1 /*
2 * Copyright (c) 2001-2003 The FFmpeg project
3 *
4 * first version by Francois Revol (revol@free.fr)
5 * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6 * by Mike Melanson (melanson@pcisys.net)
7 *
8 * This file is part of FFmpeg.
9 *
10 * FFmpeg is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * FFmpeg is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with FFmpeg; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
25 #include "config_components.h"
26
27 #include "libavutil/opt.h"
28
29 #include "avcodec.h"
30 #include "put_bits.h"
31 #include "bytestream.h"
32 #include "adpcm.h"
33 #include "adpcm_data.h"
34 #include "codec_internal.h"
35 #include "encode.h"
36
37 /**
38 * @file
39 * ADPCM encoders
40 * See ADPCM decoder reference documents for codec information.
41 */
42
43 #define CASE_0(codec_id, ...)
44 #define CASE_1(codec_id, ...) \
45 case codec_id: \
46 { __VA_ARGS__ } \
47 break;
48 #define CASE_2(enabled, codec_id, ...) \
49 CASE_ ## enabled(codec_id, __VA_ARGS__)
50 #define CASE_3(config, codec_id, ...) \
51 CASE_2(config, codec_id, __VA_ARGS__)
52 #define CASE(codec, ...) \
53 CASE_3(CONFIG_ ## codec ## _ENCODER, AV_CODEC_ID_ ## codec, __VA_ARGS__)
54
55 typedef struct TrellisPath {
56 int nibble;
57 int prev;
58 } TrellisPath;
59
60 typedef struct TrellisNode {
61 uint32_t ssd;
62 int path;
63 int sample1;
64 int sample2;
65 int step;
66 } TrellisNode;
67
68 typedef struct ADPCMEncodeContext {
69 AVClass *class;
70 int block_size;
71
72 ADPCMChannelStatus status[6];
73 TrellisPath *paths;
74 TrellisNode *node_buf;
75 TrellisNode **nodep_buf;
76 uint8_t *trellis_hash;
77 } ADPCMEncodeContext;
78
79 #define FREEZE_INTERVAL 128
80
adpcm_encode_init(AVCodecContext *avctx)81 static av_cold int adpcm_encode_init(AVCodecContext *avctx)
82 {
83 ADPCMEncodeContext *s = avctx->priv_data;
84 int channels = avctx->ch_layout.nb_channels;
85
86 /*
87 * AMV's block size has to match that of the corresponding video
88 * stream. Relax the POT requirement.
89 */
90 if (avctx->codec->id != AV_CODEC_ID_ADPCM_IMA_AMV &&
91 (s->block_size & (s->block_size - 1))) {
92 av_log(avctx, AV_LOG_ERROR, "block size must be power of 2\n");
93 return AVERROR(EINVAL);
94 }
95
96 if (avctx->trellis) {
97 int frontier, max_paths;
98
99 if ((unsigned)avctx->trellis > 16U) {
100 av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
101 return AVERROR(EINVAL);
102 }
103
104 if (avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_SSI ||
105 avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_APM ||
106 avctx->codec->id == AV_CODEC_ID_ADPCM_ARGO ||
107 avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_WS) {
108 /*
109 * The current trellis implementation doesn't work for extended
110 * runs of samples without periodic resets. Disallow it.
111 */
112 av_log(avctx, AV_LOG_ERROR, "trellis not supported\n");
113 return AVERROR_PATCHWELCOME;
114 }
115
116 frontier = 1 << avctx->trellis;
117 max_paths = frontier * FREEZE_INTERVAL;
118 if (!FF_ALLOC_TYPED_ARRAY(s->paths, max_paths) ||
119 !FF_ALLOC_TYPED_ARRAY(s->node_buf, 2 * frontier) ||
120 !FF_ALLOC_TYPED_ARRAY(s->nodep_buf, 2 * frontier) ||
121 !FF_ALLOC_TYPED_ARRAY(s->trellis_hash, 65536))
122 return AVERROR(ENOMEM);
123 }
124
125 avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id);
126
127 switch (avctx->codec->id) {
128 CASE(ADPCM_IMA_WAV,
129 /* each 16 bits sample gives one nibble
130 and we have 4 bytes per channel overhead */
131 avctx->frame_size = (s->block_size - 4 * channels) * 8 /
132 (4 * channels) + 1;
133 /* seems frame_size isn't taken into account...
134 have to buffer the samples :-( */
135 avctx->block_align = s->block_size;
136 avctx->bits_per_coded_sample = 4;
137 ) /* End of CASE */
138 CASE(ADPCM_IMA_QT,
139 avctx->frame_size = 64;
140 avctx->block_align = 34 * channels;
141 ) /* End of CASE */
142 CASE(ADPCM_MS,
143 uint8_t *extradata;
144 /* each 16 bits sample gives one nibble
145 and we have 7 bytes per channel overhead */
146 avctx->frame_size = (s->block_size - 7 * channels) * 2 / channels + 2;
147 avctx->bits_per_coded_sample = 4;
148 avctx->block_align = s->block_size;
149 if (!(avctx->extradata = av_malloc(32 + AV_INPUT_BUFFER_PADDING_SIZE)))
150 return AVERROR(ENOMEM);
151 avctx->extradata_size = 32;
152 extradata = avctx->extradata;
153 bytestream_put_le16(&extradata, avctx->frame_size);
154 bytestream_put_le16(&extradata, 7); /* wNumCoef */
155 for (int i = 0; i < 7; i++) {
156 bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
157 bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
158 }
159 ) /* End of CASE */
160 CASE(ADPCM_YAMAHA,
161 avctx->frame_size = s->block_size * 2 / channels;
162 avctx->block_align = s->block_size;
163 ) /* End of CASE */
164 CASE(ADPCM_SWF,
165 if (avctx->sample_rate != 11025 &&
166 avctx->sample_rate != 22050 &&
167 avctx->sample_rate != 44100) {
168 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, "
169 "22050 or 44100\n");
170 return AVERROR(EINVAL);
171 }
172 avctx->frame_size = 4096; /* Hardcoded according to the SWF spec. */
173 avctx->block_align = (2 + channels * (22 + 4 * (avctx->frame_size - 1)) + 7) / 8;
174 ) /* End of CASE */
175 case AV_CODEC_ID_ADPCM_IMA_SSI:
176 case AV_CODEC_ID_ADPCM_IMA_ALP:
177 avctx->frame_size = s->block_size * 2 / channels;
178 avctx->block_align = s->block_size;
179 break;
180 CASE(ADPCM_IMA_AMV,
181 if (avctx->sample_rate != 22050) {
182 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 22050\n");
183 return AVERROR(EINVAL);
184 }
185
186 if (channels != 1) {
187 av_log(avctx, AV_LOG_ERROR, "Only mono is supported\n");
188 return AVERROR(EINVAL);
189 }
190
191 avctx->frame_size = s->block_size;
192 avctx->block_align = 8 + (FFALIGN(avctx->frame_size, 2) / 2);
193 ) /* End of CASE */
194 CASE(ADPCM_IMA_APM,
195 avctx->frame_size = s->block_size * 2 / channels;
196 avctx->block_align = s->block_size;
197
198 if (!(avctx->extradata = av_mallocz(28 + AV_INPUT_BUFFER_PADDING_SIZE)))
199 return AVERROR(ENOMEM);
200 avctx->extradata_size = 28;
201 ) /* End of CASE */
202 CASE(ADPCM_ARGO,
203 avctx->frame_size = 32;
204 avctx->block_align = 17 * channels;
205 ) /* End of CASE */
206 CASE(ADPCM_IMA_WS,
207 /* each 16 bits sample gives one nibble */
208 avctx->frame_size = s->block_size * 2 / channels;
209 avctx->block_align = s->block_size;
210 ) /* End of CASE */
211 default:
212 return AVERROR(EINVAL);
213 }
214
215 return 0;
216 }
217
adpcm_encode_close(AVCodecContext *avctx)218 static av_cold int adpcm_encode_close(AVCodecContext *avctx)
219 {
220 ADPCMEncodeContext *s = avctx->priv_data;
221 av_freep(&s->paths);
222 av_freep(&s->node_buf);
223 av_freep(&s->nodep_buf);
224 av_freep(&s->trellis_hash);
225
226 return 0;
227 }
228
229
adpcm_ima_compress_sample(ADPCMChannelStatus *c, int16_t sample)230 static inline uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c,
231 int16_t sample)
232 {
233 int delta = sample - c->prev_sample;
234 int nibble = FFMIN(7, abs(delta) * 4 /
235 ff_adpcm_step_table[c->step_index]) + (delta < 0) * 8;
236 c->prev_sample += ((ff_adpcm_step_table[c->step_index] *
237 ff_adpcm_yamaha_difflookup[nibble]) / 8);
238 c->prev_sample = av_clip_int16(c->prev_sample);
239 c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
240 return nibble;
241 }
242
adpcm_ima_alp_compress_sample(ADPCMChannelStatus *c, int16_t sample)243 static inline uint8_t adpcm_ima_alp_compress_sample(ADPCMChannelStatus *c, int16_t sample)
244 {
245 const int delta = sample - c->prev_sample;
246 const int step = ff_adpcm_step_table[c->step_index];
247 const int sign = (delta < 0) * 8;
248
249 int nibble = FFMIN(abs(delta) * 4 / step, 7);
250 int diff = (step * nibble) >> 2;
251 if (sign)
252 diff = -diff;
253
254 nibble = sign | nibble;
255
256 c->prev_sample += diff;
257 c->prev_sample = av_clip_int16(c->prev_sample);
258 c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
259 return nibble;
260 }
261
adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c, int16_t sample)262 static inline uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c,
263 int16_t sample)
264 {
265 int delta = sample - c->prev_sample;
266 int diff, step = ff_adpcm_step_table[c->step_index];
267 int nibble = 8*(delta < 0);
268
269 delta= abs(delta);
270 diff = delta + (step >> 3);
271
272 if (delta >= step) {
273 nibble |= 4;
274 delta -= step;
275 }
276 step >>= 1;
277 if (delta >= step) {
278 nibble |= 2;
279 delta -= step;
280 }
281 step >>= 1;
282 if (delta >= step) {
283 nibble |= 1;
284 delta -= step;
285 }
286 diff -= delta;
287
288 if (nibble & 8)
289 c->prev_sample -= diff;
290 else
291 c->prev_sample += diff;
292
293 c->prev_sample = av_clip_int16(c->prev_sample);
294 c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
295
296 return nibble;
297 }
298
adpcm_ms_compress_sample(ADPCMChannelStatus *c, int16_t sample)299 static inline uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c,
300 int16_t sample)
301 {
302 int predictor, nibble, bias;
303
304 predictor = (((c->sample1) * (c->coeff1)) +
305 (( c->sample2) * (c->coeff2))) / 64;
306
307 nibble = sample - predictor;
308 if (nibble >= 0)
309 bias = c->idelta / 2;
310 else
311 bias = -c->idelta / 2;
312
313 nibble = (nibble + bias) / c->idelta;
314 nibble = av_clip_intp2(nibble, 3) & 0x0F;
315
316 predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) * c->idelta;
317
318 c->sample2 = c->sample1;
319 c->sample1 = av_clip_int16(predictor);
320
321 c->idelta = (ff_adpcm_AdaptationTable[nibble] * c->idelta) >> 8;
322 if (c->idelta < 16)
323 c->idelta = 16;
324
325 return nibble;
326 }
327
adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, int16_t sample)328 static inline uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c,
329 int16_t sample)
330 {
331 int nibble, delta;
332
333 if (!c->step) {
334 c->predictor = 0;
335 c->step = 127;
336 }
337
338 delta = sample - c->predictor;
339
340 nibble = FFMIN(7, abs(delta) * 4 / c->step) + (delta < 0) * 8;
341
342 c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8);
343 c->predictor = av_clip_int16(c->predictor);
344 c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
345 c->step = av_clip(c->step, 127, 24576);
346
347 return nibble;
348 }
349
adpcm_compress_trellis(AVCodecContext *avctx, const int16_t *samples, uint8_t *dst, ADPCMChannelStatus *c, int n, int stride)350 static void adpcm_compress_trellis(AVCodecContext *avctx,
351 const int16_t *samples, uint8_t *dst,
352 ADPCMChannelStatus *c, int n, int stride)
353 {
354 //FIXME 6% faster if frontier is a compile-time constant
355 ADPCMEncodeContext *s = avctx->priv_data;
356 const int frontier = 1 << avctx->trellis;
357 const int version = avctx->codec->id;
358 TrellisPath *paths = s->paths, *p;
359 TrellisNode *node_buf = s->node_buf;
360 TrellisNode **nodep_buf = s->nodep_buf;
361 TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd
362 TrellisNode **nodes_next = nodep_buf + frontier;
363 int pathn = 0, froze = -1, i, j, k, generation = 0;
364 uint8_t *hash = s->trellis_hash;
365 memset(hash, 0xff, 65536 * sizeof(*hash));
366
367 memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
368 nodes[0] = node_buf + frontier;
369 nodes[0]->ssd = 0;
370 nodes[0]->path = 0;
371 nodes[0]->step = c->step_index;
372 nodes[0]->sample1 = c->sample1;
373 nodes[0]->sample2 = c->sample2;
374 if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
375 version == AV_CODEC_ID_ADPCM_IMA_QT ||
376 version == AV_CODEC_ID_ADPCM_IMA_AMV ||
377 version == AV_CODEC_ID_ADPCM_SWF)
378 nodes[0]->sample1 = c->prev_sample;
379 if (version == AV_CODEC_ID_ADPCM_MS)
380 nodes[0]->step = c->idelta;
381 if (version == AV_CODEC_ID_ADPCM_YAMAHA) {
382 if (c->step == 0) {
383 nodes[0]->step = 127;
384 nodes[0]->sample1 = 0;
385 } else {
386 nodes[0]->step = c->step;
387 nodes[0]->sample1 = c->predictor;
388 }
389 }
390
391 for (i = 0; i < n; i++) {
392 TrellisNode *t = node_buf + frontier*(i&1);
393 TrellisNode **u;
394 int sample = samples[i * stride];
395 int heap_pos = 0;
396 memset(nodes_next, 0, frontier * sizeof(TrellisNode*));
397 for (j = 0; j < frontier && nodes[j]; j++) {
398 // higher j have higher ssd already, so they're likely
399 // to yield a suboptimal next sample too
400 const int range = (j < frontier / 2) ? 1 : 0;
401 const int step = nodes[j]->step;
402 int nidx;
403 if (version == AV_CODEC_ID_ADPCM_MS) {
404 const int predictor = ((nodes[j]->sample1 * c->coeff1) +
405 (nodes[j]->sample2 * c->coeff2)) / 64;
406 const int div = (sample - predictor) / step;
407 const int nmin = av_clip(div-range, -8, 6);
408 const int nmax = av_clip(div+range, -7, 7);
409 for (nidx = nmin; nidx <= nmax; nidx++) {
410 const int nibble = nidx & 0xf;
411 int dec_sample = predictor + nidx * step;
412 #define STORE_NODE(NAME, STEP_INDEX)\
413 int d;\
414 uint32_t ssd;\
415 int pos;\
416 TrellisNode *u;\
417 uint8_t *h;\
418 dec_sample = av_clip_int16(dec_sample);\
419 d = sample - dec_sample;\
420 ssd = nodes[j]->ssd + d*(unsigned)d;\
421 /* Check for wraparound, skip such samples completely. \
422 * Note, changing ssd to a 64 bit variable would be \
423 * simpler, avoiding this check, but it's slower on \
424 * x86 32 bit at the moment. */\
425 if (ssd < nodes[j]->ssd)\
426 goto next_##NAME;\
427 /* Collapse any two states with the same previous sample value. \
428 * One could also distinguish states by step and by 2nd to last
429 * sample, but the effects of that are negligible.
430 * Since nodes in the previous generation are iterated
431 * through a heap, they're roughly ordered from better to
432 * worse, but not strictly ordered. Therefore, an earlier
433 * node with the same sample value is better in most cases
434 * (and thus the current is skipped), but not strictly
435 * in all cases. Only skipping samples where ssd >=
436 * ssd of the earlier node with the same sample gives
437 * slightly worse quality, though, for some reason. */ \
438 h = &hash[(uint16_t) dec_sample];\
439 if (*h == generation)\
440 goto next_##NAME;\
441 if (heap_pos < frontier) {\
442 pos = heap_pos++;\
443 } else {\
444 /* Try to replace one of the leaf nodes with the new \
445 * one, but try a different slot each time. */\
446 pos = (frontier >> 1) +\
447 (heap_pos & ((frontier >> 1) - 1));\
448 if (ssd > nodes_next[pos]->ssd)\
449 goto next_##NAME;\
450 heap_pos++;\
451 }\
452 *h = generation;\
453 u = nodes_next[pos];\
454 if (!u) {\
455 av_assert1(pathn < FREEZE_INTERVAL << avctx->trellis);\
456 u = t++;\
457 nodes_next[pos] = u;\
458 u->path = pathn++;\
459 }\
460 u->ssd = ssd;\
461 u->step = STEP_INDEX;\
462 u->sample2 = nodes[j]->sample1;\
463 u->sample1 = dec_sample;\
464 paths[u->path].nibble = nibble;\
465 paths[u->path].prev = nodes[j]->path;\
466 /* Sift the newly inserted node up in the heap to \
467 * restore the heap property. */\
468 while (pos > 0) {\
469 int parent = (pos - 1) >> 1;\
470 if (nodes_next[parent]->ssd <= ssd)\
471 break;\
472 FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
473 pos = parent;\
474 }\
475 next_##NAME:;
476 STORE_NODE(ms, FFMAX(16,
477 (ff_adpcm_AdaptationTable[nibble] * step) >> 8));
478 }
479 } else if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
480 version == AV_CODEC_ID_ADPCM_IMA_QT ||
481 version == AV_CODEC_ID_ADPCM_IMA_AMV ||
482 version == AV_CODEC_ID_ADPCM_SWF) {
483 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
484 const int predictor = nodes[j]->sample1;\
485 const int div = (sample - predictor) * 4 / STEP_TABLE;\
486 int nmin = av_clip(div - range, -7, 6);\
487 int nmax = av_clip(div + range, -6, 7);\
488 if (nmin <= 0)\
489 nmin--; /* distinguish -0 from +0 */\
490 if (nmax < 0)\
491 nmax--;\
492 for (nidx = nmin; nidx <= nmax; nidx++) {\
493 const int nibble = nidx < 0 ? 7 - nidx : nidx;\
494 int dec_sample = predictor +\
495 (STEP_TABLE *\
496 ff_adpcm_yamaha_difflookup[nibble]) / 8;\
497 STORE_NODE(NAME, STEP_INDEX);\
498 }
499 LOOP_NODES(ima, ff_adpcm_step_table[step],
500 av_clip(step + ff_adpcm_index_table[nibble], 0, 88));
501 } else { //AV_CODEC_ID_ADPCM_YAMAHA
502 LOOP_NODES(yamaha, step,
503 av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8,
504 127, 24576));
505 #undef LOOP_NODES
506 #undef STORE_NODE
507 }
508 }
509
510 u = nodes;
511 nodes = nodes_next;
512 nodes_next = u;
513
514 generation++;
515 if (generation == 255) {
516 memset(hash, 0xff, 65536 * sizeof(*hash));
517 generation = 0;
518 }
519
520 // prevent overflow
521 if (nodes[0]->ssd > (1 << 28)) {
522 for (j = 1; j < frontier && nodes[j]; j++)
523 nodes[j]->ssd -= nodes[0]->ssd;
524 nodes[0]->ssd = 0;
525 }
526
527 // merge old paths to save memory
528 if (i == froze + FREEZE_INTERVAL) {
529 p = &paths[nodes[0]->path];
530 for (k = i; k > froze; k--) {
531 dst[k] = p->nibble;
532 p = &paths[p->prev];
533 }
534 froze = i;
535 pathn = 0;
536 // other nodes might use paths that don't coincide with the frozen one.
537 // checking which nodes do so is too slow, so just kill them all.
538 // this also slightly improves quality, but I don't know why.
539 memset(nodes + 1, 0, (frontier - 1) * sizeof(TrellisNode*));
540 }
541 }
542
543 p = &paths[nodes[0]->path];
544 for (i = n - 1; i > froze; i--) {
545 dst[i] = p->nibble;
546 p = &paths[p->prev];
547 }
548
549 c->predictor = nodes[0]->sample1;
550 c->sample1 = nodes[0]->sample1;
551 c->sample2 = nodes[0]->sample2;
552 c->step_index = nodes[0]->step;
553 c->step = nodes[0]->step;
554 c->idelta = nodes[0]->step;
555 }
556
557 #if CONFIG_ADPCM_ARGO_ENCODER
adpcm_argo_compress_nibble(const ADPCMChannelStatus *cs, int16_t s, int shift, int flag)558 static inline int adpcm_argo_compress_nibble(const ADPCMChannelStatus *cs, int16_t s,
559 int shift, int flag)
560 {
561 int nibble;
562
563 if (flag)
564 nibble = 4 * s - 8 * cs->sample1 + 4 * cs->sample2;
565 else
566 nibble = 4 * s - 4 * cs->sample1;
567
568 return (nibble >> shift) & 0x0F;
569 }
570
adpcm_argo_compress_block(ADPCMChannelStatus *cs, PutBitContext *pb, const int16_t *samples, int nsamples, int shift, int flag)571 static int64_t adpcm_argo_compress_block(ADPCMChannelStatus *cs, PutBitContext *pb,
572 const int16_t *samples, int nsamples,
573 int shift, int flag)
574 {
575 int64_t error = 0;
576
577 if (pb) {
578 put_bits(pb, 4, shift - 2);
579 put_bits(pb, 1, 0);
580 put_bits(pb, 1, !!flag);
581 put_bits(pb, 2, 0);
582 }
583
584 for (int n = 0; n < nsamples; n++) {
585 /* Compress the nibble, then expand it to see how much precision we've lost. */
586 int nibble = adpcm_argo_compress_nibble(cs, samples[n], shift, flag);
587 int16_t sample = ff_adpcm_argo_expand_nibble(cs, nibble, shift, flag);
588
589 error += abs(samples[n] - sample);
590
591 if (pb)
592 put_bits(pb, 4, nibble);
593 }
594
595 return error;
596 }
597 #endif
598
adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)599 static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
600 const AVFrame *frame, int *got_packet_ptr)
601 {
602 int st, pkt_size, ret;
603 const int16_t *samples;
604 int16_t **samples_p;
605 uint8_t *dst;
606 ADPCMEncodeContext *c = avctx->priv_data;
607 int channels = avctx->ch_layout.nb_channels;
608
609 samples = (const int16_t *)frame->data[0];
610 samples_p = (int16_t **)frame->extended_data;
611 st = channels == 2;
612
613 if (avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_SSI ||
614 avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_ALP ||
615 avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_APM ||
616 avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_WS)
617 pkt_size = (frame->nb_samples * channels) / 2;
618 else
619 pkt_size = avctx->block_align;
620 if ((ret = ff_get_encode_buffer(avctx, avpkt, pkt_size, 0)) < 0)
621 return ret;
622 dst = avpkt->data;
623
624 switch(avctx->codec->id) {
625 CASE(ADPCM_IMA_WAV,
626 int blocks = (frame->nb_samples - 1) / 8;
627
628 for (int ch = 0; ch < channels; ch++) {
629 ADPCMChannelStatus *status = &c->status[ch];
630 status->prev_sample = samples_p[ch][0];
631 /* status->step_index = 0;
632 XXX: not sure how to init the state machine */
633 bytestream_put_le16(&dst, status->prev_sample);
634 *dst++ = status->step_index;
635 *dst++ = 0; /* unknown */
636 }
637
638 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right */
639 if (avctx->trellis > 0) {
640 uint8_t *buf;
641 if (!FF_ALLOC_TYPED_ARRAY(buf, channels * blocks * 8))
642 return AVERROR(ENOMEM);
643 for (int ch = 0; ch < channels; ch++) {
644 adpcm_compress_trellis(avctx, &samples_p[ch][1],
645 buf + ch * blocks * 8, &c->status[ch],
646 blocks * 8, 1);
647 }
648 for (int i = 0; i < blocks; i++) {
649 for (int ch = 0; ch < channels; ch++) {
650 uint8_t *buf1 = buf + ch * blocks * 8 + i * 8;
651 for (int j = 0; j < 8; j += 2)
652 *dst++ = buf1[j] | (buf1[j + 1] << 4);
653 }
654 }
655 av_free(buf);
656 } else {
657 for (int i = 0; i < blocks; i++) {
658 for (int ch = 0; ch < channels; ch++) {
659 ADPCMChannelStatus *status = &c->status[ch];
660 const int16_t *smp = &samples_p[ch][1 + i * 8];
661 for (int j = 0; j < 8; j += 2) {
662 uint8_t v = adpcm_ima_compress_sample(status, smp[j ]);
663 v |= adpcm_ima_compress_sample(status, smp[j + 1]) << 4;
664 *dst++ = v;
665 }
666 }
667 }
668 }
669 ) /* End of CASE */
670 CASE(ADPCM_IMA_QT,
671 PutBitContext pb;
672 init_put_bits(&pb, dst, pkt_size);
673
674 for (int ch = 0; ch < channels; ch++) {
675 ADPCMChannelStatus *status = &c->status[ch];
676 put_bits(&pb, 9, (status->prev_sample & 0xFFFF) >> 7);
677 put_bits(&pb, 7, status->step_index);
678 if (avctx->trellis > 0) {
679 uint8_t buf[64];
680 adpcm_compress_trellis(avctx, &samples_p[ch][0], buf, status,
681 64, 1);
682 for (int i = 0; i < 64; i++)
683 put_bits(&pb, 4, buf[i ^ 1]);
684 status->prev_sample = status->predictor;
685 } else {
686 for (int i = 0; i < 64; i += 2) {
687 int t1, t2;
688 t1 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i ]);
689 t2 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i + 1]);
690 put_bits(&pb, 4, t2);
691 put_bits(&pb, 4, t1);
692 }
693 }
694 }
695
696 flush_put_bits(&pb);
697 ) /* End of CASE */
698 CASE(ADPCM_IMA_SSI,
699 PutBitContext pb;
700 init_put_bits(&pb, dst, pkt_size);
701
702 av_assert0(avctx->trellis == 0);
703
704 for (int i = 0; i < frame->nb_samples; i++) {
705 for (int ch = 0; ch < channels; ch++) {
706 put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, *samples++));
707 }
708 }
709
710 flush_put_bits(&pb);
711 ) /* End of CASE */
712 CASE(ADPCM_IMA_ALP,
713 PutBitContext pb;
714 init_put_bits(&pb, dst, pkt_size);
715
716 av_assert0(avctx->trellis == 0);
717
718 for (int n = frame->nb_samples / 2; n > 0; n--) {
719 for (int ch = 0; ch < channels; ch++) {
720 put_bits(&pb, 4, adpcm_ima_alp_compress_sample(c->status + ch, *samples++));
721 put_bits(&pb, 4, adpcm_ima_alp_compress_sample(c->status + ch, samples[st]));
722 }
723 samples += channels;
724 }
725
726 flush_put_bits(&pb);
727 ) /* End of CASE */
728 CASE(ADPCM_SWF,
729 const int n = frame->nb_samples - 1;
730 PutBitContext pb;
731 init_put_bits(&pb, dst, pkt_size);
732
733 /* NB: This is safe as we don't have AV_CODEC_CAP_SMALL_LAST_FRAME. */
734 av_assert0(n == 4095);
735
736 // store AdpcmCodeSize
737 put_bits(&pb, 2, 2); // set 4-bit flash adpcm format
738
739 // init the encoder state
740 for (int i = 0; i < channels; i++) {
741 // clip step so it fits 6 bits
742 c->status[i].step_index = av_clip_uintp2(c->status[i].step_index, 6);
743 put_sbits(&pb, 16, samples[i]);
744 put_bits(&pb, 6, c->status[i].step_index);
745 c->status[i].prev_sample = samples[i];
746 }
747
748 if (avctx->trellis > 0) {
749 uint8_t buf[8190 /* = 2 * n */];
750 adpcm_compress_trellis(avctx, samples + channels, buf,
751 &c->status[0], n, channels);
752 if (channels == 2)
753 adpcm_compress_trellis(avctx, samples + channels + 1,
754 buf + n, &c->status[1], n,
755 channels);
756 for (int i = 0; i < n; i++) {
757 put_bits(&pb, 4, buf[i]);
758 if (channels == 2)
759 put_bits(&pb, 4, buf[n + i]);
760 }
761 } else {
762 for (int i = 1; i < frame->nb_samples; i++) {
763 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0],
764 samples[channels * i]));
765 if (channels == 2)
766 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1],
767 samples[2 * i + 1]));
768 }
769 }
770 flush_put_bits(&pb);
771 ) /* End of CASE */
772 CASE(ADPCM_MS,
773 for (int i = 0; i < channels; i++) {
774 int predictor = 0;
775 *dst++ = predictor;
776 c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor];
777 c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor];
778 }
779 for (int i = 0; i < channels; i++) {
780 if (c->status[i].idelta < 16)
781 c->status[i].idelta = 16;
782 bytestream_put_le16(&dst, c->status[i].idelta);
783 }
784 for (int i = 0; i < channels; i++)
785 c->status[i].sample2= *samples++;
786 for (int i = 0; i < channels; i++) {
787 c->status[i].sample1 = *samples++;
788 bytestream_put_le16(&dst, c->status[i].sample1);
789 }
790 for (int i = 0; i < channels; i++)
791 bytestream_put_le16(&dst, c->status[i].sample2);
792
793 if (avctx->trellis > 0) {
794 const int n = avctx->block_align - 7 * channels;
795 uint8_t *buf = av_malloc(2 * n);
796 if (!buf)
797 return AVERROR(ENOMEM);
798 if (channels == 1) {
799 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
800 channels);
801 for (int i = 0; i < n; i += 2)
802 *dst++ = (buf[i] << 4) | buf[i + 1];
803 } else {
804 adpcm_compress_trellis(avctx, samples, buf,
805 &c->status[0], n, channels);
806 adpcm_compress_trellis(avctx, samples + 1, buf + n,
807 &c->status[1], n, channels);
808 for (int i = 0; i < n; i++)
809 *dst++ = (buf[i] << 4) | buf[n + i];
810 }
811 av_free(buf);
812 } else {
813 for (int i = 7 * channels; i < avctx->block_align; i++) {
814 int nibble;
815 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++) << 4;
816 nibble |= adpcm_ms_compress_sample(&c->status[st], *samples++);
817 *dst++ = nibble;
818 }
819 }
820 ) /* End of CASE */
821 CASE(ADPCM_YAMAHA,
822 int n = frame->nb_samples / 2;
823 if (avctx->trellis > 0) {
824 uint8_t *buf = av_malloc(2 * n * 2);
825 if (!buf)
826 return AVERROR(ENOMEM);
827 n *= 2;
828 if (channels == 1) {
829 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
830 channels);
831 for (int i = 0; i < n; i += 2)
832 *dst++ = buf[i] | (buf[i + 1] << 4);
833 } else {
834 adpcm_compress_trellis(avctx, samples, buf,
835 &c->status[0], n, channels);
836 adpcm_compress_trellis(avctx, samples + 1, buf + n,
837 &c->status[1], n, channels);
838 for (int i = 0; i < n; i++)
839 *dst++ = buf[i] | (buf[n + i] << 4);
840 }
841 av_free(buf);
842 } else
843 for (n *= channels; n > 0; n--) {
844 int nibble;
845 nibble = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
846 nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
847 *dst++ = nibble;
848 }
849 ) /* End of CASE */
850 CASE(ADPCM_IMA_APM,
851 PutBitContext pb;
852 init_put_bits(&pb, dst, pkt_size);
853
854 av_assert0(avctx->trellis == 0);
855
856 for (int n = frame->nb_samples / 2; n > 0; n--) {
857 for (int ch = 0; ch < channels; ch++) {
858 put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, *samples++));
859 put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, samples[st]));
860 }
861 samples += channels;
862 }
863
864 flush_put_bits(&pb);
865 ) /* End of CASE */
866 CASE(ADPCM_IMA_AMV,
867 av_assert0(channels == 1);
868
869 c->status[0].prev_sample = *samples;
870 bytestream_put_le16(&dst, c->status[0].prev_sample);
871 bytestream_put_byte(&dst, c->status[0].step_index);
872 bytestream_put_byte(&dst, 0);
873 bytestream_put_le32(&dst, avctx->frame_size);
874
875 if (avctx->trellis > 0) {
876 const int n = frame->nb_samples >> 1;
877 uint8_t *buf = av_malloc(2 * n);
878
879 if (!buf)
880 return AVERROR(ENOMEM);
881
882 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], 2 * n, channels);
883 for (int i = 0; i < n; i++)
884 bytestream_put_byte(&dst, (buf[2 * i] << 4) | buf[2 * i + 1]);
885
886 samples += 2 * n;
887 av_free(buf);
888 } else for (int n = frame->nb_samples >> 1; n > 0; n--) {
889 int nibble;
890 nibble = adpcm_ima_compress_sample(&c->status[0], *samples++) << 4;
891 nibble |= adpcm_ima_compress_sample(&c->status[0], *samples++) & 0x0F;
892 bytestream_put_byte(&dst, nibble);
893 }
894
895 if (avctx->frame_size & 1) {
896 int nibble = adpcm_ima_compress_sample(&c->status[0], *samples++) << 4;
897 bytestream_put_byte(&dst, nibble);
898 }
899 ) /* End of CASE */
900 CASE(ADPCM_ARGO,
901 PutBitContext pb;
902 init_put_bits(&pb, dst, pkt_size);
903
904 av_assert0(frame->nb_samples == 32);
905
906 for (int ch = 0; ch < channels; ch++) {
907 int64_t error = INT64_MAX, tmperr = INT64_MAX;
908 int shift = 2, flag = 0;
909 int saved1 = c->status[ch].sample1;
910 int saved2 = c->status[ch].sample2;
911
912 /* Find the optimal coefficients, bail early if we find a perfect result. */
913 for (int s = 2; s < 18 && tmperr != 0; s++) {
914 for (int f = 0; f < 2 && tmperr != 0; f++) {
915 c->status[ch].sample1 = saved1;
916 c->status[ch].sample2 = saved2;
917 tmperr = adpcm_argo_compress_block(c->status + ch, NULL, samples_p[ch],
918 frame->nb_samples, s, f);
919 if (tmperr < error) {
920 shift = s;
921 flag = f;
922 error = tmperr;
923 }
924 }
925 }
926
927 /* Now actually do the encode. */
928 c->status[ch].sample1 = saved1;
929 c->status[ch].sample2 = saved2;
930 adpcm_argo_compress_block(c->status + ch, &pb, samples_p[ch],
931 frame->nb_samples, shift, flag);
932 }
933
934 flush_put_bits(&pb);
935 ) /* End of CASE */
936 CASE(ADPCM_IMA_WS,
937 PutBitContext pb;
938 init_put_bits(&pb, dst, pkt_size);
939
940 av_assert0(avctx->trellis == 0);
941 for (int n = frame->nb_samples / 2; n > 0; n--) {
942 /* stereo: 1 byte (2 samples) for left, 1 byte for right */
943 for (int ch = 0; ch < channels; ch++) {
944 int t1, t2;
945 t1 = adpcm_ima_compress_sample(&c->status[ch], *samples++);
946 t2 = adpcm_ima_compress_sample(&c->status[ch], samples[st]);
947 put_bits(&pb, 4, t2);
948 put_bits(&pb, 4, t1);
949 }
950 samples += channels;
951 }
952 flush_put_bits(&pb);
953 ) /* End of CASE */
954 default:
955 return AVERROR(EINVAL);
956 }
957
958 *got_packet_ptr = 1;
959 return 0;
960 }
961
962 static const enum AVSampleFormat sample_fmts[] = {
963 AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
964 };
965
966 static const enum AVSampleFormat sample_fmts_p[] = {
967 AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE
968 };
969
970 static const AVChannelLayout ch_layouts[] = {
971 AV_CHANNEL_LAYOUT_MONO,
972 AV_CHANNEL_LAYOUT_STEREO,
973 { 0 },
974 };
975
976 static const AVOption options[] = {
977 {
978 .name = "block_size",
979 .help = "set the block size",
980 .offset = offsetof(ADPCMEncodeContext, block_size),
981 .type = AV_OPT_TYPE_INT,
982 .default_val = {.i64 = 1024},
983 .min = 32,
984 .max = 8192, /* Is this a reasonable upper limit? */
985 .flags = AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
986 },
987 { NULL }
988 };
989
990 static const AVClass adpcm_encoder_class = {
991 .class_name = "ADPCM encoder",
992 .item_name = av_default_item_name,
993 .option = options,
994 .version = LIBAVUTIL_VERSION_INT,
995 };
996
997 #define ADPCM_ENCODER_0(id_, name_, sample_fmts_, capabilities_, long_name_)
998 #define ADPCM_ENCODER_1(id_, name_, sample_fmts_, capabilities_, long_name_) \
999 const FFCodec ff_ ## name_ ## _encoder = { \
1000 .p.name = #name_, \
1001 .p.long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1002 .p.type = AVMEDIA_TYPE_AUDIO, \
1003 .p.id = id_, \
1004 .p.sample_fmts = sample_fmts_, \
1005 .p.ch_layouts = ch_layouts, \
1006 .p.capabilities = capabilities_ | AV_CODEC_CAP_DR1, \
1007 .p.priv_class = &adpcm_encoder_class, \
1008 .priv_data_size = sizeof(ADPCMEncodeContext), \
1009 .init = adpcm_encode_init, \
1010 FF_CODEC_ENCODE_CB(adpcm_encode_frame), \
1011 .close = adpcm_encode_close, \
1012 .caps_internal = FF_CODEC_CAP_INIT_CLEANUP | FF_CODEC_CAP_INIT_THREADSAFE, \
1013 };
1014 #define ADPCM_ENCODER_2(enabled, codec_id, name, sample_fmts, capabilities, long_name) \
1015 ADPCM_ENCODER_ ## enabled(codec_id, name, sample_fmts, capabilities, long_name)
1016 #define ADPCM_ENCODER_3(config, codec_id, name, sample_fmts, capabilities, long_name) \
1017 ADPCM_ENCODER_2(config, codec_id, name, sample_fmts, capabilities, long_name)
1018 #define ADPCM_ENCODER(codec, name, sample_fmts, capabilities, long_name) \
1019 ADPCM_ENCODER_3(CONFIG_ ## codec ## _ENCODER, AV_CODEC_ID_ ## codec, \
1020 name, sample_fmts, capabilities, long_name)
1021
1022 ADPCM_ENCODER(ADPCM_ARGO, adpcm_argo, sample_fmts_p, 0, "ADPCM Argonaut Games")
1023 ADPCM_ENCODER(ADPCM_IMA_AMV, adpcm_ima_amv, sample_fmts, 0, "ADPCM IMA AMV")
1024 ADPCM_ENCODER(ADPCM_IMA_APM, adpcm_ima_apm, sample_fmts, AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA Ubisoft APM")
1025 ADPCM_ENCODER(ADPCM_IMA_ALP, adpcm_ima_alp, sample_fmts, AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA High Voltage Software ALP")
1026 ADPCM_ENCODER(ADPCM_IMA_QT, adpcm_ima_qt, sample_fmts_p, 0, "ADPCM IMA QuickTime")
1027 ADPCM_ENCODER(ADPCM_IMA_SSI, adpcm_ima_ssi, sample_fmts, AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA Simon & Schuster Interactive")
1028 ADPCM_ENCODER(ADPCM_IMA_WAV, adpcm_ima_wav, sample_fmts_p, 0, "ADPCM IMA WAV")
1029 ADPCM_ENCODER(ADPCM_IMA_WS, adpcm_ima_ws, sample_fmts, AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA Westwood")
1030 ADPCM_ENCODER(ADPCM_MS, adpcm_ms, sample_fmts, 0, "ADPCM Microsoft")
1031 ADPCM_ENCODER(ADPCM_SWF, adpcm_swf, sample_fmts, 0, "ADPCM Shockwave Flash")
1032 ADPCM_ENCODER(ADPCM_YAMAHA, adpcm_yamaha, sample_fmts, 0, "ADPCM Yamaha")
1033