1 /*
2 * VC3/DNxHD encoder
3 * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4 * Copyright (c) 2011 MirriAd Ltd
5 *
6 * VC-3 encoder funded by the British Broadcasting Corporation
7 * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
8 *
9 * This file is part of FFmpeg.
10 *
11 * FFmpeg is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * FFmpeg is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with FFmpeg; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 */
25
26 #include "libavutil/attributes.h"
27 #include "libavutil/internal.h"
28 #include "libavutil/mem_internal.h"
29 #include "libavutil/opt.h"
30
31 #include "avcodec.h"
32 #include "blockdsp.h"
33 #include "codec_internal.h"
34 #include "encode.h"
35 #include "fdctdsp.h"
36 #include "mathops.h"
37 #include "mpegvideo.h"
38 #include "mpegvideoenc.h"
39 #include "pixblockdsp.h"
40 #include "packet_internal.h"
41 #include "profiles.h"
42 #include "dnxhdenc.h"
43
44 // The largest value that will not lead to overflow for 10-bit samples.
45 #define DNX10BIT_QMAT_SHIFT 18
46 #define RC_VARIANCE 1 // use variance or ssd for fast rc
47 #define LAMBDA_FRAC_BITS 10
48
49 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
50 static const AVOption options[] = {
51 { "nitris_compat", "encode with Avid Nitris compatibility",
52 offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
53 { "ibias", "intra quant bias",
54 offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
55 { .i64 = 0 }, INT_MIN, INT_MAX, VE },
56 { "profile", NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
57 { .i64 = FF_PROFILE_DNXHD },
58 FF_PROFILE_DNXHD, FF_PROFILE_DNXHR_444, VE, "profile" },
59 { "dnxhd", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHD },
60 0, 0, VE, "profile" },
61 { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_444 },
62 0, 0, VE, "profile" },
63 { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQX },
64 0, 0, VE, "profile" },
65 { "dnxhr_hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQ },
66 0, 0, VE, "profile" },
67 { "dnxhr_sq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_SQ },
68 0, 0, VE, "profile" },
69 { "dnxhr_lb", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_LB },
70 0, 0, VE, "profile" },
71 { NULL }
72 };
73
74 static const AVClass dnxhd_class = {
75 .class_name = "dnxhd",
76 .item_name = av_default_item_name,
77 .option = options,
78 .version = LIBAVUTIL_VERSION_INT,
79 };
80
dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block, const uint8_t *pixels, ptrdiff_t line_size)81 static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
82 const uint8_t *pixels,
83 ptrdiff_t line_size)
84 {
85 int i;
86 for (i = 0; i < 4; i++) {
87 block[0] = pixels[0];
88 block[1] = pixels[1];
89 block[2] = pixels[2];
90 block[3] = pixels[3];
91 block[4] = pixels[4];
92 block[5] = pixels[5];
93 block[6] = pixels[6];
94 block[7] = pixels[7];
95 pixels += line_size;
96 block += 8;
97 }
98 memcpy(block, block - 8, sizeof(*block) * 8);
99 memcpy(block + 8, block - 16, sizeof(*block) * 8);
100 memcpy(block + 16, block - 24, sizeof(*block) * 8);
101 memcpy(block + 24, block - 32, sizeof(*block) * 8);
102 }
103
104 static av_always_inline
dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block, const uint8_t *pixels, ptrdiff_t line_size)105 void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
106 const uint8_t *pixels,
107 ptrdiff_t line_size)
108 {
109 memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
110 memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
111 memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
112 memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
113 memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
114 memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
115 memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
116 memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
117 }
118
dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block, int n, int qscale, int *overflow)119 static int dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block,
120 int n, int qscale, int *overflow)
121 {
122 int i, j, level, last_non_zero, start_i;
123 const int *qmat;
124 const uint8_t *scantable= ctx->intra_scantable.scantable;
125 int bias;
126 int max = 0;
127 unsigned int threshold1, threshold2;
128
129 ctx->fdsp.fdct(block);
130
131 block[0] = (block[0] + 2) >> 2;
132 start_i = 1;
133 last_non_zero = 0;
134 qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
135 bias= ctx->intra_quant_bias * (1 << (16 - 8));
136 threshold1 = (1 << 16) - bias - 1;
137 threshold2 = (threshold1 << 1);
138
139 for (i = 63; i >= start_i; i--) {
140 j = scantable[i];
141 level = block[j] * qmat[j];
142
143 if (((unsigned)(level + threshold1)) > threshold2) {
144 last_non_zero = i;
145 break;
146 } else{
147 block[j]=0;
148 }
149 }
150
151 for (i = start_i; i <= last_non_zero; i++) {
152 j = scantable[i];
153 level = block[j] * qmat[j];
154
155 if (((unsigned)(level + threshold1)) > threshold2) {
156 if (level > 0) {
157 level = (bias + level) >> 16;
158 block[j] = level;
159 } else{
160 level = (bias - level) >> 16;
161 block[j] = -level;
162 }
163 max |= level;
164 } else {
165 block[j] = 0;
166 }
167 }
168 *overflow = ctx->max_qcoeff < max; //overflow might have happened
169
170 /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
171 if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
172 ff_block_permute(block, ctx->idsp.idct_permutation,
173 scantable, last_non_zero);
174
175 return last_non_zero;
176 }
177
dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block, int n, int qscale, int *overflow)178 static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
179 int n, int qscale, int *overflow)
180 {
181 const uint8_t *scantable= ctx->intra_scantable.scantable;
182 const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
183 int last_non_zero = 0;
184 int i;
185
186 ctx->fdsp.fdct(block);
187
188 // Divide by 4 with rounding, to compensate scaling of DCT coefficients
189 block[0] = (block[0] + 2) >> 2;
190
191 for (i = 1; i < 64; ++i) {
192 int j = scantable[i];
193 int sign = FF_SIGNBIT(block[j]);
194 int level = (block[j] ^ sign) - sign;
195 level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
196 block[j] = (level ^ sign) - sign;
197 if (level)
198 last_non_zero = i;
199 }
200
201 /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
202 if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
203 ff_block_permute(block, ctx->idsp.idct_permutation,
204 scantable, last_non_zero);
205
206 return last_non_zero;
207 }
208
dnxhd_init_vlc(DNXHDEncContext *ctx)209 static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
210 {
211 int i, j, level, run;
212 int max_level = 1 << (ctx->bit_depth + 2);
213
214 if (!FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_codes, max_level * 4) ||
215 !FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_bits, max_level * 4) ||
216 !(ctx->run_codes = av_mallocz(63 * 2)) ||
217 !(ctx->run_bits = av_mallocz(63)))
218 return AVERROR(ENOMEM);
219 ctx->vlc_codes = ctx->orig_vlc_codes + max_level * 2;
220 ctx->vlc_bits = ctx->orig_vlc_bits + max_level * 2;
221 for (level = -max_level; level < max_level; level++) {
222 for (run = 0; run < 2; run++) {
223 int index = level * (1 << 1) | run;
224 int sign, offset = 0, alevel = level;
225
226 MASK_ABS(sign, alevel);
227 if (alevel > 64) {
228 offset = (alevel - 1) >> 6;
229 alevel -= offset << 6;
230 }
231 for (j = 0; j < 257; j++) {
232 if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
233 (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
234 (!run || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
235 av_assert1(!ctx->vlc_codes[index]);
236 if (alevel) {
237 ctx->vlc_codes[index] =
238 (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
239 ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
240 } else {
241 ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
242 ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
243 }
244 break;
245 }
246 }
247 av_assert0(!alevel || j < 257);
248 if (offset) {
249 ctx->vlc_codes[index] =
250 (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
251 ctx->vlc_bits[index] += ctx->cid_table->index_bits;
252 }
253 }
254 }
255 for (i = 0; i < 62; i++) {
256 int run = ctx->cid_table->run[i];
257 av_assert0(run < 63);
258 ctx->run_codes[run] = ctx->cid_table->run_codes[i];
259 ctx->run_bits[run] = ctx->cid_table->run_bits[i];
260 }
261 return 0;
262 }
263
dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)264 static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
265 {
266 // init first elem to 1 to avoid div by 0 in convert_matrix
267 uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
268 int qscale, i;
269 const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
270 const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
271
272 if (!FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l, ctx->m.avctx->qmax + 1) ||
273 !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c, ctx->m.avctx->qmax + 1) ||
274 !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l16, ctx->m.avctx->qmax + 1) ||
275 !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c16, ctx->m.avctx->qmax + 1))
276 return AVERROR(ENOMEM);
277
278 if (ctx->bit_depth == 8) {
279 for (i = 1; i < 64; i++) {
280 int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
281 weight_matrix[j] = ctx->cid_table->luma_weight[i];
282 }
283 ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
284 weight_matrix, ctx->intra_quant_bias, 1,
285 ctx->m.avctx->qmax, 1);
286 for (i = 1; i < 64; i++) {
287 int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
288 weight_matrix[j] = ctx->cid_table->chroma_weight[i];
289 }
290 ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
291 weight_matrix, ctx->intra_quant_bias, 1,
292 ctx->m.avctx->qmax, 1);
293
294 for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
295 for (i = 0; i < 64; i++) {
296 ctx->qmatrix_l[qscale][i] <<= 2;
297 ctx->qmatrix_c[qscale][i] <<= 2;
298 ctx->qmatrix_l16[qscale][0][i] <<= 2;
299 ctx->qmatrix_l16[qscale][1][i] <<= 2;
300 ctx->qmatrix_c16[qscale][0][i] <<= 2;
301 ctx->qmatrix_c16[qscale][1][i] <<= 2;
302 }
303 }
304 } else {
305 // 10-bit
306 for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
307 for (i = 1; i < 64; i++) {
308 int j = ff_zigzag_direct[i];
309
310 /* The quantization formula from the VC-3 standard is:
311 * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
312 * (qscale * weight_table[i]))
313 * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
314 * The s factor compensates scaling of DCT coefficients done by
315 * the DCT routines, and therefore is not present in standard.
316 * It's 8 for 8-bit samples and 4 for 10-bit ones.
317 * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
318 * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
319 * (qscale * weight_table[i])
320 * For 10-bit samples, p / s == 2 */
321 ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
322 (qscale * luma_weight_table[i]);
323 ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
324 (qscale * chroma_weight_table[i]);
325 }
326 }
327 }
328
329 ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
330 ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
331 ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
332 ctx->m.q_intra_matrix = ctx->qmatrix_l;
333
334 return 0;
335 }
336
dnxhd_init_rc(DNXHDEncContext *ctx)337 static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
338 {
339 if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_rc, (ctx->m.avctx->qmax + 1) * ctx->m.mb_num))
340 return AVERROR(ENOMEM);
341
342 if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) {
343 if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp, ctx->m.mb_num) ||
344 !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp_tmp, ctx->m.mb_num))
345 return AVERROR(ENOMEM);
346 }
347 ctx->frame_bits = (ctx->coding_unit_size -
348 ctx->data_offset - 4 - ctx->min_padding) * 8;
349 ctx->qscale = 1;
350 ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
351 return 0;
352 }
353
dnxhd_encode_init(AVCodecContext *avctx)354 static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
355 {
356 DNXHDEncContext *ctx = avctx->priv_data;
357 int i, ret;
358
359 switch (avctx->pix_fmt) {
360 case AV_PIX_FMT_YUV422P:
361 ctx->bit_depth = 8;
362 break;
363 case AV_PIX_FMT_YUV422P10:
364 case AV_PIX_FMT_YUV444P10:
365 case AV_PIX_FMT_GBRP10:
366 ctx->bit_depth = 10;
367 break;
368 }
369
370 if ((ctx->profile == FF_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 &&
371 avctx->pix_fmt != AV_PIX_FMT_GBRP10)) ||
372 (ctx->profile != FF_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ||
373 avctx->pix_fmt == AV_PIX_FMT_GBRP10))) {
374 av_log(avctx, AV_LOG_ERROR,
375 "pixel format is incompatible with DNxHD profile\n");
376 return AVERROR(EINVAL);
377 }
378
379 if (ctx->profile == FF_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) {
380 av_log(avctx, AV_LOG_ERROR,
381 "pixel format is incompatible with DNxHR HQX profile\n");
382 return AVERROR(EINVAL);
383 }
384
385 if ((ctx->profile == FF_PROFILE_DNXHR_LB ||
386 ctx->profile == FF_PROFILE_DNXHR_SQ ||
387 ctx->profile == FF_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
388 av_log(avctx, AV_LOG_ERROR,
389 "pixel format is incompatible with DNxHR LB/SQ/HQ profile\n");
390 return AVERROR(EINVAL);
391 }
392
393 ctx->is_444 = ctx->profile == FF_PROFILE_DNXHR_444;
394 avctx->profile = ctx->profile;
395 ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth);
396 if (!ctx->cid) {
397 av_log(avctx, AV_LOG_ERROR,
398 "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
399 ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
400 return AVERROR(EINVAL);
401 }
402 av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
403
404 if (ctx->cid >= 1270 && ctx->cid <= 1274)
405 avctx->codec_tag = MKTAG('A','V','d','h');
406
407 if (avctx->width < 256 || avctx->height < 120) {
408 av_log(avctx, AV_LOG_ERROR,
409 "Input dimensions too small, input must be at least 256x120\n");
410 return AVERROR(EINVAL);
411 }
412
413 ctx->cid_table = ff_dnxhd_get_cid_table(ctx->cid);
414 av_assert0(ctx->cid_table);
415
416 ctx->m.avctx = avctx;
417 ctx->m.mb_intra = 1;
418 ctx->m.h263_aic = 1;
419
420 avctx->bits_per_raw_sample = ctx->bit_depth;
421
422 ff_blockdsp_init(&ctx->bdsp, avctx);
423 ff_fdctdsp_init(&ctx->m.fdsp, avctx);
424 ff_mpv_idct_init(&ctx->m);
425 ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
426 ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
427 ff_dct_encode_init(&ctx->m);
428
429 if (ctx->profile != FF_PROFILE_DNXHD)
430 ff_videodsp_init(&ctx->m.vdsp, ctx->bit_depth);
431
432 if (!ctx->m.dct_quantize)
433 ctx->m.dct_quantize = ff_dct_quantize_c;
434
435 if (ctx->is_444 || ctx->profile == FF_PROFILE_DNXHR_HQX) {
436 ctx->m.dct_quantize = dnxhd_10bit_dct_quantize_444;
437 ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
438 ctx->block_width_l2 = 4;
439 } else if (ctx->bit_depth == 10) {
440 ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
441 ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
442 ctx->block_width_l2 = 4;
443 } else {
444 ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
445 ctx->block_width_l2 = 3;
446 }
447
448 #if ARCH_X86
449 ff_dnxhdenc_init_x86(ctx);
450 #endif
451
452 ctx->m.mb_height = (avctx->height + 15) / 16;
453 ctx->m.mb_width = (avctx->width + 15) / 16;
454
455 if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
456 ctx->interlaced = 1;
457 ctx->m.mb_height /= 2;
458 }
459
460 if (ctx->interlaced && ctx->profile != FF_PROFILE_DNXHD) {
461 av_log(avctx, AV_LOG_ERROR,
462 "Interlaced encoding is not supported for DNxHR profiles.\n");
463 return AVERROR(EINVAL);
464 }
465
466 ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
467
468 if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
469 ctx->frame_size = ff_dnxhd_get_hr_frame_size(ctx->cid,
470 avctx->width, avctx->height);
471 av_assert0(ctx->frame_size >= 0);
472 ctx->coding_unit_size = ctx->frame_size;
473 } else {
474 ctx->frame_size = ctx->cid_table->frame_size;
475 ctx->coding_unit_size = ctx->cid_table->coding_unit_size;
476 }
477
478 if (ctx->m.mb_height > 68)
479 ctx->data_offset = 0x170 + (ctx->m.mb_height << 2);
480 else
481 ctx->data_offset = 0x280;
482
483 // XXX tune lbias/cbias
484 if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
485 return ret;
486
487 /* Avid Nitris hardware decoder requires a minimum amount of padding
488 * in the coding unit payload */
489 if (ctx->nitris_compat)
490 ctx->min_padding = 1600;
491
492 if ((ret = dnxhd_init_vlc(ctx)) < 0)
493 return ret;
494 if ((ret = dnxhd_init_rc(ctx)) < 0)
495 return ret;
496
497 if (!FF_ALLOCZ_TYPED_ARRAY(ctx->slice_size, ctx->m.mb_height) ||
498 !FF_ALLOCZ_TYPED_ARRAY(ctx->slice_offs, ctx->m.mb_height) ||
499 !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_bits, ctx->m.mb_num) ||
500 !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_qscale, ctx->m.mb_num))
501 return AVERROR(ENOMEM);
502
503 if (avctx->active_thread_type == FF_THREAD_SLICE) {
504 if (avctx->thread_count > MAX_THREADS) {
505 av_log(avctx, AV_LOG_ERROR, "too many threads\n");
506 return AVERROR(EINVAL);
507 }
508 }
509
510 if (avctx->qmax <= 1) {
511 av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
512 return AVERROR(EINVAL);
513 }
514
515 ctx->thread[0] = ctx;
516 if (avctx->active_thread_type == FF_THREAD_SLICE) {
517 for (i = 1; i < avctx->thread_count; i++) {
518 ctx->thread[i] = av_memdup(ctx, sizeof(DNXHDEncContext));
519 if (!ctx->thread[i])
520 return AVERROR(ENOMEM);
521 }
522 }
523
524 return 0;
525 }
526
dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)527 static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
528 {
529 DNXHDEncContext *ctx = avctx->priv_data;
530
531 memset(buf, 0, ctx->data_offset);
532
533 // * write prefix */
534 AV_WB16(buf + 0x02, ctx->data_offset);
535 if (ctx->cid >= 1270 && ctx->cid <= 1274)
536 buf[4] = 0x03;
537 else
538 buf[4] = 0x01;
539
540 buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
541 buf[6] = 0x80; // crc flag off
542 buf[7] = 0xa0; // reserved
543 AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
544 AV_WB16(buf + 0x1a, avctx->width); // SPL
545 AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
546
547 buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38;
548 buf[0x22] = 0x88 + (ctx->interlaced << 2);
549 AV_WB32(buf + 0x28, ctx->cid); // CID
550 buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
551
552 buf[0x5f] = 0x01; // UDL
553
554 buf[0x167] = 0x02; // reserved
555 AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
556 AV_WB16(buf + 0x16c, ctx->m.mb_height); // Ns
557 buf[0x16f] = 0x10; // reserved
558
559 ctx->msip = buf + 0x170;
560 return 0;
561 }
562
dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)563 static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
564 {
565 int nbits;
566 if (diff < 0) {
567 nbits = av_log2_16bit(-2 * diff);
568 diff--;
569 } else {
570 nbits = av_log2_16bit(2 * diff);
571 }
572 put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
573 (ctx->cid_table->dc_codes[nbits] << nbits) +
574 av_mod_uintp2(diff, nbits));
575 }
576
577 static av_always_inline
dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, int last_index, int n)578 void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
579 int last_index, int n)
580 {
581 int last_non_zero = 0;
582 int slevel, i, j;
583
584 dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
585 ctx->m.last_dc[n] = block[0];
586
587 for (i = 1; i <= last_index; i++) {
588 j = ctx->m.intra_scantable.permutated[i];
589 slevel = block[j];
590 if (slevel) {
591 int run_level = i - last_non_zero - 1;
592 int rlevel = slevel * (1 << 1) | !!run_level;
593 put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
594 if (run_level)
595 put_bits(&ctx->m.pb, ctx->run_bits[run_level],
596 ctx->run_codes[run_level]);
597 last_non_zero = i;
598 }
599 }
600 put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
601 }
602
603 static av_always_inline
dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, int qscale, int last_index)604 void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
605 int qscale, int last_index)
606 {
607 const uint8_t *weight_matrix;
608 int level;
609 int i;
610
611 if (ctx->is_444) {
612 weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight
613 : ctx->cid_table->chroma_weight;
614 } else {
615 weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
616 : ctx->cid_table->luma_weight;
617 }
618
619 for (i = 1; i <= last_index; i++) {
620 int j = ctx->m.intra_scantable.permutated[i];
621 level = block[j];
622 if (level) {
623 if (level < 0) {
624 level = (1 - 2 * level) * qscale * weight_matrix[i];
625 if (ctx->bit_depth == 10) {
626 if (weight_matrix[i] != 8)
627 level += 8;
628 level >>= 4;
629 } else {
630 if (weight_matrix[i] != 32)
631 level += 32;
632 level >>= 6;
633 }
634 level = -level;
635 } else {
636 level = (2 * level + 1) * qscale * weight_matrix[i];
637 if (ctx->bit_depth == 10) {
638 if (weight_matrix[i] != 8)
639 level += 8;
640 level >>= 4;
641 } else {
642 if (weight_matrix[i] != 32)
643 level += 32;
644 level >>= 6;
645 }
646 }
647 block[j] = level;
648 }
649 }
650 }
651
dnxhd_ssd_block(int16_t *qblock, int16_t *block)652 static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
653 {
654 int score = 0;
655 int i;
656 for (i = 0; i < 64; i++)
657 score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
658 return score;
659 }
660
661 static av_always_inline
dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)662 int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
663 {
664 int last_non_zero = 0;
665 int bits = 0;
666 int i, j, level;
667 for (i = 1; i <= last_index; i++) {
668 j = ctx->m.intra_scantable.permutated[i];
669 level = block[j];
670 if (level) {
671 int run_level = i - last_non_zero - 1;
672 bits += ctx->vlc_bits[level * (1 << 1) |
673 !!run_level] + ctx->run_bits[run_level];
674 last_non_zero = i;
675 }
676 }
677 return bits;
678 }
679
680 static av_always_inline
dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)681 void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
682 {
683 const int bs = ctx->block_width_l2;
684 const int bw = 1 << bs;
685 int dct_y_offset = ctx->dct_y_offset;
686 int dct_uv_offset = ctx->dct_uv_offset;
687 int linesize = ctx->m.linesize;
688 int uvlinesize = ctx->m.uvlinesize;
689 const uint8_t *ptr_y = ctx->thread[0]->src[0] +
690 ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
691 const uint8_t *ptr_u = ctx->thread[0]->src[1] +
692 ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
693 const uint8_t *ptr_v = ctx->thread[0]->src[2] +
694 ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
695 PixblockDSPContext *pdsp = &ctx->m.pdsp;
696 VideoDSPContext *vdsp = &ctx->m.vdsp;
697
698 if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
699 (mb_y << 4) + 16 > ctx->m.avctx->height)) {
700 int y_w = ctx->m.avctx->width - (mb_x << 4);
701 int y_h = ctx->m.avctx->height - (mb_y << 4);
702 int uv_w = (y_w + 1) / 2;
703 int uv_h = y_h;
704 linesize = 16;
705 uvlinesize = 8;
706
707 vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
708 linesize, ctx->m.linesize,
709 linesize, 16,
710 0, 0, y_w, y_h);
711 vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
712 uvlinesize, ctx->m.uvlinesize,
713 uvlinesize, 16,
714 0, 0, uv_w, uv_h);
715 vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
716 uvlinesize, ctx->m.uvlinesize,
717 uvlinesize, 16,
718 0, 0, uv_w, uv_h);
719
720 dct_y_offset = bw * linesize;
721 dct_uv_offset = bw * uvlinesize;
722 ptr_y = &ctx->edge_buf_y[0];
723 ptr_u = &ctx->edge_buf_uv[0][0];
724 ptr_v = &ctx->edge_buf_uv[1][0];
725 } else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
726 (mb_y << 4) + 16 > ctx->m.avctx->height)) {
727 int y_w = ctx->m.avctx->width - (mb_x << 4);
728 int y_h = ctx->m.avctx->height - (mb_y << 4);
729 int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2;
730 int uv_h = y_h;
731 linesize = 32;
732 uvlinesize = 16 + 16 * ctx->is_444;
733
734 vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
735 linesize, ctx->m.linesize,
736 linesize / 2, 16,
737 0, 0, y_w, y_h);
738 vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
739 uvlinesize, ctx->m.uvlinesize,
740 uvlinesize / 2, 16,
741 0, 0, uv_w, uv_h);
742 vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
743 uvlinesize, ctx->m.uvlinesize,
744 uvlinesize / 2, 16,
745 0, 0, uv_w, uv_h);
746
747 dct_y_offset = bw * linesize / 2;
748 dct_uv_offset = bw * uvlinesize / 2;
749 ptr_y = &ctx->edge_buf_y[0];
750 ptr_u = &ctx->edge_buf_uv[0][0];
751 ptr_v = &ctx->edge_buf_uv[1][0];
752 }
753
754 if (!ctx->is_444) {
755 pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
756 pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
757 pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
758 pdsp->get_pixels(ctx->blocks[3], ptr_v, uvlinesize);
759
760 if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
761 if (ctx->interlaced) {
762 ctx->get_pixels_8x4_sym(ctx->blocks[4],
763 ptr_y + dct_y_offset,
764 linesize);
765 ctx->get_pixels_8x4_sym(ctx->blocks[5],
766 ptr_y + dct_y_offset + bw,
767 linesize);
768 ctx->get_pixels_8x4_sym(ctx->blocks[6],
769 ptr_u + dct_uv_offset,
770 uvlinesize);
771 ctx->get_pixels_8x4_sym(ctx->blocks[7],
772 ptr_v + dct_uv_offset,
773 uvlinesize);
774 } else {
775 ctx->bdsp.clear_block(ctx->blocks[4]);
776 ctx->bdsp.clear_block(ctx->blocks[5]);
777 ctx->bdsp.clear_block(ctx->blocks[6]);
778 ctx->bdsp.clear_block(ctx->blocks[7]);
779 }
780 } else {
781 pdsp->get_pixels(ctx->blocks[4],
782 ptr_y + dct_y_offset, linesize);
783 pdsp->get_pixels(ctx->blocks[5],
784 ptr_y + dct_y_offset + bw, linesize);
785 pdsp->get_pixels(ctx->blocks[6],
786 ptr_u + dct_uv_offset, uvlinesize);
787 pdsp->get_pixels(ctx->blocks[7],
788 ptr_v + dct_uv_offset, uvlinesize);
789 }
790 } else {
791 pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
792 pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
793 pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize);
794 pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize);
795
796 pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
797 pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize);
798 pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize);
799 pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize);
800
801 pdsp->get_pixels(ctx->blocks[4], ptr_v, uvlinesize);
802 pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize);
803 pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize);
804 pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize);
805 }
806 }
807
808 static av_always_inline
dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)809 int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
810 {
811 int x;
812
813 if (ctx->is_444) {
814 x = (i >> 1) % 3;
815 } else {
816 const static uint8_t component[8]={0,0,1,2,0,0,1,2};
817 x = component[i];
818 }
819 return x;
820 }
821
dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)822 static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
823 int jobnr, int threadnr)
824 {
825 DNXHDEncContext *ctx = avctx->priv_data;
826 int mb_y = jobnr, mb_x;
827 int qscale = ctx->qscale;
828 LOCAL_ALIGNED_16(int16_t, block, [64]);
829 ctx = ctx->thread[threadnr];
830
831 ctx->m.last_dc[0] =
832 ctx->m.last_dc[1] =
833 ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
834
835 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
836 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
837 int ssd = 0;
838 int ac_bits = 0;
839 int dc_bits = 0;
840 int i;
841
842 dnxhd_get_blocks(ctx, mb_x, mb_y);
843
844 for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
845 int16_t *src_block = ctx->blocks[i];
846 int overflow, nbits, diff, last_index;
847 int n = dnxhd_switch_matrix(ctx, i);
848
849 memcpy(block, src_block, 64 * sizeof(*block));
850 last_index = ctx->m.dct_quantize(&ctx->m, block,
851 ctx->is_444 ? 4 * (n > 0): 4 & (2*i),
852 qscale, &overflow);
853 ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
854
855 diff = block[0] - ctx->m.last_dc[n];
856 if (diff < 0)
857 nbits = av_log2_16bit(-2 * diff);
858 else
859 nbits = av_log2_16bit(2 * diff);
860
861 av_assert1(nbits < ctx->bit_depth + 4);
862 dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
863
864 ctx->m.last_dc[n] = block[0];
865
866 if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
867 dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
868 ctx->m.idsp.idct(block);
869 ssd += dnxhd_ssd_block(block, src_block);
870 }
871 }
872 ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd = ssd;
873 ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
874 (1 + ctx->is_444) * 8 * ctx->vlc_bits[0];
875 }
876 return 0;
877 }
878
dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)879 static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
880 int jobnr, int threadnr)
881 {
882 DNXHDEncContext *ctx = avctx->priv_data;
883 int mb_y = jobnr, mb_x;
884 ctx = ctx->thread[threadnr];
885 init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
886 ctx->slice_size[jobnr]);
887
888 ctx->m.last_dc[0] =
889 ctx->m.last_dc[1] =
890 ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
891 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
892 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
893 int qscale = ctx->mb_qscale[mb];
894 int i;
895
896 put_bits(&ctx->m.pb, 11, qscale);
897 put_bits(&ctx->m.pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
898
899 dnxhd_get_blocks(ctx, mb_x, mb_y);
900
901 for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
902 int16_t *block = ctx->blocks[i];
903 int overflow, n = dnxhd_switch_matrix(ctx, i);
904 int last_index = ctx->m.dct_quantize(&ctx->m, block,
905 ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i),
906 qscale, &overflow);
907
908 dnxhd_encode_block(ctx, block, last_index, n);
909 }
910 }
911 if (put_bits_count(&ctx->m.pb) & 31)
912 put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
913 flush_put_bits(&ctx->m.pb);
914 memset(put_bits_ptr(&ctx->m.pb), 0, put_bytes_left(&ctx->m.pb, 0));
915 return 0;
916 }
917
dnxhd_setup_threads_slices(DNXHDEncContext *ctx)918 static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
919 {
920 int mb_y, mb_x;
921 int offset = 0;
922 for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
923 int thread_size;
924 ctx->slice_offs[mb_y] = offset;
925 ctx->slice_size[mb_y] = 0;
926 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
927 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
928 ctx->slice_size[mb_y] += ctx->mb_bits[mb];
929 }
930 ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31U) & ~31U;
931 ctx->slice_size[mb_y] >>= 3;
932 thread_size = ctx->slice_size[mb_y];
933 offset += thread_size;
934 }
935 }
936
dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)937 static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
938 int jobnr, int threadnr)
939 {
940 DNXHDEncContext *ctx = avctx->priv_data;
941 int mb_y = jobnr, mb_x, x, y;
942 int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
943 ((avctx->height >> ctx->interlaced) & 0xF);
944
945 ctx = ctx->thread[threadnr];
946 if (ctx->bit_depth == 8) {
947 uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
948 for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
949 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
950 int sum;
951 int varc;
952
953 if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
954 sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
955 varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
956 } else {
957 int bw = FFMIN(avctx->width - 16 * mb_x, 16);
958 int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
959 sum = varc = 0;
960 for (y = 0; y < bh; y++) {
961 for (x = 0; x < bw; x++) {
962 uint8_t val = pix[x + y * ctx->m.linesize];
963 sum += val;
964 varc += val * val;
965 }
966 }
967 }
968 varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
969
970 ctx->mb_cmp[mb].value = varc;
971 ctx->mb_cmp[mb].mb = mb;
972 }
973 } else { // 10-bit
974 const int linesize = ctx->m.linesize >> 1;
975 for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
976 uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
977 ((mb_y << 4) * linesize) + (mb_x << 4);
978 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
979 int sum = 0;
980 int sqsum = 0;
981 int bw = FFMIN(avctx->width - 16 * mb_x, 16);
982 int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
983 int mean, sqmean;
984 int i, j;
985 // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
986 for (i = 0; i < bh; ++i) {
987 for (j = 0; j < bw; ++j) {
988 // Turn 16-bit pixels into 10-bit ones.
989 const int sample = (unsigned) pix[j] >> 6;
990 sum += sample;
991 sqsum += sample * sample;
992 // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
993 }
994 pix += linesize;
995 }
996 mean = sum >> 8; // 16*16 == 2^8
997 sqmean = sqsum >> 8;
998 ctx->mb_cmp[mb].value = sqmean - mean * mean;
999 ctx->mb_cmp[mb].mb = mb;
1000 }
1001 }
1002 return 0;
1003 }
1004
dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)1005 static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
1006 {
1007 int lambda, up_step, down_step;
1008 int last_lower = INT_MAX, last_higher = 0;
1009 int x, y, q;
1010
1011 for (q = 1; q < avctx->qmax; q++) {
1012 ctx->qscale = q;
1013 avctx->execute2(avctx, dnxhd_calc_bits_thread,
1014 NULL, NULL, ctx->m.mb_height);
1015 }
1016 up_step = down_step = 2 << LAMBDA_FRAC_BITS;
1017 lambda = ctx->lambda;
1018
1019 for (;;) {
1020 int bits = 0;
1021 int end = 0;
1022 if (lambda == last_higher) {
1023 lambda++;
1024 end = 1; // need to set final qscales/bits
1025 }
1026 for (y = 0; y < ctx->m.mb_height; y++) {
1027 for (x = 0; x < ctx->m.mb_width; x++) {
1028 unsigned min = UINT_MAX;
1029 int qscale = 1;
1030 int mb = y * ctx->m.mb_width + x;
1031 int rc = 0;
1032 for (q = 1; q < avctx->qmax; q++) {
1033 int i = (q*ctx->m.mb_num) + mb;
1034 unsigned score = ctx->mb_rc[i].bits * lambda +
1035 ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
1036 if (score < min) {
1037 min = score;
1038 qscale = q;
1039 rc = i;
1040 }
1041 }
1042 bits += ctx->mb_rc[rc].bits;
1043 ctx->mb_qscale[mb] = qscale;
1044 ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
1045 }
1046 bits = (bits + 31) & ~31; // padding
1047 if (bits > ctx->frame_bits)
1048 break;
1049 }
1050 if (end) {
1051 if (bits > ctx->frame_bits)
1052 return AVERROR(EINVAL);
1053 break;
1054 }
1055 if (bits < ctx->frame_bits) {
1056 last_lower = FFMIN(lambda, last_lower);
1057 if (last_higher != 0)
1058 lambda = (lambda+last_higher)>>1;
1059 else
1060 lambda -= down_step;
1061 down_step = FFMIN((int64_t)down_step*5, INT_MAX);
1062 up_step = 1<<LAMBDA_FRAC_BITS;
1063 lambda = FFMAX(1, lambda);
1064 if (lambda == last_lower)
1065 break;
1066 } else {
1067 last_higher = FFMAX(lambda, last_higher);
1068 if (last_lower != INT_MAX)
1069 lambda = (lambda+last_lower)>>1;
1070 else if ((int64_t)lambda + up_step > INT_MAX)
1071 return AVERROR(EINVAL);
1072 else
1073 lambda += up_step;
1074 up_step = FFMIN((int64_t)up_step*5, INT_MAX);
1075 down_step = 1<<LAMBDA_FRAC_BITS;
1076 }
1077 }
1078 ctx->lambda = lambda;
1079 return 0;
1080 }
1081
dnxhd_find_qscale(DNXHDEncContext *ctx)1082 static int dnxhd_find_qscale(DNXHDEncContext *ctx)
1083 {
1084 int bits = 0;
1085 int up_step = 1;
1086 int down_step = 1;
1087 int last_higher = 0;
1088 int last_lower = INT_MAX;
1089 int qscale;
1090 int x, y;
1091
1092 qscale = ctx->qscale;
1093 for (;;) {
1094 bits = 0;
1095 ctx->qscale = qscale;
1096 // XXX avoid recalculating bits
1097 ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
1098 NULL, NULL, ctx->m.mb_height);
1099 for (y = 0; y < ctx->m.mb_height; y++) {
1100 for (x = 0; x < ctx->m.mb_width; x++)
1101 bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits;
1102 bits = (bits+31)&~31; // padding
1103 if (bits > ctx->frame_bits)
1104 break;
1105 }
1106 if (bits < ctx->frame_bits) {
1107 if (qscale == 1)
1108 return 1;
1109 if (last_higher == qscale - 1) {
1110 qscale = last_higher;
1111 break;
1112 }
1113 last_lower = FFMIN(qscale, last_lower);
1114 if (last_higher != 0)
1115 qscale = (qscale + last_higher) >> 1;
1116 else
1117 qscale -= down_step++;
1118 if (qscale < 1)
1119 qscale = 1;
1120 up_step = 1;
1121 } else {
1122 if (last_lower == qscale + 1)
1123 break;
1124 last_higher = FFMAX(qscale, last_higher);
1125 if (last_lower != INT_MAX)
1126 qscale = (qscale + last_lower) >> 1;
1127 else
1128 qscale += up_step++;
1129 down_step = 1;
1130 if (qscale >= ctx->m.avctx->qmax)
1131 return AVERROR(EINVAL);
1132 }
1133 }
1134 ctx->qscale = qscale;
1135 return 0;
1136 }
1137
1138 #define BUCKET_BITS 8
1139 #define RADIX_PASSES 4
1140 #define NBUCKETS (1 << BUCKET_BITS)
1141
get_bucket(int value, int shift)1142 static inline int get_bucket(int value, int shift)
1143 {
1144 value >>= shift;
1145 value &= NBUCKETS - 1;
1146 return NBUCKETS - 1 - value;
1147 }
1148
radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])1149 static void radix_count(const RCCMPEntry *data, int size,
1150 int buckets[RADIX_PASSES][NBUCKETS])
1151 {
1152 int i, j;
1153 memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
1154 for (i = 0; i < size; i++) {
1155 int v = data[i].value;
1156 for (j = 0; j < RADIX_PASSES; j++) {
1157 buckets[j][get_bucket(v, 0)]++;
1158 v >>= BUCKET_BITS;
1159 }
1160 av_assert1(!v);
1161 }
1162 for (j = 0; j < RADIX_PASSES; j++) {
1163 int offset = size;
1164 for (i = NBUCKETS - 1; i >= 0; i--)
1165 buckets[j][i] = offset -= buckets[j][i];
1166 av_assert1(!buckets[j][0]);
1167 }
1168 }
1169
radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)1170 static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
1171 int size, int buckets[NBUCKETS], int pass)
1172 {
1173 int shift = pass * BUCKET_BITS;
1174 int i;
1175 for (i = 0; i < size; i++) {
1176 int v = get_bucket(data[i].value, shift);
1177 int pos = buckets[v]++;
1178 dst[pos] = data[i];
1179 }
1180 }
1181
radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)1182 static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)
1183 {
1184 int buckets[RADIX_PASSES][NBUCKETS];
1185 radix_count(data, size, buckets);
1186 radix_sort_pass(tmp, data, size, buckets[0], 0);
1187 radix_sort_pass(data, tmp, size, buckets[1], 1);
1188 if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
1189 radix_sort_pass(tmp, data, size, buckets[2], 2);
1190 radix_sort_pass(data, tmp, size, buckets[3], 3);
1191 }
1192 }
1193
dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)1194 static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
1195 {
1196 int max_bits = 0;
1197 int ret, x, y;
1198 if ((ret = dnxhd_find_qscale(ctx)) < 0)
1199 return ret;
1200 for (y = 0; y < ctx->m.mb_height; y++) {
1201 for (x = 0; x < ctx->m.mb_width; x++) {
1202 int mb = y * ctx->m.mb_width + x;
1203 int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1204 int delta_bits;
1205 ctx->mb_qscale[mb] = ctx->qscale;
1206 ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
1207 max_bits += ctx->mb_rc[rc].bits;
1208 if (!RC_VARIANCE) {
1209 delta_bits = ctx->mb_rc[rc].bits -
1210 ctx->mb_rc[rc + ctx->m.mb_num].bits;
1211 ctx->mb_cmp[mb].mb = mb;
1212 ctx->mb_cmp[mb].value =
1213 delta_bits ? ((ctx->mb_rc[rc].ssd -
1214 ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) /
1215 delta_bits
1216 : INT_MIN; // avoid increasing qscale
1217 }
1218 }
1219 max_bits += 31; // worst padding
1220 }
1221 if (!ret) {
1222 if (RC_VARIANCE)
1223 avctx->execute2(avctx, dnxhd_mb_var_thread,
1224 NULL, NULL, ctx->m.mb_height);
1225 radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num);
1226 retry:
1227 for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
1228 int mb = ctx->mb_cmp[x].mb;
1229 int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1230 max_bits -= ctx->mb_rc[rc].bits -
1231 ctx->mb_rc[rc + ctx->m.mb_num].bits;
1232 if (ctx->mb_qscale[mb] < 255)
1233 ctx->mb_qscale[mb]++;
1234 ctx->mb_bits[mb] = ctx->mb_rc[rc + ctx->m.mb_num].bits;
1235 }
1236
1237 if (max_bits > ctx->frame_bits)
1238 goto retry;
1239 }
1240 return 0;
1241 }
1242
dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)1243 static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
1244 {
1245 int i;
1246
1247 for (i = 0; i < ctx->m.avctx->thread_count; i++) {
1248 ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
1249 ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
1250 ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
1251 ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
1252 }
1253
1254 ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
1255 }
1256
dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet)1257 static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
1258 const AVFrame *frame, int *got_packet)
1259 {
1260 DNXHDEncContext *ctx = avctx->priv_data;
1261 int first_field = 1;
1262 int offset, i, ret;
1263 uint8_t *buf;
1264
1265 if ((ret = ff_get_encode_buffer(avctx, pkt, ctx->frame_size, 0)) < 0)
1266 return ret;
1267 buf = pkt->data;
1268
1269 dnxhd_load_picture(ctx, frame);
1270
1271 encode_coding_unit:
1272 for (i = 0; i < 3; i++) {
1273 ctx->src[i] = frame->data[i];
1274 if (ctx->interlaced && ctx->cur_field)
1275 ctx->src[i] += frame->linesize[i];
1276 }
1277
1278 dnxhd_write_header(avctx, buf);
1279
1280 if (avctx->mb_decision == FF_MB_DECISION_RD)
1281 ret = dnxhd_encode_rdo(avctx, ctx);
1282 else
1283 ret = dnxhd_encode_fast(avctx, ctx);
1284 if (ret < 0) {
1285 av_log(avctx, AV_LOG_ERROR,
1286 "picture could not fit ratecontrol constraints, increase qmax\n");
1287 return ret;
1288 }
1289
1290 dnxhd_setup_threads_slices(ctx);
1291
1292 offset = 0;
1293 for (i = 0; i < ctx->m.mb_height; i++) {
1294 AV_WB32(ctx->msip + i * 4, offset);
1295 offset += ctx->slice_size[i];
1296 av_assert1(!(ctx->slice_size[i] & 3));
1297 }
1298
1299 avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
1300
1301 av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
1302 memset(buf + ctx->data_offset + offset, 0,
1303 ctx->coding_unit_size - 4 - offset - ctx->data_offset);
1304
1305 AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
1306
1307 if (ctx->interlaced && first_field) {
1308 first_field = 0;
1309 ctx->cur_field ^= 1;
1310 buf += ctx->coding_unit_size;
1311 goto encode_coding_unit;
1312 }
1313
1314 ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I);
1315
1316 *got_packet = 1;
1317 return 0;
1318 }
1319
dnxhd_encode_end(AVCodecContext *avctx)1320 static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
1321 {
1322 DNXHDEncContext *ctx = avctx->priv_data;
1323 int i;
1324
1325 av_freep(&ctx->orig_vlc_codes);
1326 av_freep(&ctx->orig_vlc_bits);
1327 av_freep(&ctx->run_codes);
1328 av_freep(&ctx->run_bits);
1329
1330 av_freep(&ctx->mb_bits);
1331 av_freep(&ctx->mb_qscale);
1332 av_freep(&ctx->mb_rc);
1333 av_freep(&ctx->mb_cmp);
1334 av_freep(&ctx->mb_cmp_tmp);
1335 av_freep(&ctx->slice_size);
1336 av_freep(&ctx->slice_offs);
1337
1338 av_freep(&ctx->qmatrix_c);
1339 av_freep(&ctx->qmatrix_l);
1340 av_freep(&ctx->qmatrix_c16);
1341 av_freep(&ctx->qmatrix_l16);
1342
1343 if (ctx->thread[1]) {
1344 for (i = 1; i < avctx->thread_count; i++)
1345 av_freep(&ctx->thread[i]);
1346 }
1347
1348 return 0;
1349 }
1350
1351 static const FFCodecDefault dnxhd_defaults[] = {
1352 { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
1353 { NULL },
1354 };
1355
1356 const FFCodec ff_dnxhd_encoder = {
1357 .p.name = "dnxhd",
1358 .p.long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1359 .p.type = AVMEDIA_TYPE_VIDEO,
1360 .p.id = AV_CODEC_ID_DNXHD,
1361 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
1362 AV_CODEC_CAP_SLICE_THREADS,
1363 .priv_data_size = sizeof(DNXHDEncContext),
1364 .init = dnxhd_encode_init,
1365 FF_CODEC_ENCODE_CB(dnxhd_encode_picture),
1366 .close = dnxhd_encode_end,
1367 .p.pix_fmts = (const enum AVPixelFormat[]) {
1368 AV_PIX_FMT_YUV422P,
1369 AV_PIX_FMT_YUV422P10,
1370 AV_PIX_FMT_YUV444P10,
1371 AV_PIX_FMT_GBRP10,
1372 AV_PIX_FMT_NONE
1373 },
1374 .p.priv_class = &dnxhd_class,
1375 .defaults = dnxhd_defaults,
1376 .p.profiles = NULL_IF_CONFIG_SMALL(ff_dnxhd_profiles),
1377 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
1378 };
1379