1 /*
2 * HEVC video decoder
3 *
4 * Copyright (C) 2012 - 2013 Guillaume Martres
5 * Copyright (C) 2013 Anand Meher Kotra
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 #include "hevc.h"
25 #include "hevcdec.h"
26 #include "threadframe.h"
27
28 static const uint8_t l0_l1_cand_idx[12][2] = {
29 { 0, 1, },
30 { 1, 0, },
31 { 0, 2, },
32 { 2, 0, },
33 { 1, 2, },
34 { 2, 1, },
35 { 0, 3, },
36 { 3, 0, },
37 { 1, 3, },
38 { 3, 1, },
39 { 2, 3, },
40 { 3, 2, },
41 };
42
ff_hevc_set_neighbour_available(HEVCContext *s, int x0, int y0, int nPbW, int nPbH)43 void ff_hevc_set_neighbour_available(HEVCContext *s, int x0, int y0,
44 int nPbW, int nPbH)
45 {
46 HEVCLocalContext *lc = s->HEVClc;
47 int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
48 int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
49
50 lc->na.cand_up = (lc->ctb_up_flag || y0b);
51 lc->na.cand_left = (lc->ctb_left_flag || x0b);
52 lc->na.cand_up_left = (x0b || y0b) ? lc->na.cand_left && lc->na.cand_up : lc->ctb_up_left_flag;
53 lc->na.cand_up_right_sap =
54 (x0b + nPbW == 1 << s->ps.sps->log2_ctb_size) ?
55 lc->ctb_up_right_flag && !y0b : lc->na.cand_up;
56 lc->na.cand_up_right =
57 lc->na.cand_up_right_sap
58 && (x0 + nPbW) < lc->end_of_tiles_x;
59 lc->na.cand_bottom_left = ((y0 + nPbH) >= lc->end_of_tiles_y) ? 0 : lc->na.cand_left;
60 }
61
62 /*
63 * 6.4.1 Derivation process for z-scan order block availability
64 */
z_scan_block_avail(HEVCContext *s, int xCurr, int yCurr, int xN, int yN)65 static av_always_inline int z_scan_block_avail(HEVCContext *s, int xCurr, int yCurr,
66 int xN, int yN)
67 {
68 #define MIN_TB_ADDR_ZS(x, y) \
69 s->ps.pps->min_tb_addr_zs[(y) * (s->ps.sps->tb_mask+2) + (x)]
70
71 int xCurr_ctb = xCurr >> s->ps.sps->log2_ctb_size;
72 int yCurr_ctb = yCurr >> s->ps.sps->log2_ctb_size;
73 int xN_ctb = xN >> s->ps.sps->log2_ctb_size;
74 int yN_ctb = yN >> s->ps.sps->log2_ctb_size;
75 if( yN_ctb < yCurr_ctb || xN_ctb < xCurr_ctb )
76 return 1;
77 else {
78 int Curr = MIN_TB_ADDR_ZS((xCurr >> s->ps.sps->log2_min_tb_size) & s->ps.sps->tb_mask,
79 (yCurr >> s->ps.sps->log2_min_tb_size) & s->ps.sps->tb_mask);
80 int N = MIN_TB_ADDR_ZS((xN >> s->ps.sps->log2_min_tb_size) & s->ps.sps->tb_mask,
81 (yN >> s->ps.sps->log2_min_tb_size) & s->ps.sps->tb_mask);
82 return N <= Curr;
83 }
84 }
85
86 //check if the two luma locations belong to the same motion estimation region
is_diff_mer(HEVCContext *s, int xN, int yN, int xP, int yP)87 static av_always_inline int is_diff_mer(HEVCContext *s, int xN, int yN, int xP, int yP)
88 {
89 uint8_t plevel = s->ps.pps->log2_parallel_merge_level;
90
91 return xN >> plevel == xP >> plevel &&
92 yN >> plevel == yP >> plevel;
93 }
94
95 #define MATCH_MV(x) (AV_RN32A(&A.x) == AV_RN32A(&B.x))
96 #define MATCH(x) (A.x == B.x)
97
98 // check if the mv's and refidx are the same between A and B
compare_mv_ref_idx(struct MvField A, struct MvField B)99 static av_always_inline int compare_mv_ref_idx(struct MvField A, struct MvField B)
100 {
101 int a_pf = A.pred_flag;
102 int b_pf = B.pred_flag;
103 if (a_pf == b_pf) {
104 if (a_pf == PF_BI) {
105 return MATCH(ref_idx[0]) && MATCH_MV(mv[0]) &&
106 MATCH(ref_idx[1]) && MATCH_MV(mv[1]);
107 } else if (a_pf == PF_L0) {
108 return MATCH(ref_idx[0]) && MATCH_MV(mv[0]);
109 } else if (a_pf == PF_L1) {
110 return MATCH(ref_idx[1]) && MATCH_MV(mv[1]);
111 }
112 }
113 return 0;
114 }
115
mv_scale(Mv *dst, const Mv *src, int td, int tb)116 static av_always_inline void mv_scale(Mv *dst, const Mv *src, int td, int tb)
117 {
118 int tx, scale_factor;
119
120 td = av_clip_int8(td);
121 tb = av_clip_int8(tb);
122 tx = (0x4000 + abs(td / 2)) / td;
123 scale_factor = av_clip_intp2((tb * tx + 32) >> 6, 12);
124 dst->x = av_clip_int16((scale_factor * src->x + 127 +
125 (scale_factor * src->x < 0)) >> 8);
126 dst->y = av_clip_int16((scale_factor * src->y + 127 +
127 (scale_factor * src->y < 0)) >> 8);
128 }
129
check_mvset(Mv *mvLXCol, const Mv *mvCol, int colPic, int poc, const RefPicList *refPicList, int X, int refIdxLx, const RefPicList *refPicList_col, int listCol, int refidxCol)130 static int check_mvset(Mv *mvLXCol, const Mv *mvCol,
131 int colPic, int poc,
132 const RefPicList *refPicList, int X, int refIdxLx,
133 const RefPicList *refPicList_col, int listCol, int refidxCol)
134 {
135 int cur_lt = refPicList[X].isLongTerm[refIdxLx];
136 int col_lt = refPicList_col[listCol].isLongTerm[refidxCol];
137 int col_poc_diff, cur_poc_diff;
138
139 if (cur_lt != col_lt) {
140 mvLXCol->x = 0;
141 mvLXCol->y = 0;
142 return 0;
143 }
144
145 col_poc_diff = colPic - refPicList_col[listCol].list[refidxCol];
146 cur_poc_diff = poc - refPicList[X].list[refIdxLx];
147
148 if (cur_lt || col_poc_diff == cur_poc_diff || !col_poc_diff) {
149 mvLXCol->x = mvCol->x;
150 mvLXCol->y = mvCol->y;
151 } else {
152 mv_scale(mvLXCol, mvCol, col_poc_diff, cur_poc_diff);
153 }
154 return 1;
155 }
156
157 #define CHECK_MVSET(l) \
158 check_mvset(mvLXCol, temp_col.mv + l, \
159 colPic, s->poc, \
160 refPicList, X, refIdxLx, \
161 refPicList_col, L ## l, temp_col.ref_idx[l])
162
163 // derive the motion vectors section 8.5.3.1.8
derive_temporal_colocated_mvs(HEVCContext *s, MvField temp_col, int refIdxLx, Mv *mvLXCol, int X, int colPic, const RefPicList *refPicList_col)164 static int derive_temporal_colocated_mvs(HEVCContext *s, MvField temp_col,
165 int refIdxLx, Mv *mvLXCol, int X,
166 int colPic, const RefPicList *refPicList_col)
167 {
168 RefPicList *refPicList = s->ref->refPicList;
169
170 if (temp_col.pred_flag == PF_INTRA)
171 return 0;
172
173 if (!(temp_col.pred_flag & PF_L0))
174 return CHECK_MVSET(1);
175 else if (temp_col.pred_flag == PF_L0)
176 return CHECK_MVSET(0);
177 else if (temp_col.pred_flag == PF_BI) {
178 int check_diffpicount = 0;
179 int i, j;
180 for (j = 0; j < 2; j++) {
181 for (i = 0; i < refPicList[j].nb_refs; i++) {
182 if (refPicList[j].list[i] > s->poc) {
183 check_diffpicount++;
184 break;
185 }
186 }
187 }
188 if (!check_diffpicount) {
189 if (X==0)
190 return CHECK_MVSET(0);
191 else
192 return CHECK_MVSET(1);
193 } else {
194 if (s->sh.collocated_list == L1)
195 return CHECK_MVSET(0);
196 else
197 return CHECK_MVSET(1);
198 }
199 }
200
201 return 0;
202 }
203
204 #define TAB_MVF(x, y) \
205 tab_mvf[(y) * min_pu_width + x]
206
207 #define TAB_MVF_PU(v) \
208 TAB_MVF(((x ## v) >> s->ps.sps->log2_min_pu_size), \
209 ((y ## v) >> s->ps.sps->log2_min_pu_size))
210
211 #define DERIVE_TEMPORAL_COLOCATED_MVS \
212 derive_temporal_colocated_mvs(s, temp_col, \
213 refIdxLx, mvLXCol, X, colPic, \
214 ff_hevc_get_ref_list(s, ref, x, y))
215
216 /*
217 * 8.5.3.1.7 temporal luma motion vector prediction
218 */
temporal_luma_motion_vector(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int refIdxLx, Mv *mvLXCol, int X)219 static int temporal_luma_motion_vector(HEVCContext *s, int x0, int y0,
220 int nPbW, int nPbH, int refIdxLx,
221 Mv *mvLXCol, int X)
222 {
223 MvField *tab_mvf;
224 MvField temp_col;
225 int x, y, x_pu, y_pu;
226 int min_pu_width = s->ps.sps->min_pu_width;
227 int availableFlagLXCol = 0;
228 int colPic;
229
230 HEVCFrame *ref = s->ref->collocated_ref;
231
232 if (!ref) {
233 memset(mvLXCol, 0, sizeof(*mvLXCol));
234 return 0;
235 }
236
237 tab_mvf = ref->tab_mvf;
238 colPic = ref->poc;
239
240 //bottom right collocated motion vector
241 x = x0 + nPbW;
242 y = y0 + nPbH;
243
244 if (tab_mvf &&
245 (y0 >> s->ps.sps->log2_ctb_size) == (y >> s->ps.sps->log2_ctb_size) &&
246 y < s->ps.sps->height &&
247 x < s->ps.sps->width) {
248 x &= ~15;
249 y &= ~15;
250 if (s->threads_type == FF_THREAD_FRAME)
251 ff_thread_await_progress(&ref->tf, y, 0);
252 x_pu = x >> s->ps.sps->log2_min_pu_size;
253 y_pu = y >> s->ps.sps->log2_min_pu_size;
254 temp_col = TAB_MVF(x_pu, y_pu);
255 availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS;
256 }
257
258 // derive center collocated motion vector
259 if (tab_mvf && !availableFlagLXCol) {
260 x = x0 + (nPbW >> 1);
261 y = y0 + (nPbH >> 1);
262 x &= ~15;
263 y &= ~15;
264 if (s->threads_type == FF_THREAD_FRAME)
265 ff_thread_await_progress(&ref->tf, y, 0);
266 x_pu = x >> s->ps.sps->log2_min_pu_size;
267 y_pu = y >> s->ps.sps->log2_min_pu_size;
268 temp_col = TAB_MVF(x_pu, y_pu);
269 availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS;
270 }
271 return availableFlagLXCol;
272 }
273
274 #define AVAILABLE(cand, v) \
275 (cand && !(TAB_MVF_PU(v).pred_flag == PF_INTRA))
276
277 #define PRED_BLOCK_AVAILABLE(v) \
278 z_scan_block_avail(s, x0, y0, x ## v, y ## v)
279
280 #define COMPARE_MV_REFIDX(a, b) \
281 compare_mv_ref_idx(TAB_MVF_PU(a), TAB_MVF_PU(b))
282
283 /*
284 * 8.5.3.1.2 Derivation process for spatial merging candidates
285 */
derive_spatial_merge_candidates(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int singleMCLFlag, int part_idx, int merge_idx, struct MvField mergecandlist[])286 static void derive_spatial_merge_candidates(HEVCContext *s, int x0, int y0,
287 int nPbW, int nPbH,
288 int log2_cb_size,
289 int singleMCLFlag, int part_idx,
290 int merge_idx,
291 struct MvField mergecandlist[])
292 {
293 HEVCLocalContext *lc = s->HEVClc;
294 RefPicList *refPicList = s->ref->refPicList;
295 MvField *tab_mvf = s->ref->tab_mvf;
296
297 const int min_pu_width = s->ps.sps->min_pu_width;
298
299 const int cand_bottom_left = lc->na.cand_bottom_left;
300 const int cand_left = lc->na.cand_left;
301 const int cand_up_left = lc->na.cand_up_left;
302 const int cand_up = lc->na.cand_up;
303 const int cand_up_right = lc->na.cand_up_right_sap;
304
305 const int xA1 = x0 - 1;
306 const int yA1 = y0 + nPbH - 1;
307
308 const int xB1 = x0 + nPbW - 1;
309 const int yB1 = y0 - 1;
310
311 const int xB0 = x0 + nPbW;
312 const int yB0 = y0 - 1;
313
314 const int xA0 = x0 - 1;
315 const int yA0 = y0 + nPbH;
316
317 const int xB2 = x0 - 1;
318 const int yB2 = y0 - 1;
319
320 const int nb_refs = (s->sh.slice_type == HEVC_SLICE_P) ?
321 s->sh.nb_refs[0] : FFMIN(s->sh.nb_refs[0], s->sh.nb_refs[1]);
322
323 int zero_idx = 0;
324
325 int nb_merge_cand = 0;
326 int nb_orig_merge_cand = 0;
327
328 int is_available_a0;
329 int is_available_a1;
330 int is_available_b0;
331 int is_available_b1;
332 int is_available_b2;
333
334
335 if (!singleMCLFlag && part_idx == 1 &&
336 (lc->cu.part_mode == PART_Nx2N ||
337 lc->cu.part_mode == PART_nLx2N ||
338 lc->cu.part_mode == PART_nRx2N) ||
339 is_diff_mer(s, xA1, yA1, x0, y0)) {
340 is_available_a1 = 0;
341 } else {
342 is_available_a1 = AVAILABLE(cand_left, A1);
343 if (is_available_a1) {
344 mergecandlist[nb_merge_cand] = TAB_MVF_PU(A1);
345 if (merge_idx == 0)
346 return;
347 nb_merge_cand++;
348 }
349 }
350
351 if (!singleMCLFlag && part_idx == 1 &&
352 (lc->cu.part_mode == PART_2NxN ||
353 lc->cu.part_mode == PART_2NxnU ||
354 lc->cu.part_mode == PART_2NxnD) ||
355 is_diff_mer(s, xB1, yB1, x0, y0)) {
356 is_available_b1 = 0;
357 } else {
358 is_available_b1 = AVAILABLE(cand_up, B1);
359 if (is_available_b1 &&
360 !(is_available_a1 && COMPARE_MV_REFIDX(B1, A1))) {
361 mergecandlist[nb_merge_cand] = TAB_MVF_PU(B1);
362 if (merge_idx == nb_merge_cand)
363 return;
364 nb_merge_cand++;
365 }
366 }
367
368 // above right spatial merge candidate
369 is_available_b0 = AVAILABLE(cand_up_right, B0) &&
370 xB0 < s->ps.sps->width &&
371 PRED_BLOCK_AVAILABLE(B0) &&
372 !is_diff_mer(s, xB0, yB0, x0, y0);
373
374 if (is_available_b0 &&
375 !(is_available_b1 && COMPARE_MV_REFIDX(B0, B1))) {
376 mergecandlist[nb_merge_cand] = TAB_MVF_PU(B0);
377 if (merge_idx == nb_merge_cand)
378 return;
379 nb_merge_cand++;
380 }
381
382 // left bottom spatial merge candidate
383 is_available_a0 = AVAILABLE(cand_bottom_left, A0) &&
384 yA0 < s->ps.sps->height &&
385 PRED_BLOCK_AVAILABLE(A0) &&
386 !is_diff_mer(s, xA0, yA0, x0, y0);
387
388 if (is_available_a0 &&
389 !(is_available_a1 && COMPARE_MV_REFIDX(A0, A1))) {
390 mergecandlist[nb_merge_cand] = TAB_MVF_PU(A0);
391 if (merge_idx == nb_merge_cand)
392 return;
393 nb_merge_cand++;
394 }
395
396 // above left spatial merge candidate
397 is_available_b2 = AVAILABLE(cand_up_left, B2) &&
398 !is_diff_mer(s, xB2, yB2, x0, y0);
399
400 if (is_available_b2 &&
401 !(is_available_a1 && COMPARE_MV_REFIDX(B2, A1)) &&
402 !(is_available_b1 && COMPARE_MV_REFIDX(B2, B1)) &&
403 nb_merge_cand != 4) {
404 mergecandlist[nb_merge_cand] = TAB_MVF_PU(B2);
405 if (merge_idx == nb_merge_cand)
406 return;
407 nb_merge_cand++;
408 }
409
410 // temporal motion vector candidate
411 if (s->sh.slice_temporal_mvp_enabled_flag &&
412 nb_merge_cand < s->sh.max_num_merge_cand) {
413 Mv mv_l0_col = { 0 }, mv_l1_col = { 0 };
414 int available_l0 = temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH,
415 0, &mv_l0_col, 0);
416 int available_l1 = (s->sh.slice_type == HEVC_SLICE_B) ?
417 temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH,
418 0, &mv_l1_col, 1) : 0;
419
420 if (available_l0 || available_l1) {
421 mergecandlist[nb_merge_cand].pred_flag = available_l0 + (available_l1 << 1);
422 AV_ZERO16(mergecandlist[nb_merge_cand].ref_idx);
423 mergecandlist[nb_merge_cand].mv[0] = mv_l0_col;
424 mergecandlist[nb_merge_cand].mv[1] = mv_l1_col;
425
426 if (merge_idx == nb_merge_cand)
427 return;
428 nb_merge_cand++;
429 }
430 }
431
432 nb_orig_merge_cand = nb_merge_cand;
433
434 // combined bi-predictive merge candidates (applies for B slices)
435 if (s->sh.slice_type == HEVC_SLICE_B && nb_orig_merge_cand > 1 &&
436 nb_orig_merge_cand < s->sh.max_num_merge_cand) {
437 int comb_idx = 0;
438
439 for (comb_idx = 0; nb_merge_cand < s->sh.max_num_merge_cand &&
440 comb_idx < nb_orig_merge_cand * (nb_orig_merge_cand - 1); comb_idx++) {
441 int l0_cand_idx = l0_l1_cand_idx[comb_idx][0];
442 int l1_cand_idx = l0_l1_cand_idx[comb_idx][1];
443 MvField l0_cand = mergecandlist[l0_cand_idx];
444 MvField l1_cand = mergecandlist[l1_cand_idx];
445
446 if ((l0_cand.pred_flag & PF_L0) && (l1_cand.pred_flag & PF_L1) &&
447 (refPicList[0].list[l0_cand.ref_idx[0]] !=
448 refPicList[1].list[l1_cand.ref_idx[1]] ||
449 AV_RN32A(&l0_cand.mv[0]) != AV_RN32A(&l1_cand.mv[1]))) {
450 mergecandlist[nb_merge_cand].ref_idx[0] = l0_cand.ref_idx[0];
451 mergecandlist[nb_merge_cand].ref_idx[1] = l1_cand.ref_idx[1];
452 mergecandlist[nb_merge_cand].pred_flag = PF_BI;
453 AV_COPY32(&mergecandlist[nb_merge_cand].mv[0], &l0_cand.mv[0]);
454 AV_COPY32(&mergecandlist[nb_merge_cand].mv[1], &l1_cand.mv[1]);
455 if (merge_idx == nb_merge_cand)
456 return;
457 nb_merge_cand++;
458 }
459 }
460 }
461
462 // append Zero motion vector candidates
463 while (nb_merge_cand < s->sh.max_num_merge_cand) {
464 mergecandlist[nb_merge_cand].pred_flag = PF_L0 + ((s->sh.slice_type == HEVC_SLICE_B) << 1);
465 AV_ZERO32(mergecandlist[nb_merge_cand].mv + 0);
466 AV_ZERO32(mergecandlist[nb_merge_cand].mv + 1);
467 mergecandlist[nb_merge_cand].ref_idx[0] = zero_idx < nb_refs ? zero_idx : 0;
468 mergecandlist[nb_merge_cand].ref_idx[1] = zero_idx < nb_refs ? zero_idx : 0;
469
470 if (merge_idx == nb_merge_cand)
471 return;
472 nb_merge_cand++;
473 zero_idx++;
474 }
475 }
476
477 /*
478 * 8.5.3.1.1 Derivation process of luma Mvs for merge mode
479 */
ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv)480 void ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW,
481 int nPbH, int log2_cb_size, int part_idx,
482 int merge_idx, MvField *mv)
483 {
484 int singleMCLFlag = 0;
485 int nCS = 1 << log2_cb_size;
486 MvField mergecand_list[MRG_MAX_NUM_CANDS];
487 int nPbW2 = nPbW;
488 int nPbH2 = nPbH;
489 HEVCLocalContext *lc = s->HEVClc;
490
491 if (s->ps.pps->log2_parallel_merge_level > 2 && nCS == 8) {
492 singleMCLFlag = 1;
493 x0 = lc->cu.x;
494 y0 = lc->cu.y;
495 nPbW = nCS;
496 nPbH = nCS;
497 part_idx = 0;
498 }
499
500 ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
501 derive_spatial_merge_candidates(s, x0, y0, nPbW, nPbH, log2_cb_size,
502 singleMCLFlag, part_idx,
503 merge_idx, mergecand_list);
504
505 if (mergecand_list[merge_idx].pred_flag == PF_BI &&
506 (nPbW2 + nPbH2) == 12) {
507 mergecand_list[merge_idx].pred_flag = PF_L0;
508 }
509
510 *mv = mergecand_list[merge_idx];
511 }
512
dist_scale(HEVCContext *s, Mv *mv, int min_pu_width, int x, int y, int elist, int ref_idx_curr, int ref_idx)513 static av_always_inline void dist_scale(HEVCContext *s, Mv *mv,
514 int min_pu_width, int x, int y,
515 int elist, int ref_idx_curr, int ref_idx)
516 {
517 RefPicList *refPicList = s->ref->refPicList;
518 MvField *tab_mvf = s->ref->tab_mvf;
519 int ref_pic_elist = refPicList[elist].list[TAB_MVF(x, y).ref_idx[elist]];
520 int ref_pic_curr = refPicList[ref_idx_curr].list[ref_idx];
521
522 if (ref_pic_elist != ref_pic_curr) {
523 int poc_diff = s->poc - ref_pic_elist;
524 if (!poc_diff)
525 poc_diff = 1;
526 mv_scale(mv, mv, poc_diff, s->poc - ref_pic_curr);
527 }
528 }
529
mv_mp_mode_mx(HEVCContext *s, int x, int y, int pred_flag_index, Mv *mv, int ref_idx_curr, int ref_idx)530 static int mv_mp_mode_mx(HEVCContext *s, int x, int y, int pred_flag_index,
531 Mv *mv, int ref_idx_curr, int ref_idx)
532 {
533 MvField *tab_mvf = s->ref->tab_mvf;
534 int min_pu_width = s->ps.sps->min_pu_width;
535
536 RefPicList *refPicList = s->ref->refPicList;
537
538 if (((TAB_MVF(x, y).pred_flag) & (1 << pred_flag_index)) &&
539 refPicList[pred_flag_index].list[TAB_MVF(x, y).ref_idx[pred_flag_index]] == refPicList[ref_idx_curr].list[ref_idx]) {
540 *mv = TAB_MVF(x, y).mv[pred_flag_index];
541 return 1;
542 }
543 return 0;
544 }
545
mv_mp_mode_mx_lt(HEVCContext *s, int x, int y, int pred_flag_index, Mv *mv, int ref_idx_curr, int ref_idx)546 static int mv_mp_mode_mx_lt(HEVCContext *s, int x, int y, int pred_flag_index,
547 Mv *mv, int ref_idx_curr, int ref_idx)
548 {
549 MvField *tab_mvf = s->ref->tab_mvf;
550 int min_pu_width = s->ps.sps->min_pu_width;
551
552 RefPicList *refPicList = s->ref->refPicList;
553
554 if ((TAB_MVF(x, y).pred_flag) & (1 << pred_flag_index)) {
555 int currIsLongTerm = refPicList[ref_idx_curr].isLongTerm[ref_idx];
556
557 int colIsLongTerm =
558 refPicList[pred_flag_index].isLongTerm[(TAB_MVF(x, y).ref_idx[pred_flag_index])];
559
560 if (colIsLongTerm == currIsLongTerm) {
561 *mv = TAB_MVF(x, y).mv[pred_flag_index];
562 if (!currIsLongTerm)
563 dist_scale(s, mv, min_pu_width, x, y,
564 pred_flag_index, ref_idx_curr, ref_idx);
565 return 1;
566 }
567 }
568 return 0;
569 }
570
571 #define MP_MX(v, pred, mx) \
572 mv_mp_mode_mx(s, \
573 (x ## v) >> s->ps.sps->log2_min_pu_size, \
574 (y ## v) >> s->ps.sps->log2_min_pu_size, \
575 pred, &mx, ref_idx_curr, ref_idx)
576
577 #define MP_MX_LT(v, pred, mx) \
578 mv_mp_mode_mx_lt(s, \
579 (x ## v) >> s->ps.sps->log2_min_pu_size, \
580 (y ## v) >> s->ps.sps->log2_min_pu_size, \
581 pred, &mx, ref_idx_curr, ref_idx)
582
ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv, int mvp_lx_flag, int LX)583 void ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
584 int nPbH, int log2_cb_size, int part_idx,
585 int merge_idx, MvField *mv,
586 int mvp_lx_flag, int LX)
587 {
588 HEVCLocalContext *lc = s->HEVClc;
589 MvField *tab_mvf = s->ref->tab_mvf;
590 int isScaledFlag_L0 = 0;
591 int availableFlagLXA0 = 1;
592 int availableFlagLXB0 = 1;
593 int numMVPCandLX = 0;
594 int min_pu_width = s->ps.sps->min_pu_width;
595
596 int xA0, yA0;
597 int is_available_a0;
598 int xA1, yA1;
599 int is_available_a1;
600 int xB0, yB0;
601 int is_available_b0;
602 int xB1, yB1;
603 int is_available_b1;
604 int xB2, yB2;
605 int is_available_b2;
606
607 Mv mvpcand_list[2] = { { 0 } };
608 Mv mxA;
609 Mv mxB;
610 int ref_idx_curr;
611 int ref_idx = 0;
612 int pred_flag_index_l0;
613 int pred_flag_index_l1;
614
615 const int cand_bottom_left = lc->na.cand_bottom_left;
616 const int cand_left = lc->na.cand_left;
617 const int cand_up_left = lc->na.cand_up_left;
618 const int cand_up = lc->na.cand_up;
619 const int cand_up_right = lc->na.cand_up_right_sap;
620 ref_idx_curr = LX;
621 ref_idx = mv->ref_idx[LX];
622 pred_flag_index_l0 = LX;
623 pred_flag_index_l1 = !LX;
624
625 // left bottom spatial candidate
626 xA0 = x0 - 1;
627 yA0 = y0 + nPbH;
628
629 is_available_a0 = AVAILABLE(cand_bottom_left, A0) &&
630 yA0 < s->ps.sps->height &&
631 PRED_BLOCK_AVAILABLE(A0);
632
633 //left spatial merge candidate
634 xA1 = x0 - 1;
635 yA1 = y0 + nPbH - 1;
636
637 is_available_a1 = AVAILABLE(cand_left, A1);
638 if (is_available_a0 || is_available_a1)
639 isScaledFlag_L0 = 1;
640
641 if (is_available_a0) {
642 if (MP_MX(A0, pred_flag_index_l0, mxA)) {
643 goto b_candidates;
644 }
645 if (MP_MX(A0, pred_flag_index_l1, mxA)) {
646 goto b_candidates;
647 }
648 }
649
650 if (is_available_a1) {
651 if (MP_MX(A1, pred_flag_index_l0, mxA)) {
652 goto b_candidates;
653 }
654 if (MP_MX(A1, pred_flag_index_l1, mxA)) {
655 goto b_candidates;
656 }
657 }
658
659 if (is_available_a0) {
660 if (MP_MX_LT(A0, pred_flag_index_l0, mxA)) {
661 goto b_candidates;
662 }
663 if (MP_MX_LT(A0, pred_flag_index_l1, mxA)) {
664 goto b_candidates;
665 }
666 }
667
668 if (is_available_a1) {
669 if (MP_MX_LT(A1, pred_flag_index_l0, mxA)) {
670 goto b_candidates;
671 }
672 if (MP_MX_LT(A1, pred_flag_index_l1, mxA)) {
673 goto b_candidates;
674 }
675 }
676 availableFlagLXA0 = 0;
677
678 b_candidates:
679 // B candidates
680 // above right spatial merge candidate
681 xB0 = x0 + nPbW;
682 yB0 = y0 - 1;
683
684 is_available_b0 = AVAILABLE(cand_up_right, B0) &&
685 xB0 < s->ps.sps->width &&
686 PRED_BLOCK_AVAILABLE(B0);
687
688 // above spatial merge candidate
689 xB1 = x0 + nPbW - 1;
690 yB1 = y0 - 1;
691 is_available_b1 = AVAILABLE(cand_up, B1);
692
693 // above left spatial merge candidate
694 xB2 = x0 - 1;
695 yB2 = y0 - 1;
696 is_available_b2 = AVAILABLE(cand_up_left, B2);
697
698 // above right spatial merge candidate
699 if (is_available_b0) {
700 if (MP_MX(B0, pred_flag_index_l0, mxB)) {
701 goto scalef;
702 }
703 if (MP_MX(B0, pred_flag_index_l1, mxB)) {
704 goto scalef;
705 }
706 }
707
708 // above spatial merge candidate
709 if (is_available_b1) {
710 if (MP_MX(B1, pred_flag_index_l0, mxB)) {
711 goto scalef;
712 }
713 if (MP_MX(B1, pred_flag_index_l1, mxB)) {
714 goto scalef;
715 }
716 }
717
718 // above left spatial merge candidate
719 if (is_available_b2) {
720 if (MP_MX(B2, pred_flag_index_l0, mxB)) {
721 goto scalef;
722 }
723 if (MP_MX(B2, pred_flag_index_l1, mxB)) {
724 goto scalef;
725 }
726 }
727 availableFlagLXB0 = 0;
728
729 scalef:
730 if (!isScaledFlag_L0) {
731 if (availableFlagLXB0) {
732 availableFlagLXA0 = 1;
733 mxA = mxB;
734 }
735 availableFlagLXB0 = 0;
736
737 // XB0 and L1
738 if (is_available_b0) {
739 availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l0, mxB);
740 if (!availableFlagLXB0)
741 availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l1, mxB);
742 }
743
744 if (is_available_b1 && !availableFlagLXB0) {
745 availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l0, mxB);
746 if (!availableFlagLXB0)
747 availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l1, mxB);
748 }
749
750 if (is_available_b2 && !availableFlagLXB0) {
751 availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l0, mxB);
752 if (!availableFlagLXB0)
753 availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l1, mxB);
754 }
755 }
756
757 if (availableFlagLXA0)
758 mvpcand_list[numMVPCandLX++] = mxA;
759
760 if (availableFlagLXB0 && (!availableFlagLXA0 || mxA.x != mxB.x || mxA.y != mxB.y))
761 mvpcand_list[numMVPCandLX++] = mxB;
762
763 //temporal motion vector prediction candidate
764 if (numMVPCandLX < 2 && s->sh.slice_temporal_mvp_enabled_flag &&
765 mvp_lx_flag == numMVPCandLX) {
766 Mv mv_col;
767 int available_col = temporal_luma_motion_vector(s, x0, y0, nPbW,
768 nPbH, ref_idx,
769 &mv_col, LX);
770 if (available_col)
771 mvpcand_list[numMVPCandLX++] = mv_col;
772 }
773
774 mv->mv[LX] = mvpcand_list[mvp_lx_flag];
775 }
776