xref: /third_party/ffmpeg/libavcodec/dnxhdenc.c (revision cabdff1a)
1/*
2 * VC3/DNxHD encoder
3 * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4 * Copyright (c) 2011 MirriAd Ltd
5 *
6 * VC-3 encoder funded by the British Broadcasting Corporation
7 * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
8 *
9 * This file is part of FFmpeg.
10 *
11 * FFmpeg is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * FFmpeg is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with FFmpeg; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 */
25
26#include "libavutil/attributes.h"
27#include "libavutil/internal.h"
28#include "libavutil/mem_internal.h"
29#include "libavutil/opt.h"
30
31#include "avcodec.h"
32#include "blockdsp.h"
33#include "codec_internal.h"
34#include "encode.h"
35#include "fdctdsp.h"
36#include "mathops.h"
37#include "mpegvideo.h"
38#include "mpegvideoenc.h"
39#include "pixblockdsp.h"
40#include "packet_internal.h"
41#include "profiles.h"
42#include "dnxhdenc.h"
43
44// The largest value that will not lead to overflow for 10-bit samples.
45#define DNX10BIT_QMAT_SHIFT 18
46#define RC_VARIANCE 1 // use variance or ssd for fast rc
47#define LAMBDA_FRAC_BITS 10
48
49#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
50static const AVOption options[] = {
51    { "nitris_compat", "encode with Avid Nitris compatibility",
52        offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
53    { "ibias", "intra quant bias",
54        offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
55        { .i64 = 0 }, INT_MIN, INT_MAX, VE },
56    { "profile",       NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
57        { .i64 = FF_PROFILE_DNXHD },
58        FF_PROFILE_DNXHD, FF_PROFILE_DNXHR_444, VE, "profile" },
59    { "dnxhd",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHD },
60        0, 0, VE, "profile" },
61    { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_444 },
62        0, 0, VE, "profile" },
63    { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQX },
64        0, 0, VE, "profile" },
65    { "dnxhr_hq",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQ },
66        0, 0, VE, "profile" },
67    { "dnxhr_sq",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_SQ },
68        0, 0, VE, "profile" },
69    { "dnxhr_lb",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_LB },
70        0, 0, VE, "profile" },
71    { NULL }
72};
73
74static const AVClass dnxhd_class = {
75    .class_name = "dnxhd",
76    .item_name  = av_default_item_name,
77    .option     = options,
78    .version    = LIBAVUTIL_VERSION_INT,
79};
80
81static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
82                                          const uint8_t *pixels,
83                                          ptrdiff_t line_size)
84{
85    int i;
86    for (i = 0; i < 4; i++) {
87        block[0] = pixels[0];
88        block[1] = pixels[1];
89        block[2] = pixels[2];
90        block[3] = pixels[3];
91        block[4] = pixels[4];
92        block[5] = pixels[5];
93        block[6] = pixels[6];
94        block[7] = pixels[7];
95        pixels  += line_size;
96        block   += 8;
97    }
98    memcpy(block,      block -  8, sizeof(*block) * 8);
99    memcpy(block +  8, block - 16, sizeof(*block) * 8);
100    memcpy(block + 16, block - 24, sizeof(*block) * 8);
101    memcpy(block + 24, block - 32, sizeof(*block) * 8);
102}
103
104static av_always_inline
105void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
106                                    const uint8_t *pixels,
107                                    ptrdiff_t line_size)
108{
109    memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
110    memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
111    memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
112    memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
113    memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
114    memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
115    memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
116    memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
117}
118
119static int dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block,
120                                        int n, int qscale, int *overflow)
121{
122    int i, j, level, last_non_zero, start_i;
123    const int *qmat;
124    const uint8_t *scantable= ctx->intra_scantable.scantable;
125    int bias;
126    int max = 0;
127    unsigned int threshold1, threshold2;
128
129    ctx->fdsp.fdct(block);
130
131    block[0] = (block[0] + 2) >> 2;
132    start_i = 1;
133    last_non_zero = 0;
134    qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
135    bias= ctx->intra_quant_bias * (1 << (16 - 8));
136    threshold1 = (1 << 16) - bias - 1;
137    threshold2 = (threshold1 << 1);
138
139    for (i = 63; i >= start_i; i--) {
140        j = scantable[i];
141        level = block[j] * qmat[j];
142
143        if (((unsigned)(level + threshold1)) > threshold2) {
144            last_non_zero = i;
145            break;
146        } else{
147            block[j]=0;
148        }
149    }
150
151    for (i = start_i; i <= last_non_zero; i++) {
152        j = scantable[i];
153        level = block[j] * qmat[j];
154
155        if (((unsigned)(level + threshold1)) > threshold2) {
156            if (level > 0) {
157                level = (bias + level) >> 16;
158                block[j] = level;
159            } else{
160                level = (bias - level) >> 16;
161                block[j] = -level;
162            }
163            max |= level;
164        } else {
165            block[j] = 0;
166        }
167    }
168    *overflow = ctx->max_qcoeff < max; //overflow might have happened
169
170    /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
171    if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
172        ff_block_permute(block, ctx->idsp.idct_permutation,
173                         scantable, last_non_zero);
174
175    return last_non_zero;
176}
177
178static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
179                                    int n, int qscale, int *overflow)
180{
181    const uint8_t *scantable= ctx->intra_scantable.scantable;
182    const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
183    int last_non_zero = 0;
184    int i;
185
186    ctx->fdsp.fdct(block);
187
188    // Divide by 4 with rounding, to compensate scaling of DCT coefficients
189    block[0] = (block[0] + 2) >> 2;
190
191    for (i = 1; i < 64; ++i) {
192        int j = scantable[i];
193        int sign = FF_SIGNBIT(block[j]);
194        int level = (block[j] ^ sign) - sign;
195        level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
196        block[j] = (level ^ sign) - sign;
197        if (level)
198            last_non_zero = i;
199    }
200
201    /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
202    if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
203        ff_block_permute(block, ctx->idsp.idct_permutation,
204                         scantable, last_non_zero);
205
206    return last_non_zero;
207}
208
209static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
210{
211    int i, j, level, run;
212    int max_level = 1 << (ctx->bit_depth + 2);
213
214    if (!FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_codes, max_level * 4) ||
215        !FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_bits,  max_level * 4) ||
216        !(ctx->run_codes = av_mallocz(63 * 2))                     ||
217        !(ctx->run_bits  = av_mallocz(63)))
218        return AVERROR(ENOMEM);
219    ctx->vlc_codes = ctx->orig_vlc_codes + max_level * 2;
220    ctx->vlc_bits  = ctx->orig_vlc_bits + max_level * 2;
221    for (level = -max_level; level < max_level; level++) {
222        for (run = 0; run < 2; run++) {
223            int index = level * (1 << 1) | run;
224            int sign, offset = 0, alevel = level;
225
226            MASK_ABS(sign, alevel);
227            if (alevel > 64) {
228                offset  = (alevel - 1) >> 6;
229                alevel -= offset << 6;
230            }
231            for (j = 0; j < 257; j++) {
232                if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
233                    (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
234                    (!run    || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
235                    av_assert1(!ctx->vlc_codes[index]);
236                    if (alevel) {
237                        ctx->vlc_codes[index] =
238                            (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
239                        ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
240                    } else {
241                        ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
242                        ctx->vlc_bits[index]  = ctx->cid_table->ac_bits[j];
243                    }
244                    break;
245                }
246            }
247            av_assert0(!alevel || j < 257);
248            if (offset) {
249                ctx->vlc_codes[index] =
250                    (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
251                ctx->vlc_bits[index] += ctx->cid_table->index_bits;
252            }
253        }
254    }
255    for (i = 0; i < 62; i++) {
256        int run = ctx->cid_table->run[i];
257        av_assert0(run < 63);
258        ctx->run_codes[run] = ctx->cid_table->run_codes[i];
259        ctx->run_bits[run]  = ctx->cid_table->run_bits[i];
260    }
261    return 0;
262}
263
264static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
265{
266    // init first elem to 1 to avoid div by 0 in convert_matrix
267    uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
268    int qscale, i;
269    const uint8_t *luma_weight_table   = ctx->cid_table->luma_weight;
270    const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
271
272    if (!FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l,   ctx->m.avctx->qmax + 1) ||
273        !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c,   ctx->m.avctx->qmax + 1) ||
274        !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l16, ctx->m.avctx->qmax + 1) ||
275        !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c16, ctx->m.avctx->qmax + 1))
276        return AVERROR(ENOMEM);
277
278    if (ctx->bit_depth == 8) {
279        for (i = 1; i < 64; i++) {
280            int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
281            weight_matrix[j] = ctx->cid_table->luma_weight[i];
282        }
283        ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
284                          weight_matrix, ctx->intra_quant_bias, 1,
285                          ctx->m.avctx->qmax, 1);
286        for (i = 1; i < 64; i++) {
287            int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
288            weight_matrix[j] = ctx->cid_table->chroma_weight[i];
289        }
290        ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
291                          weight_matrix, ctx->intra_quant_bias, 1,
292                          ctx->m.avctx->qmax, 1);
293
294        for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
295            for (i = 0; i < 64; i++) {
296                ctx->qmatrix_l[qscale][i]      <<= 2;
297                ctx->qmatrix_c[qscale][i]      <<= 2;
298                ctx->qmatrix_l16[qscale][0][i] <<= 2;
299                ctx->qmatrix_l16[qscale][1][i] <<= 2;
300                ctx->qmatrix_c16[qscale][0][i] <<= 2;
301                ctx->qmatrix_c16[qscale][1][i] <<= 2;
302            }
303        }
304    } else {
305        // 10-bit
306        for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
307            for (i = 1; i < 64; i++) {
308                int j = ff_zigzag_direct[i];
309
310                /* The quantization formula from the VC-3 standard is:
311                 * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
312                 *             (qscale * weight_table[i]))
313                 * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
314                 * The s factor compensates scaling of DCT coefficients done by
315                 * the DCT routines, and therefore is not present in standard.
316                 * It's 8 for 8-bit samples and 4 for 10-bit ones.
317                 * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
318                 *     ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
319                 *     (qscale * weight_table[i])
320                 * For 10-bit samples, p / s == 2 */
321                ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
322                                            (qscale * luma_weight_table[i]);
323                ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
324                                            (qscale * chroma_weight_table[i]);
325            }
326        }
327    }
328
329    ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
330    ctx->m.q_chroma_intra_matrix   = ctx->qmatrix_c;
331    ctx->m.q_intra_matrix16        = ctx->qmatrix_l16;
332    ctx->m.q_intra_matrix          = ctx->qmatrix_l;
333
334    return 0;
335}
336
337static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
338{
339    if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_rc, (ctx->m.avctx->qmax + 1) * ctx->m.mb_num))
340        return AVERROR(ENOMEM);
341
342    if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) {
343        if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp,     ctx->m.mb_num) ||
344            !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp_tmp, ctx->m.mb_num))
345            return AVERROR(ENOMEM);
346    }
347    ctx->frame_bits = (ctx->coding_unit_size -
348                       ctx->data_offset - 4 - ctx->min_padding) * 8;
349    ctx->qscale = 1;
350    ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
351    return 0;
352}
353
354static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
355{
356    DNXHDEncContext *ctx = avctx->priv_data;
357    int i, ret;
358
359    switch (avctx->pix_fmt) {
360    case AV_PIX_FMT_YUV422P:
361        ctx->bit_depth = 8;
362        break;
363    case AV_PIX_FMT_YUV422P10:
364    case AV_PIX_FMT_YUV444P10:
365    case AV_PIX_FMT_GBRP10:
366        ctx->bit_depth = 10;
367        break;
368    }
369
370    if ((ctx->profile == FF_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 &&
371                                                  avctx->pix_fmt != AV_PIX_FMT_GBRP10)) ||
372        (ctx->profile != FF_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ||
373                                                  avctx->pix_fmt == AV_PIX_FMT_GBRP10))) {
374        av_log(avctx, AV_LOG_ERROR,
375               "pixel format is incompatible with DNxHD profile\n");
376        return AVERROR(EINVAL);
377    }
378
379    if (ctx->profile == FF_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) {
380        av_log(avctx, AV_LOG_ERROR,
381               "pixel format is incompatible with DNxHR HQX profile\n");
382        return AVERROR(EINVAL);
383    }
384
385    if ((ctx->profile == FF_PROFILE_DNXHR_LB ||
386         ctx->profile == FF_PROFILE_DNXHR_SQ ||
387         ctx->profile == FF_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
388        av_log(avctx, AV_LOG_ERROR,
389               "pixel format is incompatible with DNxHR LB/SQ/HQ profile\n");
390        return AVERROR(EINVAL);
391    }
392
393    ctx->is_444 = ctx->profile == FF_PROFILE_DNXHR_444;
394    avctx->profile = ctx->profile;
395    ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth);
396    if (!ctx->cid) {
397        av_log(avctx, AV_LOG_ERROR,
398               "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
399        ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
400        return AVERROR(EINVAL);
401    }
402    av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
403
404    if (ctx->cid >= 1270 && ctx->cid <= 1274)
405        avctx->codec_tag = MKTAG('A','V','d','h');
406
407    if (avctx->width < 256 || avctx->height < 120) {
408        av_log(avctx, AV_LOG_ERROR,
409               "Input dimensions too small, input must be at least 256x120\n");
410        return AVERROR(EINVAL);
411    }
412
413    ctx->cid_table = ff_dnxhd_get_cid_table(ctx->cid);
414    av_assert0(ctx->cid_table);
415
416    ctx->m.avctx    = avctx;
417    ctx->m.mb_intra = 1;
418    ctx->m.h263_aic = 1;
419
420    avctx->bits_per_raw_sample = ctx->bit_depth;
421
422    ff_blockdsp_init(&ctx->bdsp, avctx);
423    ff_fdctdsp_init(&ctx->m.fdsp, avctx);
424    ff_mpv_idct_init(&ctx->m);
425    ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
426    ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
427    ff_dct_encode_init(&ctx->m);
428
429    if (ctx->profile != FF_PROFILE_DNXHD)
430        ff_videodsp_init(&ctx->m.vdsp, ctx->bit_depth);
431
432    if (!ctx->m.dct_quantize)
433        ctx->m.dct_quantize = ff_dct_quantize_c;
434
435    if (ctx->is_444 || ctx->profile == FF_PROFILE_DNXHR_HQX) {
436        ctx->m.dct_quantize     = dnxhd_10bit_dct_quantize_444;
437        ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
438        ctx->block_width_l2     = 4;
439    } else if (ctx->bit_depth == 10) {
440        ctx->m.dct_quantize     = dnxhd_10bit_dct_quantize;
441        ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
442        ctx->block_width_l2     = 4;
443    } else {
444        ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
445        ctx->block_width_l2     = 3;
446    }
447
448#if ARCH_X86
449    ff_dnxhdenc_init_x86(ctx);
450#endif
451
452    ctx->m.mb_height = (avctx->height + 15) / 16;
453    ctx->m.mb_width  = (avctx->width  + 15) / 16;
454
455    if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
456        ctx->interlaced   = 1;
457        ctx->m.mb_height /= 2;
458    }
459
460    if (ctx->interlaced && ctx->profile != FF_PROFILE_DNXHD) {
461        av_log(avctx, AV_LOG_ERROR,
462               "Interlaced encoding is not supported for DNxHR profiles.\n");
463        return AVERROR(EINVAL);
464    }
465
466    ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
467
468    if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
469        ctx->frame_size = ff_dnxhd_get_hr_frame_size(ctx->cid,
470                                                     avctx->width, avctx->height);
471        av_assert0(ctx->frame_size >= 0);
472        ctx->coding_unit_size = ctx->frame_size;
473    } else {
474        ctx->frame_size = ctx->cid_table->frame_size;
475        ctx->coding_unit_size = ctx->cid_table->coding_unit_size;
476    }
477
478    if (ctx->m.mb_height > 68)
479        ctx->data_offset = 0x170 + (ctx->m.mb_height << 2);
480    else
481        ctx->data_offset = 0x280;
482
483    // XXX tune lbias/cbias
484    if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
485        return ret;
486
487    /* Avid Nitris hardware decoder requires a minimum amount of padding
488     * in the coding unit payload */
489    if (ctx->nitris_compat)
490        ctx->min_padding = 1600;
491
492    if ((ret = dnxhd_init_vlc(ctx)) < 0)
493        return ret;
494    if ((ret = dnxhd_init_rc(ctx)) < 0)
495        return ret;
496
497    if (!FF_ALLOCZ_TYPED_ARRAY(ctx->slice_size, ctx->m.mb_height) ||
498        !FF_ALLOCZ_TYPED_ARRAY(ctx->slice_offs, ctx->m.mb_height) ||
499        !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_bits,    ctx->m.mb_num)    ||
500        !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_qscale,  ctx->m.mb_num))
501        return AVERROR(ENOMEM);
502
503    if (avctx->active_thread_type == FF_THREAD_SLICE) {
504        if (avctx->thread_count > MAX_THREADS) {
505            av_log(avctx, AV_LOG_ERROR, "too many threads\n");
506            return AVERROR(EINVAL);
507        }
508    }
509
510    if (avctx->qmax <= 1) {
511        av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
512        return AVERROR(EINVAL);
513    }
514
515    ctx->thread[0] = ctx;
516    if (avctx->active_thread_type == FF_THREAD_SLICE) {
517        for (i = 1; i < avctx->thread_count; i++) {
518            ctx->thread[i] = av_memdup(ctx, sizeof(DNXHDEncContext));
519            if (!ctx->thread[i])
520                return AVERROR(ENOMEM);
521        }
522    }
523
524    return 0;
525}
526
527static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
528{
529    DNXHDEncContext *ctx = avctx->priv_data;
530
531    memset(buf, 0, ctx->data_offset);
532
533    // * write prefix */
534    AV_WB16(buf + 0x02, ctx->data_offset);
535    if (ctx->cid >= 1270 && ctx->cid <= 1274)
536        buf[4] = 0x03;
537    else
538        buf[4] = 0x01;
539
540    buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
541    buf[6] = 0x80; // crc flag off
542    buf[7] = 0xa0; // reserved
543    AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
544    AV_WB16(buf + 0x1a, avctx->width);  // SPL
545    AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
546
547    buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38;
548    buf[0x22] = 0x88 + (ctx->interlaced << 2);
549    AV_WB32(buf + 0x28, ctx->cid); // CID
550    buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
551
552    buf[0x5f] = 0x01; // UDL
553
554    buf[0x167] = 0x02; // reserved
555    AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
556    AV_WB16(buf + 0x16c, ctx->m.mb_height); // Ns
557    buf[0x16f] = 0x10; // reserved
558
559    ctx->msip = buf + 0x170;
560    return 0;
561}
562
563static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
564{
565    int nbits;
566    if (diff < 0) {
567        nbits = av_log2_16bit(-2 * diff);
568        diff--;
569    } else {
570        nbits = av_log2_16bit(2 * diff);
571    }
572    put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
573             (ctx->cid_table->dc_codes[nbits] << nbits) +
574             av_mod_uintp2(diff, nbits));
575}
576
577static av_always_inline
578void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
579                        int last_index, int n)
580{
581    int last_non_zero = 0;
582    int slevel, i, j;
583
584    dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
585    ctx->m.last_dc[n] = block[0];
586
587    for (i = 1; i <= last_index; i++) {
588        j = ctx->m.intra_scantable.permutated[i];
589        slevel = block[j];
590        if (slevel) {
591            int run_level = i - last_non_zero - 1;
592            int rlevel = slevel * (1 << 1) | !!run_level;
593            put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
594            if (run_level)
595                put_bits(&ctx->m.pb, ctx->run_bits[run_level],
596                         ctx->run_codes[run_level]);
597            last_non_zero = i;
598        }
599    }
600    put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
601}
602
603static av_always_inline
604void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
605                        int qscale, int last_index)
606{
607    const uint8_t *weight_matrix;
608    int level;
609    int i;
610
611    if (ctx->is_444) {
612        weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight
613                                      : ctx->cid_table->chroma_weight;
614    } else {
615        weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
616                                : ctx->cid_table->luma_weight;
617    }
618
619    for (i = 1; i <= last_index; i++) {
620        int j = ctx->m.intra_scantable.permutated[i];
621        level = block[j];
622        if (level) {
623            if (level < 0) {
624                level = (1 - 2 * level) * qscale * weight_matrix[i];
625                if (ctx->bit_depth == 10) {
626                    if (weight_matrix[i] != 8)
627                        level += 8;
628                    level >>= 4;
629                } else {
630                    if (weight_matrix[i] != 32)
631                        level += 32;
632                    level >>= 6;
633                }
634                level = -level;
635            } else {
636                level = (2 * level + 1) * qscale * weight_matrix[i];
637                if (ctx->bit_depth == 10) {
638                    if (weight_matrix[i] != 8)
639                        level += 8;
640                    level >>= 4;
641                } else {
642                    if (weight_matrix[i] != 32)
643                        level += 32;
644                    level >>= 6;
645                }
646            }
647            block[j] = level;
648        }
649    }
650}
651
652static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
653{
654    int score = 0;
655    int i;
656    for (i = 0; i < 64; i++)
657        score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
658    return score;
659}
660
661static av_always_inline
662int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
663{
664    int last_non_zero = 0;
665    int bits = 0;
666    int i, j, level;
667    for (i = 1; i <= last_index; i++) {
668        j = ctx->m.intra_scantable.permutated[i];
669        level = block[j];
670        if (level) {
671            int run_level = i - last_non_zero - 1;
672            bits += ctx->vlc_bits[level * (1 << 1) |
673                    !!run_level] + ctx->run_bits[run_level];
674            last_non_zero = i;
675        }
676    }
677    return bits;
678}
679
680static av_always_inline
681void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
682{
683    const int bs = ctx->block_width_l2;
684    const int bw = 1 << bs;
685    int dct_y_offset = ctx->dct_y_offset;
686    int dct_uv_offset = ctx->dct_uv_offset;
687    int linesize = ctx->m.linesize;
688    int uvlinesize = ctx->m.uvlinesize;
689    const uint8_t *ptr_y = ctx->thread[0]->src[0] +
690                           ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
691    const uint8_t *ptr_u = ctx->thread[0]->src[1] +
692                           ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
693    const uint8_t *ptr_v = ctx->thread[0]->src[2] +
694                           ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
695    PixblockDSPContext *pdsp = &ctx->m.pdsp;
696    VideoDSPContext *vdsp = &ctx->m.vdsp;
697
698    if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
699                                                           (mb_y << 4) + 16 > ctx->m.avctx->height)) {
700        int y_w = ctx->m.avctx->width  - (mb_x << 4);
701        int y_h = ctx->m.avctx->height - (mb_y << 4);
702        int uv_w = (y_w + 1) / 2;
703        int uv_h = y_h;
704        linesize = 16;
705        uvlinesize = 8;
706
707        vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
708                               linesize, ctx->m.linesize,
709                               linesize, 16,
710                               0, 0, y_w, y_h);
711        vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
712                               uvlinesize, ctx->m.uvlinesize,
713                               uvlinesize, 16,
714                               0, 0, uv_w, uv_h);
715        vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
716                               uvlinesize, ctx->m.uvlinesize,
717                               uvlinesize, 16,
718                               0, 0, uv_w, uv_h);
719
720        dct_y_offset =  bw * linesize;
721        dct_uv_offset = bw * uvlinesize;
722        ptr_y = &ctx->edge_buf_y[0];
723        ptr_u = &ctx->edge_buf_uv[0][0];
724        ptr_v = &ctx->edge_buf_uv[1][0];
725    } else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
726                                                                  (mb_y << 4) + 16 > ctx->m.avctx->height)) {
727        int y_w = ctx->m.avctx->width  - (mb_x << 4);
728        int y_h = ctx->m.avctx->height - (mb_y << 4);
729        int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2;
730        int uv_h = y_h;
731        linesize = 32;
732        uvlinesize = 16 + 16 * ctx->is_444;
733
734        vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
735                               linesize, ctx->m.linesize,
736                               linesize / 2, 16,
737                               0, 0, y_w, y_h);
738        vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
739                               uvlinesize, ctx->m.uvlinesize,
740                               uvlinesize / 2, 16,
741                               0, 0, uv_w, uv_h);
742        vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
743                               uvlinesize, ctx->m.uvlinesize,
744                               uvlinesize / 2, 16,
745                               0, 0, uv_w, uv_h);
746
747        dct_y_offset =  bw * linesize / 2;
748        dct_uv_offset = bw * uvlinesize / 2;
749        ptr_y = &ctx->edge_buf_y[0];
750        ptr_u = &ctx->edge_buf_uv[0][0];
751        ptr_v = &ctx->edge_buf_uv[1][0];
752    }
753
754    if (!ctx->is_444) {
755        pdsp->get_pixels(ctx->blocks[0], ptr_y,      linesize);
756        pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
757        pdsp->get_pixels(ctx->blocks[2], ptr_u,      uvlinesize);
758        pdsp->get_pixels(ctx->blocks[3], ptr_v,      uvlinesize);
759
760        if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
761            if (ctx->interlaced) {
762                ctx->get_pixels_8x4_sym(ctx->blocks[4],
763                                        ptr_y + dct_y_offset,
764                                        linesize);
765                ctx->get_pixels_8x4_sym(ctx->blocks[5],
766                                        ptr_y + dct_y_offset + bw,
767                                        linesize);
768                ctx->get_pixels_8x4_sym(ctx->blocks[6],
769                                        ptr_u + dct_uv_offset,
770                                        uvlinesize);
771                ctx->get_pixels_8x4_sym(ctx->blocks[7],
772                                        ptr_v + dct_uv_offset,
773                                        uvlinesize);
774            } else {
775                ctx->bdsp.clear_block(ctx->blocks[4]);
776                ctx->bdsp.clear_block(ctx->blocks[5]);
777                ctx->bdsp.clear_block(ctx->blocks[6]);
778                ctx->bdsp.clear_block(ctx->blocks[7]);
779            }
780        } else {
781            pdsp->get_pixels(ctx->blocks[4],
782                             ptr_y + dct_y_offset, linesize);
783            pdsp->get_pixels(ctx->blocks[5],
784                             ptr_y + dct_y_offset + bw, linesize);
785            pdsp->get_pixels(ctx->blocks[6],
786                             ptr_u + dct_uv_offset, uvlinesize);
787            pdsp->get_pixels(ctx->blocks[7],
788                             ptr_v + dct_uv_offset, uvlinesize);
789        }
790    } else {
791        pdsp->get_pixels(ctx->blocks[0], ptr_y,      linesize);
792        pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
793        pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize);
794        pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize);
795
796        pdsp->get_pixels(ctx->blocks[2], ptr_u,      uvlinesize);
797        pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize);
798        pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize);
799        pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize);
800
801        pdsp->get_pixels(ctx->blocks[4], ptr_v,      uvlinesize);
802        pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize);
803        pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize);
804        pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize);
805    }
806}
807
808static av_always_inline
809int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
810{
811    int x;
812
813    if (ctx->is_444) {
814        x = (i >> 1) % 3;
815    } else {
816        const static uint8_t component[8]={0,0,1,2,0,0,1,2};
817        x = component[i];
818    }
819    return x;
820}
821
822static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
823                                  int jobnr, int threadnr)
824{
825    DNXHDEncContext *ctx = avctx->priv_data;
826    int mb_y = jobnr, mb_x;
827    int qscale = ctx->qscale;
828    LOCAL_ALIGNED_16(int16_t, block, [64]);
829    ctx = ctx->thread[threadnr];
830
831    ctx->m.last_dc[0] =
832    ctx->m.last_dc[1] =
833    ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
834
835    for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
836        unsigned mb = mb_y * ctx->m.mb_width + mb_x;
837        int ssd     = 0;
838        int ac_bits = 0;
839        int dc_bits = 0;
840        int i;
841
842        dnxhd_get_blocks(ctx, mb_x, mb_y);
843
844        for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
845            int16_t *src_block = ctx->blocks[i];
846            int overflow, nbits, diff, last_index;
847            int n = dnxhd_switch_matrix(ctx, i);
848
849            memcpy(block, src_block, 64 * sizeof(*block));
850            last_index = ctx->m.dct_quantize(&ctx->m, block,
851                                             ctx->is_444 ? 4 * (n > 0): 4 & (2*i),
852                                             qscale, &overflow);
853            ac_bits   += dnxhd_calc_ac_bits(ctx, block, last_index);
854
855            diff = block[0] - ctx->m.last_dc[n];
856            if (diff < 0)
857                nbits = av_log2_16bit(-2 * diff);
858            else
859                nbits = av_log2_16bit(2 * diff);
860
861            av_assert1(nbits < ctx->bit_depth + 4);
862            dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
863
864            ctx->m.last_dc[n] = block[0];
865
866            if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
867                dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
868                ctx->m.idsp.idct(block);
869                ssd += dnxhd_ssd_block(block, src_block);
870            }
871        }
872        ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd  = ssd;
873        ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
874                                     (1 + ctx->is_444) * 8 * ctx->vlc_bits[0];
875    }
876    return 0;
877}
878
879static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
880                               int jobnr, int threadnr)
881{
882    DNXHDEncContext *ctx = avctx->priv_data;
883    int mb_y = jobnr, mb_x;
884    ctx = ctx->thread[threadnr];
885    init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
886                  ctx->slice_size[jobnr]);
887
888    ctx->m.last_dc[0] =
889    ctx->m.last_dc[1] =
890    ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
891    for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
892        unsigned mb = mb_y * ctx->m.mb_width + mb_x;
893        int qscale = ctx->mb_qscale[mb];
894        int i;
895
896        put_bits(&ctx->m.pb, 11, qscale);
897        put_bits(&ctx->m.pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
898
899        dnxhd_get_blocks(ctx, mb_x, mb_y);
900
901        for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
902            int16_t *block = ctx->blocks[i];
903            int overflow, n = dnxhd_switch_matrix(ctx, i);
904            int last_index = ctx->m.dct_quantize(&ctx->m, block,
905                                                 ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i),
906                                                 qscale, &overflow);
907
908            dnxhd_encode_block(ctx, block, last_index, n);
909        }
910    }
911    if (put_bits_count(&ctx->m.pb) & 31)
912        put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
913    flush_put_bits(&ctx->m.pb);
914    memset(put_bits_ptr(&ctx->m.pb), 0, put_bytes_left(&ctx->m.pb, 0));
915    return 0;
916}
917
918static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
919{
920    int mb_y, mb_x;
921    int offset = 0;
922    for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
923        int thread_size;
924        ctx->slice_offs[mb_y] = offset;
925        ctx->slice_size[mb_y] = 0;
926        for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
927            unsigned mb = mb_y * ctx->m.mb_width + mb_x;
928            ctx->slice_size[mb_y] += ctx->mb_bits[mb];
929        }
930        ctx->slice_size[mb_y]   = (ctx->slice_size[mb_y] + 31U) & ~31U;
931        ctx->slice_size[mb_y] >>= 3;
932        thread_size = ctx->slice_size[mb_y];
933        offset += thread_size;
934    }
935}
936
937static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
938                               int jobnr, int threadnr)
939{
940    DNXHDEncContext *ctx = avctx->priv_data;
941    int mb_y = jobnr, mb_x, x, y;
942    int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
943                           ((avctx->height >> ctx->interlaced) & 0xF);
944
945    ctx = ctx->thread[threadnr];
946    if (ctx->bit_depth == 8) {
947        uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
948        for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
949            unsigned mb = mb_y * ctx->m.mb_width + mb_x;
950            int sum;
951            int varc;
952
953            if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
954                sum  = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
955                varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
956            } else {
957                int bw = FFMIN(avctx->width - 16 * mb_x, 16);
958                int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
959                sum = varc = 0;
960                for (y = 0; y < bh; y++) {
961                    for (x = 0; x < bw; x++) {
962                        uint8_t val = pix[x + y * ctx->m.linesize];
963                        sum  += val;
964                        varc += val * val;
965                    }
966                }
967            }
968            varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
969
970            ctx->mb_cmp[mb].value = varc;
971            ctx->mb_cmp[mb].mb    = mb;
972        }
973    } else { // 10-bit
974        const int linesize = ctx->m.linesize >> 1;
975        for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
976            uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
977                            ((mb_y << 4) * linesize) + (mb_x << 4);
978            unsigned mb  = mb_y * ctx->m.mb_width + mb_x;
979            int sum = 0;
980            int sqsum = 0;
981            int bw = FFMIN(avctx->width - 16 * mb_x, 16);
982            int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
983            int mean, sqmean;
984            int i, j;
985            // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
986            for (i = 0; i < bh; ++i) {
987                for (j = 0; j < bw; ++j) {
988                    // Turn 16-bit pixels into 10-bit ones.
989                    const int sample = (unsigned) pix[j] >> 6;
990                    sum   += sample;
991                    sqsum += sample * sample;
992                    // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
993                }
994                pix += linesize;
995            }
996            mean = sum >> 8; // 16*16 == 2^8
997            sqmean = sqsum >> 8;
998            ctx->mb_cmp[mb].value = sqmean - mean * mean;
999            ctx->mb_cmp[mb].mb    = mb;
1000        }
1001    }
1002    return 0;
1003}
1004
1005static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
1006{
1007    int lambda, up_step, down_step;
1008    int last_lower = INT_MAX, last_higher = 0;
1009    int x, y, q;
1010
1011    for (q = 1; q < avctx->qmax; q++) {
1012        ctx->qscale = q;
1013        avctx->execute2(avctx, dnxhd_calc_bits_thread,
1014                        NULL, NULL, ctx->m.mb_height);
1015    }
1016    up_step = down_step = 2 << LAMBDA_FRAC_BITS;
1017    lambda  = ctx->lambda;
1018
1019    for (;;) {
1020        int bits = 0;
1021        int end  = 0;
1022        if (lambda == last_higher) {
1023            lambda++;
1024            end = 1; // need to set final qscales/bits
1025        }
1026        for (y = 0; y < ctx->m.mb_height; y++) {
1027            for (x = 0; x < ctx->m.mb_width; x++) {
1028                unsigned min = UINT_MAX;
1029                int qscale = 1;
1030                int mb     = y * ctx->m.mb_width + x;
1031                int rc = 0;
1032                for (q = 1; q < avctx->qmax; q++) {
1033                    int i = (q*ctx->m.mb_num) + mb;
1034                    unsigned score = ctx->mb_rc[i].bits * lambda +
1035                                     ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
1036                    if (score < min) {
1037                        min    = score;
1038                        qscale = q;
1039                        rc = i;
1040                    }
1041                }
1042                bits += ctx->mb_rc[rc].bits;
1043                ctx->mb_qscale[mb] = qscale;
1044                ctx->mb_bits[mb]   = ctx->mb_rc[rc].bits;
1045            }
1046            bits = (bits + 31) & ~31; // padding
1047            if (bits > ctx->frame_bits)
1048                break;
1049        }
1050        if (end) {
1051            if (bits > ctx->frame_bits)
1052                return AVERROR(EINVAL);
1053            break;
1054        }
1055        if (bits < ctx->frame_bits) {
1056            last_lower = FFMIN(lambda, last_lower);
1057            if (last_higher != 0)
1058                lambda = (lambda+last_higher)>>1;
1059            else
1060                lambda -= down_step;
1061            down_step = FFMIN((int64_t)down_step*5, INT_MAX);
1062            up_step = 1<<LAMBDA_FRAC_BITS;
1063            lambda = FFMAX(1, lambda);
1064            if (lambda == last_lower)
1065                break;
1066        } else {
1067            last_higher = FFMAX(lambda, last_higher);
1068            if (last_lower != INT_MAX)
1069                lambda = (lambda+last_lower)>>1;
1070            else if ((int64_t)lambda + up_step > INT_MAX)
1071                return AVERROR(EINVAL);
1072            else
1073                lambda += up_step;
1074            up_step = FFMIN((int64_t)up_step*5, INT_MAX);
1075            down_step = 1<<LAMBDA_FRAC_BITS;
1076        }
1077    }
1078    ctx->lambda = lambda;
1079    return 0;
1080}
1081
1082static int dnxhd_find_qscale(DNXHDEncContext *ctx)
1083{
1084    int bits = 0;
1085    int up_step = 1;
1086    int down_step = 1;
1087    int last_higher = 0;
1088    int last_lower = INT_MAX;
1089    int qscale;
1090    int x, y;
1091
1092    qscale = ctx->qscale;
1093    for (;;) {
1094        bits = 0;
1095        ctx->qscale = qscale;
1096        // XXX avoid recalculating bits
1097        ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
1098                               NULL, NULL, ctx->m.mb_height);
1099        for (y = 0; y < ctx->m.mb_height; y++) {
1100            for (x = 0; x < ctx->m.mb_width; x++)
1101                bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits;
1102            bits = (bits+31)&~31; // padding
1103            if (bits > ctx->frame_bits)
1104                break;
1105        }
1106        if (bits < ctx->frame_bits) {
1107            if (qscale == 1)
1108                return 1;
1109            if (last_higher == qscale - 1) {
1110                qscale = last_higher;
1111                break;
1112            }
1113            last_lower = FFMIN(qscale, last_lower);
1114            if (last_higher != 0)
1115                qscale = (qscale + last_higher) >> 1;
1116            else
1117                qscale -= down_step++;
1118            if (qscale < 1)
1119                qscale = 1;
1120            up_step = 1;
1121        } else {
1122            if (last_lower == qscale + 1)
1123                break;
1124            last_higher = FFMAX(qscale, last_higher);
1125            if (last_lower != INT_MAX)
1126                qscale = (qscale + last_lower) >> 1;
1127            else
1128                qscale += up_step++;
1129            down_step = 1;
1130            if (qscale >= ctx->m.avctx->qmax)
1131                return AVERROR(EINVAL);
1132        }
1133    }
1134    ctx->qscale = qscale;
1135    return 0;
1136}
1137
1138#define BUCKET_BITS 8
1139#define RADIX_PASSES 4
1140#define NBUCKETS (1 << BUCKET_BITS)
1141
1142static inline int get_bucket(int value, int shift)
1143{
1144    value >>= shift;
1145    value  &= NBUCKETS - 1;
1146    return NBUCKETS - 1 - value;
1147}
1148
1149static void radix_count(const RCCMPEntry *data, int size,
1150                        int buckets[RADIX_PASSES][NBUCKETS])
1151{
1152    int i, j;
1153    memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
1154    for (i = 0; i < size; i++) {
1155        int v = data[i].value;
1156        for (j = 0; j < RADIX_PASSES; j++) {
1157            buckets[j][get_bucket(v, 0)]++;
1158            v >>= BUCKET_BITS;
1159        }
1160        av_assert1(!v);
1161    }
1162    for (j = 0; j < RADIX_PASSES; j++) {
1163        int offset = size;
1164        for (i = NBUCKETS - 1; i >= 0; i--)
1165            buckets[j][i] = offset -= buckets[j][i];
1166        av_assert1(!buckets[j][0]);
1167    }
1168}
1169
1170static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
1171                            int size, int buckets[NBUCKETS], int pass)
1172{
1173    int shift = pass * BUCKET_BITS;
1174    int i;
1175    for (i = 0; i < size; i++) {
1176        int v   = get_bucket(data[i].value, shift);
1177        int pos = buckets[v]++;
1178        dst[pos] = data[i];
1179    }
1180}
1181
1182static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)
1183{
1184    int buckets[RADIX_PASSES][NBUCKETS];
1185    radix_count(data, size, buckets);
1186    radix_sort_pass(tmp, data, size, buckets[0], 0);
1187    radix_sort_pass(data, tmp, size, buckets[1], 1);
1188    if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
1189        radix_sort_pass(tmp, data, size, buckets[2], 2);
1190        radix_sort_pass(data, tmp, size, buckets[3], 3);
1191    }
1192}
1193
1194static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
1195{
1196    int max_bits = 0;
1197    int ret, x, y;
1198    if ((ret = dnxhd_find_qscale(ctx)) < 0)
1199        return ret;
1200    for (y = 0; y < ctx->m.mb_height; y++) {
1201        for (x = 0; x < ctx->m.mb_width; x++) {
1202            int mb = y * ctx->m.mb_width + x;
1203            int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1204            int delta_bits;
1205            ctx->mb_qscale[mb] = ctx->qscale;
1206            ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
1207            max_bits += ctx->mb_rc[rc].bits;
1208            if (!RC_VARIANCE) {
1209                delta_bits = ctx->mb_rc[rc].bits -
1210                             ctx->mb_rc[rc + ctx->m.mb_num].bits;
1211                ctx->mb_cmp[mb].mb = mb;
1212                ctx->mb_cmp[mb].value =
1213                    delta_bits ? ((ctx->mb_rc[rc].ssd -
1214                                   ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) /
1215                                  delta_bits
1216                               : INT_MIN; // avoid increasing qscale
1217            }
1218        }
1219        max_bits += 31; // worst padding
1220    }
1221    if (!ret) {
1222        if (RC_VARIANCE)
1223            avctx->execute2(avctx, dnxhd_mb_var_thread,
1224                            NULL, NULL, ctx->m.mb_height);
1225        radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num);
1226retry:
1227        for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
1228            int mb = ctx->mb_cmp[x].mb;
1229            int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1230            max_bits -= ctx->mb_rc[rc].bits -
1231                        ctx->mb_rc[rc + ctx->m.mb_num].bits;
1232            if (ctx->mb_qscale[mb] < 255)
1233                ctx->mb_qscale[mb]++;
1234            ctx->mb_bits[mb]   = ctx->mb_rc[rc + ctx->m.mb_num].bits;
1235        }
1236
1237        if (max_bits > ctx->frame_bits)
1238            goto retry;
1239    }
1240    return 0;
1241}
1242
1243static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
1244{
1245    int i;
1246
1247    for (i = 0; i < ctx->m.avctx->thread_count; i++) {
1248        ctx->thread[i]->m.linesize    = frame->linesize[0] << ctx->interlaced;
1249        ctx->thread[i]->m.uvlinesize  = frame->linesize[1] << ctx->interlaced;
1250        ctx->thread[i]->dct_y_offset  = ctx->m.linesize  *8;
1251        ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
1252    }
1253
1254    ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
1255}
1256
1257static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
1258                                const AVFrame *frame, int *got_packet)
1259{
1260    DNXHDEncContext *ctx = avctx->priv_data;
1261    int first_field = 1;
1262    int offset, i, ret;
1263    uint8_t *buf;
1264
1265    if ((ret = ff_get_encode_buffer(avctx, pkt, ctx->frame_size, 0)) < 0)
1266        return ret;
1267    buf = pkt->data;
1268
1269    dnxhd_load_picture(ctx, frame);
1270
1271encode_coding_unit:
1272    for (i = 0; i < 3; i++) {
1273        ctx->src[i] = frame->data[i];
1274        if (ctx->interlaced && ctx->cur_field)
1275            ctx->src[i] += frame->linesize[i];
1276    }
1277
1278    dnxhd_write_header(avctx, buf);
1279
1280    if (avctx->mb_decision == FF_MB_DECISION_RD)
1281        ret = dnxhd_encode_rdo(avctx, ctx);
1282    else
1283        ret = dnxhd_encode_fast(avctx, ctx);
1284    if (ret < 0) {
1285        av_log(avctx, AV_LOG_ERROR,
1286               "picture could not fit ratecontrol constraints, increase qmax\n");
1287        return ret;
1288    }
1289
1290    dnxhd_setup_threads_slices(ctx);
1291
1292    offset = 0;
1293    for (i = 0; i < ctx->m.mb_height; i++) {
1294        AV_WB32(ctx->msip + i * 4, offset);
1295        offset += ctx->slice_size[i];
1296        av_assert1(!(ctx->slice_size[i] & 3));
1297    }
1298
1299    avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
1300
1301    av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
1302    memset(buf + ctx->data_offset + offset, 0,
1303           ctx->coding_unit_size - 4 - offset - ctx->data_offset);
1304
1305    AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
1306
1307    if (ctx->interlaced && first_field) {
1308        first_field     = 0;
1309        ctx->cur_field ^= 1;
1310        buf            += ctx->coding_unit_size;
1311        goto encode_coding_unit;
1312    }
1313
1314    ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I);
1315
1316    *got_packet = 1;
1317    return 0;
1318}
1319
1320static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
1321{
1322    DNXHDEncContext *ctx = avctx->priv_data;
1323    int i;
1324
1325    av_freep(&ctx->orig_vlc_codes);
1326    av_freep(&ctx->orig_vlc_bits);
1327    av_freep(&ctx->run_codes);
1328    av_freep(&ctx->run_bits);
1329
1330    av_freep(&ctx->mb_bits);
1331    av_freep(&ctx->mb_qscale);
1332    av_freep(&ctx->mb_rc);
1333    av_freep(&ctx->mb_cmp);
1334    av_freep(&ctx->mb_cmp_tmp);
1335    av_freep(&ctx->slice_size);
1336    av_freep(&ctx->slice_offs);
1337
1338    av_freep(&ctx->qmatrix_c);
1339    av_freep(&ctx->qmatrix_l);
1340    av_freep(&ctx->qmatrix_c16);
1341    av_freep(&ctx->qmatrix_l16);
1342
1343    if (ctx->thread[1]) {
1344        for (i = 1; i < avctx->thread_count; i++)
1345            av_freep(&ctx->thread[i]);
1346    }
1347
1348    return 0;
1349}
1350
1351static const FFCodecDefault dnxhd_defaults[] = {
1352    { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
1353    { NULL },
1354};
1355
1356const FFCodec ff_dnxhd_encoder = {
1357    .p.name         = "dnxhd",
1358    .p.long_name    = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1359    .p.type         = AVMEDIA_TYPE_VIDEO,
1360    .p.id           = AV_CODEC_ID_DNXHD,
1361    .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
1362                      AV_CODEC_CAP_SLICE_THREADS,
1363    .priv_data_size = sizeof(DNXHDEncContext),
1364    .init           = dnxhd_encode_init,
1365    FF_CODEC_ENCODE_CB(dnxhd_encode_picture),
1366    .close          = dnxhd_encode_end,
1367    .p.pix_fmts     = (const enum AVPixelFormat[]) {
1368        AV_PIX_FMT_YUV422P,
1369        AV_PIX_FMT_YUV422P10,
1370        AV_PIX_FMT_YUV444P10,
1371        AV_PIX_FMT_GBRP10,
1372        AV_PIX_FMT_NONE
1373    },
1374    .p.priv_class   = &dnxhd_class,
1375    .defaults       = dnxhd_defaults,
1376    .p.profiles     = NULL_IF_CONFIG_SMALL(ff_dnxhd_profiles),
1377    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
1378};
1379