff_mer(s, xB2, yB2, x0, y0);
399 
400     if (is_available_b2 &&
401         !(is_available_a1 && COMPARE_MV_REFIDX(B2, A1)) &&
402         !(is_available_b1 && COMPARE_MV_REFIDX(B2, B1)) &&
403         nb_merge_cand != 4) {
404         mergecandlist[nb_merge_cand] = TAB_MVF_PU(B2);
405         if (merge_idx == nb_merge_cand)
406             return;
407         nb_merge_cand++;
408     }
409 
410     // temporal motion vector candidate
411     if (s->sh.slice_temporal_mvp_enabled_flag &&
412         nb_merge_cand < s->sh.max_num_merge_cand) {
413         Mv mv_l0_col = { 0 }, mv_l1_col = { 0 };
414         int available_l0 = temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH,
415                                                        0, &mv_l0_col, 0);
416         int available_l1 = (s->sh.slice_type == HEVC_SLICE_B) ?
417                            temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH,
418                                                        0, &mv_l1_col, 1) : 0;
419 
420         if (available_l0 || available_l1) {
421             mergecandlist[nb_merge_cand].pred_flag = available_l0 + (available_l1 << 1);
422             AV_ZERO16(mergecandlist[nb_merge_cand].ref_idx);
423             mergecandlist[nb_merge_cand].mv[0]      = mv_l0_col;
424             mergecandlist[nb_merge_cand].mv[1]      = mv_l1_col;
425 
426             if (merge_idx == nb_merge_cand)
427                 return;
428             nb_merge_cand++;
429         }
430     }
431 
432     nb_orig_merge_cand = nb_merge_cand;
433 
434     // combined bi-predictive merge candidates  (applies for B slices)
435     if (s->sh.slice_type == HEVC_SLICE_B && nb_orig_merge_cand > 1 &&
436         nb_orig_merge_cand < s->sh.max_num_merge_cand) {
437         int comb_idx = 0;
438 
439         for (comb_idx = 0; nb_merge_cand < s->sh.max_num_merge_cand &&
440                            comb_idx < nb_orig_merge_cand * (nb_orig_merge_cand - 1); comb_idx++) {
441             int l0_cand_idx = l0_l1_cand_idx[comb_idx][0];
442             int l1_cand_idx = l0_l1_cand_idx[comb_idx][1];
443             MvField l0_cand = mergecandlist[l0_cand_idx];
444             MvField l1_cand = mergecandlist[l1_cand_idx];
445 
446             if ((l0_cand.pred_flag & PF_L0) && (l1_cand.pred_flag & PF_L1) &&
447                 (refPicList[0].list[l0_cand.ref_idx[0]] !=
448                  refPicList[1].list[l1_cand.ref_idx[1]] ||
449                  AV_RN32A(&l0_cand.mv[0]) != AV_RN32A(&l1_cand.mv[1]))) {
450                 mergecandlist[nb_merge_cand].ref_idx[0]   = l0_cand.ref_idx[0];
451                 mergecandlist[nb_merge_cand].ref_idx[1]   = l1_cand.ref_idx[1];
452                 mergecandlist[nb_merge_cand].pred_flag    = PF_BI;
453                 AV_COPY32(&mergecandlist[nb_merge_cand].mv[0], &l0_cand.mv[0]);
454                 AV_COPY32(&mergecandlist[nb_merge_cand].mv[1], &l1_cand.mv[1]);
455                 if (merge_idx == nb_merge_cand)
456                     return;
457                 nb_merge_cand++;
458             }
459         }
460     }
461 
462     // append Zero motion vector candidates
463     while (nb_merge_cand < s->sh.max_num_merge_cand) {
464         mergecandlist[nb_merge_cand].pred_flag    = PF_L0 + ((s->sh.slice_type == HEVC_SLICE_B) << 1);
465         AV_ZERO32(mergecandlist[nb_merge_cand].mv + 0);
466         AV_ZERO32(mergecandlist[nb_merge_cand].mv + 1);
467         mergecandlist[nb_merge_cand].ref_idx[0]   = zero_idx < nb_refs ? zero_idx : 0;
468         mergecandlist[nb_merge_cand].ref_idx[1]   = zero_idx < nb_refs ? zero_idx : 0;
469 
470         if (merge_idx == nb_merge_cand)
471             return;
472         nb_merge_cand++;
473         zero_idx++;
474     }
475 }
476 
477 /*
478  * 8.5.3.1.1 Derivation process of luma Mvs for merge mode
479  */
ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv)480 void ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW,
481                                 int nPbH, int log2_cb_size, int part_idx,
482                                 int merge_idx, MvField *mv)
483 {
484     int singleMCLFlag = 0;
485     int nCS = 1 << log2_cb_size;
486     MvField mergecand_list[MRG_MAX_NUM_CANDS];
487     int nPbW2 = nPbW;
488     int nPbH2 = nPbH;
489     HEVCLocalContext *lc = s->HEVClc;
490 
491     if (s->ps.pps->log2_parallel_merge_level > 2 && nCS == 8) {
492         singleMCLFlag = 1;
493         x0            = lc->cu.x;
494         y0            = lc->cu.y;
495         nPbW          = nCS;
496         nPbH          = nCS;
497         part_idx      = 0;
498     }
499 
500     ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
501     derive_spatial_merge_candidates(s, x0, y0, nPbW, nPbH, log2_cb_size,
502                                     singleMCLFlag, part_idx,
503                                     merge_idx, mergecand_list);
504 
505     if (mergecand_list[merge_idx].pred_flag == PF_BI &&
506         (nPbW2 + nPbH2) == 12) {
507         mergecand_list[merge_idx].pred_flag = PF_L0;
508     }
509 
510     *mv = mergecand_list[merge_idx];
511 }
512 
dist_scale(HEVCContext *s, Mv *mv, int min_pu_width, int x, int y, int elist, int ref_idx_curr, int ref_idx)513 static av_always_inline void dist_scale(HEVCContext *s, Mv *mv,
514                                         int min_pu_width, int x, int y,
515                                         int elist, int ref_idx_curr, int ref_idx)
516 {
517     RefPicList *refPicList = s->ref->refPicList;
518     MvField *tab_mvf       = s->ref->tab_mvf;
519     int ref_pic_elist      = refPicList[elist].list[TAB_MVF(x, y).ref_idx[elist]];
520     int ref_pic_curr       = refPicList[ref_idx_curr].list[ref_idx];
521 
522     if (ref_pic_elist != ref_pic_curr) {
523         int poc_diff = s->poc - ref_pic_elist;
524         if (!poc_diff)
525             poc_diff = 1;
526         mv_scale(mv, mv, poc_diff, s->poc - ref_pic_curr);
527     }
528 }
529 
mv_mp_mode_mx(HEVCContext *s, int x, int y, int pred_flag_index, Mv *mv, int ref_idx_curr, int ref_idx)530 static int mv_mp_mode_mx(HEVCContext *s, int x, int y, int pred_flag_index,
531                          Mv *mv, int ref_idx_curr, int ref_idx)
532 {
533     MvField *tab_mvf = s->ref->tab_mvf;
534     int min_pu_width = s->ps.sps->min_pu_width;
535 
536     RefPicList *refPicList = s->ref->refPicList;
537 
538     if (((TAB_MVF(x, y).pred_flag) & (1 << pred_flag_index)) &&
539         refPicList[pred_flag_index].list[TAB_MVF(x, y).ref_idx[pred_flag_index]] == refPicList[ref_idx_curr].list[ref_idx]) {
540         *mv = TAB_MVF(x, y).mv[pred_flag_index];
541         return 1;
542     }
543     return 0;
544 }
545 
mv_mp_mode_mx_lt(HEVCContext *s, int x, int y, int pred_flag_index, Mv *mv, int ref_idx_curr, int ref_idx)546 static int mv_mp_mode_mx_lt(HEVCContext *s, int x, int y, int pred_flag_index,
547                             Mv *mv, int ref_idx_curr, int ref_idx)
548 {
549     MvField *tab_mvf = s->ref->tab_mvf;
550     int min_pu_width = s->ps.sps->min_pu_width;
551 
552     RefPicList *refPicList = s->ref->refPicList;
553 
554     if ((TAB_MVF(x, y).pred_flag) & (1 << pred_flag_index)) {
555         int currIsLongTerm     = refPicList[ref_idx_curr].isLongTerm[ref_idx];
556 
557         int colIsLongTerm =
558             refPicList[pred_flag_index].isLongTerm[(TAB_MVF(x, y).ref_idx[pred_flag_index])];
559 
560         if (colIsLongTerm == currIsLongTerm) {
561             *mv = TAB_MVF(x, y).mv[pred_flag_index];
562             if (!currIsLongTerm)
563                 dist_scale(s, mv, min_pu_width, x, y,
564                            pred_flag_index, ref_idx_curr, ref_idx);
565             return 1;
566         }
567     }
568     return 0;
569 }
570 
571 #define MP_MX(v, pred, mx)                                      \
572     mv_mp_mode_mx(s,                                            \
573                   (x ## v) >> s->ps.sps->log2_min_pu_size,         \
574                   (y ## v) >> s->ps.sps->log2_min_pu_size,         \
575                   pred, &mx, ref_idx_curr, ref_idx)
576 
577 #define MP_MX_LT(v, pred, mx)                                   \
578     mv_mp_mode_mx_lt(s,                                         \
579                      (x ## v) >> s->ps.sps->log2_min_pu_size,      \
580                      (y ## v) >> s->ps.sps->log2_min_pu_size,      \
581                      pred, &mx, ref_idx_curr, ref_idx)
582 
ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv, int mvp_lx_flag, int LX)583 void ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
584                               int nPbH, int log2_cb_size, int part_idx,
585                               int merge_idx, MvField *mv,
586                               int mvp_lx_flag, int LX)
587 {
588     HEVCLocalContext *lc = s->HEVClc;
589     MvField *tab_mvf = s->ref->tab_mvf;
590     int isScaledFlag_L0 = 0;
591     int availableFlagLXA0 = 1;
592     int availableFlagLXB0 = 1;
593     int numMVPCandLX = 0;
594     int min_pu_width = s->ps.sps->min_pu_width;
595 
596     int xA0, yA0;
597     int is_available_a0;
598     int xA1, yA1;
599     int is_available_a1;
600     int xB0, yB0;
601     int is_available_b0;
602     int xB1, yB1;
603     int is_available_b1;
604     int xB2, yB2;
605     int is_available_b2;
606 
607     Mv mvpcand_list[2] = { { 0 } };
608     Mv mxA;
609     Mv mxB;
610     int ref_idx_curr;
611     int ref_idx = 0;
612     int pred_flag_index_l0;
613     int pred_flag_index_l1;
614 
615     const int cand_bottom_left = lc->na.cand_bottom_left;
616     const int cand_left        = lc->na.cand_left;
617     const int cand_up_left     = lc->na.cand_up_left;
618     const int cand_up          = lc->na.cand_up;
619     const int cand_up_right    = lc->na.cand_up_right_sap;
620     ref_idx_curr       = LX;
621     ref_idx            = mv->ref_idx[LX];
622     pred_flag_index_l0 = LX;
623     pred_flag_index_l1 = !LX;
624 
625     // left bottom spatial candidate
626     xA0 = x0 - 1;
627     yA0 = y0 + nPbH;
628 
629     is_available_a0 = AVAILABLE(cand_bottom_left, A0) &&
630                       yA0 < s->ps.sps->height &&
631                       PRED_BLOCK_AVAILABLE(A0);
632 
633     //left spatial merge candidate
634     xA1    = x0 - 1;
635     yA1    = y0 + nPbH - 1;
636 
637     is_available_a1 = AVAILABLE(cand_left, A1);
638     if (is_available_a0 || is_available_a1)
639         isScaledFlag_L0 = 1;
640 
641     if (is_available_a0) {
642         if (MP_MX(A0, pred_flag_index_l0, mxA)) {
643             goto b_candidates;
644         }
645         if (MP_MX(A0, pred_flag_index_l1, mxA)) {
646             goto b_candidates;
647         }
648     }
649 
650     if (is_available_a1) {
651         if (MP_MX(A1, pred_flag_index_l0, mxA)) {
652             goto b_candidates;
653         }
654         if (MP_MX(A1, pred_flag_index_l1, mxA)) {
655             goto b_candidates;
656         }
657     }
658 
659     if (is_available_a0) {
660         if (MP_MX_LT(A0, pred_flag_index_l0, mxA)) {
661             goto b_candidates;
662         }
663         if (MP_MX_LT(A0, pred_flag_index_l1, mxA)) {
664             goto b_candidates;
665         }
666     }
667 
668     if (is_available_a1) {
669         if (MP_MX_LT(A1, pred_flag_index_l0, mxA)) {
670             goto b_candidates;
671         }
672         if (MP_MX_LT(A1, pred_flag_index_l1, mxA)) {
673             goto b_candidates;
674         }
675     }
676     availableFlagLXA0 = 0;
677 
678 b_candidates:
679     // B candidates
680     // above right spatial merge candidate
681     xB0    = x0 + nPbW;
682     yB0    = y0 - 1;
683 
684     is_available_b0 =  AVAILABLE(cand_up_right, B0) &&
685                        xB0 < s->ps.sps->width &&
686                        PRED_BLOCK_AVAILABLE(B0);
687 
688     // above spatial merge candidate
689     xB1    = x0 + nPbW - 1;
690     yB1    = y0 - 1;
691     is_available_b1 = AVAILABLE(cand_up, B1);
692 
693     // above left spatial merge candidate
694     xB2 = x0 - 1;
695     yB2 = y0 - 1;
696     is_available_b2 = AVAILABLE(cand_up_left, B2);
697 
698     // above right spatial merge candidate
699     if (is_available_b0) {
700         if (MP_MX(B0, pred_flag_index_l0, mxB)) {
701             goto scalef;
702         }
703         if (MP_MX(B0, pred_flag_index_l1, mxB)) {
704             goto scalef;
705         }
706     }
707 
708     // above spatial merge candidate
709     if (is_available_b1) {
710         if (MP_MX(B1, pred_flag_index_l0, mxB)) {
711             goto scalef;
712         }
713         if (MP_MX(B1, pred_flag_index_l1, mxB)) {
714             goto scalef;
715         }
716     }
717 
718     // above left spatial merge candidate
719     if (is_available_b2) {
720         if (MP_MX(B2, pred_flag_index_l0, mxB)) {
721             goto scalef;
722         }
723         if (MP_MX(B2, pred_flag_index_l1, mxB)) {
724             goto scalef;
725         }
726     }
727     availableFlagLXB0 = 0;
728 
729 scalef:
730     if (!isScaledFlag_L0) {
731         if (availableFlagLXB0) {
732             availableFlagLXA0 = 1;
733             mxA = mxB;
734         }
735         availableFlagLXB0 = 0;
736 
737         // XB0 and L1
738         if (is_available_b0) {
739             availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l0, mxB);
740             if (!availableFlagLXB0)
741                 availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l1, mxB);
742         }
743 
744         if (is_available_b1 && !availableFlagLXB0) {
745             availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l0, mxB);
746             if (!availableFlagLXB0)
747                 availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l1, mxB);
748         }
749 
750         if (is_available_b2 && !availableFlagLXB0) {
751             availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l0, mxB);
752             if (!availableFlagLXB0)
753                 availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l1, mxB);
754         }
755     }
756 
757     if (availableFlagLXA0)
758         mvpcand_list[numMVPCandLX++] = mxA;
759 
760     if (availableFlagLXB0 && (!availableFlagLXA0 || mxA.x != mxB.x || mxA.y != mxB.y))
761         mvpcand_list[numMVPCandLX++] = mxB;
762 
763     //temporal motion vector prediction candidate
764     if (numMVPCandLX < 2 && s->sh.slice_temporal_mvp_enabled_flag &&
765         mvp_lx_flag == numMVPCandLX) {
766         Mv mv_col;
767         int available_col = temporal_luma_motion_vector(s, x0, y0, nPbW,
768                                                         nPbH, ref_idx,
769                                                         &mv_col, LX);
770         if (available_col)
771             mvpcand_list[numMVPCandLX++] = mv_col;
772     }
773 
774     mv->mv[LX] = mvpcand_list[mvp_lx_flag];
775 }
776