1 /*
2  * Enhanced Variable Rate Codec, Service Option 3 decoder
3  * Copyright (c) 2013 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Enhanced Variable Rate Codec, Service Option 3 decoder
25  * @author Paul B Mahol
26  */
27 
28 #include "libavutil/channel_layout.h"
29 #include "libavutil/mathematics.h"
30 #include "libavutil/opt.h"
31 #include "avcodec.h"
32 #include "codec_internal.h"
33 #include "internal.h"
34 #include "get_bits.h"
35 #include "evrcdata.h"
36 #include "acelp_vectors.h"
37 #include "lsp.h"
38 
39 #define MIN_LSP_SEP (0.05 / (2.0 * M_PI))
40 #define MIN_DELAY      20
41 #define MAX_DELAY     120
42 #define NB_SUBFRAMES    3
43 #define SUBFRAME_SIZE  54
44 #define FILTER_ORDER   10
45 #define ACB_SIZE      128
46 
47 typedef enum {
48     RATE_ERRS = -1,
49     SILENCE,
50     RATE_QUANT,
51     RATE_QUARTER,
52     RATE_HALF,
53     RATE_FULL,
54 } evrc_packet_rate;
55 
56 /**
57  * EVRC-A unpacked data frame
58  */
59 typedef struct EVRCAFrame {
60     uint8_t  lpc_flag;        ///< spectral change indicator
61     uint16_t lsp[4];          ///< index into LSP codebook
62     uint8_t  pitch_delay;     ///< pitch delay for entire frame
63     uint8_t  delay_diff;      ///< delay difference for entire frame
64     uint8_t  acb_gain[3];     ///< adaptive codebook gain
65     uint16_t fcb_shape[3][4]; ///< fixed codebook shape
66     uint8_t  fcb_gain[3];     ///< fixed codebook gain index
67     uint8_t  energy_gain;     ///< frame energy gain index
68     uint8_t  tty;             ///< tty baud rate bit
69 } EVRCAFrame;
70 
71 typedef struct EVRCContext {
72     AVClass *class;
73 
74     int              postfilter;
75 
76     GetBitContext    gb;
77     evrc_packet_rate bitrate;
78     evrc_packet_rate last_valid_bitrate;
79     EVRCAFrame       frame;
80 
81     float            lspf[FILTER_ORDER];
82     float            prev_lspf[FILTER_ORDER];
83     float            synthesis[FILTER_ORDER];
84     float            postfilter_fir[FILTER_ORDER];
85     float            postfilter_iir[FILTER_ORDER];
86     float            postfilter_residual[ACB_SIZE + SUBFRAME_SIZE];
87     float            pitch_delay;
88     float            prev_pitch_delay;
89     float            avg_acb_gain;  ///< average adaptive codebook gain
90     float            avg_fcb_gain;  ///< average fixed codebook gain
91     float            pitch[ACB_SIZE + FILTER_ORDER + SUBFRAME_SIZE];
92     float            pitch_back[ACB_SIZE];
93     float            interpolation_coeffs[136];
94     float            energy_vector[NB_SUBFRAMES];
95     float            fade_scale;
96     float            last;
97 
98     uint8_t          prev_energy_gain;
99     uint8_t          prev_error_flag;
100     uint8_t          warned_buf_mismatch_bitrate;
101 } EVRCContext;
102 
103 /**
104  * Frame unpacking for RATE_FULL, RATE_HALF and RATE_QUANT
105  *
106  * @param e the context
107  *
108  * TIA/IS-127 Table 4.21-1
109  */
unpack_frame(EVRCContext *e)110 static void unpack_frame(EVRCContext *e)
111 {
112     EVRCAFrame *frame = &e->frame;
113     GetBitContext *gb = &e->gb;
114 
115     switch (e->bitrate) {
116     case RATE_FULL:
117         frame->lpc_flag        = get_bits1(gb);
118         frame->lsp[0]          = get_bits(gb,  6);
119         frame->lsp[1]          = get_bits(gb,  6);
120         frame->lsp[2]          = get_bits(gb,  9);
121         frame->lsp[3]          = get_bits(gb,  7);
122         frame->pitch_delay     = get_bits(gb,  7);
123         frame->delay_diff      = get_bits(gb,  5);
124         frame->acb_gain[0]     = get_bits(gb,  3);
125         frame->fcb_shape[0][0] = get_bits(gb,  8);
126         frame->fcb_shape[0][1] = get_bits(gb,  8);
127         frame->fcb_shape[0][2] = get_bits(gb,  8);
128         frame->fcb_shape[0][3] = get_bits(gb, 11);
129         frame->fcb_gain[0]     = get_bits(gb,  5);
130         frame->acb_gain[1]     = get_bits(gb,  3);
131         frame->fcb_shape[1][0] = get_bits(gb,  8);
132         frame->fcb_shape[1][1] = get_bits(gb,  8);
133         frame->fcb_shape[1][2] = get_bits(gb,  8);
134         frame->fcb_shape[1][3] = get_bits(gb, 11);
135         frame->fcb_gain    [1] = get_bits(gb,  5);
136         frame->acb_gain    [2] = get_bits(gb,  3);
137         frame->fcb_shape[2][0] = get_bits(gb,  8);
138         frame->fcb_shape[2][1] = get_bits(gb,  8);
139         frame->fcb_shape[2][2] = get_bits(gb,  8);
140         frame->fcb_shape[2][3] = get_bits(gb, 11);
141         frame->fcb_gain    [2] = get_bits(gb,  5);
142         frame->tty             = get_bits1(gb);
143         break;
144     case RATE_HALF:
145         frame->lsp         [0] = get_bits(gb,  7);
146         frame->lsp         [1] = get_bits(gb,  7);
147         frame->lsp         [2] = get_bits(gb,  8);
148         frame->pitch_delay     = get_bits(gb,  7);
149         frame->acb_gain    [0] = get_bits(gb,  3);
150         frame->fcb_shape[0][0] = get_bits(gb, 10);
151         frame->fcb_gain    [0] = get_bits(gb,  4);
152         frame->acb_gain    [1] = get_bits(gb,  3);
153         frame->fcb_shape[1][0] = get_bits(gb, 10);
154         frame->fcb_gain    [1] = get_bits(gb,  4);
155         frame->acb_gain    [2] = get_bits(gb,  3);
156         frame->fcb_shape[2][0] = get_bits(gb, 10);
157         frame->fcb_gain    [2] = get_bits(gb,  4);
158         break;
159     case RATE_QUANT:
160         frame->lsp         [0] = get_bits(gb, 4);
161         frame->lsp         [1] = get_bits(gb, 4);
162         frame->energy_gain     = get_bits(gb, 8);
163         break;
164     }
165 }
166 
buf_size2bitrate(const int buf_size)167 static evrc_packet_rate buf_size2bitrate(const int buf_size)
168 {
169     switch (buf_size) {
170     case 23: return RATE_FULL;
171     case 11: return RATE_HALF;
172     case  6: return RATE_QUARTER;
173     case  3: return RATE_QUANT;
174     case  1: return SILENCE;
175     }
176 
177     return RATE_ERRS;
178 }
179 
180 /**
181  * Determine the bitrate from the frame size and/or the first byte of the frame.
182  *
183  * @param avctx the AV codec context
184  * @param buf_size length of the buffer
185  * @param buf the bufffer
186  *
187  * @return the bitrate on success,
188  *         RATE_ERRS  if the bitrate cannot be satisfactorily determined
189  */
determine_bitrate(AVCodecContext *avctx, int *buf_size, const uint8_t **buf)190 static evrc_packet_rate determine_bitrate(AVCodecContext *avctx,
191                                           int *buf_size,
192                                           const uint8_t **buf)
193 {
194     evrc_packet_rate bitrate;
195 
196     if ((bitrate = buf_size2bitrate(*buf_size)) >= 0) {
197         if (bitrate > **buf) {
198             EVRCContext *e = avctx->priv_data;
199             if (!e->warned_buf_mismatch_bitrate) {
200                 av_log(avctx, AV_LOG_WARNING,
201                        "Claimed bitrate and buffer size mismatch.\n");
202                 e->warned_buf_mismatch_bitrate = 1;
203             }
204             bitrate = **buf;
205         } else if (bitrate < **buf) {
206             av_log(avctx, AV_LOG_ERROR,
207                    "Buffer is too small for the claimed bitrate.\n");
208             return RATE_ERRS;
209         }
210         (*buf)++;
211         *buf_size -= 1;
212     } else if ((bitrate = buf_size2bitrate(*buf_size + 1)) >= 0) {
213         av_log(avctx, AV_LOG_DEBUG,
214                "Bitrate byte is missing, guessing the bitrate from packet size.\n");
215     } else
216         return RATE_ERRS;
217 
218     return bitrate;
219 }
220 
warn_insufficient_frame_quality(AVCodecContext *avctx, const char *message)221 static void warn_insufficient_frame_quality(AVCodecContext *avctx,
222                                             const char *message)
223 {
224     av_log(avctx, AV_LOG_WARNING, "Frame #%d, %s\n",
225            avctx->frame_number, message);
226 }
227 
228 /**
229  * Initialize the speech codec according to the specification.
230  *
231  * TIA/IS-127 5.2
232  */
evrc_decode_init(AVCodecContext *avctx)233 static av_cold int evrc_decode_init(AVCodecContext *avctx)
234 {
235     EVRCContext *e = avctx->priv_data;
236     int i, n, idx = 0;
237     float denom = 2.0 / (2.0 * 8.0 + 1.0);
238 
239     av_channel_layout_uninit(&avctx->ch_layout);
240     avctx->ch_layout = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO;
241     avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
242 
243     for (i = 0; i < FILTER_ORDER; i++) {
244         e->prev_lspf[i] = (i + 1) * 0.048;
245         e->synthesis[i] = 0.0;
246     }
247 
248     for (i = 0; i < ACB_SIZE; i++)
249         e->pitch[i] = e->pitch_back[i] = 0.0;
250 
251     e->last_valid_bitrate = RATE_QUANT;
252     e->prev_pitch_delay   = 40.0;
253     e->fade_scale         = 1.0;
254     e->prev_error_flag    = 0;
255     e->avg_acb_gain = e->avg_fcb_gain = 0.0;
256 
257     for (i = 0; i < 8; i++) {
258         float tt = ((float)i - 8.0 / 2.0) / 8.0;
259 
260         for (n = -8; n <= 8; n++, idx++) {
261             float arg1 = M_PI * 0.9 * (tt - n);
262             float arg2 = M_PI * (tt - n);
263 
264             e->interpolation_coeffs[idx] = 0.9;
265             if (arg1)
266                 e->interpolation_coeffs[idx] *= (0.54 + 0.46 * cos(arg2 * denom)) *
267                                                  sin(arg1) / arg1;
268         }
269     }
270 
271     return 0;
272 }
273 
274 /**
275  * Decode the 10 vector quantized line spectral pair frequencies from the LSP
276  * transmission codes of any bitrate and check for badly received packets.
277  *
278  * @param e the context
279  *
280  * @return 0 on success, -1 if the packet is badly received
281  *
282  * TIA/IS-127 5.2.1, 5.7.1
283  */
decode_lspf(EVRCContext *e)284 static int decode_lspf(EVRCContext *e)
285 {
286     const float * const *codebooks = evrc_lspq_codebooks[e->bitrate];
287     int i, j, k = 0;
288 
289     for (i = 0; i < evrc_lspq_nb_codebooks[e->bitrate]; i++) {
290         int row_size = evrc_lspq_codebooks_row_sizes[e->bitrate][i];
291         const float *codebook = codebooks[i];
292 
293         for (j = 0; j < row_size; j++)
294             e->lspf[k++] = codebook[e->frame.lsp[i] * row_size + j];
295     }
296 
297     // check for monotonic LSPs
298     for (i = 1; i < FILTER_ORDER; i++)
299         if (e->lspf[i] <= e->lspf[i - 1])
300             return -1;
301 
302     // check for minimum separation of LSPs at the splits
303     for (i = 0, k = 0; i < evrc_lspq_nb_codebooks[e->bitrate] - 1; i++) {
304         k += evrc_lspq_codebooks_row_sizes[e->bitrate][i];
305         if (e->lspf[k] - e->lspf[k - 1] <= MIN_LSP_SEP)
306             return -1;
307     }
308 
309     return 0;
310 }
311 
312 /*
313  * Interpolation of LSP parameters.
314  *
315  * TIA/IS-127 5.2.3.1, 5.7.3.2
316  */
interpolate_lsp(float *ilsp, const float *lsp, const float *prev, int index)317 static void interpolate_lsp(float *ilsp, const float *lsp,
318                             const float *prev, int index)
319 {
320     static const float lsp_interpolation_factors[] = { 0.1667, 0.5, 0.8333 };
321     ff_weighted_vector_sumf(ilsp, prev, lsp,
322                             1.0 - lsp_interpolation_factors[index],
323                             lsp_interpolation_factors[index], FILTER_ORDER);
324 }
325 
326 /*
327  * Reconstruction of the delay contour.
328  *
329  * TIA/IS-127 5.2.2.3.2
330  */
interpolate_delay(float *dst, float current, float prev, int index)331 static void interpolate_delay(float *dst, float current, float prev, int index)
332 {
333     static const float d_interpolation_factors[] = { 0, 0.3313, 0.6625, 1, 1 };
334     dst[0] = (1.0 - d_interpolation_factors[index    ]) * prev
335                   + d_interpolation_factors[index    ]  * current;
336     dst[1] = (1.0 - d_interpolation_factors[index + 1]) * prev
337                   + d_interpolation_factors[index + 1]  * current;
338     dst[2] = (1.0 - d_interpolation_factors[index + 2]) * prev
339                   + d_interpolation_factors[index + 2]  * current;
340 }
341 
342 /*
343  * Convert the quantized, interpolated line spectral frequencies,
344  * to prediction coefficients.
345  *
346  * TIA/IS-127 5.2.3.2, 4.7.2.2
347  */
decode_predictor_coeffs(const float *ilspf, float *ilpc)348 static void decode_predictor_coeffs(const float *ilspf, float *ilpc)
349 {
350     double lsp[FILTER_ORDER];
351     float a[FILTER_ORDER / 2 + 1], b[FILTER_ORDER / 2 + 1];
352     float a1[FILTER_ORDER / 2] = { 0 };
353     float a2[FILTER_ORDER / 2] = { 0 };
354     float b1[FILTER_ORDER / 2] = { 0 };
355     float b2[FILTER_ORDER / 2] = { 0 };
356     int i, k;
357 
358     ff_acelp_lsf2lspd(lsp, ilspf, FILTER_ORDER);
359 
360     for (k = 0; k <= FILTER_ORDER; k++) {
361         a[0] = k < 2 ? 0.25 : 0;
362         b[0] = k < 2 ? k < 1 ? 0.25 : -0.25 : 0;
363 
364         for (i = 0; i < FILTER_ORDER / 2; i++) {
365             a[i + 1] = a[i] - 2 * lsp[i * 2    ] * a1[i] + a2[i];
366             b[i + 1] = b[i] - 2 * lsp[i * 2 + 1] * b1[i] + b2[i];
367             a2[i] = a1[i];
368             a1[i] = a[i];
369             b2[i] = b1[i];
370             b1[i] = b[i];
371         }
372 
373         if (k)
374             ilpc[k - 1] = 2.0 * (a[FILTER_ORDER / 2] + b[FILTER_ORDER / 2]);
375     }
376 }
377 
bl_intrp(EVRCContext *e, float *ex, float delay)378 static void bl_intrp(EVRCContext *e, float *ex, float delay)
379 {
380     float *f;
381     int offset, i, coef_idx;
382     int16_t t;
383 
384     offset = lrintf(delay);
385 
386     t = (offset - delay + 0.5) * 8.0 + 0.5;
387     if (t == 8) {
388         t = 0;
389         offset--;
390     }
391 
392     f = ex - offset - 8;
393 
394     coef_idx = t * (2 * 8 + 1);
395 
396     ex[0] = 0.0;
397     for (i = 0; i < 2 * 8 + 1; i++)
398         ex[0] += e->interpolation_coeffs[coef_idx + i] * f[i];
399 }
400 
401 /*
402  * Adaptive codebook excitation.
403  *
404  * TIA/IS-127 5.2.2.3.3, 4.12.5.2
405  */
acb_excitation(EVRCContext *e, float *excitation, float gain, const float delay[3], int length)406 static void acb_excitation(EVRCContext *e, float *excitation, float gain,
407                            const float delay[3], int length)
408 {
409     float denom, locdelay, dpr, invl;
410     int i;
411 
412     invl = 1.0 / ((float) length);
413     dpr = length;
414 
415     /* first at-most extra samples */
416     denom = (delay[1] - delay[0]) * invl;
417     for (i = 0; i < dpr; i++) {
418         locdelay = delay[0] + i * denom;
419         bl_intrp(e, excitation + i, locdelay);
420     }
421 
422     denom = (delay[2] - delay[1]) * invl;
423     /* interpolation */
424     for (i = dpr; i < dpr + 10; i++) {
425         locdelay = delay[1] + (i - dpr) * denom;
426         bl_intrp(e, excitation + i, locdelay);
427     }
428 
429     for (i = 0; i < length; i++)
430         excitation[i] *= gain;
431 }
432 
decode_8_pulses_35bits(const uint16_t *fixed_index, float *cod)433 static void decode_8_pulses_35bits(const uint16_t *fixed_index, float *cod)
434 {
435     int i, pos1, pos2, offset;
436 
437     offset = (fixed_index[3] >> 9) & 3;
438 
439     for (i = 0; i < 3; i++) {
440         pos1 = ((fixed_index[i] & 0x7f) / 11) * 5 + ((i + offset) % 5);
441         pos2 = ((fixed_index[i] & 0x7f) % 11) * 5 + ((i + offset) % 5);
442 
443         cod[pos1] = (fixed_index[i] & 0x80) ? -1.0 : 1.0;
444 
445         if (pos2 < pos1)
446             cod[pos2]  = -cod[pos1];
447         else
448             cod[pos2] +=  cod[pos1];
449     }
450 
451     pos1 = ((fixed_index[3] & 0x7f) / 11) * 5 + ((3 + offset) % 5);
452     pos2 = ((fixed_index[3] & 0x7f) % 11) * 5 + ((4 + offset) % 5);
453 
454     cod[pos1] = (fixed_index[3] & 0x100) ? -1.0 : 1.0;
455     cod[pos2] = (fixed_index[3] & 0x80 ) ? -1.0 : 1.0;
456 }
457 
decode_3_pulses_10bits(uint16_t fixed_index, float *cod)458 static void decode_3_pulses_10bits(uint16_t fixed_index, float *cod)
459 {
460     float sign;
461     int pos;
462 
463     sign = (fixed_index & 0x200) ? -1.0 : 1.0;
464 
465     pos = ((fixed_index        & 0x7) * 7) + 4;
466     cod[pos] += sign;
467     pos = (((fixed_index >> 3) & 0x7) * 7) + 2;
468     cod[pos] -= sign;
469     pos = (((fixed_index >> 6) & 0x7) * 7);
470     cod[pos] += sign;
471 }
472 
473 /*
474  * Reconstruction of ACELP fixed codebook excitation for full and half rate.
475  *
476  * TIA/IS-127 5.2.3.7
477  */
fcb_excitation(EVRCContext *e, const uint16_t *codebook, float *excitation, float pitch_gain, int pitch_lag, int subframe_size)478 static void fcb_excitation(EVRCContext *e, const uint16_t *codebook,
479                            float *excitation, float pitch_gain,
480                            int pitch_lag, int subframe_size)
481 {
482     int i;
483 
484     if (e->bitrate == RATE_FULL)
485         decode_8_pulses_35bits(codebook, excitation);
486     else
487         decode_3_pulses_10bits(*codebook, excitation);
488 
489     pitch_gain = av_clipf(pitch_gain, 0.2, 0.9);
490 
491     for (i = pitch_lag; i < subframe_size; i++)
492         excitation[i] += pitch_gain * excitation[i - pitch_lag];
493 }
494 
495 /**
496  * Synthesis of the decoder output signal.
497  *
498  * param[in]     in              input signal
499  * param[in]     filter_coeffs   LPC coefficients
500  * param[in/out] memory          synthesis filter memory
501  * param         buffer_length   amount of data to process
502  * param[out]    samples         output samples
503  *
504  * TIA/IS-127 5.2.3.15, 5.7.3.4
505  */
synthesis_filter(const float *in, const float *filter_coeffs, float *memory, int buffer_length, float *samples)506 static void synthesis_filter(const float *in, const float *filter_coeffs,
507                              float *memory, int buffer_length, float *samples)
508 {
509     int i, j;
510 
511     for (i = 0; i < buffer_length; i++) {
512         samples[i] = in[i];
513         for (j = FILTER_ORDER - 1; j > 0; j--) {
514             samples[i] -= filter_coeffs[j] * memory[j];
515             memory[j]   = memory[j - 1];
516         }
517         samples[i] -= filter_coeffs[0] * memory[0];
518         memory[0]   = samples[i];
519     }
520 }
521 
bandwidth_expansion(float *coeff, const float *inbuf, float gamma)522 static void bandwidth_expansion(float *coeff, const float *inbuf, float gamma)
523 {
524     double fac = gamma;
525     int i;
526 
527     for (i = 0; i < FILTER_ORDER; i++) {
528         coeff[i] = inbuf[i] * fac;
529         fac *= gamma;
530     }
531 }
532 
residual_filter(float *output, const float *input, const float *coef, float *memory, int length)533 static void residual_filter(float *output, const float *input,
534                             const float *coef, float *memory, int length)
535 {
536     float sum;
537     int i, j;
538 
539     for (i = 0; i < length; i++) {
540         sum = input[i];
541 
542         for (j = FILTER_ORDER - 1; j > 0; j--) {
543             sum      += coef[j] * memory[j];
544             memory[j] = memory[j - 1];
545         }
546         sum += coef[0] * memory[0];
547         memory[0] = input[i];
548         output[i] = sum;
549     }
550 }
551 
552 /*
553  * TIA/IS-127 Table 5.9.1-1.
554  */
555 static const struct PfCoeff {
556     float tilt;
557     float ltgain;
558     float p1;
559     float p2;
560 } postfilter_coeffs[5] = {
561     { 0.0 , 0.0 , 0.0 , 0.0  },
562     { 0.0 , 0.0 , 0.57, 0.57 },
563     { 0.0 , 0.0 , 0.0 , 0.0  },
564     { 0.35, 0.50, 0.50, 0.75 },
565     { 0.20, 0.50, 0.57, 0.75 },
566 };
567 
568 /*
569  * Adaptive postfilter.
570  *
571  * TIA/IS-127 5.9
572  */
postfilter(EVRCContext *e, float *in, const float *coeff, float *out, int idx, const struct PfCoeff *pfc, int length)573 static void postfilter(EVRCContext *e, float *in, const float *coeff,
574                        float *out, int idx, const struct PfCoeff *pfc,
575                        int length)
576 {
577     float wcoef1[FILTER_ORDER], wcoef2[FILTER_ORDER],
578           scratch[SUBFRAME_SIZE], temp[SUBFRAME_SIZE],
579           mem[SUBFRAME_SIZE];
580     float sum1 = 0.0, sum2 = 0.0, gamma, gain;
581     float tilt = pfc->tilt;
582     int i, n, best;
583 
584     bandwidth_expansion(wcoef1, coeff, pfc->p1);
585     bandwidth_expansion(wcoef2, coeff, pfc->p2);
586 
587     /* Tilt compensation filter, TIA/IS-127 5.9.1 */
588     for (i = 0; i < length - 1; i++)
589         sum2 += in[i] * in[i + 1];
590     if (sum2 < 0.0)
591         tilt = 0.0;
592 
593     for (i = 0; i < length; i++) {
594         scratch[i] = in[i] - tilt * e->last;
595         e->last = in[i];
596     }
597 
598     /* Short term residual filter, TIA/IS-127 5.9.2 */
599     residual_filter(&e->postfilter_residual[ACB_SIZE], scratch, wcoef1, e->postfilter_fir, length);
600 
601     /* Long term postfilter */
602     best = idx;
603     for (i = FFMIN(MIN_DELAY, idx - 3); i <= FFMAX(MAX_DELAY, idx + 3); i++) {
604         for (n = ACB_SIZE, sum2 = 0; n < ACB_SIZE + length; n++)
605             sum2 += e->postfilter_residual[n] * e->postfilter_residual[n - i];
606         if (sum2 > sum1) {
607             sum1 = sum2;
608             best = i;
609         }
610     }
611 
612     for (i = ACB_SIZE, sum1 = 0; i < ACB_SIZE + length; i++)
613         sum1 += e->postfilter_residual[i - best] * e->postfilter_residual[i - best];
614     for (i = ACB_SIZE, sum2 = 0; i < ACB_SIZE + length; i++)
615         sum2 += e->postfilter_residual[i] * e->postfilter_residual[i - best];
616 
617     if (sum2 * sum1 == 0 || e->bitrate == RATE_QUANT) {
618         memcpy(temp, e->postfilter_residual + ACB_SIZE, length * sizeof(float));
619     } else {
620         gamma = sum2 / sum1;
621         if (gamma < 0.5)
622             memcpy(temp, e->postfilter_residual + ACB_SIZE, length * sizeof(float));
623         else {
624             gamma = FFMIN(gamma, 1.0);
625 
626             for (i = 0; i < length; i++) {
627                 temp[i] = e->postfilter_residual[ACB_SIZE + i] + gamma *
628                     pfc->ltgain * e->postfilter_residual[ACB_SIZE + i - best];
629             }
630         }
631     }
632 
633     memcpy(scratch, temp, length * sizeof(float));
634     memcpy(mem, e->postfilter_iir, FILTER_ORDER * sizeof(float));
635     synthesis_filter(scratch, wcoef2, mem, length, scratch);
636 
637     /* Gain computation, TIA/IS-127 5.9.4-2 */
638     for (i = 0, sum1 = 0, sum2 = 0; i < length; i++) {
639         sum1 += in[i] * in[i];
640         sum2 += scratch[i] * scratch[i];
641     }
642     gain = sum2 ? sqrt(sum1 / sum2) : 1.0;
643 
644     for (i = 0; i < length; i++)
645         temp[i] *= gain;
646 
647     /* Short term postfilter */
648     synthesis_filter(temp, wcoef2, e->postfilter_iir, length, out);
649 
650     memmove(e->postfilter_residual,
651            e->postfilter_residual + length, ACB_SIZE * sizeof(float));
652 }
653 
frame_erasure(EVRCContext *e, float *samples)654 static void frame_erasure(EVRCContext *e, float *samples)
655 {
656     float ilspf[FILTER_ORDER], ilpc[FILTER_ORDER], idelay[NB_SUBFRAMES],
657           tmp[SUBFRAME_SIZE + 6], f;
658     int i, j;
659 
660     for (i = 0; i < FILTER_ORDER; i++) {
661         if (e->bitrate != RATE_QUANT)
662             e->lspf[i] = e->prev_lspf[i] * 0.875 + 0.125 * (i + 1) * 0.048;
663         else
664             e->lspf[i] = e->prev_lspf[i];
665     }
666 
667     if (e->prev_error_flag)
668         e->avg_acb_gain *= 0.75;
669     if (e->bitrate == RATE_FULL)
670         memcpy(e->pitch_back, e->pitch, ACB_SIZE * sizeof(float));
671     if (e->last_valid_bitrate == RATE_QUANT)
672         e->bitrate = RATE_QUANT;
673     else
674         e->bitrate = RATE_FULL;
675 
676     if (e->bitrate == RATE_FULL || e->bitrate == RATE_HALF) {
677         e->pitch_delay = e->prev_pitch_delay;
678     } else {
679         float sum = 0;
680 
681         idelay[0] = idelay[1] = idelay[2] = MIN_DELAY;
682 
683         for (i = 0; i < NB_SUBFRAMES; i++)
684             sum += evrc_energy_quant[e->prev_energy_gain][i];
685         sum /= (float) NB_SUBFRAMES;
686         sum  = pow(10, sum);
687         for (i = 0; i < NB_SUBFRAMES; i++)
688             e->energy_vector[i] = sum;
689     }
690 
691     if (fabs(e->pitch_delay - e->prev_pitch_delay) > 15)
692         e->prev_pitch_delay = e->pitch_delay;
693 
694     for (i = 0; i < NB_SUBFRAMES; i++) {
695         int subframe_size = subframe_sizes[i];
696         int pitch_lag;
697 
698         interpolate_lsp(ilspf, e->lspf, e->prev_lspf, i);
699 
700         if (e->bitrate != RATE_QUANT) {
701             if (e->avg_acb_gain < 0.3) {
702                 idelay[0] = estimation_delay[i];
703                 idelay[1] = estimation_delay[i + 1];
704                 idelay[2] = estimation_delay[i + 2];
705             } else {
706                 interpolate_delay(idelay, e->pitch_delay, e->prev_pitch_delay, i);
707             }
708         }
709 
710         pitch_lag = lrintf((idelay[1] + idelay[0]) / 2.0);
711         decode_predictor_coeffs(ilspf, ilpc);
712 
713         if (e->bitrate != RATE_QUANT) {
714             acb_excitation(e, e->pitch + ACB_SIZE,
715                            e->avg_acb_gain, idelay, subframe_size);
716             for (j = 0; j < subframe_size; j++)
717                 e->pitch[ACB_SIZE + j] *= e->fade_scale;
718             e->fade_scale = FFMAX(e->fade_scale - 0.05, 0.0);
719         } else {
720             for (j = 0; j < subframe_size; j++)
721                 e->pitch[ACB_SIZE + j] = e->energy_vector[i];
722         }
723 
724         memmove(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
725 
726         if (e->bitrate != RATE_QUANT && e->avg_acb_gain < 0.4) {
727             f = 0.1 * e->avg_fcb_gain;
728             for (j = 0; j < subframe_size; j++)
729                 e->pitch[ACB_SIZE + j] += f;
730         } else if (e->bitrate == RATE_QUANT) {
731             for (j = 0; j < subframe_size; j++)
732                 e->pitch[ACB_SIZE + j] = e->energy_vector[i];
733         }
734 
735         synthesis_filter(e->pitch + ACB_SIZE, ilpc,
736                          e->synthesis, subframe_size, tmp);
737         postfilter(e, tmp, ilpc, samples, pitch_lag,
738                    &postfilter_coeffs[e->bitrate], subframe_size);
739 
740         samples += subframe_size;
741     }
742 }
743 
evrc_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt)744 static int evrc_decode_frame(AVCodecContext *avctx, AVFrame *frame,
745                              int *got_frame_ptr, AVPacket *avpkt)
746 {
747     const uint8_t *buf = avpkt->data;
748     EVRCContext *e     = avctx->priv_data;
749     int buf_size       = avpkt->size;
750     float ilspf[FILTER_ORDER], ilpc[FILTER_ORDER], idelay[NB_SUBFRAMES];
751     float *samples;
752     int   i, j, ret, error_flag = 0;
753 
754     frame->nb_samples = 160;
755     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
756         return ret;
757     samples = (float *)frame->data[0];
758 
759     if ((e->bitrate = determine_bitrate(avctx, &buf_size, &buf)) == RATE_ERRS) {
760         warn_insufficient_frame_quality(avctx, "bitrate cannot be determined.");
761         goto erasure;
762     }
763     if (e->bitrate <= SILENCE || e->bitrate == RATE_QUARTER)
764         goto erasure;
765     if (e->bitrate == RATE_QUANT && e->last_valid_bitrate == RATE_FULL
766                                  && !e->prev_error_flag)
767         goto erasure;
768 
769     if ((ret = init_get_bits8(&e->gb, buf, buf_size)) < 0)
770         return ret;
771     memset(&e->frame, 0, sizeof(EVRCAFrame));
772 
773     unpack_frame(e);
774 
775     if (e->bitrate != RATE_QUANT) {
776         uint8_t *p = (uint8_t *) &e->frame;
777         for (i = 0; i < sizeof(EVRCAFrame); i++) {
778             if (p[i])
779                 break;
780         }
781         if (i == sizeof(EVRCAFrame))
782             goto erasure;
783     } else if (e->frame.lsp[0] == 0xf &&
784                e->frame.lsp[1] == 0xf &&
785                e->frame.energy_gain == 0xff) {
786         goto erasure;
787     }
788 
789     if (decode_lspf(e) < 0)
790         goto erasure;
791 
792     if (e->bitrate == RATE_FULL || e->bitrate == RATE_HALF) {
793         /* Pitch delay parameter checking as per TIA/IS-127 5.1.5.1 */
794         if (e->frame.pitch_delay > MAX_DELAY - MIN_DELAY)
795             goto erasure;
796 
797         e->pitch_delay = e->frame.pitch_delay + MIN_DELAY;
798 
799         /* Delay diff parameter checking as per TIA/IS-127 5.1.5.2 */
800         if (e->frame.delay_diff) {
801             int p = e->pitch_delay - e->frame.delay_diff + 16;
802             if (p < MIN_DELAY || p > MAX_DELAY)
803                 goto erasure;
804         }
805 
806         /* Delay contour reconstruction as per TIA/IS-127 5.2.2.2 */
807         if (e->frame.delay_diff &&
808             e->bitrate == RATE_FULL && e->prev_error_flag) {
809             float delay;
810 
811             memcpy(e->pitch, e->pitch_back, ACB_SIZE * sizeof(float));
812 
813             delay = e->prev_pitch_delay;
814             e->prev_pitch_delay = delay - e->frame.delay_diff + 16.0;
815 
816             if (fabs(e->pitch_delay - delay) > 15)
817                 delay = e->pitch_delay;
818 
819             for (i = 0; i < NB_SUBFRAMES; i++) {
820                 int subframe_size = subframe_sizes[i];
821 
822                 interpolate_delay(idelay, delay, e->prev_pitch_delay, i);
823                 acb_excitation(e, e->pitch + ACB_SIZE, e->avg_acb_gain, idelay, subframe_size);
824                 memmove(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
825             }
826         }
827 
828         /* Smoothing of the decoded delay as per TIA/IS-127 5.2.2.5 */
829         if (fabs(e->pitch_delay - e->prev_pitch_delay) > 15)
830             e->prev_pitch_delay = e->pitch_delay;
831 
832         e->avg_acb_gain = e->avg_fcb_gain = 0.0;
833     } else {
834         idelay[0] = idelay[1] = idelay[2] = MIN_DELAY;
835 
836         /* Decode frame energy vectors as per TIA/IS-127 5.7.2 */
837         for (i = 0; i < NB_SUBFRAMES; i++)
838             e->energy_vector[i] = pow(10, evrc_energy_quant[e->frame.energy_gain][i]);
839         e->prev_energy_gain = e->frame.energy_gain;
840     }
841 
842     for (i = 0; i < NB_SUBFRAMES; i++) {
843         float tmp[SUBFRAME_SIZE + 6] = { 0 };
844         int subframe_size = subframe_sizes[i];
845         int pitch_lag;
846 
847         interpolate_lsp(ilspf, e->lspf, e->prev_lspf, i);
848 
849         if (e->bitrate != RATE_QUANT)
850             interpolate_delay(idelay, e->pitch_delay, e->prev_pitch_delay, i);
851 
852         pitch_lag = lrintf((idelay[1] + idelay[0]) / 2.0);
853         decode_predictor_coeffs(ilspf, ilpc);
854 
855         /* Bandwidth expansion as per TIA/IS-127 5.2.3.3 */
856         if (e->frame.lpc_flag && e->prev_error_flag)
857             bandwidth_expansion(ilpc, ilpc, 0.75);
858 
859         if (e->bitrate != RATE_QUANT) {
860             float acb_sum, f;
861 
862             f = exp((e->bitrate == RATE_HALF ? 0.5 : 0.25)
863                          * (e->frame.fcb_gain[i] + 1));
864             acb_sum = pitch_gain_vq[e->frame.acb_gain[i]];
865             e->avg_acb_gain += acb_sum / NB_SUBFRAMES;
866             e->avg_fcb_gain += f / NB_SUBFRAMES;
867 
868             acb_excitation(e, e->pitch + ACB_SIZE,
869                            acb_sum, idelay, subframe_size);
870             fcb_excitation(e, e->frame.fcb_shape[i], tmp,
871                            acb_sum, pitch_lag, subframe_size);
872 
873             /* Total excitation generation as per TIA/IS-127 5.2.3.9 */
874             for (j = 0; j < subframe_size; j++)
875                 e->pitch[ACB_SIZE + j] += f * tmp[j];
876             e->fade_scale = FFMIN(e->fade_scale + 0.2, 1.0);
877         } else {
878             for (j = 0; j < subframe_size; j++)
879                 e->pitch[ACB_SIZE + j] = e->energy_vector[i];
880         }
881 
882         memmove(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
883 
884         synthesis_filter(e->pitch + ACB_SIZE, ilpc,
885                          e->synthesis, subframe_size,
886                          e->postfilter ? tmp : samples);
887         if (e->postfilter)
888             postfilter(e, tmp, ilpc, samples, pitch_lag,
889                        &postfilter_coeffs[e->bitrate], subframe_size);
890 
891         samples += subframe_size;
892     }
893 
894     if (error_flag) {
895 erasure:
896         error_flag = 1;
897         av_log(avctx, AV_LOG_WARNING, "frame erasure\n");
898         frame_erasure(e, samples);
899     }
900 
901     memcpy(e->prev_lspf, e->lspf, sizeof(e->prev_lspf));
902     e->prev_error_flag    = error_flag;
903     e->last_valid_bitrate = e->bitrate;
904 
905     if (e->bitrate != RATE_QUANT)
906         e->prev_pitch_delay = e->pitch_delay;
907 
908     samples = (float *)frame->data[0];
909     for (i = 0; i < 160; i++)
910         samples[i] /= 32768;
911 
912     *got_frame_ptr   = 1;
913 
914     return avpkt->size;
915 }
916 
917 #define OFFSET(x) offsetof(EVRCContext, x)
918 #define AD AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM
919 
920 static const AVOption options[] = {
921     { "postfilter", "enable postfilter", OFFSET(postfilter), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, AD },
922     { NULL }
923 };
924 
925 static const AVClass evrcdec_class = {
926     .class_name = "evrc",
927     .item_name  = av_default_item_name,
928     .option     = options,
929     .version    = LIBAVUTIL_VERSION_INT,
930 };
931 
932 const FFCodec ff_evrc_decoder = {
933     .p.name         = "evrc",
934     .p.long_name    = NULL_IF_CONFIG_SMALL("EVRC (Enhanced Variable Rate Codec)"),
935     .p.type         = AVMEDIA_TYPE_AUDIO,
936     .p.id           = AV_CODEC_ID_EVRC,
937     .init           = evrc_decode_init,
938     FF_CODEC_DECODE_CB(evrc_decode_frame),
939     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
940     .priv_data_size = sizeof(EVRCContext),
941     .p.priv_class   = &evrcdec_class,
942     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
943 };
944