1 /*
2  * FLAC audio encoder
3  * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include "libavutil/avassert.h"
23 #include "libavutil/channel_layout.h"
24 #include "libavutil/crc.h"
25 #include "libavutil/intmath.h"
26 #include "libavutil/md5.h"
27 #include "libavutil/opt.h"
28 
29 #include "avcodec.h"
30 #include "bswapdsp.h"
31 #include "codec_internal.h"
32 #include "encode.h"
33 #include "put_bits.h"
34 #include "put_golomb.h"
35 #include "internal.h"
36 #include "lpc.h"
37 #include "flac.h"
38 #include "flacdata.h"
39 #include "flacdsp.h"
40 
41 #define FLAC_SUBFRAME_CONSTANT  0
42 #define FLAC_SUBFRAME_VERBATIM  1
43 #define FLAC_SUBFRAME_FIXED     8
44 #define FLAC_SUBFRAME_LPC      32
45 
46 #define MAX_FIXED_ORDER     4
47 #define MAX_PARTITION_ORDER 8
48 #define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER)
49 #define MAX_LPC_PRECISION  15
50 #define MIN_LPC_SHIFT       0
51 #define MAX_LPC_SHIFT      15
52 
53 enum CodingMode {
54     CODING_MODE_RICE  = 4,
55     CODING_MODE_RICE2 = 5,
56 };
57 
58 typedef struct CompressionOptions {
59     int compression_level;
60     int block_time_ms;
61     enum FFLPCType lpc_type;
62     int lpc_passes;
63     int lpc_coeff_precision;
64     int min_prediction_order;
65     int max_prediction_order;
66     int prediction_order_method;
67     int min_partition_order;
68     int max_partition_order;
69     int ch_mode;
70     int exact_rice_parameters;
71     int multi_dim_quant;
72 } CompressionOptions;
73 
74 typedef struct RiceContext {
75     enum CodingMode coding_mode;
76     int porder;
77     int params[MAX_PARTITIONS];
78 } RiceContext;
79 
80 typedef struct FlacSubframe {
81     int type;
82     int type_code;
83     int obits;
84     int wasted;
85     int order;
86     int32_t coefs[MAX_LPC_ORDER];
87     int shift;
88 
89     RiceContext rc;
90     uint32_t rc_udata[FLAC_MAX_BLOCKSIZE];
91     uint64_t rc_sums[32][MAX_PARTITIONS];
92 
93     int32_t samples[FLAC_MAX_BLOCKSIZE];
94     int32_t residual[FLAC_MAX_BLOCKSIZE+11];
95 } FlacSubframe;
96 
97 typedef struct FlacFrame {
98     FlacSubframe subframes[FLAC_MAX_CHANNELS];
99     int blocksize;
100     int bs_code[2];
101     uint8_t crc8;
102     int ch_mode;
103     int verbatim_only;
104 } FlacFrame;
105 
106 typedef struct FlacEncodeContext {
107     AVClass *class;
108     PutBitContext pb;
109     int channels;
110     int samplerate;
111     int sr_code[2];
112     int bps_code;
113     int max_blocksize;
114     int min_framesize;
115     int max_framesize;
116     int max_encoded_framesize;
117     uint32_t frame_count;
118     uint64_t sample_count;
119     uint8_t md5sum[16];
120     FlacFrame frame;
121     CompressionOptions options;
122     AVCodecContext *avctx;
123     LPCContext lpc_ctx;
124     struct AVMD5 *md5ctx;
125     uint8_t *md5_buffer;
126     unsigned int md5_buffer_size;
127     BswapDSPContext bdsp;
128     FLACDSPContext flac_dsp;
129 
130     int flushed;
131     int64_t next_pts;
132 } FlacEncodeContext;
133 
134 
135 /**
136  * Write streaminfo metadata block to byte array.
137  */
write_streaminfo(FlacEncodeContext *s, uint8_t *header)138 static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
139 {
140     PutBitContext pb;
141 
142     memset(header, 0, FLAC_STREAMINFO_SIZE);
143     init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
144 
145     /* streaminfo metadata block */
146     put_bits(&pb, 16, s->max_blocksize);
147     put_bits(&pb, 16, s->max_blocksize);
148     put_bits(&pb, 24, s->min_framesize);
149     put_bits(&pb, 24, s->max_framesize);
150     put_bits(&pb, 20, s->samplerate);
151     put_bits(&pb, 3, s->channels-1);
152     put_bits(&pb,  5, s->avctx->bits_per_raw_sample - 1);
153     /* write 36-bit sample count in 2 put_bits() calls */
154     put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12);
155     put_bits(&pb, 12,  s->sample_count & 0x000000FFFLL);
156     flush_put_bits(&pb);
157     memcpy(&header[18], s->md5sum, 16);
158 }
159 
160 
161 /**
162  * Set blocksize based on samplerate.
163  * Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds.
164  */
select_blocksize(int samplerate, int block_time_ms)165 static int select_blocksize(int samplerate, int block_time_ms)
166 {
167     int i;
168     int target;
169     int blocksize;
170 
171     av_assert0(samplerate > 0);
172     blocksize = ff_flac_blocksize_table[1];
173     target    = (samplerate * block_time_ms) / 1000;
174     for (i = 0; i < 16; i++) {
175         if (target >= ff_flac_blocksize_table[i] &&
176             ff_flac_blocksize_table[i] > blocksize) {
177             blocksize = ff_flac_blocksize_table[i];
178         }
179     }
180     return blocksize;
181 }
182 
183 
dprint_compression_options(FlacEncodeContext *s)184 static av_cold void dprint_compression_options(FlacEncodeContext *s)
185 {
186     AVCodecContext     *avctx = s->avctx;
187     CompressionOptions *opt   = &s->options;
188 
189     av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", opt->compression_level);
190 
191     switch (opt->lpc_type) {
192     case FF_LPC_TYPE_NONE:
193         av_log(avctx, AV_LOG_DEBUG, " lpc type: None\n");
194         break;
195     case FF_LPC_TYPE_FIXED:
196         av_log(avctx, AV_LOG_DEBUG, " lpc type: Fixed pre-defined coefficients\n");
197         break;
198     case FF_LPC_TYPE_LEVINSON:
199         av_log(avctx, AV_LOG_DEBUG, " lpc type: Levinson-Durbin recursion with Welch window\n");
200         break;
201     case FF_LPC_TYPE_CHOLESKY:
202         av_log(avctx, AV_LOG_DEBUG, " lpc type: Cholesky factorization, %d pass%s\n",
203                opt->lpc_passes, opt->lpc_passes == 1 ? "" : "es");
204         break;
205     }
206 
207     av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
208            opt->min_prediction_order, opt->max_prediction_order);
209 
210     switch (opt->prediction_order_method) {
211     case ORDER_METHOD_EST:
212         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "estimate");
213         break;
214     case ORDER_METHOD_2LEVEL:
215         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "2-level");
216         break;
217     case ORDER_METHOD_4LEVEL:
218         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "4-level");
219         break;
220     case ORDER_METHOD_8LEVEL:
221         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "8-level");
222         break;
223     case ORDER_METHOD_SEARCH:
224         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "full search");
225         break;
226     case ORDER_METHOD_LOG:
227         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "log search");
228         break;
229     }
230 
231 
232     av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
233            opt->min_partition_order, opt->max_partition_order);
234 
235     av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", avctx->frame_size);
236 
237     av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
238            opt->lpc_coeff_precision);
239 }
240 
241 
flac_encode_init(AVCodecContext *avctx)242 static av_cold int flac_encode_init(AVCodecContext *avctx)
243 {
244     int freq = avctx->sample_rate;
245     int channels = avctx->ch_layout.nb_channels;
246     FlacEncodeContext *s = avctx->priv_data;
247     int i, level, ret;
248     uint8_t *streaminfo;
249 
250     s->avctx = avctx;
251 
252     switch (avctx->sample_fmt) {
253     case AV_SAMPLE_FMT_S16:
254         avctx->bits_per_raw_sample = 16;
255         s->bps_code                = 4;
256         break;
257     case AV_SAMPLE_FMT_S32:
258         if (avctx->bits_per_raw_sample != 24)
259             av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
260         avctx->bits_per_raw_sample = 24;
261         s->bps_code                = 6;
262         break;
263     }
264 
265     if (channels < 1 || channels > FLAC_MAX_CHANNELS) {
266         av_log(avctx, AV_LOG_ERROR, "%d channels not supported (max %d)\n",
267                channels, FLAC_MAX_CHANNELS);
268         return AVERROR(EINVAL);
269     }
270     s->channels = channels;
271 
272     /* find samplerate in table */
273     if (freq < 1)
274         return AVERROR(EINVAL);
275     for (i = 4; i < 12; i++) {
276         if (freq == ff_flac_sample_rate_table[i]) {
277             s->samplerate = ff_flac_sample_rate_table[i];
278             s->sr_code[0] = i;
279             s->sr_code[1] = 0;
280             break;
281         }
282     }
283     /* if not in table, samplerate is non-standard */
284     if (i == 12) {
285         if (freq % 1000 == 0 && freq < 255000) {
286             s->sr_code[0] = 12;
287             s->sr_code[1] = freq / 1000;
288         } else if (freq % 10 == 0 && freq < 655350) {
289             s->sr_code[0] = 14;
290             s->sr_code[1] = freq / 10;
291         } else if (freq < 65535) {
292             s->sr_code[0] = 13;
293             s->sr_code[1] = freq;
294         } else {
295             av_log(avctx, AV_LOG_ERROR, "%d Hz not supported\n", freq);
296             return AVERROR(EINVAL);
297         }
298         s->samplerate = freq;
299     }
300 
301     /* set compression option defaults based on avctx->compression_level */
302     if (avctx->compression_level < 0)
303         s->options.compression_level = 5;
304     else
305         s->options.compression_level = avctx->compression_level;
306 
307     level = s->options.compression_level;
308     if (level > 12) {
309         av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
310                s->options.compression_level);
311         return AVERROR(EINVAL);
312     }
313 
314     s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
315 
316     if (s->options.lpc_type == FF_LPC_TYPE_DEFAULT)
317         s->options.lpc_type  = ((int[]){ FF_LPC_TYPE_FIXED,    FF_LPC_TYPE_FIXED,    FF_LPC_TYPE_FIXED,
318                                          FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
319                                          FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
320                                          FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
321                                          FF_LPC_TYPE_LEVINSON})[level];
322 
323     if (s->options.min_prediction_order < 0)
324         s->options.min_prediction_order = ((int[]){  2,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[level];
325     if (s->options.max_prediction_order < 0)
326         s->options.max_prediction_order = ((int[]){  3,  4,  4,  6,  8,  8,  8,  8, 12, 12, 12, 32, 32})[level];
327 
328     if (s->options.prediction_order_method < 0)
329         s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
330                                                        ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
331                                                        ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG,    ORDER_METHOD_4LEVEL,
332                                                        ORDER_METHOD_LOG,    ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
333                                                        ORDER_METHOD_SEARCH})[level];
334 
335     if (s->options.min_partition_order > s->options.max_partition_order) {
336         av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
337                s->options.min_partition_order, s->options.max_partition_order);
338         return AVERROR(EINVAL);
339     }
340     if (s->options.min_partition_order < 0)
341         s->options.min_partition_order = ((int[]){  2,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0})[level];
342     if (s->options.max_partition_order < 0)
343         s->options.max_partition_order = ((int[]){  2,  2,  3,  3,  3,  8,  8,  8,  8,  8,  8,  8,  8})[level];
344 
345     if (s->options.lpc_type == FF_LPC_TYPE_NONE) {
346         s->options.min_prediction_order = 0;
347         s->options.max_prediction_order = 0;
348     } else if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
349         if (s->options.min_prediction_order > MAX_FIXED_ORDER) {
350             av_log(avctx, AV_LOG_WARNING,
351                    "invalid min prediction order %d, clamped to %d\n",
352                    s->options.min_prediction_order, MAX_FIXED_ORDER);
353             s->options.min_prediction_order = MAX_FIXED_ORDER;
354         }
355         if (s->options.max_prediction_order > MAX_FIXED_ORDER) {
356             av_log(avctx, AV_LOG_WARNING,
357                    "invalid max prediction order %d, clamped to %d\n",
358                    s->options.max_prediction_order, MAX_FIXED_ORDER);
359             s->options.max_prediction_order = MAX_FIXED_ORDER;
360         }
361     }
362 
363     if (s->options.max_prediction_order < s->options.min_prediction_order) {
364         av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
365                s->options.min_prediction_order, s->options.max_prediction_order);
366         return AVERROR(EINVAL);
367     }
368 
369     if (avctx->frame_size > 0) {
370         if (avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
371                 avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
372             av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
373                    avctx->frame_size);
374             return AVERROR(EINVAL);
375         }
376     } else {
377         s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms);
378     }
379     s->max_blocksize = s->avctx->frame_size;
380 
381     /* set maximum encoded frame size in verbatim mode */
382     s->max_framesize = ff_flac_get_max_frame_size(s->avctx->frame_size,
383                                                   s->channels,
384                                                   s->avctx->bits_per_raw_sample);
385 
386     /* initialize MD5 context */
387     s->md5ctx = av_md5_alloc();
388     if (!s->md5ctx)
389         return AVERROR(ENOMEM);
390     av_md5_init(s->md5ctx);
391 
392     streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
393     if (!streaminfo)
394         return AVERROR(ENOMEM);
395     write_streaminfo(s, streaminfo);
396     avctx->extradata = streaminfo;
397     avctx->extradata_size = FLAC_STREAMINFO_SIZE;
398 
399     s->frame_count   = 0;
400     s->min_framesize = s->max_framesize;
401 
402     if ((channels == 3 &&
403          av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_SURROUND)) ||
404         (channels == 4 &&
405          av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_2_2) &&
406          av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_QUAD)) ||
407         (channels == 5 &&
408          av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT0) &&
409          av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT0_BACK)) ||
410         (channels == 6 &&
411          av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT1) &&
412          av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT1_BACK))) {
413         if (avctx->ch_layout.order != AV_CHANNEL_ORDER_UNSPEC) {
414             av_log(avctx, AV_LOG_ERROR, "Channel layout not supported by Flac, "
415                                              "output stream will have incorrect "
416                                              "channel layout.\n");
417         } else {
418             av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The encoder "
419                                                "will use Flac channel layout for "
420                                                "%d channels.\n", channels);
421         }
422     }
423 
424     ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
425                       s->options.max_prediction_order, FF_LPC_TYPE_LEVINSON);
426 
427     ff_bswapdsp_init(&s->bdsp);
428     ff_flacdsp_init(&s->flac_dsp, avctx->sample_fmt, channels,
429                     avctx->bits_per_raw_sample);
430 
431     dprint_compression_options(s);
432 
433     return ret;
434 }
435 
436 
init_frame(FlacEncodeContext *s, int nb_samples)437 static void init_frame(FlacEncodeContext *s, int nb_samples)
438 {
439     int i, ch;
440     FlacFrame *frame;
441 
442     frame = &s->frame;
443 
444     for (i = 0; i < 16; i++) {
445         if (nb_samples == ff_flac_blocksize_table[i]) {
446             frame->blocksize  = ff_flac_blocksize_table[i];
447             frame->bs_code[0] = i;
448             frame->bs_code[1] = 0;
449             break;
450         }
451     }
452     if (i == 16) {
453         frame->blocksize = nb_samples;
454         if (frame->blocksize <= 256) {
455             frame->bs_code[0] = 6;
456             frame->bs_code[1] = frame->blocksize-1;
457         } else {
458             frame->bs_code[0] = 7;
459             frame->bs_code[1] = frame->blocksize-1;
460         }
461     }
462 
463     for (ch = 0; ch < s->channels; ch++) {
464         FlacSubframe *sub = &frame->subframes[ch];
465 
466         sub->wasted = 0;
467         sub->obits  = s->avctx->bits_per_raw_sample;
468 
469         if (sub->obits > 16)
470             sub->rc.coding_mode = CODING_MODE_RICE2;
471         else
472             sub->rc.coding_mode = CODING_MODE_RICE;
473     }
474 
475     frame->verbatim_only = 0;
476 }
477 
478 
479 /**
480  * Copy channel-interleaved input samples into separate subframes.
481  */
copy_samples(FlacEncodeContext *s, const void *samples)482 static void copy_samples(FlacEncodeContext *s, const void *samples)
483 {
484     int i, j, ch;
485     FlacFrame *frame;
486     int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 -
487                 s->avctx->bits_per_raw_sample;
488 
489 #define COPY_SAMPLES(bits) do {                                     \
490     const int ## bits ## _t *samples0 = samples;                    \
491     frame = &s->frame;                                              \
492     for (i = 0, j = 0; i < frame->blocksize; i++)                   \
493         for (ch = 0; ch < s->channels; ch++, j++)                   \
494             frame->subframes[ch].samples[i] = samples0[j] >> shift; \
495 } while (0)
496 
497     if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S16)
498         COPY_SAMPLES(16);
499     else
500         COPY_SAMPLES(32);
501 }
502 
503 
rice_count_exact(const int32_t *res, int n, int k)504 static uint64_t rice_count_exact(const int32_t *res, int n, int k)
505 {
506     int i;
507     uint64_t count = 0;
508 
509     for (i = 0; i < n; i++) {
510         int32_t v = -2 * res[i] - 1;
511         v ^= v >> 31;
512         count += (v >> k) + 1 + k;
513     }
514     return count;
515 }
516 
517 
subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub, int pred_order)518 static uint64_t subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub,
519                                      int pred_order)
520 {
521     int p, porder, psize;
522     int i, part_end;
523     uint64_t count = 0;
524 
525     /* subframe header */
526     count += 8;
527 
528     if (sub->wasted)
529         count += sub->wasted;
530 
531     /* subframe */
532     if (sub->type == FLAC_SUBFRAME_CONSTANT) {
533         count += sub->obits;
534     } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
535         count += s->frame.blocksize * sub->obits;
536     } else {
537         /* warm-up samples */
538         count += pred_order * sub->obits;
539 
540         /* LPC coefficients */
541         if (sub->type == FLAC_SUBFRAME_LPC)
542             count += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
543 
544         /* rice-encoded block */
545         count += 2;
546 
547         /* partition order */
548         porder = sub->rc.porder;
549         psize  = s->frame.blocksize >> porder;
550         count += 4;
551 
552         /* residual */
553         i        = pred_order;
554         part_end = psize;
555         for (p = 0; p < 1 << porder; p++) {
556             int k = sub->rc.params[p];
557             count += sub->rc.coding_mode;
558             count += rice_count_exact(&sub->residual[i], part_end - i, k);
559             i = part_end;
560             part_end = FFMIN(s->frame.blocksize, part_end + psize);
561         }
562     }
563 
564     return count;
565 }
566 
567 
568 #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
569 
570 /**
571  * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0.
572  */
find_optimal_param(uint64_t sum, int n, int max_param)573 static int find_optimal_param(uint64_t sum, int n, int max_param)
574 {
575     int k;
576     uint64_t sum2;
577 
578     if (sum <= n >> 1)
579         return 0;
580     sum2 = sum - (n >> 1);
581     k    = av_log2(av_clipl_int32(sum2 / n));
582     return FFMIN(k, max_param);
583 }
584 
find_optimal_param_exact(uint64_t sums[32][MAX_PARTITIONS], int i, int max_param)585 static int find_optimal_param_exact(uint64_t sums[32][MAX_PARTITIONS], int i, int max_param)
586 {
587     int bestk = 0;
588     int64_t bestbits = INT64_MAX;
589     int k;
590 
591     for (k = 0; k <= max_param; k++) {
592         int64_t bits = sums[k][i];
593         if (bits < bestbits) {
594             bestbits = bits;
595             bestk = k;
596         }
597     }
598 
599     return bestk;
600 }
601 
calc_optimal_rice_params(RiceContext *rc, int porder, uint64_t sums[32][MAX_PARTITIONS], int n, int pred_order, int max_param, int exact)602 static uint64_t calc_optimal_rice_params(RiceContext *rc, int porder,
603                                          uint64_t sums[32][MAX_PARTITIONS],
604                                          int n, int pred_order, int max_param, int exact)
605 {
606     int i;
607     int k, cnt, part;
608     uint64_t all_bits;
609 
610     part     = (1 << porder);
611     all_bits = 4 * part;
612 
613     cnt = (n >> porder) - pred_order;
614     for (i = 0; i < part; i++) {
615         if (exact) {
616             k = find_optimal_param_exact(sums, i, max_param);
617             all_bits += sums[k][i];
618         } else {
619             k = find_optimal_param(sums[0][i], cnt, max_param);
620             all_bits += rice_encode_count(sums[0][i], cnt, k);
621         }
622         rc->params[i] = k;
623         cnt = n >> porder;
624     }
625 
626     rc->porder = porder;
627 
628     return all_bits;
629 }
630 
631 
calc_sum_top(int pmax, int kmax, const uint32_t *data, int n, int pred_order, uint64_t sums[32][MAX_PARTITIONS])632 static void calc_sum_top(int pmax, int kmax, const uint32_t *data, int n, int pred_order,
633                          uint64_t sums[32][MAX_PARTITIONS])
634 {
635     int i, k;
636     int parts;
637     const uint32_t *res, *res_end;
638 
639     /* sums for highest level */
640     parts   = (1 << pmax);
641 
642     for (k = 0; k <= kmax; k++) {
643         res     = &data[pred_order];
644         res_end = &data[n >> pmax];
645         for (i = 0; i < parts; i++) {
646             if (kmax) {
647                 uint64_t sum = (1LL + k) * (res_end - res);
648                 while (res < res_end)
649                     sum += *(res++) >> k;
650                 sums[k][i] = sum;
651             } else {
652                 uint64_t sum = 0;
653                 while (res < res_end)
654                     sum += *(res++);
655                 sums[k][i] = sum;
656             }
657             res_end += n >> pmax;
658         }
659     }
660 }
661 
calc_sum_next(int level, uint64_t sums[32][MAX_PARTITIONS], int kmax)662 static void calc_sum_next(int level, uint64_t sums[32][MAX_PARTITIONS], int kmax)
663 {
664     int i, k;
665     int parts = (1 << level);
666     for (i = 0; i < parts; i++) {
667         for (k=0; k<=kmax; k++)
668             sums[k][i] = sums[k][2*i] + sums[k][2*i+1];
669     }
670 }
671 
calc_rice_params(RiceContext *rc, uint32_t udata[FLAC_MAX_BLOCKSIZE], uint64_t sums[32][MAX_PARTITIONS], int pmin, int pmax, const int32_t *data, int n, int pred_order, int exact)672 static uint64_t calc_rice_params(RiceContext *rc,
673                                  uint32_t udata[FLAC_MAX_BLOCKSIZE],
674                                  uint64_t sums[32][MAX_PARTITIONS],
675                                  int pmin, int pmax,
676                                  const int32_t *data, int n, int pred_order, int exact)
677 {
678     int i;
679     uint64_t bits[MAX_PARTITION_ORDER+1];
680     int opt_porder;
681     RiceContext tmp_rc;
682     int kmax = (1 << rc->coding_mode) - 2;
683 
684     av_assert1(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
685     av_assert1(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
686     av_assert1(pmin <= pmax);
687 
688     tmp_rc.coding_mode = rc->coding_mode;
689 
690     for (i = 0; i < n; i++)
691         udata[i] = (2 * data[i]) ^ (data[i] >> 31);
692 
693     calc_sum_top(pmax, exact ? kmax : 0, udata, n, pred_order, sums);
694 
695     opt_porder = pmin;
696     bits[pmin] = UINT32_MAX;
697     for (i = pmax; ; ) {
698         bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums, n, pred_order, kmax, exact);
699         if (bits[i] < bits[opt_porder] || pmax == pmin) {
700             opt_porder = i;
701             *rc = tmp_rc;
702         }
703         if (i == pmin)
704             break;
705         calc_sum_next(--i, sums, exact ? kmax : 0);
706     }
707 
708     return bits[opt_porder];
709 }
710 
711 
get_max_p_order(int max_porder, int n, int order)712 static int get_max_p_order(int max_porder, int n, int order)
713 {
714     int porder = FFMIN(max_porder, av_log2(n^(n-1)));
715     if (order > 0)
716         porder = FFMIN(porder, av_log2(n/order));
717     return porder;
718 }
719 
720 
find_subframe_rice_params(FlacEncodeContext *s, FlacSubframe *sub, int pred_order)721 static uint64_t find_subframe_rice_params(FlacEncodeContext *s,
722                                           FlacSubframe *sub, int pred_order)
723 {
724     int pmin = get_max_p_order(s->options.min_partition_order,
725                                s->frame.blocksize, pred_order);
726     int pmax = get_max_p_order(s->options.max_partition_order,
727                                s->frame.blocksize, pred_order);
728 
729     uint64_t bits = 8 + pred_order * sub->obits + 2 + sub->rc.coding_mode;
730     if (sub->type == FLAC_SUBFRAME_LPC)
731         bits += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
732     bits += calc_rice_params(&sub->rc, sub->rc_udata, sub->rc_sums, pmin, pmax, sub->residual,
733                              s->frame.blocksize, pred_order, s->options.exact_rice_parameters);
734     return bits;
735 }
736 
737 
encode_residual_fixed(int32_t *res, const int32_t *smp, int n, int order)738 static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
739                                   int order)
740 {
741     int i;
742 
743     for (i = 0; i < order; i++)
744         res[i] = smp[i];
745 
746     if (order == 0) {
747         for (i = order; i < n; i++)
748             res[i] = smp[i];
749     } else if (order == 1) {
750         for (i = order; i < n; i++)
751             res[i] = smp[i] - smp[i-1];
752     } else if (order == 2) {
753         int a = smp[order-1] - smp[order-2];
754         for (i = order; i < n; i += 2) {
755             int b    = smp[i  ] - smp[i-1];
756             res[i]   = b - a;
757             a        = smp[i+1] - smp[i  ];
758             res[i+1] = a - b;
759         }
760     } else if (order == 3) {
761         int a = smp[order-1] -   smp[order-2];
762         int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
763         for (i = order; i < n; i += 2) {
764             int b    = smp[i  ] - smp[i-1];
765             int d    = b - a;
766             res[i]   = d - c;
767             a        = smp[i+1] - smp[i  ];
768             c        = a - b;
769             res[i+1] = c - d;
770         }
771     } else {
772         int a = smp[order-1] -   smp[order-2];
773         int c = smp[order-1] - 2*smp[order-2] +   smp[order-3];
774         int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
775         for (i = order; i < n; i += 2) {
776             int b    = smp[i  ] - smp[i-1];
777             int d    = b - a;
778             int f    = d - c;
779             res[i  ] = f - e;
780             a        = smp[i+1] - smp[i  ];
781             c        = a - b;
782             e        = c - d;
783             res[i+1] = e - f;
784         }
785     }
786 }
787 
788 
encode_residual_ch(FlacEncodeContext *s, int ch)789 static int encode_residual_ch(FlacEncodeContext *s, int ch)
790 {
791     int i, n;
792     int min_order, max_order, opt_order, omethod;
793     FlacFrame *frame;
794     FlacSubframe *sub;
795     int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
796     int shift[MAX_LPC_ORDER];
797     int32_t *res, *smp;
798 
799     frame = &s->frame;
800     sub   = &frame->subframes[ch];
801     res   = sub->residual;
802     smp   = sub->samples;
803     n     = frame->blocksize;
804 
805     /* CONSTANT */
806     for (i = 1; i < n; i++)
807         if(smp[i] != smp[0])
808             break;
809     if (i == n) {
810         sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
811         res[0] = smp[0];
812         return subframe_count_exact(s, sub, 0);
813     }
814 
815     /* VERBATIM */
816     if (frame->verbatim_only || n < 5) {
817         sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
818         memcpy(res, smp, n * sizeof(int32_t));
819         return subframe_count_exact(s, sub, 0);
820     }
821 
822     min_order  = s->options.min_prediction_order;
823     max_order  = s->options.max_prediction_order;
824     omethod    = s->options.prediction_order_method;
825 
826     /* FIXED */
827     sub->type = FLAC_SUBFRAME_FIXED;
828     if (s->options.lpc_type == FF_LPC_TYPE_NONE  ||
829         s->options.lpc_type == FF_LPC_TYPE_FIXED || n <= max_order) {
830         uint64_t bits[MAX_FIXED_ORDER+1];
831         if (max_order > MAX_FIXED_ORDER)
832             max_order = MAX_FIXED_ORDER;
833         opt_order = 0;
834         bits[0]   = UINT32_MAX;
835         for (i = min_order; i <= max_order; i++) {
836             encode_residual_fixed(res, smp, n, i);
837             bits[i] = find_subframe_rice_params(s, sub, i);
838             if (bits[i] < bits[opt_order])
839                 opt_order = i;
840         }
841         sub->order     = opt_order;
842         sub->type_code = sub->type | sub->order;
843         if (sub->order != max_order) {
844             encode_residual_fixed(res, smp, n, sub->order);
845             find_subframe_rice_params(s, sub, sub->order);
846         }
847         return subframe_count_exact(s, sub, sub->order);
848     }
849 
850     /* LPC */
851     sub->type = FLAC_SUBFRAME_LPC;
852     opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order,
853                                   s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type,
854                                   s->options.lpc_passes, omethod,
855                                   MIN_LPC_SHIFT, MAX_LPC_SHIFT, 0);
856 
857     if (omethod == ORDER_METHOD_2LEVEL ||
858         omethod == ORDER_METHOD_4LEVEL ||
859         omethod == ORDER_METHOD_8LEVEL) {
860         int levels = 1 << omethod;
861         uint64_t bits[1 << ORDER_METHOD_8LEVEL];
862         int order       = -1;
863         int opt_index   = levels-1;
864         opt_order       = max_order-1;
865         bits[opt_index] = UINT32_MAX;
866         for (i = levels-1; i >= 0; i--) {
867             int last_order = order;
868             order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
869             order = av_clip(order, min_order - 1, max_order - 1);
870             if (order == last_order)
871                 continue;
872             if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(order) <= 32) {
873                 s->flac_dsp.lpc16_encode(res, smp, n, order+1, coefs[order],
874                                          shift[order]);
875             } else {
876                 s->flac_dsp.lpc32_encode(res, smp, n, order+1, coefs[order],
877                                          shift[order]);
878             }
879             bits[i] = find_subframe_rice_params(s, sub, order+1);
880             if (bits[i] < bits[opt_index]) {
881                 opt_index = i;
882                 opt_order = order;
883             }
884         }
885         opt_order++;
886     } else if (omethod == ORDER_METHOD_SEARCH) {
887         // brute-force optimal order search
888         uint64_t bits[MAX_LPC_ORDER];
889         opt_order = 0;
890         bits[0]   = UINT32_MAX;
891         for (i = min_order-1; i < max_order; i++) {
892             if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(i) <= 32) {
893                 s->flac_dsp.lpc16_encode(res, smp, n, i+1, coefs[i], shift[i]);
894             } else {
895                 s->flac_dsp.lpc32_encode(res, smp, n, i+1, coefs[i], shift[i]);
896             }
897             bits[i] = find_subframe_rice_params(s, sub, i+1);
898             if (bits[i] < bits[opt_order])
899                 opt_order = i;
900         }
901         opt_order++;
902     } else if (omethod == ORDER_METHOD_LOG) {
903         uint64_t bits[MAX_LPC_ORDER];
904         int step;
905 
906         opt_order = min_order - 1 + (max_order-min_order)/3;
907         memset(bits, -1, sizeof(bits));
908 
909         for (step = 16; step; step >>= 1) {
910             int last = opt_order;
911             for (i = last-step; i <= last+step; i += step) {
912                 if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX)
913                     continue;
914                 if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(i) <= 32) {
915                     s->flac_dsp.lpc32_encode(res, smp, n, i+1, coefs[i], shift[i]);
916                 } else {
917                     s->flac_dsp.lpc16_encode(res, smp, n, i+1, coefs[i], shift[i]);
918                 }
919                 bits[i] = find_subframe_rice_params(s, sub, i+1);
920                 if (bits[i] < bits[opt_order])
921                     opt_order = i;
922             }
923         }
924         opt_order++;
925     }
926 
927     if (s->options.multi_dim_quant) {
928         int allsteps = 1;
929         int i, step, improved;
930         int64_t best_score = INT64_MAX;
931         int32_t qmax;
932 
933         qmax = (1 << (s->options.lpc_coeff_precision - 1)) - 1;
934 
935         for (i=0; i<opt_order; i++)
936             allsteps *= 3;
937 
938         do {
939             improved = 0;
940             for (step = 0; step < allsteps; step++) {
941                 int tmp = step;
942                 int32_t lpc_try[MAX_LPC_ORDER];
943                 int64_t score = 0;
944                 int diffsum = 0;
945 
946                 for (i=0; i<opt_order; i++) {
947                     int diff = ((tmp + 1) % 3) - 1;
948                     lpc_try[i] = av_clip(coefs[opt_order - 1][i] + diff, -qmax, qmax);
949                     tmp /= 3;
950                     diffsum += !!diff;
951                 }
952                 if (diffsum >8)
953                     continue;
954 
955                 if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(opt_order - 1) <= 32) {
956                     s->flac_dsp.lpc16_encode(res, smp, n, opt_order, lpc_try, shift[opt_order-1]);
957                 } else {
958                     s->flac_dsp.lpc32_encode(res, smp, n, opt_order, lpc_try, shift[opt_order-1]);
959                 }
960                 score = find_subframe_rice_params(s, sub, opt_order);
961                 if (score < best_score) {
962                     best_score = score;
963                     memcpy(coefs[opt_order-1], lpc_try, sizeof(*coefs));
964                     improved=1;
965                 }
966             }
967         } while(improved);
968     }
969 
970     sub->order     = opt_order;
971     sub->type_code = sub->type | (sub->order-1);
972     sub->shift     = shift[sub->order-1];
973     for (i = 0; i < sub->order; i++)
974         sub->coefs[i] = coefs[sub->order-1][i];
975 
976     if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(opt_order) <= 32) {
977         s->flac_dsp.lpc16_encode(res, smp, n, sub->order, sub->coefs, sub->shift);
978     } else {
979         s->flac_dsp.lpc32_encode(res, smp, n, sub->order, sub->coefs, sub->shift);
980     }
981 
982     find_subframe_rice_params(s, sub, sub->order);
983 
984     return subframe_count_exact(s, sub, sub->order);
985 }
986 
987 
count_frame_header(FlacEncodeContext *s)988 static int count_frame_header(FlacEncodeContext *s)
989 {
990     uint8_t av_unused tmp;
991     int count;
992 
993     /*
994     <14> Sync code
995     <1>  Reserved
996     <1>  Blocking strategy
997     <4>  Block size in inter-channel samples
998     <4>  Sample rate
999     <4>  Channel assignment
1000     <3>  Sample size in bits
1001     <1>  Reserved
1002     */
1003     count = 32;
1004 
1005     /* coded frame number */
1006     PUT_UTF8(s->frame_count, tmp, count += 8;)
1007 
1008     /* explicit block size */
1009     if (s->frame.bs_code[0] == 6)
1010         count += 8;
1011     else if (s->frame.bs_code[0] == 7)
1012         count += 16;
1013 
1014     /* explicit sample rate */
1015     count += ((s->sr_code[0] == 12) + (s->sr_code[0] > 12) * 2) * 8;
1016 
1017     /* frame header CRC-8 */
1018     count += 8;
1019 
1020     return count;
1021 }
1022 
1023 
encode_frame(FlacEncodeContext *s)1024 static int encode_frame(FlacEncodeContext *s)
1025 {
1026     int ch;
1027     uint64_t count;
1028 
1029     count = count_frame_header(s);
1030 
1031     for (ch = 0; ch < s->channels; ch++)
1032         count += encode_residual_ch(s, ch);
1033 
1034     count += (8 - (count & 7)) & 7; // byte alignment
1035     count += 16;                    // CRC-16
1036 
1037     count >>= 3;
1038     if (count > INT_MAX)
1039         return AVERROR_BUG;
1040     return count;
1041 }
1042 
1043 
remove_wasted_bits(FlacEncodeContext *s)1044 static void remove_wasted_bits(FlacEncodeContext *s)
1045 {
1046     int ch, i;
1047 
1048     for (ch = 0; ch < s->channels; ch++) {
1049         FlacSubframe *sub = &s->frame.subframes[ch];
1050         int32_t v         = 0;
1051 
1052         for (i = 0; i < s->frame.blocksize; i++) {
1053             v |= sub->samples[i];
1054             if (v & 1)
1055                 break;
1056         }
1057 
1058         if (v && !(v & 1)) {
1059             v = ff_ctz(v);
1060 
1061             for (i = 0; i < s->frame.blocksize; i++)
1062                 sub->samples[i] >>= v;
1063 
1064             sub->wasted = v;
1065             sub->obits -= v;
1066 
1067             /* for 24-bit, check if removing wasted bits makes the range better
1068                suited for using RICE instead of RICE2 for entropy coding */
1069             if (sub->obits <= 17)
1070                 sub->rc.coding_mode = CODING_MODE_RICE;
1071         }
1072     }
1073 }
1074 
1075 
estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch, int n, int max_rice_param)1076 static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch, int n,
1077                                 int max_rice_param)
1078 {
1079     int i, best;
1080     int32_t lt, rt;
1081     uint64_t sum[4];
1082     uint64_t score[4];
1083     int k;
1084 
1085     /* calculate sum of 2nd order residual for each channel */
1086     sum[0] = sum[1] = sum[2] = sum[3] = 0;
1087     for (i = 2; i < n; i++) {
1088         lt = left_ch[i]  - 2*left_ch[i-1]  + left_ch[i-2];
1089         rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
1090         sum[2] += FFABS((lt + rt) >> 1);
1091         sum[3] += FFABS(lt - rt);
1092         sum[0] += FFABS(lt);
1093         sum[1] += FFABS(rt);
1094     }
1095     /* estimate bit counts */
1096     for (i = 0; i < 4; i++) {
1097         k      = find_optimal_param(2 * sum[i], n, max_rice_param);
1098         sum[i] = rice_encode_count( 2 * sum[i], n, k);
1099     }
1100 
1101     /* calculate score for each mode */
1102     score[0] = sum[0] + sum[1];
1103     score[1] = sum[0] + sum[3];
1104     score[2] = sum[1] + sum[3];
1105     score[3] = sum[2] + sum[3];
1106 
1107     /* return mode with lowest score */
1108     best = 0;
1109     for (i = 1; i < 4; i++)
1110         if (score[i] < score[best])
1111             best = i;
1112 
1113     return best;
1114 }
1115 
1116 
1117 /**
1118  * Perform stereo channel decorrelation.
1119  */
channel_decorrelation(FlacEncodeContext *s)1120 static void channel_decorrelation(FlacEncodeContext *s)
1121 {
1122     FlacFrame *frame;
1123     int32_t *left, *right;
1124     int i, n;
1125 
1126     frame = &s->frame;
1127     n     = frame->blocksize;
1128     left  = frame->subframes[0].samples;
1129     right = frame->subframes[1].samples;
1130 
1131     if (s->channels != 2) {
1132         frame->ch_mode = FLAC_CHMODE_INDEPENDENT;
1133         return;
1134     }
1135 
1136     if (s->options.ch_mode < 0) {
1137         int max_rice_param = (1 << frame->subframes[0].rc.coding_mode) - 2;
1138         frame->ch_mode = estimate_stereo_mode(left, right, n, max_rice_param);
1139     } else
1140         frame->ch_mode = s->options.ch_mode;
1141 
1142     /* perform decorrelation and adjust bits-per-sample */
1143     if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
1144         return;
1145     if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
1146         int32_t tmp;
1147         for (i = 0; i < n; i++) {
1148             tmp      = left[i];
1149             left[i]  = (tmp + right[i]) >> 1;
1150             right[i] =  tmp - right[i];
1151         }
1152         frame->subframes[1].obits++;
1153     } else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
1154         for (i = 0; i < n; i++)
1155             right[i] = left[i] - right[i];
1156         frame->subframes[1].obits++;
1157     } else {
1158         for (i = 0; i < n; i++)
1159             left[i] -= right[i];
1160         frame->subframes[0].obits++;
1161     }
1162 }
1163 
1164 
write_utf8(PutBitContext *pb, uint32_t val)1165 static void write_utf8(PutBitContext *pb, uint32_t val)
1166 {
1167     uint8_t tmp;
1168     PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
1169 }
1170 
1171 
write_frame_header(FlacEncodeContext *s)1172 static void write_frame_header(FlacEncodeContext *s)
1173 {
1174     FlacFrame *frame;
1175     int crc;
1176 
1177     frame = &s->frame;
1178 
1179     put_bits(&s->pb, 16, 0xFFF8);
1180     put_bits(&s->pb, 4, frame->bs_code[0]);
1181     put_bits(&s->pb, 4, s->sr_code[0]);
1182 
1183     if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
1184         put_bits(&s->pb, 4, s->channels-1);
1185     else
1186         put_bits(&s->pb, 4, frame->ch_mode + FLAC_MAX_CHANNELS - 1);
1187 
1188     put_bits(&s->pb, 3, s->bps_code);
1189     put_bits(&s->pb, 1, 0);
1190     write_utf8(&s->pb, s->frame_count);
1191 
1192     if (frame->bs_code[0] == 6)
1193         put_bits(&s->pb, 8, frame->bs_code[1]);
1194     else if (frame->bs_code[0] == 7)
1195         put_bits(&s->pb, 16, frame->bs_code[1]);
1196 
1197     if (s->sr_code[0] == 12)
1198         put_bits(&s->pb, 8, s->sr_code[1]);
1199     else if (s->sr_code[0] > 12)
1200         put_bits(&s->pb, 16, s->sr_code[1]);
1201 
1202     flush_put_bits(&s->pb);
1203     crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, s->pb.buf,
1204                  put_bytes_output(&s->pb));
1205     put_bits(&s->pb, 8, crc);
1206 }
1207 
1208 
write_subframes(FlacEncodeContext *s)1209 static void write_subframes(FlacEncodeContext *s)
1210 {
1211     int ch;
1212 
1213     for (ch = 0; ch < s->channels; ch++) {
1214         FlacSubframe *sub = &s->frame.subframes[ch];
1215         int i, p, porder, psize;
1216         int32_t *part_end;
1217         int32_t *res       =  sub->residual;
1218         int32_t *frame_end = &sub->residual[s->frame.blocksize];
1219 
1220         /* subframe header */
1221         put_bits(&s->pb, 1, 0);
1222         put_bits(&s->pb, 6, sub->type_code);
1223         put_bits(&s->pb, 1, !!sub->wasted);
1224         if (sub->wasted)
1225             put_bits(&s->pb, sub->wasted, 1);
1226 
1227         /* subframe */
1228         if (sub->type == FLAC_SUBFRAME_CONSTANT) {
1229             put_sbits(&s->pb, sub->obits, res[0]);
1230         } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
1231             while (res < frame_end)
1232                 put_sbits(&s->pb, sub->obits, *res++);
1233         } else {
1234             /* warm-up samples */
1235             for (i = 0; i < sub->order; i++)
1236                 put_sbits(&s->pb, sub->obits, *res++);
1237 
1238             /* LPC coefficients */
1239             if (sub->type == FLAC_SUBFRAME_LPC) {
1240                 int cbits = s->options.lpc_coeff_precision;
1241                 put_bits( &s->pb, 4, cbits-1);
1242                 put_sbits(&s->pb, 5, sub->shift);
1243                 for (i = 0; i < sub->order; i++)
1244                     put_sbits(&s->pb, cbits, sub->coefs[i]);
1245             }
1246 
1247             /* rice-encoded block */
1248             put_bits(&s->pb, 2, sub->rc.coding_mode - 4);
1249 
1250             /* partition order */
1251             porder  = sub->rc.porder;
1252             psize   = s->frame.blocksize >> porder;
1253             put_bits(&s->pb, 4, porder);
1254 
1255             /* residual */
1256             part_end  = &sub->residual[psize];
1257             for (p = 0; p < 1 << porder; p++) {
1258                 int k = sub->rc.params[p];
1259                 put_bits(&s->pb, sub->rc.coding_mode, k);
1260                 while (res < part_end)
1261                     set_sr_golomb_flac(&s->pb, *res++, k, INT32_MAX, 0);
1262                 part_end = FFMIN(frame_end, part_end + psize);
1263             }
1264         }
1265     }
1266 }
1267 
1268 
write_frame_footer(FlacEncodeContext *s)1269 static void write_frame_footer(FlacEncodeContext *s)
1270 {
1271     int crc;
1272     flush_put_bits(&s->pb);
1273     crc = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, s->pb.buf,
1274                             put_bytes_output(&s->pb)));
1275     put_bits(&s->pb, 16, crc);
1276     flush_put_bits(&s->pb);
1277 }
1278 
1279 
write_frame(FlacEncodeContext *s, AVPacket *avpkt)1280 static int write_frame(FlacEncodeContext *s, AVPacket *avpkt)
1281 {
1282     init_put_bits(&s->pb, avpkt->data, avpkt->size);
1283     write_frame_header(s);
1284     write_subframes(s);
1285     write_frame_footer(s);
1286     return put_bytes_output(&s->pb);
1287 }
1288 
1289 
update_md5_sum(FlacEncodeContext *s, const void *samples)1290 static int update_md5_sum(FlacEncodeContext *s, const void *samples)
1291 {
1292     const uint8_t *buf;
1293     int buf_size = s->frame.blocksize * s->channels *
1294                    ((s->avctx->bits_per_raw_sample + 7) / 8);
1295 
1296     if (s->avctx->bits_per_raw_sample > 16 || HAVE_BIGENDIAN) {
1297         av_fast_malloc(&s->md5_buffer, &s->md5_buffer_size, buf_size);
1298         if (!s->md5_buffer)
1299             return AVERROR(ENOMEM);
1300     }
1301 
1302     if (s->avctx->bits_per_raw_sample <= 16) {
1303         buf = (const uint8_t *)samples;
1304 #if HAVE_BIGENDIAN
1305         s->bdsp.bswap16_buf((uint16_t *) s->md5_buffer,
1306                             (const uint16_t *) samples, buf_size / 2);
1307         buf = s->md5_buffer;
1308 #endif
1309     } else {
1310         int i;
1311         const int32_t *samples0 = samples;
1312         uint8_t *tmp            = s->md5_buffer;
1313 
1314         for (i = 0; i < s->frame.blocksize * s->channels; i++) {
1315             int32_t v = samples0[i] >> 8;
1316             AV_WL24(tmp + 3*i, v);
1317         }
1318         buf = s->md5_buffer;
1319     }
1320     av_md5_update(s->md5ctx, buf, buf_size);
1321 
1322     return 0;
1323 }
1324 
1325 
flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)1326 static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
1327                              const AVFrame *frame, int *got_packet_ptr)
1328 {
1329     FlacEncodeContext *s;
1330     int frame_bytes, out_bytes, ret;
1331 
1332     s = avctx->priv_data;
1333 
1334     /* when the last block is reached, update the header in extradata */
1335     if (!frame) {
1336         s->max_framesize = s->max_encoded_framesize;
1337         av_md5_final(s->md5ctx, s->md5sum);
1338         write_streaminfo(s, avctx->extradata);
1339 
1340         if (!s->flushed) {
1341             uint8_t *side_data = av_packet_new_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
1342                                                          avctx->extradata_size);
1343             if (!side_data)
1344                 return AVERROR(ENOMEM);
1345             memcpy(side_data, avctx->extradata, avctx->extradata_size);
1346 
1347             avpkt->pts = s->next_pts;
1348 
1349             *got_packet_ptr = 1;
1350             s->flushed = 1;
1351         }
1352 
1353         return 0;
1354     }
1355 
1356     /* change max_framesize for small final frame */
1357     if (frame->nb_samples < s->frame.blocksize) {
1358         s->max_framesize = ff_flac_get_max_frame_size(frame->nb_samples,
1359                                                       s->channels,
1360                                                       avctx->bits_per_raw_sample);
1361     }
1362 
1363     init_frame(s, frame->nb_samples);
1364 
1365     copy_samples(s, frame->data[0]);
1366 
1367     channel_decorrelation(s);
1368 
1369     remove_wasted_bits(s);
1370 
1371     frame_bytes = encode_frame(s);
1372 
1373     /* Fall back on verbatim mode if the compressed frame is larger than it
1374        would be if encoded uncompressed. */
1375     if (frame_bytes < 0 || frame_bytes > s->max_framesize) {
1376         s->frame.verbatim_only = 1;
1377         frame_bytes = encode_frame(s);
1378         if (frame_bytes < 0) {
1379             av_log(avctx, AV_LOG_ERROR, "Bad frame count\n");
1380             return frame_bytes;
1381         }
1382     }
1383 
1384     if ((ret = ff_get_encode_buffer(avctx, avpkt, frame_bytes, 0)) < 0)
1385         return ret;
1386 
1387     out_bytes = write_frame(s, avpkt);
1388 
1389     s->frame_count++;
1390     s->sample_count += frame->nb_samples;
1391     if ((ret = update_md5_sum(s, frame->data[0])) < 0) {
1392         av_log(avctx, AV_LOG_ERROR, "Error updating MD5 checksum\n");
1393         return ret;
1394     }
1395     if (out_bytes > s->max_encoded_framesize)
1396         s->max_encoded_framesize = out_bytes;
1397     if (out_bytes < s->min_framesize)
1398         s->min_framesize = out_bytes;
1399 
1400     avpkt->pts      = frame->pts;
1401     avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples);
1402 
1403     s->next_pts = avpkt->pts + avpkt->duration;
1404 
1405     av_shrink_packet(avpkt, out_bytes);
1406 
1407     *got_packet_ptr = 1;
1408     return 0;
1409 }
1410 
1411 
flac_encode_close(AVCodecContext *avctx)1412 static av_cold int flac_encode_close(AVCodecContext *avctx)
1413 {
1414     FlacEncodeContext *s = avctx->priv_data;
1415 
1416     av_freep(&s->md5ctx);
1417     av_freep(&s->md5_buffer);
1418     ff_lpc_end(&s->lpc_ctx);
1419     return 0;
1420 }
1421 
1422 #define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
1423 static const AVOption options[] = {
1424 { "lpc_coeff_precision", "LPC coefficient precision", offsetof(FlacEncodeContext, options.lpc_coeff_precision), AV_OPT_TYPE_INT, {.i64 = 15 }, 0, MAX_LPC_PRECISION, FLAGS },
1425 { "lpc_type", "LPC algorithm", offsetof(FlacEncodeContext, options.lpc_type), AV_OPT_TYPE_INT, {.i64 = FF_LPC_TYPE_DEFAULT }, FF_LPC_TYPE_DEFAULT, FF_LPC_TYPE_NB-1, FLAGS, "lpc_type" },
1426 { "none",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_NONE },     INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1427 { "fixed",    NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_FIXED },    INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1428 { "levinson", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_LEVINSON }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1429 { "cholesky", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_CHOLESKY }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1430 { "lpc_passes", "Number of passes to use for Cholesky factorization during LPC analysis", offsetof(FlacEncodeContext, options.lpc_passes),  AV_OPT_TYPE_INT, {.i64 = 2 }, 1, INT_MAX, FLAGS },
1431 { "min_partition_order",  NULL, offsetof(FlacEncodeContext, options.min_partition_order),  AV_OPT_TYPE_INT, {.i64 = -1 },      -1, MAX_PARTITION_ORDER, FLAGS },
1432 { "max_partition_order",  NULL, offsetof(FlacEncodeContext, options.max_partition_order),  AV_OPT_TYPE_INT, {.i64 = -1 },      -1, MAX_PARTITION_ORDER, FLAGS },
1433 { "prediction_order_method", "Search method for selecting prediction order", offsetof(FlacEncodeContext, options.prediction_order_method), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, ORDER_METHOD_LOG, FLAGS, "predm" },
1434 { "estimation", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_EST },    INT_MIN, INT_MAX, FLAGS, "predm" },
1435 { "2level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_2LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
1436 { "4level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_4LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
1437 { "8level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_8LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
1438 { "search",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_SEARCH }, INT_MIN, INT_MAX, FLAGS, "predm" },
1439 { "log",        NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_LOG },    INT_MIN, INT_MAX, FLAGS, "predm" },
1440 { "ch_mode", "Stereo decorrelation mode", offsetof(FlacEncodeContext, options.ch_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, FLAC_CHMODE_MID_SIDE, FLAGS, "ch_mode" },
1441 { "auto",       NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1                      }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1442 { "indep",      NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_INDEPENDENT }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1443 { "left_side",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_LEFT_SIDE   }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1444 { "right_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_RIGHT_SIDE  }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1445 { "mid_side",   NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_MID_SIDE    }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1446 { "exact_rice_parameters", "Calculate rice parameters exactly", offsetof(FlacEncodeContext, options.exact_rice_parameters), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
1447 { "multi_dim_quant",       "Multi-dimensional quantization",    offsetof(FlacEncodeContext, options.multi_dim_quant),       AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
1448 { "min_prediction_order", NULL, offsetof(FlacEncodeContext, options.min_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS },
1449 { "max_prediction_order", NULL, offsetof(FlacEncodeContext, options.max_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS },
1450 
1451 { NULL },
1452 };
1453 
1454 static const AVClass flac_encoder_class = {
1455     .class_name = "FLAC encoder",
1456     .item_name  = av_default_item_name,
1457     .option     = options,
1458     .version    = LIBAVUTIL_VERSION_INT,
1459 };
1460 
1461 const FFCodec ff_flac_encoder = {
1462     .p.name         = "flac",
1463     .p.long_name    = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"),
1464     .p.type         = AVMEDIA_TYPE_AUDIO,
1465     .p.id           = AV_CODEC_ID_FLAC,
1466     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
1467                       AV_CODEC_CAP_SMALL_LAST_FRAME,
1468     .priv_data_size = sizeof(FlacEncodeContext),
1469     .init           = flac_encode_init,
1470     FF_CODEC_ENCODE_CB(flac_encode_frame),
1471     .close          = flac_encode_close,
1472     .p.sample_fmts  = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
1473                                                      AV_SAMPLE_FMT_S32,
1474                                                      AV_SAMPLE_FMT_NONE },
1475     .p.priv_class   = &flac_encoder_class,
1476     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
1477 };
1478