1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2013 Seppo Tomperi
6  * Copyright (C) 2013 Wassim Hamidouche
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 #include "libavutil/common.h"
26 #include "libavutil/internal.h"
27 
28 #include "hevcdec.h"
29 #include "threadframe.h"
30 
31 #define LUMA 0
32 #define CB 1
33 #define CR 2
34 
35 static const uint8_t tctable[54] = {
36     0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 0, 0, 1, // QP  0...18
37     1, 1, 1, 1, 1, 1, 1,  1,  2,  2,  2,  2,  3,  3,  3,  3, 4, 4, 4, // QP 19...37
38     5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24           // QP 38...53
39 };
40 
41 static const uint8_t betatable[52] = {
42      0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  6,  7,  8, // QP 0...18
43      9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, // QP 19...37
44     38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64                      // QP 38...51
45 };
46 
chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)47 static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
48 {
49     static const int qp_c[] = {
50         29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
51     };
52     int qp, qp_i, offset, idxt;
53 
54     // slice qp offset is not used for deblocking
55     if (c_idx == 1)
56         offset = s->ps.pps->cb_qp_offset;
57     else
58         offset = s->ps.pps->cr_qp_offset;
59 
60     qp_i = av_clip(qp_y + offset, 0, 57);
61     if (s->ps.sps->chroma_format_idc == 1) {
62         if (qp_i < 30)
63             qp = qp_i;
64         else if (qp_i > 43)
65             qp = qp_i - 6;
66         else
67             qp = qp_c[qp_i - 30];
68     } else {
69         qp = av_clip(qp_i, 0, 51);
70     }
71 
72     idxt = av_clip(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53);
73     return tctable[idxt];
74 }
75 
get_qPy_pred(HEVCContext *s, int xBase, int yBase, int log2_cb_size)76 static int get_qPy_pred(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
77 {
78     HEVCLocalContext *lc     = s->HEVClc;
79     int ctb_size_mask        = (1 << s->ps.sps->log2_ctb_size) - 1;
80     int MinCuQpDeltaSizeMask = (1 << (s->ps.sps->log2_ctb_size -
81                                       s->ps.pps->diff_cu_qp_delta_depth)) - 1;
82     int xQgBase              = xBase - (xBase & MinCuQpDeltaSizeMask);
83     int yQgBase              = yBase - (yBase & MinCuQpDeltaSizeMask);
84     int min_cb_width         = s->ps.sps->min_cb_width;
85     int x_cb                 = xQgBase >> s->ps.sps->log2_min_cb_size;
86     int y_cb                 = yQgBase >> s->ps.sps->log2_min_cb_size;
87     int availableA           = (xBase   & ctb_size_mask) &&
88                                (xQgBase & ctb_size_mask);
89     int availableB           = (yBase   & ctb_size_mask) &&
90                                (yQgBase & ctb_size_mask);
91     int qPy_pred, qPy_a, qPy_b;
92 
93     // qPy_pred
94     if (lc->first_qp_group || (!xQgBase && !yQgBase)) {
95         lc->first_qp_group = !lc->tu.is_cu_qp_delta_coded;
96         qPy_pred = s->sh.slice_qp;
97     } else {
98         qPy_pred = lc->qPy_pred;
99     }
100 
101     // qPy_a
102     if (availableA == 0)
103         qPy_a = qPy_pred;
104     else
105         qPy_a = s->qp_y_tab[(x_cb - 1) + y_cb * min_cb_width];
106 
107     // qPy_b
108     if (availableB == 0)
109         qPy_b = qPy_pred;
110     else
111         qPy_b = s->qp_y_tab[x_cb + (y_cb - 1) * min_cb_width];
112 
113     av_assert2(qPy_a >= -s->ps.sps->qp_bd_offset && qPy_a < 52);
114     av_assert2(qPy_b >= -s->ps.sps->qp_bd_offset && qPy_b < 52);
115 
116     return (qPy_a + qPy_b + 1) >> 1;
117 }
118 
ff_hevc_set_qPy(HEVCContext *s, int xBase, int yBase, int log2_cb_size)119 void ff_hevc_set_qPy(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
120 {
121     int qp_y = get_qPy_pred(s, xBase, yBase, log2_cb_size);
122 
123     if (s->HEVClc->tu.cu_qp_delta != 0) {
124         int off = s->ps.sps->qp_bd_offset;
125         s->HEVClc->qp_y = FFUMOD(qp_y + s->HEVClc->tu.cu_qp_delta + 52 + 2 * off,
126                                  52 + off) - off;
127     } else
128         s->HEVClc->qp_y = qp_y;
129 }
130 
get_qPy(HEVCContext *s, int xC, int yC)131 static int get_qPy(HEVCContext *s, int xC, int yC)
132 {
133     int log2_min_cb_size  = s->ps.sps->log2_min_cb_size;
134     int x                 = xC >> log2_min_cb_size;
135     int y                 = yC >> log2_min_cb_size;
136     return s->qp_y_tab[x + y * s->ps.sps->min_cb_width];
137 }
138 
copy_CTB(uint8_t *dst, const uint8_t *src, int width, int height, ptrdiff_t stride_dst, ptrdiff_t stride_src)139 static void copy_CTB(uint8_t *dst, const uint8_t *src, int width, int height,
140                      ptrdiff_t stride_dst, ptrdiff_t stride_src)
141 {
142     int i, j;
143 
144     if (((intptr_t)dst | (intptr_t)src | stride_dst | stride_src) & 15) {
145         for (i = 0; i < height; i++) {
146             for (j = 0; j < width - 7; j+=8)
147                 AV_COPY64U(dst+j, src+j);
148             dst += stride_dst;
149             src += stride_src;
150         }
151         if (width&7) {
152             dst += ((width>>3)<<3) - stride_dst * height;
153             src += ((width>>3)<<3) - stride_src * height;
154             width &= 7;
155             for (i = 0; i < height; i++) {
156                 for (j = 0; j < width; j++)
157                     dst[j] = src[j];
158                 dst += stride_dst;
159                 src += stride_src;
160             }
161         }
162     } else {
163         for (i = 0; i < height; i++) {
164             for (j = 0; j < width; j+=16)
165                 AV_COPY128(dst+j, src+j);
166             dst += stride_dst;
167             src += stride_src;
168         }
169     }
170 }
171 
copy_pixel(uint8_t *dst, const uint8_t *src, int pixel_shift)172 static void copy_pixel(uint8_t *dst, const uint8_t *src, int pixel_shift)
173 {
174     if (pixel_shift)
175         *(uint16_t *)dst = *(uint16_t *)src;
176     else
177         *dst = *src;
178 }
179 
copy_vert(uint8_t *dst, const uint8_t *src, int pixel_shift, int height, ptrdiff_t stride_dst, ptrdiff_t stride_src)180 static void copy_vert(uint8_t *dst, const uint8_t *src,
181                       int pixel_shift, int height,
182                       ptrdiff_t stride_dst, ptrdiff_t stride_src)
183 {
184     int i;
185     if (pixel_shift == 0) {
186         for (i = 0; i < height; i++) {
187             *dst = *src;
188             dst += stride_dst;
189             src += stride_src;
190         }
191     } else {
192         for (i = 0; i < height; i++) {
193             *(uint16_t *)dst = *(uint16_t *)src;
194             dst += stride_dst;
195             src += stride_src;
196         }
197     }
198 }
199 
copy_CTB_to_hv(HEVCContext *s, const uint8_t *src, ptrdiff_t stride_src, int x, int y, int width, int height, int c_idx, int x_ctb, int y_ctb)200 static void copy_CTB_to_hv(HEVCContext *s, const uint8_t *src,
201                            ptrdiff_t stride_src, int x, int y, int width, int height,
202                            int c_idx, int x_ctb, int y_ctb)
203 {
204     int sh = s->ps.sps->pixel_shift;
205     int w = s->ps.sps->width >> s->ps.sps->hshift[c_idx];
206     int h = s->ps.sps->height >> s->ps.sps->vshift[c_idx];
207 
208     /* copy horizontal edges */
209     memcpy(s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb) * w + x) << sh),
210         src, width << sh);
211     memcpy(s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb + 1) * w + x) << sh),
212         src + stride_src * (height - 1), width << sh);
213 
214     /* copy vertical edges */
215     copy_vert(s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb) * h + y) << sh), src, sh, height, 1 << sh, stride_src);
216 
217     copy_vert(s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb + 1) * h + y) << sh), src + ((width - 1) << sh), sh, height, 1 << sh, stride_src);
218 }
219 
restore_tqb_pixels(HEVCContext *s, uint8_t *src1, const uint8_t *dst1, ptrdiff_t stride_src, ptrdiff_t stride_dst, int x0, int y0, int width, int height, int c_idx)220 static void restore_tqb_pixels(HEVCContext *s,
221                                uint8_t *src1, const uint8_t *dst1,
222                                ptrdiff_t stride_src, ptrdiff_t stride_dst,
223                                int x0, int y0, int width, int height, int c_idx)
224 {
225     if ( s->ps.pps->transquant_bypass_enable_flag ||
226             (s->ps.sps->pcm.loop_filter_disable_flag && s->ps.sps->pcm_enabled_flag)) {
227         int x, y;
228         int min_pu_size  = 1 << s->ps.sps->log2_min_pu_size;
229         int hshift       = s->ps.sps->hshift[c_idx];
230         int vshift       = s->ps.sps->vshift[c_idx];
231         int x_min        = ((x0         ) >> s->ps.sps->log2_min_pu_size);
232         int y_min        = ((y0         ) >> s->ps.sps->log2_min_pu_size);
233         int x_max        = ((x0 + width ) >> s->ps.sps->log2_min_pu_size);
234         int y_max        = ((y0 + height) >> s->ps.sps->log2_min_pu_size);
235         int len          = (min_pu_size >> hshift) << s->ps.sps->pixel_shift;
236         for (y = y_min; y < y_max; y++) {
237             for (x = x_min; x < x_max; x++) {
238                 if (s->is_pcm[y * s->ps.sps->min_pu_width + x]) {
239                     int n;
240                     uint8_t *src = src1 + (((y << s->ps.sps->log2_min_pu_size) - y0) >> vshift) * stride_src + ((((x << s->ps.sps->log2_min_pu_size) - x0) >> hshift) << s->ps.sps->pixel_shift);
241                     const uint8_t *dst = dst1 + (((y << s->ps.sps->log2_min_pu_size) - y0) >> vshift) * stride_dst + ((((x << s->ps.sps->log2_min_pu_size) - x0) >> hshift) << s->ps.sps->pixel_shift);
242                     for (n = 0; n < (min_pu_size >> vshift); n++) {
243                         memcpy(src, dst, len);
244                         src += stride_src;
245                         dst += stride_dst;
246                     }
247                 }
248             }
249         }
250     }
251 }
252 
253 #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
254 
sao_filter_CTB(HEVCContext *s, int x, int y)255 static void sao_filter_CTB(HEVCContext *s, int x, int y)
256 {
257     static const uint8_t sao_tab[8] = { 0, 1, 2, 2, 3, 3, 4, 4 };
258     HEVCLocalContext *lc = s->HEVClc;
259     int c_idx;
260     int edges[4];  // 0 left 1 top 2 right 3 bottom
261     int x_ctb                = x >> s->ps.sps->log2_ctb_size;
262     int y_ctb                = y >> s->ps.sps->log2_ctb_size;
263     int ctb_addr_rs          = y_ctb * s->ps.sps->ctb_width + x_ctb;
264     int ctb_addr_ts          = s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
265     SAOParams *sao           = &CTB(s->sao, x_ctb, y_ctb);
266     // flags indicating unfilterable edges
267     uint8_t vert_edge[]      = { 0, 0 };
268     uint8_t horiz_edge[]     = { 0, 0 };
269     uint8_t diag_edge[]      = { 0, 0, 0, 0 };
270     uint8_t lfase            = CTB(s->filter_slice_edges, x_ctb, y_ctb);
271     uint8_t no_tile_filter   = s->ps.pps->tiles_enabled_flag &&
272                                !s->ps.pps->loop_filter_across_tiles_enabled_flag;
273     uint8_t restore          = no_tile_filter || !lfase;
274     uint8_t left_tile_edge   = 0;
275     uint8_t right_tile_edge  = 0;
276     uint8_t up_tile_edge     = 0;
277     uint8_t bottom_tile_edge = 0;
278 
279     edges[0]   = x_ctb == 0;
280     edges[1]   = y_ctb == 0;
281     edges[2]   = x_ctb == s->ps.sps->ctb_width  - 1;
282     edges[3]   = y_ctb == s->ps.sps->ctb_height - 1;
283 
284     if (restore) {
285         if (!edges[0]) {
286             left_tile_edge  = no_tile_filter && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
287             vert_edge[0]    = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge;
288         }
289         if (!edges[2]) {
290             right_tile_edge = no_tile_filter && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1]];
291             vert_edge[1]    = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb)) || right_tile_edge;
292         }
293         if (!edges[1]) {
294             up_tile_edge     = no_tile_filter && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]];
295             horiz_edge[0]    = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge;
296         }
297         if (!edges[3]) {
298             bottom_tile_edge = no_tile_filter && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs + s->ps.sps->ctb_width]];
299             horiz_edge[1]    = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb + 1)) || bottom_tile_edge;
300         }
301         if (!edges[0] && !edges[1]) {
302             diag_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge;
303         }
304         if (!edges[1] && !edges[2]) {
305             diag_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb - 1)) || right_tile_edge || up_tile_edge;
306         }
307         if (!edges[2] && !edges[3]) {
308             diag_edge[2] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb + 1)) || right_tile_edge || bottom_tile_edge;
309         }
310         if (!edges[0] && !edges[3]) {
311             diag_edge[3] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb + 1)) || left_tile_edge || bottom_tile_edge;
312         }
313     }
314 
315     for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
316         int x0       = x >> s->ps.sps->hshift[c_idx];
317         int y0       = y >> s->ps.sps->vshift[c_idx];
318         ptrdiff_t stride_src = s->frame->linesize[c_idx];
319         int ctb_size_h = (1 << (s->ps.sps->log2_ctb_size)) >> s->ps.sps->hshift[c_idx];
320         int ctb_size_v = (1 << (s->ps.sps->log2_ctb_size)) >> s->ps.sps->vshift[c_idx];
321         int width    = FFMIN(ctb_size_h, (s->ps.sps->width  >> s->ps.sps->hshift[c_idx]) - x0);
322         int height   = FFMIN(ctb_size_v, (s->ps.sps->height >> s->ps.sps->vshift[c_idx]) - y0);
323         int tab      = sao_tab[(FFALIGN(width, 8) >> 3) - 1];
324         uint8_t *src = &s->frame->data[c_idx][y0 * stride_src + (x0 << s->ps.sps->pixel_shift)];
325         ptrdiff_t stride_dst;
326         uint8_t *dst;
327 
328         switch (sao->type_idx[c_idx]) {
329         case SAO_BAND:
330             copy_CTB_to_hv(s, src, stride_src, x0, y0, width, height, c_idx,
331                            x_ctb, y_ctb);
332             if (s->ps.pps->transquant_bypass_enable_flag ||
333                 (s->ps.sps->pcm.loop_filter_disable_flag && s->ps.sps->pcm_enabled_flag)) {
334                 dst = lc->edge_emu_buffer;
335                 stride_dst = 2*MAX_PB_SIZE;
336                 copy_CTB(dst, src, width << s->ps.sps->pixel_shift, height, stride_dst, stride_src);
337                 s->hevcdsp.sao_band_filter[tab](src, dst, stride_src, stride_dst,
338                                                 sao->offset_val[c_idx], sao->band_position[c_idx],
339                                                 width, height);
340                 restore_tqb_pixels(s, src, dst, stride_src, stride_dst,
341                                    x, y, width, height, c_idx);
342             } else {
343                 s->hevcdsp.sao_band_filter[tab](src, src, stride_src, stride_src,
344                                                 sao->offset_val[c_idx], sao->band_position[c_idx],
345                                                 width, height);
346             }
347             sao->type_idx[c_idx] = SAO_APPLIED;
348             break;
349         case SAO_EDGE:
350         {
351             int w = s->ps.sps->width >> s->ps.sps->hshift[c_idx];
352             int h = s->ps.sps->height >> s->ps.sps->vshift[c_idx];
353             int left_edge = edges[0];
354             int top_edge = edges[1];
355             int right_edge = edges[2];
356             int bottom_edge = edges[3];
357             int sh = s->ps.sps->pixel_shift;
358             int left_pixels, right_pixels;
359 
360             stride_dst = 2*MAX_PB_SIZE + AV_INPUT_BUFFER_PADDING_SIZE;
361             dst = lc->edge_emu_buffer + stride_dst + AV_INPUT_BUFFER_PADDING_SIZE;
362 
363             if (!top_edge) {
364                 int left = 1 - left_edge;
365                 int right = 1 - right_edge;
366                 const uint8_t *src1[2];
367                 uint8_t *dst1;
368                 int src_idx, pos;
369 
370                 dst1 = dst - stride_dst - (left << sh);
371                 src1[0] = src - stride_src - (left << sh);
372                 src1[1] = s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb - 1) * w + x0 - left) << sh);
373                 pos = 0;
374                 if (left) {
375                     src_idx = (CTB(s->sao, x_ctb-1, y_ctb-1).type_idx[c_idx] ==
376                                SAO_APPLIED);
377                     copy_pixel(dst1, src1[src_idx], sh);
378                     pos += (1 << sh);
379                 }
380                 src_idx = (CTB(s->sao, x_ctb, y_ctb-1).type_idx[c_idx] ==
381                            SAO_APPLIED);
382                 memcpy(dst1 + pos, src1[src_idx] + pos, width << sh);
383                 if (right) {
384                     pos += width << sh;
385                     src_idx = (CTB(s->sao, x_ctb+1, y_ctb-1).type_idx[c_idx] ==
386                                SAO_APPLIED);
387                     copy_pixel(dst1 + pos, src1[src_idx] + pos, sh);
388                 }
389             }
390             if (!bottom_edge) {
391                 int left = 1 - left_edge;
392                 int right = 1 - right_edge;
393                 const uint8_t *src1[2];
394                 uint8_t *dst1;
395                 int src_idx, pos;
396 
397                 dst1 = dst + height * stride_dst - (left << sh);
398                 src1[0] = src + height * stride_src - (left << sh);
399                 src1[1] = s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb + 2) * w + x0 - left) << sh);
400                 pos = 0;
401                 if (left) {
402                     src_idx = (CTB(s->sao, x_ctb-1, y_ctb+1).type_idx[c_idx] ==
403                                SAO_APPLIED);
404                     copy_pixel(dst1, src1[src_idx], sh);
405                     pos += (1 << sh);
406                 }
407                 src_idx = (CTB(s->sao, x_ctb, y_ctb+1).type_idx[c_idx] ==
408                            SAO_APPLIED);
409                 memcpy(dst1 + pos, src1[src_idx] + pos, width << sh);
410                 if (right) {
411                     pos += width << sh;
412                     src_idx = (CTB(s->sao, x_ctb+1, y_ctb+1).type_idx[c_idx] ==
413                                SAO_APPLIED);
414                     copy_pixel(dst1 + pos, src1[src_idx] + pos, sh);
415                 }
416             }
417             left_pixels = 0;
418             if (!left_edge) {
419                 if (CTB(s->sao, x_ctb-1, y_ctb).type_idx[c_idx] == SAO_APPLIED) {
420                     copy_vert(dst - (1 << sh),
421                               s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb - 1) * h + y0) << sh),
422                               sh, height, stride_dst, 1 << sh);
423                 } else {
424                     left_pixels = 1;
425                 }
426             }
427             right_pixels = 0;
428             if (!right_edge) {
429                 if (CTB(s->sao, x_ctb+1, y_ctb).type_idx[c_idx] == SAO_APPLIED) {
430                     copy_vert(dst + (width << sh),
431                               s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb + 2) * h + y0) << sh),
432                               sh, height, stride_dst, 1 << sh);
433                 } else {
434                     right_pixels = 1;
435                 }
436             }
437 
438             copy_CTB(dst - (left_pixels << sh),
439                      src - (left_pixels << sh),
440                      (width + left_pixels + right_pixels) << sh,
441                      height, stride_dst, stride_src);
442 
443             copy_CTB_to_hv(s, src, stride_src, x0, y0, width, height, c_idx,
444                            x_ctb, y_ctb);
445             s->hevcdsp.sao_edge_filter[tab](src, dst, stride_src, sao->offset_val[c_idx],
446                                             sao->eo_class[c_idx], width, height);
447             s->hevcdsp.sao_edge_restore[restore](src, dst,
448                                                 stride_src, stride_dst,
449                                                 sao,
450                                                 edges, width,
451                                                 height, c_idx,
452                                                 vert_edge,
453                                                 horiz_edge,
454                                                 diag_edge);
455             restore_tqb_pixels(s, src, dst, stride_src, stride_dst,
456                                x, y, width, height, c_idx);
457             sao->type_idx[c_idx] = SAO_APPLIED;
458             break;
459         }
460         }
461     }
462 }
463 
get_pcm(HEVCContext *s, int x, int y)464 static int get_pcm(HEVCContext *s, int x, int y)
465 {
466     int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
467     int x_pu, y_pu;
468 
469     if (x < 0 || y < 0)
470         return 2;
471 
472     x_pu = x >> log2_min_pu_size;
473     y_pu = y >> log2_min_pu_size;
474 
475     if (x_pu >= s->ps.sps->min_pu_width || y_pu >= s->ps.sps->min_pu_height)
476         return 2;
477     return s->is_pcm[y_pu * s->ps.sps->min_pu_width + x_pu];
478 }
479 
480 #define TC_CALC(qp, bs)                                                 \
481     tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) +       \
482                     (tc_offset & -2),                                   \
483                     0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]
484 
deblocking_filter_CTB(HEVCContext *s, int x0, int y0)485 static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
486 {
487     uint8_t *src;
488     int x, y;
489     int chroma, beta;
490     int32_t c_tc[2], tc[2];
491     uint8_t no_p[2] = { 0 };
492     uint8_t no_q[2] = { 0 };
493 
494     int log2_ctb_size = s->ps.sps->log2_ctb_size;
495     int x_end, x_end2, y_end;
496     int ctb_size        = 1 << log2_ctb_size;
497     int ctb             = (x0 >> log2_ctb_size) +
498                           (y0 >> log2_ctb_size) * s->ps.sps->ctb_width;
499     int cur_tc_offset   = s->deblock[ctb].tc_offset;
500     int cur_beta_offset = s->deblock[ctb].beta_offset;
501     int left_tc_offset, left_beta_offset;
502     int tc_offset, beta_offset;
503     int pcmf = (s->ps.sps->pcm_enabled_flag &&
504                 s->ps.sps->pcm.loop_filter_disable_flag) ||
505                s->ps.pps->transquant_bypass_enable_flag;
506 
507     if (x0) {
508         left_tc_offset   = s->deblock[ctb - 1].tc_offset;
509         left_beta_offset = s->deblock[ctb - 1].beta_offset;
510     } else {
511         left_tc_offset   = 0;
512         left_beta_offset = 0;
513     }
514 
515     x_end = x0 + ctb_size;
516     if (x_end > s->ps.sps->width)
517         x_end = s->ps.sps->width;
518     y_end = y0 + ctb_size;
519     if (y_end > s->ps.sps->height)
520         y_end = s->ps.sps->height;
521 
522     tc_offset   = cur_tc_offset;
523     beta_offset = cur_beta_offset;
524 
525     x_end2 = x_end;
526     if (x_end2 != s->ps.sps->width)
527         x_end2 -= 8;
528     for (y = y0; y < y_end; y += 8) {
529         // vertical filtering luma
530         for (x = x0 ? x0 : 8; x < x_end; x += 8) {
531             const int bs0 = s->vertical_bs[(x +  y      * s->bs_width) >> 2];
532             const int bs1 = s->vertical_bs[(x + (y + 4) * s->bs_width) >> 2];
533             if (bs0 || bs1) {
534                 const int qp = (get_qPy(s, x - 1, y)     + get_qPy(s, x, y)     + 1) >> 1;
535 
536                 beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
537 
538                 tc[0]   = bs0 ? TC_CALC(qp, bs0) : 0;
539                 tc[1]   = bs1 ? TC_CALC(qp, bs1) : 0;
540                 src     = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->ps.sps->pixel_shift)];
541                 if (pcmf) {
542                     no_p[0] = get_pcm(s, x - 1, y);
543                     no_p[1] = get_pcm(s, x - 1, y + 4);
544                     no_q[0] = get_pcm(s, x, y);
545                     no_q[1] = get_pcm(s, x, y + 4);
546                     s->hevcdsp.hevc_v_loop_filter_luma_c(src,
547                                                          s->frame->linesize[LUMA],
548                                                          beta, tc, no_p, no_q);
549                 } else
550                     s->hevcdsp.hevc_v_loop_filter_luma(src,
551                                                        s->frame->linesize[LUMA],
552                                                        beta, tc, no_p, no_q);
553             }
554         }
555 
556         if(!y)
557              continue;
558 
559         // horizontal filtering luma
560         for (x = x0 ? x0 - 8 : 0; x < x_end2; x += 8) {
561             const int bs0 = s->horizontal_bs[( x      + y * s->bs_width) >> 2];
562             const int bs1 = s->horizontal_bs[((x + 4) + y * s->bs_width) >> 2];
563             if (bs0 || bs1) {
564                 const int qp = (get_qPy(s, x, y - 1)     + get_qPy(s, x, y)     + 1) >> 1;
565 
566                 tc_offset   = x >= x0 ? cur_tc_offset : left_tc_offset;
567                 beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset;
568 
569                 beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
570                 tc[0]   = bs0 ? TC_CALC(qp, bs0) : 0;
571                 tc[1]   = bs1 ? TC_CALC(qp, bs1) : 0;
572                 src     = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->ps.sps->pixel_shift)];
573                 if (pcmf) {
574                     no_p[0] = get_pcm(s, x, y - 1);
575                     no_p[1] = get_pcm(s, x + 4, y - 1);
576                     no_q[0] = get_pcm(s, x, y);
577                     no_q[1] = get_pcm(s, x + 4, y);
578                     s->hevcdsp.hevc_h_loop_filter_luma_c(src,
579                                                          s->frame->linesize[LUMA],
580                                                          beta, tc, no_p, no_q);
581                 } else
582                     s->hevcdsp.hevc_h_loop_filter_luma(src,
583                                                        s->frame->linesize[LUMA],
584                                                        beta, tc, no_p, no_q);
585             }
586         }
587     }
588 
589     if (s->ps.sps->chroma_format_idc) {
590         for (chroma = 1; chroma <= 2; chroma++) {
591             int h = 1 << s->ps.sps->hshift[chroma];
592             int v = 1 << s->ps.sps->vshift[chroma];
593 
594             // vertical filtering chroma
595             for (y = y0; y < y_end; y += (8 * v)) {
596                 for (x = x0 ? x0 : 8 * h; x < x_end; x += (8 * h)) {
597                     const int bs0 = s->vertical_bs[(x +  y            * s->bs_width) >> 2];
598                     const int bs1 = s->vertical_bs[(x + (y + (4 * v)) * s->bs_width) >> 2];
599 
600                     if ((bs0 == 2) || (bs1 == 2)) {
601                         const int qp0 = (get_qPy(s, x - 1, y)           + get_qPy(s, x, y)           + 1) >> 1;
602                         const int qp1 = (get_qPy(s, x - 1, y + (4 * v)) + get_qPy(s, x, y + (4 * v)) + 1) >> 1;
603 
604                         c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
605                         c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, tc_offset) : 0;
606                         src       = &s->frame->data[chroma][(y >> s->ps.sps->vshift[chroma]) * s->frame->linesize[chroma] + ((x >> s->ps.sps->hshift[chroma]) << s->ps.sps->pixel_shift)];
607                         if (pcmf) {
608                             no_p[0] = get_pcm(s, x - 1, y);
609                             no_p[1] = get_pcm(s, x - 1, y + (4 * v));
610                             no_q[0] = get_pcm(s, x, y);
611                             no_q[1] = get_pcm(s, x, y + (4 * v));
612                             s->hevcdsp.hevc_v_loop_filter_chroma_c(src,
613                                                                    s->frame->linesize[chroma],
614                                                                    c_tc, no_p, no_q);
615                         } else
616                             s->hevcdsp.hevc_v_loop_filter_chroma(src,
617                                                                  s->frame->linesize[chroma],
618                                                                  c_tc, no_p, no_q);
619                     }
620                 }
621 
622                 if(!y)
623                     continue;
624 
625                 // horizontal filtering chroma
626                 tc_offset = x0 ? left_tc_offset : cur_tc_offset;
627                 x_end2 = x_end;
628                 if (x_end != s->ps.sps->width)
629                     x_end2 = x_end - 8 * h;
630                 for (x = x0 ? x0 - 8 * h : 0; x < x_end2; x += (8 * h)) {
631                     const int bs0 = s->horizontal_bs[( x          + y * s->bs_width) >> 2];
632                     const int bs1 = s->horizontal_bs[((x + 4 * h) + y * s->bs_width) >> 2];
633                     if ((bs0 == 2) || (bs1 == 2)) {
634                         const int qp0 = bs0 == 2 ? (get_qPy(s, x,           y - 1) + get_qPy(s, x,           y) + 1) >> 1 : 0;
635                         const int qp1 = bs1 == 2 ? (get_qPy(s, x + (4 * h), y - 1) + get_qPy(s, x + (4 * h), y) + 1) >> 1 : 0;
636 
637                         c_tc[0]   = bs0 == 2 ? chroma_tc(s, qp0, chroma, tc_offset)     : 0;
638                         c_tc[1]   = bs1 == 2 ? chroma_tc(s, qp1, chroma, cur_tc_offset) : 0;
639                         src       = &s->frame->data[chroma][(y >> s->ps.sps->vshift[1]) * s->frame->linesize[chroma] + ((x >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
640                         if (pcmf) {
641                             no_p[0] = get_pcm(s, x,           y - 1);
642                             no_p[1] = get_pcm(s, x + (4 * h), y - 1);
643                             no_q[0] = get_pcm(s, x,           y);
644                             no_q[1] = get_pcm(s, x + (4 * h), y);
645                             s->hevcdsp.hevc_h_loop_filter_chroma_c(src,
646                                                                    s->frame->linesize[chroma],
647                                                                    c_tc, no_p, no_q);
648                         } else
649                             s->hevcdsp.hevc_h_loop_filter_chroma(src,
650                                                                  s->frame->linesize[chroma],
651                                                                  c_tc, no_p, no_q);
652                     }
653                 }
654             }
655         }
656     }
657 }
658 
boundary_strength(const HEVCContext *s, const MvField *curr, const MvField *neigh, const RefPicList *neigh_refPicList)659 static int boundary_strength(const HEVCContext *s, const MvField *curr, const MvField *neigh,
660                              const RefPicList *neigh_refPicList)
661 {
662     if (curr->pred_flag == PF_BI &&  neigh->pred_flag == PF_BI) {
663         // same L0 and L1
664         if (s->ref->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]]  &&
665             s->ref->refPicList[0].list[curr->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]] &&
666             neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) {
667             if ((FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
668                  FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4) &&
669                 (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
670                  FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4))
671                 return 1;
672             else
673                 return 0;
674         } else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
675                    neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
676             if (FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
677                 FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4)
678                 return 1;
679             else
680                 return 0;
681         } else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
682                    neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
683             if (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
684                 FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4)
685                 return 1;
686             else
687                 return 0;
688         } else {
689             return 1;
690         }
691     } else if ((curr->pred_flag != PF_BI) && (neigh->pred_flag != PF_BI)){ // 1 MV
692         Mv A, B;
693         int ref_A, ref_B;
694 
695         if (curr->pred_flag & 1) {
696             A     = curr->mv[0];
697             ref_A = s->ref->refPicList[0].list[curr->ref_idx[0]];
698         } else {
699             A     = curr->mv[1];
700             ref_A = s->ref->refPicList[1].list[curr->ref_idx[1]];
701         }
702 
703         if (neigh->pred_flag & 1) {
704             B     = neigh->mv[0];
705             ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]];
706         } else {
707             B     = neigh->mv[1];
708             ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]];
709         }
710 
711         if (ref_A == ref_B) {
712             if (FFABS(A.x - B.x) >= 4 || FFABS(A.y - B.y) >= 4)
713                 return 1;
714             else
715                 return 0;
716         } else
717             return 1;
718     }
719 
720     return 1;
721 }
722 
ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0, int log2_trafo_size)723 void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0,
724                                            int log2_trafo_size)
725 {
726     HEVCLocalContext *lc = s->HEVClc;
727     MvField *tab_mvf     = s->ref->tab_mvf;
728     int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
729     int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
730     int min_pu_width     = s->ps.sps->min_pu_width;
731     int min_tu_width     = s->ps.sps->min_tb_width;
732     int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width +
733                            (x0 >> log2_min_pu_size)].pred_flag == PF_INTRA;
734     int boundary_upper, boundary_left;
735     int i, j, bs;
736 
737     boundary_upper = y0 > 0 && !(y0 & 7);
738     if (boundary_upper &&
739         ((!s->sh.slice_loop_filter_across_slices_enabled_flag &&
740           lc->boundary_flags & BOUNDARY_UPPER_SLICE &&
741           (y0 % (1 << s->ps.sps->log2_ctb_size)) == 0) ||
742          (!s->ps.pps->loop_filter_across_tiles_enabled_flag &&
743           lc->boundary_flags & BOUNDARY_UPPER_TILE &&
744           (y0 % (1 << s->ps.sps->log2_ctb_size)) == 0)))
745         boundary_upper = 0;
746 
747     if (boundary_upper) {
748         const RefPicList *rpl_top = (lc->boundary_flags & BOUNDARY_UPPER_SLICE) ?
749                                     ff_hevc_get_ref_list(s, s->ref, x0, y0 - 1) :
750                                     s->ref->refPicList;
751         int yp_pu = (y0 - 1) >> log2_min_pu_size;
752         int yq_pu =  y0      >> log2_min_pu_size;
753         int yp_tu = (y0 - 1) >> log2_min_tu_size;
754         int yq_tu =  y0      >> log2_min_tu_size;
755 
756             for (i = 0; i < (1 << log2_trafo_size); i += 4) {
757                 int x_pu = (x0 + i) >> log2_min_pu_size;
758                 int x_tu = (x0 + i) >> log2_min_tu_size;
759                 MvField *top  = &tab_mvf[yp_pu * min_pu_width + x_pu];
760                 MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
761                 uint8_t top_cbf_luma  = s->cbf_luma[yp_tu * min_tu_width + x_tu];
762                 uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
763 
764                 if (curr->pred_flag == PF_INTRA || top->pred_flag == PF_INTRA)
765                     bs = 2;
766                 else if (curr_cbf_luma || top_cbf_luma)
767                     bs = 1;
768                 else
769                     bs = boundary_strength(s, curr, top, rpl_top);
770                 s->horizontal_bs[((x0 + i) + y0 * s->bs_width) >> 2] = bs;
771             }
772     }
773 
774     // bs for vertical TU boundaries
775     boundary_left = x0 > 0 && !(x0 & 7);
776     if (boundary_left &&
777         ((!s->sh.slice_loop_filter_across_slices_enabled_flag &&
778           lc->boundary_flags & BOUNDARY_LEFT_SLICE &&
779           (x0 % (1 << s->ps.sps->log2_ctb_size)) == 0) ||
780          (!s->ps.pps->loop_filter_across_tiles_enabled_flag &&
781           lc->boundary_flags & BOUNDARY_LEFT_TILE &&
782           (x0 % (1 << s->ps.sps->log2_ctb_size)) == 0)))
783         boundary_left = 0;
784 
785     if (boundary_left) {
786         const RefPicList *rpl_left = (lc->boundary_flags & BOUNDARY_LEFT_SLICE) ?
787                                      ff_hevc_get_ref_list(s, s->ref, x0 - 1, y0) :
788                                      s->ref->refPicList;
789         int xp_pu = (x0 - 1) >> log2_min_pu_size;
790         int xq_pu =  x0      >> log2_min_pu_size;
791         int xp_tu = (x0 - 1) >> log2_min_tu_size;
792         int xq_tu =  x0      >> log2_min_tu_size;
793 
794             for (i = 0; i < (1 << log2_trafo_size); i += 4) {
795                 int y_pu      = (y0 + i) >> log2_min_pu_size;
796                 int y_tu      = (y0 + i) >> log2_min_tu_size;
797                 MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
798                 MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
799                 uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
800                 uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
801 
802                 if (curr->pred_flag == PF_INTRA || left->pred_flag == PF_INTRA)
803                     bs = 2;
804                 else if (curr_cbf_luma || left_cbf_luma)
805                     bs = 1;
806                 else
807                     bs = boundary_strength(s, curr, left, rpl_left);
808                 s->vertical_bs[(x0 + (y0 + i) * s->bs_width) >> 2] = bs;
809             }
810     }
811 
812     if (log2_trafo_size > log2_min_pu_size && !is_intra) {
813         RefPicList *rpl = s->ref->refPicList;
814 
815         // bs for TU internal horizontal PU boundaries
816         for (j = 8; j < (1 << log2_trafo_size); j += 8) {
817             int yp_pu = (y0 + j - 1) >> log2_min_pu_size;
818             int yq_pu = (y0 + j)     >> log2_min_pu_size;
819 
820             for (i = 0; i < (1 << log2_trafo_size); i += 4) {
821                 int x_pu = (x0 + i) >> log2_min_pu_size;
822                 MvField *top  = &tab_mvf[yp_pu * min_pu_width + x_pu];
823                 MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
824 
825                 bs = boundary_strength(s, curr, top, rpl);
826                 s->horizontal_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
827             }
828         }
829 
830         // bs for TU internal vertical PU boundaries
831         for (j = 0; j < (1 << log2_trafo_size); j += 4) {
832             int y_pu = (y0 + j) >> log2_min_pu_size;
833 
834             for (i = 8; i < (1 << log2_trafo_size); i += 8) {
835                 int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
836                 int xq_pu = (x0 + i)     >> log2_min_pu_size;
837                 MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
838                 MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
839 
840                 bs = boundary_strength(s, curr, left, rpl);
841                 s->vertical_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
842             }
843         }
844     }
845 }
846 
847 #undef LUMA
848 #undef CB
849 #undef CR
850 
ff_hevc_hls_filter(HEVCContext *s, int x, int y, int ctb_size)851 void ff_hevc_hls_filter(HEVCContext *s, int x, int y, int ctb_size)
852 {
853     int x_end = x >= s->ps.sps->width  - ctb_size;
854     int skip = 0;
855     if (s->avctx->skip_loop_filter >= AVDISCARD_ALL ||
856         (s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && !IS_IDR(s)) ||
857         (s->avctx->skip_loop_filter >= AVDISCARD_NONINTRA &&
858          s->sh.slice_type != HEVC_SLICE_I) ||
859         (s->avctx->skip_loop_filter >= AVDISCARD_BIDIR &&
860          s->sh.slice_type == HEVC_SLICE_B) ||
861         (s->avctx->skip_loop_filter >= AVDISCARD_NONREF &&
862         ff_hevc_nal_is_nonref(s->nal_unit_type)))
863         skip = 1;
864 
865     if (!skip)
866         deblocking_filter_CTB(s, x, y);
867     if (s->ps.sps->sao_enabled && !skip) {
868         int y_end = y >= s->ps.sps->height - ctb_size;
869         if (y && x)
870             sao_filter_CTB(s, x - ctb_size, y - ctb_size);
871         if (x && y_end)
872             sao_filter_CTB(s, x - ctb_size, y);
873         if (y && x_end) {
874             sao_filter_CTB(s, x, y - ctb_size);
875             if (s->threads_type & FF_THREAD_FRAME )
876                 ff_thread_report_progress(&s->ref->tf, y, 0);
877         }
878         if (x_end && y_end) {
879             sao_filter_CTB(s, x , y);
880             if (s->threads_type & FF_THREAD_FRAME )
881                 ff_thread_report_progress(&s->ref->tf, y + ctb_size, 0);
882         }
883     } else if (s->threads_type & FF_THREAD_FRAME && x_end)
884         ff_thread_report_progress(&s->ref->tf, y + ctb_size - 4, 0);
885 }
886 
ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)887 void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
888 {
889     int x_end = x_ctb >= s->ps.sps->width  - ctb_size;
890     int y_end = y_ctb >= s->ps.sps->height - ctb_size;
891     if (y_ctb && x_ctb)
892         ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb - ctb_size, ctb_size);
893     if (y_ctb && x_end)
894         ff_hevc_hls_filter(s, x_ctb, y_ctb - ctb_size, ctb_size);
895     if (x_ctb && y_end)
896         ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb, ctb_size);
897 }
898