1 /*
2  * VC3/DNxHD encoder
3  * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4  * Copyright (c) 2011 MirriAd Ltd
5  *
6  * VC-3 encoder funded by the British Broadcasting Corporation
7  * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
8  *
9  * This file is part of FFmpeg.
10  *
11  * FFmpeg is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * FFmpeg is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with FFmpeg; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25 
26 #include "libavutil/attributes.h"
27 #include "libavutil/internal.h"
28 #include "libavutil/mem_internal.h"
29 #include "libavutil/opt.h"
30 
31 #include "avcodec.h"
32 #include "blockdsp.h"
33 #include "codec_internal.h"
34 #include "encode.h"
35 #include "fdctdsp.h"
36 #include "mathops.h"
37 #include "mpegvideo.h"
38 #include "mpegvideoenc.h"
39 #include "pixblockdsp.h"
40 #include "packet_internal.h"
41 #include "profiles.h"
42 #include "dnxhdenc.h"
43 
44 // The largest value that will not lead to overflow for 10-bit samples.
45 #define DNX10BIT_QMAT_SHIFT 18
46 #define RC_VARIANCE 1 // use variance or ssd for fast rc
47 #define LAMBDA_FRAC_BITS 10
48 
49 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
50 static const AVOption options[] = {
51     { "nitris_compat", "encode with Avid Nitris compatibility",
52         offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
53     { "ibias", "intra quant bias",
54         offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
55         { .i64 = 0 }, INT_MIN, INT_MAX, VE },
56     { "profile",       NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
57         { .i64 = FF_PROFILE_DNXHD },
58         FF_PROFILE_DNXHD, FF_PROFILE_DNXHR_444, VE, "profile" },
59     { "dnxhd",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHD },
60         0, 0, VE, "profile" },
61     { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_444 },
62         0, 0, VE, "profile" },
63     { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQX },
64         0, 0, VE, "profile" },
65     { "dnxhr_hq",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQ },
66         0, 0, VE, "profile" },
67     { "dnxhr_sq",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_SQ },
68         0, 0, VE, "profile" },
69     { "dnxhr_lb",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_LB },
70         0, 0, VE, "profile" },
71     { NULL }
72 };
73 
74 static const AVClass dnxhd_class = {
75     .class_name = "dnxhd",
76     .item_name  = av_default_item_name,
77     .option     = options,
78     .version    = LIBAVUTIL_VERSION_INT,
79 };
80 
dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block, const uint8_t *pixels, ptrdiff_t line_size)81 static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
82                                           const uint8_t *pixels,
83                                           ptrdiff_t line_size)
84 {
85     int i;
86     for (i = 0; i < 4; i++) {
87         block[0] = pixels[0];
88         block[1] = pixels[1];
89         block[2] = pixels[2];
90         block[3] = pixels[3];
91         block[4] = pixels[4];
92         block[5] = pixels[5];
93         block[6] = pixels[6];
94         block[7] = pixels[7];
95         pixels  += line_size;
96         block   += 8;
97     }
98     memcpy(block,      block -  8, sizeof(*block) * 8);
99     memcpy(block +  8, block - 16, sizeof(*block) * 8);
100     memcpy(block + 16, block - 24, sizeof(*block) * 8);
101     memcpy(block + 24, block - 32, sizeof(*block) * 8);
102 }
103 
104 static av_always_inline
dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block, const uint8_t *pixels, ptrdiff_t line_size)105 void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
106                                     const uint8_t *pixels,
107                                     ptrdiff_t line_size)
108 {
109     memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
110     memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
111     memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
112     memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
113     memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
114     memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
115     memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
116     memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
117 }
118 
dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block, int n, int qscale, int *overflow)119 static int dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block,
120                                         int n, int qscale, int *overflow)
121 {
122     int i, j, level, last_non_zero, start_i;
123     const int *qmat;
124     const uint8_t *scantable= ctx->intra_scantable.scantable;
125     int bias;
126     int max = 0;
127     unsigned int threshold1, threshold2;
128 
129     ctx->fdsp.fdct(block);
130 
131     block[0] = (block[0] + 2) >> 2;
132     start_i = 1;
133     last_non_zero = 0;
134     qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
135     bias= ctx->intra_quant_bias * (1 << (16 - 8));
136     threshold1 = (1 << 16) - bias - 1;
137     threshold2 = (threshold1 << 1);
138 
139     for (i = 63; i >= start_i; i--) {
140         j = scantable[i];
141         level = block[j] * qmat[j];
142 
143         if (((unsigned)(level + threshold1)) > threshold2) {
144             last_non_zero = i;
145             break;
146         } else{
147             block[j]=0;
148         }
149     }
150 
151     for (i = start_i; i <= last_non_zero; i++) {
152         j = scantable[i];
153         level = block[j] * qmat[j];
154 
155         if (((unsigned)(level + threshold1)) > threshold2) {
156             if (level > 0) {
157                 level = (bias + level) >> 16;
158                 block[j] = level;
159             } else{
160                 level = (bias - level) >> 16;
161                 block[j] = -level;
162             }
163             max |= level;
164         } else {
165             block[j] = 0;
166         }
167     }
168     *overflow = ctx->max_qcoeff < max; //overflow might have happened
169 
170     /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
171     if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
172         ff_block_permute(block, ctx->idsp.idct_permutation,
173                          scantable, last_non_zero);
174 
175     return last_non_zero;
176 }
177 
dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block, int n, int qscale, int *overflow)178 static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
179                                     int n, int qscale, int *overflow)
180 {
181     const uint8_t *scantable= ctx->intra_scantable.scantable;
182     const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
183     int last_non_zero = 0;
184     int i;
185 
186     ctx->fdsp.fdct(block);
187 
188     // Divide by 4 with rounding, to compensate scaling of DCT coefficients
189     block[0] = (block[0] + 2) >> 2;
190 
191     for (i = 1; i < 64; ++i) {
192         int j = scantable[i];
193         int sign = FF_SIGNBIT(block[j]);
194         int level = (block[j] ^ sign) - sign;
195         level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
196         block[j] = (level ^ sign) - sign;
197         if (level)
198             last_non_zero = i;
199     }
200 
201     /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
202     if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
203         ff_block_permute(block, ctx->idsp.idct_permutation,
204                          scantable, last_non_zero);
205 
206     return last_non_zero;
207 }
208 
dnxhd_init_vlc(DNXHDEncContext *ctx)209 static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
210 {
211     int i, j, level, run;
212     int max_level = 1 << (ctx->bit_depth + 2);
213 
214     if (!FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_codes, max_level * 4) ||
215         !FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_bits,  max_level * 4) ||
216         !(ctx->run_codes = av_mallocz(63 * 2))                     ||
217         !(ctx->run_bits  = av_mallocz(63)))
218         return AVERROR(ENOMEM);
219     ctx->vlc_codes = ctx->orig_vlc_codes + max_level * 2;
220     ctx->vlc_bits  = ctx->orig_vlc_bits + max_level * 2;
221     for (level = -max_level; level < max_level; level++) {
222         for (run = 0; run < 2; run++) {
223             int index = level * (1 << 1) | run;
224             int sign, offset = 0, alevel = level;
225 
226             MASK_ABS(sign, alevel);
227             if (alevel > 64) {
228                 offset  = (alevel - 1) >> 6;
229                 alevel -= offset << 6;
230             }
231             for (j = 0; j < 257; j++) {
232                 if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
233                     (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
234                     (!run    || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
235                     av_assert1(!ctx->vlc_codes[index]);
236                     if (alevel) {
237                         ctx->vlc_codes[index] =
238                             (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
239                         ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
240                     } else {
241                         ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
242                         ctx->vlc_bits[index]  = ctx->cid_table->ac_bits[j];
243                     }
244                     break;
245                 }
246             }
247             av_assert0(!alevel || j < 257);
248             if (offset) {
249                 ctx->vlc_codes[index] =
250                     (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
251                 ctx->vlc_bits[index] += ctx->cid_table->index_bits;
252             }
253         }
254     }
255     for (i = 0; i < 62; i++) {
256         int run = ctx->cid_table->run[i];
257         av_assert0(run < 63);
258         ctx->run_codes[run] = ctx->cid_table->run_codes[i];
259         ctx->run_bits[run]  = ctx->cid_table->run_bits[i];
260     }
261     return 0;
262 }
263 
dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)264 static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
265 {
266     // init first elem to 1 to avoid div by 0 in convert_matrix
267     uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
268     int qscale, i;
269     const uint8_t *luma_weight_table   = ctx->cid_table->luma_weight;
270     const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
271 
272     if (!FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l,   ctx->m.avctx->qmax + 1) ||
273         !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c,   ctx->m.avctx->qmax + 1) ||
274         !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l16, ctx->m.avctx->qmax + 1) ||
275         !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c16, ctx->m.avctx->qmax + 1))
276         return AVERROR(ENOMEM);
277 
278     if (ctx->bit_depth == 8) {
279         for (i = 1; i < 64; i++) {
280             int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
281             weight_matrix[j] = ctx->cid_table->luma_weight[i];
282         }
283         ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
284                           weight_matrix, ctx->intra_quant_bias, 1,
285                           ctx->m.avctx->qmax, 1);
286         for (i = 1; i < 64; i++) {
287             int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
288             weight_matrix[j] = ctx->cid_table->chroma_weight[i];
289         }
290         ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
291                           weight_matrix, ctx->intra_quant_bias, 1,
292                           ctx->m.avctx->qmax, 1);
293 
294         for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
295             for (i = 0; i < 64; i++) {
296                 ctx->qmatrix_l[qscale][i]      <<= 2;
297                 ctx->qmatrix_c[qscale][i]      <<= 2;
298                 ctx->qmatrix_l16[qscale][0][i] <<= 2;
299                 ctx->qmatrix_l16[qscale][1][i] <<= 2;
300                 ctx->qmatrix_c16[qscale][0][i] <<= 2;
301                 ctx->qmatrix_c16[qscale][1][i] <<= 2;
302             }
303         }
304     } else {
305         // 10-bit
306         for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
307             for (i = 1; i < 64; i++) {
308                 int j = ff_zigzag_direct[i];
309 
310                 /* The quantization formula from the VC-3 standard is:
311                  * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
312                  *             (qscale * weight_table[i]))
313                  * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
314                  * The s factor compensates scaling of DCT coefficients done by
315                  * the DCT routines, and therefore is not present in standard.
316                  * It's 8 for 8-bit samples and 4 for 10-bit ones.
317                  * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
318                  *     ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
319                  *     (qscale * weight_table[i])
320                  * For 10-bit samples, p / s == 2 */
321                 ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
322                                             (qscale * luma_weight_table[i]);
323                 ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
324                                             (qscale * chroma_weight_table[i]);
325             }
326         }
327     }
328 
329     ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
330     ctx->m.q_chroma_intra_matrix   = ctx->qmatrix_c;
331     ctx->m.q_intra_matrix16        = ctx->qmatrix_l16;
332     ctx->m.q_intra_matrix          = ctx->qmatrix_l;
333 
334     return 0;
335 }
336 
dnxhd_init_rc(DNXHDEncContext *ctx)337 static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
338 {
339     if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_rc, (ctx->m.avctx->qmax + 1) * ctx->m.mb_num))
340         return AVERROR(ENOMEM);
341 
342     if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) {
343         if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp,     ctx->m.mb_num) ||
344             !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp_tmp, ctx->m.mb_num))
345             return AVERROR(ENOMEM);
346     }
347     ctx->frame_bits = (ctx->coding_unit_size -
348                        ctx->data_offset - 4 - ctx->min_padding) * 8;
349     ctx->qscale = 1;
350     ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
351     return 0;
352 }
353 
dnxhd_encode_init(AVCodecContext *avctx)354 static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
355 {
356     DNXHDEncContext *ctx = avctx->priv_data;
357     int i, ret;
358 
359     switch (avctx->pix_fmt) {
360     case AV_PIX_FMT_YUV422P:
361         ctx->bit_depth = 8;
362         break;
363     case AV_PIX_FMT_YUV422P10:
364     case AV_PIX_FMT_YUV444P10:
365     case AV_PIX_FMT_GBRP10:
366         ctx->bit_depth = 10;
367         break;
368     }
369 
370     if ((ctx->profile == FF_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 &&
371                                                   avctx->pix_fmt != AV_PIX_FMT_GBRP10)) ||
372         (ctx->profile != FF_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ||
373                                                   avctx->pix_fmt == AV_PIX_FMT_GBRP10))) {
374         av_log(avctx, AV_LOG_ERROR,
375                "pixel format is incompatible with DNxHD profile\n");
376         return AVERROR(EINVAL);
377     }
378 
379     if (ctx->profile == FF_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) {
380         av_log(avctx, AV_LOG_ERROR,
381                "pixel format is incompatible with DNxHR HQX profile\n");
382         return AVERROR(EINVAL);
383     }
384 
385     if ((ctx->profile == FF_PROFILE_DNXHR_LB ||
386          ctx->profile == FF_PROFILE_DNXHR_SQ ||
387          ctx->profile == FF_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
388         av_log(avctx, AV_LOG_ERROR,
389                "pixel format is incompatible with DNxHR LB/SQ/HQ profile\n");
390         return AVERROR(EINVAL);
391     }
392 
393     ctx->is_444 = ctx->profile == FF_PROFILE_DNXHR_444;
394     avctx->profile = ctx->profile;
395     ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth);
396     if (!ctx->cid) {
397         av_log(avctx, AV_LOG_ERROR,
398                "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
399         ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
400         return AVERROR(EINVAL);
401     }
402     av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
403 
404     if (ctx->cid >= 1270 && ctx->cid <= 1274)
405         avctx->codec_tag = MKTAG('A','V','d','h');
406 
407     if (avctx->width < 256 || avctx->height < 120) {
408         av_log(avctx, AV_LOG_ERROR,
409                "Input dimensions too small, input must be at least 256x120\n");
410         return AVERROR(EINVAL);
411     }
412 
413     ctx->cid_table = ff_dnxhd_get_cid_table(ctx->cid);
414     av_assert0(ctx->cid_table);
415 
416     ctx->m.avctx    = avctx;
417     ctx->m.mb_intra = 1;
418     ctx->m.h263_aic = 1;
419 
420     avctx->bits_per_raw_sample = ctx->bit_depth;
421 
422     ff_blockdsp_init(&ctx->bdsp, avctx);
423     ff_fdctdsp_init(&ctx->m.fdsp, avctx);
424     ff_mpv_idct_init(&ctx->m);
425     ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
426     ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
427     ff_dct_encode_init(&ctx->m);
428 
429     if (ctx->profile != FF_PROFILE_DNXHD)
430         ff_videodsp_init(&ctx->m.vdsp, ctx->bit_depth);
431 
432     if (!ctx->m.dct_quantize)
433         ctx->m.dct_quantize = ff_dct_quantize_c;
434 
435     if (ctx->is_444 || ctx->profile == FF_PROFILE_DNXHR_HQX) {
436         ctx->m.dct_quantize     = dnxhd_10bit_dct_quantize_444;
437         ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
438         ctx->block_width_l2     = 4;
439     } else if (ctx->bit_depth == 10) {
440         ctx->m.dct_quantize     = dnxhd_10bit_dct_quantize;
441         ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
442         ctx->block_width_l2     = 4;
443     } else {
444         ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
445         ctx->block_width_l2     = 3;
446     }
447 
448 #if ARCH_X86
449     ff_dnxhdenc_init_x86(ctx);
450 #endif
451 
452     ctx->m.mb_height = (avctx->height + 15) / 16;
453     ctx->m.mb_width  = (avctx->width  + 15) / 16;
454 
455     if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
456         ctx->interlaced   = 1;
457         ctx->m.mb_height /= 2;
458     }
459 
460     if (ctx->interlaced && ctx->profile != FF_PROFILE_DNXHD) {
461         av_log(avctx, AV_LOG_ERROR,
462                "Interlaced encoding is not supported for DNxHR profiles.\n");
463         return AVERROR(EINVAL);
464     }
465 
466     ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
467 
468     if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
469         ctx->frame_size = ff_dnxhd_get_hr_frame_size(ctx->cid,
470                                                      avctx->width, avctx->height);
471         av_assert0(ctx->frame_size >= 0);
472         ctx->coding_unit_size = ctx->frame_size;
473     } else {
474         ctx->frame_size = ctx->cid_table->frame_size;
475         ctx->coding_unit_size = ctx->cid_table->coding_unit_size;
476     }
477 
478     if (ctx->m.mb_height > 68)
479         ctx->data_offset = 0x170 + (ctx->m.mb_height << 2);
480     else
481         ctx->data_offset = 0x280;
482 
483     // XXX tune lbias/cbias
484     if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
485         return ret;
486 
487     /* Avid Nitris hardware decoder requires a minimum amount of padding
488      * in the coding unit payload */
489     if (ctx->nitris_compat)
490         ctx->min_padding = 1600;
491 
492     if ((ret = dnxhd_init_vlc(ctx)) < 0)
493         return ret;
494     if ((ret = dnxhd_init_rc(ctx)) < 0)
495         return ret;
496 
497     if (!FF_ALLOCZ_TYPED_ARRAY(ctx->slice_size, ctx->m.mb_height) ||
498         !FF_ALLOCZ_TYPED_ARRAY(ctx->slice_offs, ctx->m.mb_height) ||
499         !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_bits,    ctx->m.mb_num)    ||
500         !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_qscale,  ctx->m.mb_num))
501         return AVERROR(ENOMEM);
502 
503     if (avctx->active_thread_type == FF_THREAD_SLICE) {
504         if (avctx->thread_count > MAX_THREADS) {
505             av_log(avctx, AV_LOG_ERROR, "too many threads\n");
506             return AVERROR(EINVAL);
507         }
508     }
509 
510     if (avctx->qmax <= 1) {
511         av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
512         return AVERROR(EINVAL);
513     }
514 
515     ctx->thread[0] = ctx;
516     if (avctx->active_thread_type == FF_THREAD_SLICE) {
517         for (i = 1; i < avctx->thread_count; i++) {
518             ctx->thread[i] = av_memdup(ctx, sizeof(DNXHDEncContext));
519             if (!ctx->thread[i])
520                 return AVERROR(ENOMEM);
521         }
522     }
523 
524     return 0;
525 }
526 
dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)527 static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
528 {
529     DNXHDEncContext *ctx = avctx->priv_data;
530 
531     memset(buf, 0, ctx->data_offset);
532 
533     // * write prefix */
534     AV_WB16(buf + 0x02, ctx->data_offset);
535     if (ctx->cid >= 1270 && ctx->cid <= 1274)
536         buf[4] = 0x03;
537     else
538         buf[4] = 0x01;
539 
540     buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
541     buf[6] = 0x80; // crc flag off
542     buf[7] = 0xa0; // reserved
543     AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
544     AV_WB16(buf + 0x1a, avctx->width);  // SPL
545     AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
546 
547     buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38;
548     buf[0x22] = 0x88 + (ctx->interlaced << 2);
549     AV_WB32(buf + 0x28, ctx->cid); // CID
550     buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
551 
552     buf[0x5f] = 0x01; // UDL
553 
554     buf[0x167] = 0x02; // reserved
555     AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
556     AV_WB16(buf + 0x16c, ctx->m.mb_height); // Ns
557     buf[0x16f] = 0x10; // reserved
558 
559     ctx->msip = buf + 0x170;
560     return 0;
561 }
562 
dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)563 static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
564 {
565     int nbits;
566     if (diff < 0) {
567         nbits = av_log2_16bit(-2 * diff);
568         diff--;
569     } else {
570         nbits = av_log2_16bit(2 * diff);
571     }
572     put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
573              (ctx->cid_table->dc_codes[nbits] << nbits) +
574              av_mod_uintp2(diff, nbits));
575 }
576 
577 static av_always_inline
dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, int last_index, int n)578 void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
579                         int last_index, int n)
580 {
581     int last_non_zero = 0;
582     int slevel, i, j;
583 
584     dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
585     ctx->m.last_dc[n] = block[0];
586 
587     for (i = 1; i <= last_index; i++) {
588         j = ctx->m.intra_scantable.permutated[i];
589         slevel = block[j];
590         if (slevel) {
591             int run_level = i - last_non_zero - 1;
592             int rlevel = slevel * (1 << 1) | !!run_level;
593             put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
594             if (run_level)
595                 put_bits(&ctx->m.pb, ctx->run_bits[run_level],
596                          ctx->run_codes[run_level]);
597             last_non_zero = i;
598         }
599     }
600     put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
601 }
602 
603 static av_always_inline
dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, int qscale, int last_index)604 void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
605                         int qscale, int last_index)
606 {
607     const uint8_t *weight_matrix;
608     int level;
609     int i;
610 
611     if (ctx->is_444) {
612         weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight
613                                       : ctx->cid_table->chroma_weight;
614     } else {
615         weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
616                                 : ctx->cid_table->luma_weight;
617     }
618 
619     for (i = 1; i <= last_index; i++) {
620         int j = ctx->m.intra_scantable.permutated[i];
621         level = block[j];
622         if (level) {
623             if (level < 0) {
624                 level = (1 - 2 * level) * qscale * weight_matrix[i];
625                 if (ctx->bit_depth == 10) {
626                     if (weight_matrix[i] != 8)
627                         level += 8;
628                     level >>= 4;
629                 } else {
630                     if (weight_matrix[i] != 32)
631                         level += 32;
632                     level >>= 6;
633                 }
634                 level = -level;
635             } else {
636                 level = (2 * level + 1) * qscale * weight_matrix[i];
637                 if (ctx->bit_depth == 10) {
638                     if (weight_matrix[i] != 8)
639                         level += 8;
640                     level >>= 4;
641                 } else {
642                     if (weight_matrix[i] != 32)
643                         level += 32;
644                     level >>= 6;
645                 }
646             }
647             block[j] = level;
648         }
649     }
650 }
651 
dnxhd_ssd_block(int16_t *qblock, int16_t *block)652 static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
653 {
654     int score = 0;
655     int i;
656     for (i = 0; i < 64; i++)
657         score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
658     return score;
659 }
660 
661 static av_always_inline
dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)662 int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
663 {
664     int last_non_zero = 0;
665     int bits = 0;
666     int i, j, level;
667     for (i = 1; i <= last_index; i++) {
668         j = ctx->m.intra_scantable.permutated[i];
669         level = block[j];
670         if (level) {
671             int run_level = i - last_non_zero - 1;
672             bits += ctx->vlc_bits[level * (1 << 1) |
673                     !!run_level] + ctx->run_bits[run_level];
674             last_non_zero = i;
675         }
676     }
677     return bits;
678 }
679 
680 static av_always_inline
dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)681 void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
682 {
683     const int bs = ctx->block_width_l2;
684     const int bw = 1 << bs;
685     int dct_y_offset = ctx->dct_y_offset;
686     int dct_uv_offset = ctx->dct_uv_offset;
687     int linesize = ctx->m.linesize;
688     int uvlinesize = ctx->m.uvlinesize;
689     const uint8_t *ptr_y = ctx->thread[0]->src[0] +
690                            ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
691     const uint8_t *ptr_u = ctx->thread[0]->src[1] +
692                            ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
693     const uint8_t *ptr_v = ctx->thread[0]->src[2] +
694                            ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
695     PixblockDSPContext *pdsp = &ctx->m.pdsp;
696     VideoDSPContext *vdsp = &ctx->m.vdsp;
697 
698     if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
699                                                            (mb_y << 4) + 16 > ctx->m.avctx->height)) {
700         int y_w = ctx->m.avctx->width  - (mb_x << 4);
701         int y_h = ctx->m.avctx->height - (mb_y << 4);
702         int uv_w = (y_w + 1) / 2;
703         int uv_h = y_h;
704         linesize = 16;
705         uvlinesize = 8;
706 
707         vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
708                                linesize, ctx->m.linesize,
709                                linesize, 16,
710                                0, 0, y_w, y_h);
711         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
712                                uvlinesize, ctx->m.uvlinesize,
713                                uvlinesize, 16,
714                                0, 0, uv_w, uv_h);
715         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
716                                uvlinesize, ctx->m.uvlinesize,
717                                uvlinesize, 16,
718                                0, 0, uv_w, uv_h);
719 
720         dct_y_offset =  bw * linesize;
721         dct_uv_offset = bw * uvlinesize;
722         ptr_y = &ctx->edge_buf_y[0];
723         ptr_u = &ctx->edge_buf_uv[0][0];
724         ptr_v = &ctx->edge_buf_uv[1][0];
725     } else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
726                                                                   (mb_y << 4) + 16 > ctx->m.avctx->height)) {
727         int y_w = ctx->m.avctx->width  - (mb_x << 4);
728         int y_h = ctx->m.avctx->height - (mb_y << 4);
729         int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2;
730         int uv_h = y_h;
731         linesize = 32;
732         uvlinesize = 16 + 16 * ctx->is_444;
733 
734         vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
735                                linesize, ctx->m.linesize,
736                                linesize / 2, 16,
737                                0, 0, y_w, y_h);
738         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
739                                uvlinesize, ctx->m.uvlinesize,
740                                uvlinesize / 2, 16,
741                                0, 0, uv_w, uv_h);
742         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
743                                uvlinesize, ctx->m.uvlinesize,
744                                uvlinesize / 2, 16,
745                                0, 0, uv_w, uv_h);
746 
747         dct_y_offset =  bw * linesize / 2;
748         dct_uv_offset = bw * uvlinesize / 2;
749         ptr_y = &ctx->edge_buf_y[0];
750         ptr_u = &ctx->edge_buf_uv[0][0];
751         ptr_v = &ctx->edge_buf_uv[1][0];
752     }
753 
754     if (!ctx->is_444) {
755         pdsp->get_pixels(ctx->blocks[0], ptr_y,      linesize);
756         pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
757         pdsp->get_pixels(ctx->blocks[2], ptr_u,      uvlinesize);
758         pdsp->get_pixels(ctx->blocks[3], ptr_v,      uvlinesize);
759 
760         if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
761             if (ctx->interlaced) {
762                 ctx->get_pixels_8x4_sym(ctx->blocks[4],
763                                         ptr_y + dct_y_offset,
764                                         linesize);
765                 ctx->get_pixels_8x4_sym(ctx->blocks[5],
766                                         ptr_y + dct_y_offset + bw,
767                                         linesize);
768                 ctx->get_pixels_8x4_sym(ctx->blocks[6],
769                                         ptr_u + dct_uv_offset,
770                                         uvlinesize);
771                 ctx->get_pixels_8x4_sym(ctx->blocks[7],
772                                         ptr_v + dct_uv_offset,
773                                         uvlinesize);
774             } else {
775                 ctx->bdsp.clear_block(ctx->blocks[4]);
776                 ctx->bdsp.clear_block(ctx->blocks[5]);
777                 ctx->bdsp.clear_block(ctx->blocks[6]);
778                 ctx->bdsp.clear_block(ctx->blocks[7]);
779             }
780         } else {
781             pdsp->get_pixels(ctx->blocks[4],
782                              ptr_y + dct_y_offset, linesize);
783             pdsp->get_pixels(ctx->blocks[5],
784                              ptr_y + dct_y_offset + bw, linesize);
785             pdsp->get_pixels(ctx->blocks[6],
786                              ptr_u + dct_uv_offset, uvlinesize);
787             pdsp->get_pixels(ctx->blocks[7],
788                              ptr_v + dct_uv_offset, uvlinesize);
789         }
790     } else {
791         pdsp->get_pixels(ctx->blocks[0], ptr_y,      linesize);
792         pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
793         pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize);
794         pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize);
795 
796         pdsp->get_pixels(ctx->blocks[2], ptr_u,      uvlinesize);
797         pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize);
798         pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize);
799         pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize);
800 
801         pdsp->get_pixels(ctx->blocks[4], ptr_v,      uvlinesize);
802         pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize);
803         pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize);
804         pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize);
805     }
806 }
807 
808 static av_always_inline
dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)809 int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
810 {
811     int x;
812 
813     if (ctx->is_444) {
814         x = (i >> 1) % 3;
815     } else {
816         const static uint8_t component[8]={0,0,1,2,0,0,1,2};
817         x = component[i];
818     }
819     return x;
820 }
821 
dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)822 static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
823                                   int jobnr, int threadnr)
824 {
825     DNXHDEncContext *ctx = avctx->priv_data;
826     int mb_y = jobnr, mb_x;
827     int qscale = ctx->qscale;
828     LOCAL_ALIGNED_16(int16_t, block, [64]);
829     ctx = ctx->thread[threadnr];
830 
831     ctx->m.last_dc[0] =
832     ctx->m.last_dc[1] =
833     ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
834 
835     for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
836         unsigned mb = mb_y * ctx->m.mb_width + mb_x;
837         int ssd     = 0;
838         int ac_bits = 0;
839         int dc_bits = 0;
840         int i;
841 
842         dnxhd_get_blocks(ctx, mb_x, mb_y);
843 
844         for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
845             int16_t *src_block = ctx->blocks[i];
846             int overflow, nbits, diff, last_index;
847             int n = dnxhd_switch_matrix(ctx, i);
848 
849             memcpy(block, src_block, 64 * sizeof(*block));
850             last_index = ctx->m.dct_quantize(&ctx->m, block,
851                                              ctx->is_444 ? 4 * (n > 0): 4 & (2*i),
852                                              qscale, &overflow);
853             ac_bits   += dnxhd_calc_ac_bits(ctx, block, last_index);
854 
855             diff = block[0] - ctx->m.last_dc[n];
856             if (diff < 0)
857                 nbits = av_log2_16bit(-2 * diff);
858             else
859                 nbits = av_log2_16bit(2 * diff);
860 
861             av_assert1(nbits < ctx->bit_depth + 4);
862             dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
863 
864             ctx->m.last_dc[n] = block[0];
865 
866             if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
867                 dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
868                 ctx->m.idsp.idct(block);
869                 ssd += dnxhd_ssd_block(block, src_block);
870             }
871         }
872         ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd  = ssd;
873         ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
874                                      (1 + ctx->is_444) * 8 * ctx->vlc_bits[0];
875     }
876     return 0;
877 }
878 
dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)879 static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
880                                int jobnr, int threadnr)
881 {
882     DNXHDEncContext *ctx = avctx->priv_data;
883     int mb_y = jobnr, mb_x;
884     ctx = ctx->thread[threadnr];
885     init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
886                   ctx->slice_size[jobnr]);
887 
888     ctx->m.last_dc[0] =
889     ctx->m.last_dc[1] =
890     ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
891     for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
892         unsigned mb = mb_y * ctx->m.mb_width + mb_x;
893         int qscale = ctx->mb_qscale[mb];
894         int i;
895 
896         put_bits(&ctx->m.pb, 11, qscale);
897         put_bits(&ctx->m.pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
898 
899         dnxhd_get_blocks(ctx, mb_x, mb_y);
900 
901         for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
902             int16_t *block = ctx->blocks[i];
903             int overflow, n = dnxhd_switch_matrix(ctx, i);
904             int last_index = ctx->m.dct_quantize(&ctx->m, block,
905                                                  ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i),
906                                                  qscale, &overflow);
907 
908             dnxhd_encode_block(ctx, block, last_index, n);
909         }
910     }
911     if (put_bits_count(&ctx->m.pb) & 31)
912         put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
913     flush_put_bits(&ctx->m.pb);
914     memset(put_bits_ptr(&ctx->m.pb), 0, put_bytes_left(&ctx->m.pb, 0));
915     return 0;
916 }
917 
dnxhd_setup_threads_slices(DNXHDEncContext *ctx)918 static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
919 {
920     int mb_y, mb_x;
921     int offset = 0;
922     for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
923         int thread_size;
924         ctx->slice_offs[mb_y] = offset;
925         ctx->slice_size[mb_y] = 0;
926         for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
927             unsigned mb = mb_y * ctx->m.mb_width + mb_x;
928             ctx->slice_size[mb_y] += ctx->mb_bits[mb];
929         }
930         ctx->slice_size[mb_y]   = (ctx->slice_size[mb_y] + 31U) & ~31U;
931         ctx->slice_size[mb_y] >>= 3;
932         thread_size = ctx->slice_size[mb_y];
933         offset += thread_size;
934     }
935 }
936 
dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)937 static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
938                                int jobnr, int threadnr)
939 {
940     DNXHDEncContext *ctx = avctx->priv_data;
941     int mb_y = jobnr, mb_x, x, y;
942     int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
943                            ((avctx->height >> ctx->interlaced) & 0xF);
944 
945     ctx = ctx->thread[threadnr];
946     if (ctx->bit_depth == 8) {
947         uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
948         for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
949             unsigned mb = mb_y * ctx->m.mb_width + mb_x;
950             int sum;
951             int varc;
952 
953             if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
954                 sum  = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
955                 varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
956             } else {
957                 int bw = FFMIN(avctx->width - 16 * mb_x, 16);
958                 int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
959                 sum = varc = 0;
960                 for (y = 0; y < bh; y++) {
961                     for (x = 0; x < bw; x++) {
962                         uint8_t val = pix[x + y * ctx->m.linesize];
963                         sum  += val;
964                         varc += val * val;
965                     }
966                 }
967             }
968             varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
969 
970             ctx->mb_cmp[mb].value = varc;
971             ctx->mb_cmp[mb].mb    = mb;
972         }
973     } else { // 10-bit
974         const int linesize = ctx->m.linesize >> 1;
975         for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
976             uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
977                             ((mb_y << 4) * linesize) + (mb_x << 4);
978             unsigned mb  = mb_y * ctx->m.mb_width + mb_x;
979             int sum = 0;
980             int sqsum = 0;
981             int bw = FFMIN(avctx->width - 16 * mb_x, 16);
982             int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
983             int mean, sqmean;
984             int i, j;
985             // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
986             for (i = 0; i < bh; ++i) {
987                 for (j = 0; j < bw; ++j) {
988                     // Turn 16-bit pixels into 10-bit ones.
989                     const int sample = (unsigned) pix[j] >> 6;
990                     sum   += sample;
991                     sqsum += sample * sample;
992                     // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
993                 }
994                 pix += linesize;
995             }
996             mean = sum >> 8; // 16*16 == 2^8
997             sqmean = sqsum >> 8;
998             ctx->mb_cmp[mb].value = sqmean - mean * mean;
999             ctx->mb_cmp[mb].mb    = mb;
1000         }
1001     }
1002     return 0;
1003 }
1004 
dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)1005 static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
1006 {
1007     int lambda, up_step, down_step;
1008     int last_lower = INT_MAX, last_higher = 0;
1009     int x, y, q;
1010 
1011     for (q = 1; q < avctx->qmax; q++) {
1012         ctx->qscale = q;
1013         avctx->execute2(avctx, dnxhd_calc_bits_thread,
1014                         NULL, NULL, ctx->m.mb_height);
1015     }
1016     up_step = down_step = 2 << LAMBDA_FRAC_BITS;
1017     lambda  = ctx->lambda;
1018 
1019     for (;;) {
1020         int bits = 0;
1021         int end  = 0;
1022         if (lambda == last_higher) {
1023             lambda++;
1024             end = 1; // need to set final qscales/bits
1025         }
1026         for (y = 0; y < ctx->m.mb_height; y++) {
1027             for (x = 0; x < ctx->m.mb_width; x++) {
1028                 unsigned min = UINT_MAX;
1029                 int qscale = 1;
1030                 int mb     = y * ctx->m.mb_width + x;
1031                 int rc = 0;
1032                 for (q = 1; q < avctx->qmax; q++) {
1033                     int i = (q*ctx->m.mb_num) + mb;
1034                     unsigned score = ctx->mb_rc[i].bits * lambda +
1035                                      ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
1036                     if (score < min) {
1037                         min    = score;
1038                         qscale = q;
1039                         rc = i;
1040                     }
1041                 }
1042                 bits += ctx->mb_rc[rc].bits;
1043                 ctx->mb_qscale[mb] = qscale;
1044                 ctx->mb_bits[mb]   = ctx->mb_rc[rc].bits;
1045             }
1046             bits = (bits + 31) & ~31; // padding
1047             if (bits > ctx->frame_bits)
1048                 break;
1049         }
1050         if (end) {
1051             if (bits > ctx->frame_bits)
1052                 return AVERROR(EINVAL);
1053             break;
1054         }
1055         if (bits < ctx->frame_bits) {
1056             last_lower = FFMIN(lambda, last_lower);
1057             if (last_higher != 0)
1058                 lambda = (lambda+last_higher)>>1;
1059             else
1060                 lambda -= down_step;
1061             down_step = FFMIN((int64_t)down_step*5, INT_MAX);
1062             up_step = 1<<LAMBDA_FRAC_BITS;
1063             lambda = FFMAX(1, lambda);
1064             if (lambda == last_lower)
1065                 break;
1066         } else {
1067             last_higher = FFMAX(lambda, last_higher);
1068             if (last_lower != INT_MAX)
1069                 lambda = (lambda+last_lower)>>1;
1070             else if ((int64_t)lambda + up_step > INT_MAX)
1071                 return AVERROR(EINVAL);
1072             else
1073                 lambda += up_step;
1074             up_step = FFMIN((int64_t)up_step*5, INT_MAX);
1075             down_step = 1<<LAMBDA_FRAC_BITS;
1076         }
1077     }
1078     ctx->lambda = lambda;
1079     return 0;
1080 }
1081 
dnxhd_find_qscale(DNXHDEncContext *ctx)1082 static int dnxhd_find_qscale(DNXHDEncContext *ctx)
1083 {
1084     int bits = 0;
1085     int up_step = 1;
1086     int down_step = 1;
1087     int last_higher = 0;
1088     int last_lower = INT_MAX;
1089     int qscale;
1090     int x, y;
1091 
1092     qscale = ctx->qscale;
1093     for (;;) {
1094         bits = 0;
1095         ctx->qscale = qscale;
1096         // XXX avoid recalculating bits
1097         ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
1098                                NULL, NULL, ctx->m.mb_height);
1099         for (y = 0; y < ctx->m.mb_height; y++) {
1100             for (x = 0; x < ctx->m.mb_width; x++)
1101                 bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits;
1102             bits = (bits+31)&~31; // padding
1103             if (bits > ctx->frame_bits)
1104                 break;
1105         }
1106         if (bits < ctx->frame_bits) {
1107             if (qscale == 1)
1108                 return 1;
1109             if (last_higher == qscale - 1) {
1110                 qscale = last_higher;
1111                 break;
1112             }
1113             last_lower = FFMIN(qscale, last_lower);
1114             if (last_higher != 0)
1115                 qscale = (qscale + last_higher) >> 1;
1116             else
1117                 qscale -= down_step++;
1118             if (qscale < 1)
1119                 qscale = 1;
1120             up_step = 1;
1121         } else {
1122             if (last_lower == qscale + 1)
1123                 break;
1124             last_higher = FFMAX(qscale, last_higher);
1125             if (last_lower != INT_MAX)
1126                 qscale = (qscale + last_lower) >> 1;
1127             else
1128                 qscale += up_step++;
1129             down_step = 1;
1130             if (qscale >= ctx->m.avctx->qmax)
1131                 return AVERROR(EINVAL);
1132         }
1133     }
1134     ctx->qscale = qscale;
1135     return 0;
1136 }
1137 
1138 #define BUCKET_BITS 8
1139 #define RADIX_PASSES 4
1140 #define NBUCKETS (1 << BUCKET_BITS)
1141 
get_bucket(int value, int shift)1142 static inline int get_bucket(int value, int shift)
1143 {
1144     value >>= shift;
1145     value  &= NBUCKETS - 1;
1146     return NBUCKETS - 1 - value;
1147 }
1148 
radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])1149 static void radix_count(const RCCMPEntry *data, int size,
1150                         int buckets[RADIX_PASSES][NBUCKETS])
1151 {
1152     int i, j;
1153     memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
1154     for (i = 0; i < size; i++) {
1155         int v = data[i].value;
1156         for (j = 0; j < RADIX_PASSES; j++) {
1157             buckets[j][get_bucket(v, 0)]++;
1158             v >>= BUCKET_BITS;
1159         }
1160         av_assert1(!v);
1161     }
1162     for (j = 0; j < RADIX_PASSES; j++) {
1163         int offset = size;
1164         for (i = NBUCKETS - 1; i >= 0; i--)
1165             buckets[j][i] = offset -= buckets[j][i];
1166         av_assert1(!buckets[j][0]);
1167     }
1168 }
1169 
radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)1170 static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
1171                             int size, int buckets[NBUCKETS], int pass)
1172 {
1173     int shift = pass * BUCKET_BITS;
1174     int i;
1175     for (i = 0; i < size; i++) {
1176         int v   = get_bucket(data[i].value, shift);
1177         int pos = buckets[v]++;
1178         dst[pos] = data[i];
1179     }
1180 }
1181 
radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)1182 static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)
1183 {
1184     int buckets[RADIX_PASSES][NBUCKETS];
1185     radix_count(data, size, buckets);
1186     radix_sort_pass(tmp, data, size, buckets[0], 0);
1187     radix_sort_pass(data, tmp, size, buckets[1], 1);
1188     if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
1189         radix_sort_pass(tmp, data, size, buckets[2], 2);
1190         radix_sort_pass(data, tmp, size, buckets[3], 3);
1191     }
1192 }
1193 
dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)1194 static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
1195 {
1196     int max_bits = 0;
1197     int ret, x, y;
1198     if ((ret = dnxhd_find_qscale(ctx)) < 0)
1199         return ret;
1200     for (y = 0; y < ctx->m.mb_height; y++) {
1201         for (x = 0; x < ctx->m.mb_width; x++) {
1202             int mb = y * ctx->m.mb_width + x;
1203             int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1204             int delta_bits;
1205             ctx->mb_qscale[mb] = ctx->qscale;
1206             ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
1207             max_bits += ctx->mb_rc[rc].bits;
1208             if (!RC_VARIANCE) {
1209                 delta_bits = ctx->mb_rc[rc].bits -
1210                              ctx->mb_rc[rc + ctx->m.mb_num].bits;
1211                 ctx->mb_cmp[mb].mb = mb;
1212                 ctx->mb_cmp[mb].value =
1213                     delta_bits ? ((ctx->mb_rc[rc].ssd -
1214                                    ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) /
1215                                   delta_bits
1216                                : INT_MIN; // avoid increasing qscale
1217             }
1218         }
1219         max_bits += 31; // worst padding
1220     }
1221     if (!ret) {
1222         if (RC_VARIANCE)
1223             avctx->execute2(avctx, dnxhd_mb_var_thread,
1224                             NULL, NULL, ctx->m.mb_height);
1225         radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num);
1226 retry:
1227         for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
1228             int mb = ctx->mb_cmp[x].mb;
1229             int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1230             max_bits -= ctx->mb_rc[rc].bits -
1231                         ctx->mb_rc[rc + ctx->m.mb_num].bits;
1232             if (ctx->mb_qscale[mb] < 255)
1233                 ctx->mb_qscale[mb]++;
1234             ctx->mb_bits[mb]   = ctx->mb_rc[rc + ctx->m.mb_num].bits;
1235         }
1236 
1237         if (max_bits > ctx->frame_bits)
1238             goto retry;
1239     }
1240     return 0;
1241 }
1242 
dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)1243 static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
1244 {
1245     int i;
1246 
1247     for (i = 0; i < ctx->m.avctx->thread_count; i++) {
1248         ctx->thread[i]->m.linesize    = frame->linesize[0] << ctx->interlaced;
1249         ctx->thread[i]->m.uvlinesize  = frame->linesize[1] << ctx->interlaced;
1250         ctx->thread[i]->dct_y_offset  = ctx->m.linesize  *8;
1251         ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
1252     }
1253 
1254     ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
1255 }
1256 
dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet)1257 static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
1258                                 const AVFrame *frame, int *got_packet)
1259 {
1260     DNXHDEncContext *ctx = avctx->priv_data;
1261     int first_field = 1;
1262     int offset, i, ret;
1263     uint8_t *buf;
1264 
1265     if ((ret = ff_get_encode_buffer(avctx, pkt, ctx->frame_size, 0)) < 0)
1266         return ret;
1267     buf = pkt->data;
1268 
1269     dnxhd_load_picture(ctx, frame);
1270 
1271 encode_coding_unit:
1272     for (i = 0; i < 3; i++) {
1273         ctx->src[i] = frame->data[i];
1274         if (ctx->interlaced && ctx->cur_field)
1275             ctx->src[i] += frame->linesize[i];
1276     }
1277 
1278     dnxhd_write_header(avctx, buf);
1279 
1280     if (avctx->mb_decision == FF_MB_DECISION_RD)
1281         ret = dnxhd_encode_rdo(avctx, ctx);
1282     else
1283         ret = dnxhd_encode_fast(avctx, ctx);
1284     if (ret < 0) {
1285         av_log(avctx, AV_LOG_ERROR,
1286                "picture could not fit ratecontrol constraints, increase qmax\n");
1287         return ret;
1288     }
1289 
1290     dnxhd_setup_threads_slices(ctx);
1291 
1292     offset = 0;
1293     for (i = 0; i < ctx->m.mb_height; i++) {
1294         AV_WB32(ctx->msip + i * 4, offset);
1295         offset += ctx->slice_size[i];
1296         av_assert1(!(ctx->slice_size[i] & 3));
1297     }
1298 
1299     avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
1300 
1301     av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
1302     memset(buf + ctx->data_offset + offset, 0,
1303            ctx->coding_unit_size - 4 - offset - ctx->data_offset);
1304 
1305     AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
1306 
1307     if (ctx->interlaced && first_field) {
1308         first_field     = 0;
1309         ctx->cur_field ^= 1;
1310         buf            += ctx->coding_unit_size;
1311         goto encode_coding_unit;
1312     }
1313 
1314     ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I);
1315 
1316     *got_packet = 1;
1317     return 0;
1318 }
1319 
dnxhd_encode_end(AVCodecContext *avctx)1320 static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
1321 {
1322     DNXHDEncContext *ctx = avctx->priv_data;
1323     int i;
1324 
1325     av_freep(&ctx->orig_vlc_codes);
1326     av_freep(&ctx->orig_vlc_bits);
1327     av_freep(&ctx->run_codes);
1328     av_freep(&ctx->run_bits);
1329 
1330     av_freep(&ctx->mb_bits);
1331     av_freep(&ctx->mb_qscale);
1332     av_freep(&ctx->mb_rc);
1333     av_freep(&ctx->mb_cmp);
1334     av_freep(&ctx->mb_cmp_tmp);
1335     av_freep(&ctx->slice_size);
1336     av_freep(&ctx->slice_offs);
1337 
1338     av_freep(&ctx->qmatrix_c);
1339     av_freep(&ctx->qmatrix_l);
1340     av_freep(&ctx->qmatrix_c16);
1341     av_freep(&ctx->qmatrix_l16);
1342 
1343     if (ctx->thread[1]) {
1344         for (i = 1; i < avctx->thread_count; i++)
1345             av_freep(&ctx->thread[i]);
1346     }
1347 
1348     return 0;
1349 }
1350 
1351 static const FFCodecDefault dnxhd_defaults[] = {
1352     { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
1353     { NULL },
1354 };
1355 
1356 const FFCodec ff_dnxhd_encoder = {
1357     .p.name         = "dnxhd",
1358     .p.long_name    = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1359     .p.type         = AVMEDIA_TYPE_VIDEO,
1360     .p.id           = AV_CODEC_ID_DNXHD,
1361     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
1362                       AV_CODEC_CAP_SLICE_THREADS,
1363     .priv_data_size = sizeof(DNXHDEncContext),
1364     .init           = dnxhd_encode_init,
1365     FF_CODEC_ENCODE_CB(dnxhd_encode_picture),
1366     .close          = dnxhd_encode_end,
1367     .p.pix_fmts     = (const enum AVPixelFormat[]) {
1368         AV_PIX_FMT_YUV422P,
1369         AV_PIX_FMT_YUV422P10,
1370         AV_PIX_FMT_YUV444P10,
1371         AV_PIX_FMT_GBRP10,
1372         AV_PIX_FMT_NONE
1373     },
1374     .p.priv_class   = &dnxhd_class,
1375     .defaults       = dnxhd_defaults,
1376     .p.profiles     = NULL_IF_CONFIG_SMALL(ff_dnxhd_profiles),
1377     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
1378 };
1379