1 /*
2  * The simplest AC-3 encoder
3  * Copyright (c) 2000 Fabrice Bellard
4  * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
5  * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * The simplest AC-3 encoder.
27  */
28 
29 #include <stdint.h>
30 
31 #include "libavutil/attributes.h"
32 #include "libavutil/avassert.h"
33 #include "libavutil/avstring.h"
34 #include "libavutil/channel_layout.h"
35 #include "libavutil/crc.h"
36 #include "libavutil/internal.h"
37 #include "libavutil/mem_internal.h"
38 #include "libavutil/opt.h"
39 #include "libavutil/thread.h"
40 #include "avcodec.h"
41 #include "codec_internal.h"
42 #include "config_components.h"
43 #include "encode.h"
44 #include "internal.h"
45 #include "me_cmp.h"
46 #include "put_bits.h"
47 #include "audiodsp.h"
48 #include "ac3dsp.h"
49 #include "ac3.h"
50 #include "ac3defs.h"
51 #include "ac3tab.h"
52 #include "fft.h"
53 #include "ac3enc.h"
54 #include "eac3enc.h"
55 
56 typedef struct AC3Mant {
57     int16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
58     int mant1_cnt, mant2_cnt, mant4_cnt;    ///< mantissa counts for bap=1,2,4
59 } AC3Mant;
60 
61 #define CMIXLEV_NUM_OPTIONS 3
62 static const float cmixlev_options[CMIXLEV_NUM_OPTIONS] = {
63     LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB
64 };
65 
66 #define SURMIXLEV_NUM_OPTIONS 3
67 static const float surmixlev_options[SURMIXLEV_NUM_OPTIONS] = {
68     LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO
69 };
70 
71 #define EXTMIXLEV_NUM_OPTIONS 8
72 static const float extmixlev_options[EXTMIXLEV_NUM_OPTIONS] = {
73     LEVEL_PLUS_3DB,  LEVEL_PLUS_1POINT5DB,  LEVEL_ONE,       LEVEL_MINUS_1POINT5DB,
74     LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB, LEVEL_ZERO
75 };
76 
77 /* The first two options apply only to the AC-3 encoders;
78  * the rest is also valid for EAC-3. When modifying it,
79  * it might be necessary to adapt said offset in eac3enc.c. */
80 #define OFFSET(param) offsetof(AC3EncodeContext, options.param)
81 #define AC3ENC_PARAM (AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_ENCODING_PARAM)
82 const AVOption ff_ac3_enc_options[] = {
83 /* AC-3 downmix levels */
84 {"center_mixlev", "Center Mix Level", OFFSET(center_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = LEVEL_MINUS_4POINT5DB }, 0.0, 1.0, AC3ENC_PARAM},
85 {"surround_mixlev", "Surround Mix Level", OFFSET(surround_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = LEVEL_MINUS_6DB }, 0.0, 1.0, AC3ENC_PARAM},
86 /* audio production information */
87 {"mixing_level", "Mixing Level", OFFSET(mixing_level), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, 111, AC3ENC_PARAM},
88 {"room_type", "Room Type", OFFSET(room_type), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_SMALL_ROOM, AC3ENC_PARAM, "room_type"},
89     {"notindicated", "Not Indicated (default)", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_NOT_INDICATED }, INT_MIN, INT_MAX, AC3ENC_PARAM, "room_type"},
90     {"large",        "Large Room",              0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_LARGE_ROOM    }, INT_MIN, INT_MAX, AC3ENC_PARAM, "room_type"},
91     {"small",        "Small Room",              0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_SMALL_ROOM    }, INT_MIN, INT_MAX, AC3ENC_PARAM, "room_type"},
92 /* Metadata Options */
93 {"per_frame_metadata", "Allow Changing Metadata Per-Frame", OFFSET(allow_per_frame_metadata), AV_OPT_TYPE_BOOL, {.i64 = 0 }, 0, 1, AC3ENC_PARAM},
94 {"copyright", "Copyright Bit", OFFSET(copyright), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, 1, AC3ENC_PARAM},
95 {"dialnorm", "Dialogue Level (dB)", OFFSET(dialogue_level), AV_OPT_TYPE_INT, {.i64 = -31 }, -31, -1, AC3ENC_PARAM},
96 {"dsur_mode", "Dolby Surround Mode", OFFSET(dolby_surround_mode), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_MODE_ON, AC3ENC_PARAM, "dsur_mode"},
97     {"notindicated", "Not Indicated (default)",    0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_NOT_INDICATED }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsur_mode"},
98     {"on",           "Dolby Surround Encoded",     0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_MODE_ON       }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsur_mode"},
99     {"off",          "Not Dolby Surround Encoded", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_MODE_OFF      }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsur_mode"},
100 {"original", "Original Bit Stream", OFFSET(original), AV_OPT_TYPE_INT,   {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, 1, AC3ENC_PARAM},
101 /* extended bitstream information */
102 {"dmix_mode", "Preferred Stereo Downmix Mode", OFFSET(preferred_stereo_downmix), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_DOWNMIX_DPLII, AC3ENC_PARAM, "dmix_mode"},
103     {"notindicated", "Not Indicated (default)", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_NOT_INDICATED }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dmix_mode"},
104     {"ltrt", "Lt/Rt Downmix Preferred",         0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_DOWNMIX_LTRT  }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dmix_mode"},
105     {"loro", "Lo/Ro Downmix Preferred",         0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_DOWNMIX_LORO  }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dmix_mode"},
106     {"dplii", "Dolby Pro Logic II Downmix Preferred", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_DOWNMIX_DPLII }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dmix_mode"},
107 {"ltrt_cmixlev", "Lt/Rt Center Mix Level", OFFSET(ltrt_center_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM},
108 {"ltrt_surmixlev", "Lt/Rt Surround Mix Level", OFFSET(ltrt_surround_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM},
109 {"loro_cmixlev", "Lo/Ro Center Mix Level", OFFSET(loro_center_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM},
110 {"loro_surmixlev", "Lo/Ro Surround Mix Level", OFFSET(loro_surround_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, AC3ENC_PARAM},
111 {"dsurex_mode", "Dolby Surround EX Mode", OFFSET(dolby_surround_ex_mode), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_DSUREX_DPLIIZ, AC3ENC_PARAM, "dsurex_mode"},
112     {"notindicated", "Not Indicated (default)",       0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_NOT_INDICATED }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsurex_mode"},
113     {"on",           "Dolby Surround EX Encoded",     0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_MODE_ON       }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsurex_mode"},
114     {"off",          "Not Dolby Surround EX Encoded", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_MODE_OFF      }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsurex_mode"},
115     {"dpliiz",       "Dolby Pro Logic IIz-encoded",   0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_DSUREX_DPLIIZ }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dsurex_mode"},
116 {"dheadphone_mode", "Dolby Headphone Mode", OFFSET(dolby_headphone_mode), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_MODE_ON, AC3ENC_PARAM, "dheadphone_mode"},
117     {"notindicated", "Not Indicated (default)",     0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_NOT_INDICATED }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dheadphone_mode"},
118     {"on",           "Dolby Headphone Encoded",     0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_MODE_ON       }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dheadphone_mode"},
119     {"off",          "Not Dolby Headphone Encoded", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_MODE_OFF      }, INT_MIN, INT_MAX, AC3ENC_PARAM, "dheadphone_mode"},
120 {"ad_conv_type", "A/D Converter Type", OFFSET(ad_converter_type), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_NONE }, AC3ENC_OPT_NONE, AC3ENC_OPT_ADCONV_HDCD, AC3ENC_PARAM, "ad_conv_type"},
121     {"standard", "Standard (default)", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_ADCONV_STANDARD }, INT_MIN, INT_MAX, AC3ENC_PARAM, "ad_conv_type"},
122     {"hdcd",     "HDCD",               0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_ADCONV_HDCD     }, INT_MIN, INT_MAX, AC3ENC_PARAM, "ad_conv_type"},
123 /* Other Encoding Options */
124 {"stereo_rematrixing", "Stereo Rematrixing", OFFSET(stereo_rematrixing), AV_OPT_TYPE_BOOL, {.i64 = 1 }, 0, 1, AC3ENC_PARAM},
125 {"channel_coupling",   "Channel Coupling",   OFFSET(channel_coupling),   AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_AUTO }, AC3ENC_OPT_AUTO, AC3ENC_OPT_ON, AC3ENC_PARAM, "channel_coupling"},
126     {"auto", "Selected by the Encoder", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_AUTO }, INT_MIN, INT_MAX, AC3ENC_PARAM, "channel_coupling"},
127 {"cpl_start_band", "Coupling Start Band", OFFSET(cpl_start), AV_OPT_TYPE_INT, {.i64 = AC3ENC_OPT_AUTO }, AC3ENC_OPT_AUTO, 15, AC3ENC_PARAM, "cpl_start_band"},
128     {"auto", "Selected by the Encoder", 0, AV_OPT_TYPE_CONST, {.i64 = AC3ENC_OPT_AUTO }, INT_MIN, INT_MAX, AC3ENC_PARAM, "cpl_start_band"},
129 {NULL}
130 };
131 
132 const AVClass ff_ac3enc_class = {
133     .class_name = "AC-3 Encoder",
134     .item_name  = av_default_item_name,
135     .option     = ff_ac3_enc_options,
136     .version    = LIBAVUTIL_VERSION_INT,
137 };
138 
139 const FFCodecDefault ff_ac3_enc_defaults[] = {
140     { "b",  "0" },
141     { NULL }
142 };
143 
144 /**
145  * LUT for number of exponent groups.
146  * exponent_group_tab[coupling][exponent strategy-1][number of coefficients]
147  */
148 static uint8_t exponent_group_tab[2][3][256];
149 
150 
151 /**
152  * List of supported channel layouts.
153  */
154 #if FF_API_OLD_CHANNEL_LAYOUT
155 const uint64_t ff_ac3_channel_layouts[19] = {
156      AV_CH_LAYOUT_MONO,
157      AV_CH_LAYOUT_STEREO,
158      AV_CH_LAYOUT_2_1,
159      AV_CH_LAYOUT_SURROUND,
160      AV_CH_LAYOUT_2_2,
161      AV_CH_LAYOUT_QUAD,
162      AV_CH_LAYOUT_4POINT0,
163      AV_CH_LAYOUT_5POINT0,
164      AV_CH_LAYOUT_5POINT0_BACK,
165     (AV_CH_LAYOUT_MONO     | AV_CH_LOW_FREQUENCY),
166     (AV_CH_LAYOUT_STEREO   | AV_CH_LOW_FREQUENCY),
167     (AV_CH_LAYOUT_2_1      | AV_CH_LOW_FREQUENCY),
168     (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
169     (AV_CH_LAYOUT_2_2      | AV_CH_LOW_FREQUENCY),
170     (AV_CH_LAYOUT_QUAD     | AV_CH_LOW_FREQUENCY),
171     (AV_CH_LAYOUT_4POINT0  | AV_CH_LOW_FREQUENCY),
172      AV_CH_LAYOUT_5POINT1,
173      AV_CH_LAYOUT_5POINT1_BACK,
174      0
175 };
176 #endif
177 
178 const AVChannelLayout ff_ac3_ch_layouts[19] = {
179     AV_CHANNEL_LAYOUT_MONO,
180     AV_CHANNEL_LAYOUT_STEREO,
181     AV_CHANNEL_LAYOUT_2_1,
182     AV_CHANNEL_LAYOUT_SURROUND,
183     AV_CHANNEL_LAYOUT_2_2,
184     AV_CHANNEL_LAYOUT_QUAD,
185     AV_CHANNEL_LAYOUT_4POINT0,
186     AV_CHANNEL_LAYOUT_5POINT0,
187     AV_CHANNEL_LAYOUT_5POINT0_BACK,
188     {
189         .nb_channels = 2,
190         .order       = AV_CHANNEL_ORDER_NATIVE,
191         .u.mask      = AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY,
192     },
193     {
194         .nb_channels = 3,
195         .order       = AV_CHANNEL_ORDER_NATIVE,
196         .u.mask      = AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY,
197     },
198     {
199         .nb_channels = 4,
200         .order       = AV_CHANNEL_ORDER_NATIVE,
201         .u.mask      = AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY,
202     },
203     {
204         .nb_channels = 4,
205         .order       = AV_CHANNEL_ORDER_NATIVE,
206         .u.mask      = AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY,
207     },
208     {
209         .nb_channels = 5,
210         .order       = AV_CHANNEL_ORDER_NATIVE,
211         .u.mask      = AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY,
212     },
213     AV_CHANNEL_LAYOUT_5POINT1,
214     AV_CHANNEL_LAYOUT_5POINT1_BACK,
215     { 0 },
216 };
217 
218 /**
219  * Table to remap channels from SMPTE order to AC-3 order.
220  * [channel_mode][lfe][ch]
221  */
222 static const uint8_t ac3_enc_channel_map[8][2][6] = {
223     COMMON_CHANNEL_MAP
224     { { 0, 1, 2, 3,    }, { 0, 1, 3, 4, 2,   } },
225     { { 0, 2, 1, 3, 4, }, { 0, 2, 1, 4, 5, 3 } },
226 };
227 
228 /**
229  * LUT to select the bandwidth code based on the bit rate, sample rate, and
230  * number of full-bandwidth channels.
231  * bandwidth_tab[fbw_channels-1][sample rate code][bit rate code]
232  */
233 static const uint8_t ac3_bandwidth_tab[5][3][19] = {
234 //      32  40  48  56  64  80  96 112 128 160 192 224 256 320 384 448 512 576 640
235 
236     { {  0,  0,  0, 12, 16, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
237       {  0,  0,  0, 16, 20, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
238       {  0,  0,  0, 32, 40, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
239 
240     { {  0,  0,  0,  0,  0,  0,  0, 20, 24, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
241       {  0,  0,  0,  0,  0,  0,  4, 24, 28, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
242       {  0,  0,  0,  0,  0,  0, 20, 44, 52, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
243 
244     { {  0,  0,  0,  0,  0,  0,  0,  0,  0, 16, 24, 32, 40, 48, 48, 48, 48, 48, 48 },
245       {  0,  0,  0,  0,  0,  0,  0,  0,  4, 20, 28, 36, 44, 56, 56, 56, 56, 56, 56 },
246       {  0,  0,  0,  0,  0,  0,  0,  0, 20, 40, 48, 60, 60, 60, 60, 60, 60, 60, 60 } },
247 
248     { {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 12, 24, 32, 48, 48, 48, 48, 48, 48 },
249       {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 16, 28, 36, 56, 56, 56, 56, 56, 56 },
250       {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 32, 48, 60, 60, 60, 60, 60, 60, 60 } },
251 
252     { {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  8, 20, 32, 40, 48, 48, 48, 48 },
253       {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 12, 24, 36, 44, 56, 56, 56, 56 },
254       {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 28, 44, 60, 60, 60, 60, 60, 60 } }
255 };
256 
257 
258 /**
259  * LUT to select the coupling start band based on the bit rate, sample rate, and
260  * number of full-bandwidth channels. -1 = coupling off
261  * ac3_coupling_start_tab[channel_mode-2][sample rate code][bit rate code]
262  *
263  * TODO: more testing for optimal parameters.
264  *       multi-channel tests at 44.1kHz and 32kHz.
265  */
266 static const int8_t ac3_coupling_start_tab[6][3][19] = {
267 //      32  40  48  56  64  80  96 112 128 160 192 224 256 320 384 448 512 576 640
268 
269     // 2/0
270     { {  0,  0,  0,  0,  0,  0,  0,  1,  1,  7,  8, 11, 12, -1, -1, -1, -1, -1, -1 },
271       {  0,  0,  0,  0,  0,  0,  1,  3,  5,  7, 10, 12, 13, -1, -1, -1, -1, -1, -1 },
272       {  0,  0,  0,  0,  1,  2,  2,  9, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
273 
274     // 3/0
275     { {  0,  0,  0,  0,  0,  0,  0,  0,  2,  2,  6,  9, 11, 12, 13, -1, -1, -1, -1 },
276       {  0,  0,  0,  0,  0,  0,  0,  0,  2,  2,  6,  9, 11, 12, 13, -1, -1, -1, -1 },
277       { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
278 
279     // 2/1 - untested
280     { {  0,  0,  0,  0,  0,  0,  0,  0,  2,  2,  6,  9, 11, 12, 13, -1, -1, -1, -1 },
281       {  0,  0,  0,  0,  0,  0,  0,  0,  2,  2,  6,  9, 11, 12, 13, -1, -1, -1, -1 },
282       { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
283 
284     // 3/1
285     { {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  3,  2, 10, 11, 11, 12, 12, 14, -1 },
286       {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  3,  2, 10, 11, 11, 12, 12, 14, -1 },
287       { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
288 
289     // 2/2 - untested
290     { {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  3,  2, 10, 11, 11, 12, 12, 14, -1 },
291       {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  3,  2, 10, 11, 11, 12, 12, 14, -1 },
292       { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
293 
294     // 3/2
295     { {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  6,  8, 11, 12, 12, -1, -1 },
296       {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  6,  8, 11, 12, 12, -1, -1 },
297       { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
298 };
299 
300 
301 /**
302  * Adjust the frame size to make the average bit rate match the target bit rate.
303  * This is only needed for 11025, 22050, and 44100 sample rates or any E-AC-3.
304  *
305  * @param s  AC-3 encoder private context
306  */
ff_ac3_adjust_frame_size(AC3EncodeContext *s)307 void ff_ac3_adjust_frame_size(AC3EncodeContext *s)
308 {
309     while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
310         s->bits_written    -= s->bit_rate;
311         s->samples_written -= s->sample_rate;
312     }
313     s->frame_size = s->frame_size_min +
314                     2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
315     s->bits_written    += s->frame_size * 8;
316     s->samples_written += AC3_BLOCK_SIZE * s->num_blocks;
317 }
318 
319 
320 /**
321  * Set the initial coupling strategy parameters prior to coupling analysis.
322  *
323  * @param s  AC-3 encoder private context
324  */
ff_ac3_compute_coupling_strategy(AC3EncodeContext *s)325 void ff_ac3_compute_coupling_strategy(AC3EncodeContext *s)
326 {
327     int blk, ch;
328     int got_cpl_snr;
329     int num_cpl_blocks;
330 
331     /* set coupling use flags for each block/channel */
332     /* TODO: turn coupling on/off and adjust start band based on bit usage */
333     for (blk = 0; blk < s->num_blocks; blk++) {
334         AC3Block *block = &s->blocks[blk];
335         for (ch = 1; ch <= s->fbw_channels; ch++)
336             block->channel_in_cpl[ch] = s->cpl_on;
337     }
338 
339     /* enable coupling for each block if at least 2 channels have coupling
340        enabled for that block */
341     got_cpl_snr = 0;
342     num_cpl_blocks = 0;
343     for (blk = 0; blk < s->num_blocks; blk++) {
344         AC3Block *block = &s->blocks[blk];
345         block->num_cpl_channels = 0;
346         for (ch = 1; ch <= s->fbw_channels; ch++)
347             block->num_cpl_channels += block->channel_in_cpl[ch];
348         block->cpl_in_use = block->num_cpl_channels > 1;
349         num_cpl_blocks += block->cpl_in_use;
350         if (!block->cpl_in_use) {
351             block->num_cpl_channels = 0;
352             for (ch = 1; ch <= s->fbw_channels; ch++)
353                 block->channel_in_cpl[ch] = 0;
354         }
355 
356         block->new_cpl_strategy = !blk;
357         if (blk) {
358             for (ch = 1; ch <= s->fbw_channels; ch++) {
359                 if (block->channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
360                     block->new_cpl_strategy = 1;
361                     break;
362                 }
363             }
364         }
365         block->new_cpl_leak = block->new_cpl_strategy;
366 
367         if (!blk || (block->cpl_in_use && !got_cpl_snr)) {
368             block->new_snr_offsets = 1;
369             if (block->cpl_in_use)
370                 got_cpl_snr = 1;
371         } else {
372             block->new_snr_offsets = 0;
373         }
374     }
375     if (!num_cpl_blocks)
376         s->cpl_on = 0;
377 
378     /* set bandwidth for each channel */
379     for (blk = 0; blk < s->num_blocks; blk++) {
380         AC3Block *block = &s->blocks[blk];
381         for (ch = 1; ch <= s->fbw_channels; ch++) {
382             if (block->channel_in_cpl[ch])
383                 block->end_freq[ch] = s->start_freq[CPL_CH];
384             else
385                 block->end_freq[ch] = s->bandwidth_code * 3 + 73;
386         }
387     }
388 }
389 
390 
391 /**
392  * Apply stereo rematrixing to coefficients based on rematrixing flags.
393  *
394  * @param s  AC-3 encoder private context
395  */
ac3_apply_rematrixing(AC3EncodeContext *s)396 static void ac3_apply_rematrixing(AC3EncodeContext *s)
397 {
398     int nb_coefs;
399     int blk, bnd, i;
400     int start, end;
401     uint8_t *flags = NULL;
402 
403     if (!s->rematrixing_enabled)
404         return;
405 
406     for (blk = 0; blk < s->num_blocks; blk++) {
407         AC3Block *block = &s->blocks[blk];
408         if (block->new_rematrixing_strategy)
409             flags = block->rematrixing_flags;
410         nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
411         for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
412             if (flags[bnd]) {
413                 start = ff_ac3_rematrix_band_tab[bnd];
414                 end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
415                 for (i = start; i < end; i++) {
416                     int32_t lt = block->fixed_coef[1][i];
417                     int32_t rt = block->fixed_coef[2][i];
418                     block->fixed_coef[1][i] = (lt + rt) >> 1;
419                     block->fixed_coef[2][i] = (lt - rt) >> 1;
420                 }
421             }
422         }
423     }
424 }
425 
426 
427 /*
428  * Initialize exponent tables.
429  */
exponent_init(void)430 static av_cold void exponent_init(void)
431 {
432     int expstr, i, grpsize;
433 
434     for (expstr = EXP_D15-1; expstr <= EXP_D45-1; expstr++) {
435         grpsize = 3 << expstr;
436         for (i = 12; i < 256; i++) {
437             exponent_group_tab[0][expstr][i] = (i + grpsize - 4) / grpsize;
438             exponent_group_tab[1][expstr][i] = (i              ) / grpsize;
439         }
440     }
441     /* LFE */
442     exponent_group_tab[0][0][7] = 2;
443 }
444 
445 
446 /*
447  * Extract exponents from the MDCT coefficients.
448  */
extract_exponents(AC3EncodeContext *s)449 static void extract_exponents(AC3EncodeContext *s)
450 {
451     int ch        = !s->cpl_on;
452     int chan_size = AC3_MAX_COEFS * s->num_blocks * (s->channels - ch + 1);
453     AC3Block *block = &s->blocks[0];
454 
455     s->ac3dsp.extract_exponents(block->exp[ch], block->fixed_coef[ch], chan_size);
456 }
457 
458 
459 /**
460  * Exponent Difference Threshold.
461  * New exponents are sent if their SAD exceed this number.
462  */
463 #define EXP_DIFF_THRESHOLD 500
464 
465 /**
466  * Table used to select exponent strategy based on exponent reuse block interval.
467  */
468 static const uint8_t exp_strategy_reuse_tab[4][6] = {
469     { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
470     { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
471     { EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
472     { EXP_D45, EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15 }
473 };
474 
475 /*
476  * Calculate exponent strategies for all channels.
477  * Array arrangement is reversed to simplify the per-channel calculation.
478  */
compute_exp_strategy(AC3EncodeContext *s)479 static void compute_exp_strategy(AC3EncodeContext *s)
480 {
481     int ch, blk, blk1;
482 
483     for (ch = !s->cpl_on; ch <= s->fbw_channels; ch++) {
484         uint8_t *exp_strategy = s->exp_strategy[ch];
485         uint8_t *exp          = s->blocks[0].exp[ch];
486         int exp_diff;
487 
488         /* estimate if the exponent variation & decide if they should be
489            reused in the next frame */
490         exp_strategy[0] = EXP_NEW;
491         exp += AC3_MAX_COEFS;
492         for (blk = 1; blk < s->num_blocks; blk++, exp += AC3_MAX_COEFS) {
493             if (ch == CPL_CH) {
494                 if (!s->blocks[blk-1].cpl_in_use) {
495                     exp_strategy[blk] = EXP_NEW;
496                     continue;
497                 } else if (!s->blocks[blk].cpl_in_use) {
498                     exp_strategy[blk] = EXP_REUSE;
499                     continue;
500                 }
501             } else if (s->blocks[blk].channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
502                 exp_strategy[blk] = EXP_NEW;
503                 continue;
504             }
505             exp_diff = s->mecc.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16);
506             exp_strategy[blk] = EXP_REUSE;
507             if (ch == CPL_CH && exp_diff > (EXP_DIFF_THRESHOLD * (s->blocks[blk].end_freq[ch] - s->start_freq[ch]) / AC3_MAX_COEFS))
508                 exp_strategy[blk] = EXP_NEW;
509             else if (ch > CPL_CH && exp_diff > EXP_DIFF_THRESHOLD)
510                 exp_strategy[blk] = EXP_NEW;
511         }
512 
513         /* now select the encoding strategy type : if exponents are often
514            recoded, we use a coarse encoding */
515         blk = 0;
516         while (blk < s->num_blocks) {
517             blk1 = blk + 1;
518             while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE)
519                 blk1++;
520             exp_strategy[blk] = exp_strategy_reuse_tab[s->num_blks_code][blk1-blk-1];
521             blk = blk1;
522         }
523     }
524     if (s->lfe_on) {
525         ch = s->lfe_channel;
526         s->exp_strategy[ch][0] = EXP_D15;
527         for (blk = 1; blk < s->num_blocks; blk++)
528             s->exp_strategy[ch][blk] = EXP_REUSE;
529     }
530 
531     /* for E-AC-3, determine frame exponent strategy */
532     if (CONFIG_EAC3_ENCODER && s->eac3)
533         ff_eac3_get_frame_exp_strategy(s);
534 }
535 
536 
537 /**
538  * Update the exponents so that they are the ones the decoder will decode.
539  *
540  * @param[in,out] exp   array of exponents for 1 block in 1 channel
541  * @param nb_exps       number of exponents in active bandwidth
542  * @param exp_strategy  exponent strategy for the block
543  * @param cpl           indicates if the block is in the coupling channel
544  */
encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy, int cpl)545 static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy,
546                                     int cpl)
547 {
548     int nb_groups, i, k;
549 
550     nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_exps] * 3;
551 
552     /* for each group, compute the minimum exponent */
553     switch(exp_strategy) {
554     case EXP_D25:
555         for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
556             uint8_t exp_min = exp[k];
557             if (exp[k+1] < exp_min)
558                 exp_min = exp[k+1];
559             exp[i-cpl] = exp_min;
560             k += 2;
561         }
562         break;
563     case EXP_D45:
564         for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
565             uint8_t exp_min = exp[k];
566             if (exp[k+1] < exp_min)
567                 exp_min = exp[k+1];
568             if (exp[k+2] < exp_min)
569                 exp_min = exp[k+2];
570             if (exp[k+3] < exp_min)
571                 exp_min = exp[k+3];
572             exp[i-cpl] = exp_min;
573             k += 4;
574         }
575         break;
576     }
577 
578     /* constraint for DC exponent */
579     if (!cpl && exp[0] > 15)
580         exp[0] = 15;
581 
582     /* decrease the delta between each groups to within 2 so that they can be
583        differentially encoded */
584     for (i = 1; i <= nb_groups; i++)
585         exp[i] = FFMIN(exp[i], exp[i-1] + 2);
586     i--;
587     while (--i >= 0)
588         exp[i] = FFMIN(exp[i], exp[i+1] + 2);
589 
590     if (cpl)
591         exp[-1] = exp[0] & ~1;
592 
593     /* now we have the exponent values the decoder will see */
594     switch (exp_strategy) {
595     case EXP_D25:
596         for (i = nb_groups, k = (nb_groups * 2)-cpl; i > 0; i--) {
597             uint8_t exp1 = exp[i-cpl];
598             exp[k--] = exp1;
599             exp[k--] = exp1;
600         }
601         break;
602     case EXP_D45:
603         for (i = nb_groups, k = (nb_groups * 4)-cpl; i > 0; i--) {
604             exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i-cpl];
605             k -= 4;
606         }
607         break;
608     }
609 }
610 
611 
612 /*
613  * Encode exponents from original extracted form to what the decoder will see.
614  * This copies and groups exponents based on exponent strategy and reduces
615  * deltas between adjacent exponent groups so that they can be differentially
616  * encoded.
617  */
encode_exponents(AC3EncodeContext *s)618 static void encode_exponents(AC3EncodeContext *s)
619 {
620     int blk, blk1, ch, cpl;
621     uint8_t *exp, *exp_strategy;
622     int nb_coefs, num_reuse_blocks;
623 
624     for (ch = !s->cpl_on; ch <= s->channels; ch++) {
625         exp          = s->blocks[0].exp[ch] + s->start_freq[ch];
626         exp_strategy = s->exp_strategy[ch];
627 
628         cpl = (ch == CPL_CH);
629         blk = 0;
630         while (blk < s->num_blocks) {
631             AC3Block *block = &s->blocks[blk];
632             if (cpl && !block->cpl_in_use) {
633                 exp += AC3_MAX_COEFS;
634                 blk++;
635                 continue;
636             }
637             nb_coefs = block->end_freq[ch] - s->start_freq[ch];
638             blk1 = blk + 1;
639 
640             /* count the number of EXP_REUSE blocks after the current block
641                and set exponent reference block numbers */
642             s->exp_ref_block[ch][blk] = blk;
643             while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE) {
644                 s->exp_ref_block[ch][blk1] = blk;
645                 blk1++;
646             }
647             num_reuse_blocks = blk1 - blk - 1;
648 
649             /* for the EXP_REUSE case we select the min of the exponents */
650             s->ac3dsp.ac3_exponent_min(exp-s->start_freq[ch], num_reuse_blocks,
651                                        AC3_MAX_COEFS);
652 
653             encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk], cpl);
654 
655             exp += AC3_MAX_COEFS * (num_reuse_blocks + 1);
656             blk = blk1;
657         }
658     }
659 
660     /* reference block numbers have been changed, so reset ref_bap_set */
661     s->ref_bap_set = 0;
662 }
663 
664 
665 /*
666  * Count exponent bits based on bandwidth, coupling, and exponent strategies.
667  */
count_exponent_bits(AC3EncodeContext *s)668 static int count_exponent_bits(AC3EncodeContext *s)
669 {
670     int blk, ch;
671     int nb_groups, bit_count;
672 
673     bit_count = 0;
674     for (blk = 0; blk < s->num_blocks; blk++) {
675         AC3Block *block = &s->blocks[blk];
676         for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
677             int exp_strategy = s->exp_strategy[ch][blk];
678             int cpl          = (ch == CPL_CH);
679             int nb_coefs     = block->end_freq[ch] - s->start_freq[ch];
680 
681             if (exp_strategy == EXP_REUSE)
682                 continue;
683 
684             nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_coefs];
685             bit_count += 4 + (nb_groups * 7);
686         }
687     }
688 
689     return bit_count;
690 }
691 
692 
693 /**
694  * Group exponents.
695  * 3 delta-encoded exponents are in each 7-bit group. The number of groups
696  * varies depending on exponent strategy and bandwidth.
697  *
698  * @param s  AC-3 encoder private context
699  */
ac3_group_exponents(AC3EncodeContext *s)700 static void ac3_group_exponents(AC3EncodeContext *s)
701 {
702     int blk, ch, i, cpl;
703     int group_size, nb_groups;
704     uint8_t *p;
705     int delta0, delta1, delta2;
706     int exp0, exp1;
707 
708     for (blk = 0; blk < s->num_blocks; blk++) {
709         AC3Block *block = &s->blocks[blk];
710         for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
711             int exp_strategy = s->exp_strategy[ch][blk];
712             if (exp_strategy == EXP_REUSE)
713                 continue;
714             cpl = (ch == CPL_CH);
715             group_size = exp_strategy + (exp_strategy == EXP_D45);
716             nb_groups = exponent_group_tab[cpl][exp_strategy-1][block->end_freq[ch]-s->start_freq[ch]];
717             p = block->exp[ch] + s->start_freq[ch] - cpl;
718 
719             /* DC exponent */
720             exp1 = *p++;
721             block->grouped_exp[ch][0] = exp1;
722 
723             /* remaining exponents are delta encoded */
724             for (i = 1; i <= nb_groups; i++) {
725                 /* merge three delta in one code */
726                 exp0   = exp1;
727                 exp1   = p[0];
728                 p     += group_size;
729                 delta0 = exp1 - exp0 + 2;
730                 av_assert2(delta0 >= 0 && delta0 <= 4);
731 
732                 exp0   = exp1;
733                 exp1   = p[0];
734                 p     += group_size;
735                 delta1 = exp1 - exp0 + 2;
736                 av_assert2(delta1 >= 0 && delta1 <= 4);
737 
738                 exp0   = exp1;
739                 exp1   = p[0];
740                 p     += group_size;
741                 delta2 = exp1 - exp0 + 2;
742                 av_assert2(delta2 >= 0 && delta2 <= 4);
743 
744                 block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
745             }
746         }
747     }
748 }
749 
750 
751 /**
752  * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
753  * Extract exponents from MDCT coefficients, calculate exponent strategies,
754  * and encode final exponents.
755  *
756  * @param s  AC-3 encoder private context
757  */
ac3_process_exponents(AC3EncodeContext *s)758 static void ac3_process_exponents(AC3EncodeContext *s)
759 {
760     extract_exponents(s);
761 
762     compute_exp_strategy(s);
763 
764     encode_exponents(s);
765 
766     emms_c();
767 }
768 
769 
770 /*
771  * Count frame bits that are based solely on fixed parameters.
772  * This only has to be run once when the encoder is initialized.
773  */
count_frame_bits_fixed(AC3EncodeContext *s)774 static void count_frame_bits_fixed(AC3EncodeContext *s)
775 {
776     static const uint8_t frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
777     int blk;
778     int frame_bits;
779 
780     /* assumptions:
781      *   no dynamic range codes
782      *   bit allocation parameters do not change between blocks
783      *   no delta bit allocation
784      *   no skipped data
785      *   no auxiliary data
786      *   no E-AC-3 metadata
787      */
788 
789     /* header */
790     frame_bits = 16; /* sync info */
791     if (s->eac3) {
792         /* bitstream info header */
793         frame_bits += 35;
794         frame_bits += 1 + 1;
795         if (s->num_blocks != 0x6)
796             frame_bits++;
797         frame_bits++;
798         /* audio frame header */
799         if (s->num_blocks == 6)
800             frame_bits += 2;
801         frame_bits += 10;
802         /* exponent strategy */
803         if (s->use_frame_exp_strategy)
804             frame_bits += 5 * s->fbw_channels;
805         else
806             frame_bits += s->num_blocks * 2 * s->fbw_channels;
807         if (s->lfe_on)
808             frame_bits += s->num_blocks;
809         /* converter exponent strategy */
810         if (s->num_blks_code != 0x3)
811             frame_bits++;
812         else
813             frame_bits += s->fbw_channels * 5;
814         /* snr offsets */
815         frame_bits += 10;
816         /* block start info */
817         if (s->num_blocks != 1)
818             frame_bits++;
819     } else {
820         frame_bits += 49;
821         frame_bits += frame_bits_inc[s->channel_mode];
822     }
823 
824     /* audio blocks */
825     for (blk = 0; blk < s->num_blocks; blk++) {
826         if (!s->eac3) {
827             /* block switch flags */
828             frame_bits += s->fbw_channels;
829 
830             /* dither flags */
831             frame_bits += s->fbw_channels;
832         }
833 
834         /* dynamic range */
835         frame_bits++;
836 
837         /* spectral extension */
838         if (s->eac3)
839             frame_bits++;
840 
841         /* coupling strategy exists: cplstre */
842         if (!s->eac3)
843             frame_bits++;
844 
845         if (!s->eac3) {
846             /* exponent strategy */
847             frame_bits += 2 * s->fbw_channels;
848             if (s->lfe_on)
849                 frame_bits++;
850 
851             /* bit allocation params */
852             frame_bits++;
853             if (!blk)
854                 frame_bits += 2 + 2 + 2 + 2 + 3;
855         }
856 
857         /* snroffste for AC-3, convsnroffste for E-AC-3 */
858         frame_bits++;
859 
860         if (!s->eac3) {
861             /* delta bit allocation */
862             frame_bits++;
863 
864             /* skipped data */
865             frame_bits++;
866         }
867     }
868 
869     /* auxiliary data */
870     frame_bits++;
871 
872     /* CRC */
873     frame_bits += 1 + 16;
874 
875     s->frame_bits_fixed = frame_bits;
876 }
877 
878 
879 /*
880  * Initialize bit allocation.
881  * Set default parameter codes and calculate parameter values.
882  */
bit_alloc_init(AC3EncodeContext *s)883 static av_cold void bit_alloc_init(AC3EncodeContext *s)
884 {
885     int ch;
886 
887     /* init default parameters */
888     s->slow_decay_code = 2;
889     s->fast_decay_code = 1;
890     s->slow_gain_code  = 1;
891     s->db_per_bit_code = s->eac3 ? 2 : 3;
892     s->floor_code      = 7;
893     for (ch = 0; ch <= s->channels; ch++)
894         s->fast_gain_code[ch] = 4;
895 
896     /* initial snr offset */
897     s->coarse_snr_offset = 40;
898 
899     /* compute real values */
900     /* currently none of these values change during encoding, so we can just
901        set them once at initialization */
902     s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
903     s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
904     s->bit_alloc.slow_gain  = ff_ac3_slow_gain_tab[s->slow_gain_code];
905     s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
906     s->bit_alloc.floor      = ff_ac3_floor_tab[s->floor_code];
907     s->bit_alloc.cpl_fast_leak = 0;
908     s->bit_alloc.cpl_slow_leak = 0;
909 
910     count_frame_bits_fixed(s);
911 }
912 
913 
914 /*
915  * Count the bits used to encode the frame, minus exponents and mantissas.
916  * Bits based on fixed parameters have already been counted, so now we just
917  * have to add the bits based on parameters that change during encoding.
918  */
count_frame_bits(AC3EncodeContext *s)919 static void count_frame_bits(AC3EncodeContext *s)
920 {
921     AC3EncOptions *opt = &s->options;
922     int blk, ch;
923     int frame_bits = 0;
924 
925     /* header */
926     if (s->eac3) {
927         if (opt->eac3_mixing_metadata) {
928             if (s->channel_mode > AC3_CHMODE_STEREO)
929                 frame_bits += 2;
930             if (s->has_center)
931                 frame_bits += 6;
932             if (s->has_surround)
933                 frame_bits += 6;
934             frame_bits += s->lfe_on;
935             frame_bits += 1 + 1 + 2;
936             if (s->channel_mode < AC3_CHMODE_STEREO)
937                 frame_bits++;
938             frame_bits++;
939         }
940         if (opt->eac3_info_metadata) {
941             frame_bits += 3 + 1 + 1;
942             if (s->channel_mode == AC3_CHMODE_STEREO)
943                 frame_bits += 2 + 2;
944             if (s->channel_mode >= AC3_CHMODE_2F2R)
945                 frame_bits += 2;
946             frame_bits++;
947             if (opt->audio_production_info)
948                 frame_bits += 5 + 2 + 1;
949             frame_bits++;
950         }
951         /* coupling */
952         if (s->channel_mode > AC3_CHMODE_MONO) {
953             frame_bits++;
954             for (blk = 1; blk < s->num_blocks; blk++) {
955                 AC3Block *block = &s->blocks[blk];
956                 frame_bits++;
957                 if (block->new_cpl_strategy)
958                     frame_bits++;
959             }
960         }
961         /* coupling exponent strategy */
962         if (s->cpl_on) {
963             if (s->use_frame_exp_strategy) {
964                 frame_bits += 5;
965             } else {
966                 for (blk = 0; blk < s->num_blocks; blk++)
967                     frame_bits += 2 * s->blocks[blk].cpl_in_use;
968             }
969         }
970     } else {
971         if (opt->audio_production_info)
972             frame_bits += 7;
973         if (s->bitstream_id == 6) {
974             if (opt->extended_bsi_1)
975                 frame_bits += 14;
976             if (opt->extended_bsi_2)
977                 frame_bits += 14;
978         }
979     }
980 
981     /* audio blocks */
982     for (blk = 0; blk < s->num_blocks; blk++) {
983         AC3Block *block = &s->blocks[blk];
984 
985         /* coupling strategy */
986         if (block->new_cpl_strategy) {
987             if (!s->eac3)
988                 frame_bits++;
989             if (block->cpl_in_use) {
990                 if (s->eac3)
991                     frame_bits++;
992                 if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO)
993                     frame_bits += s->fbw_channels;
994                 if (s->channel_mode == AC3_CHMODE_STEREO)
995                     frame_bits++;
996                 frame_bits += 4 + 4;
997                 if (s->eac3)
998                     frame_bits++;
999                 else
1000                     frame_bits += s->num_cpl_subbands - 1;
1001             }
1002         }
1003 
1004         /* coupling coordinates */
1005         if (block->cpl_in_use) {
1006             for (ch = 1; ch <= s->fbw_channels; ch++) {
1007                 if (block->channel_in_cpl[ch]) {
1008                     if (!s->eac3 || block->new_cpl_coords[ch] != 2)
1009                         frame_bits++;
1010                     if (block->new_cpl_coords[ch]) {
1011                         frame_bits += 2;
1012                         frame_bits += (4 + 4) * s->num_cpl_bands;
1013                     }
1014                 }
1015             }
1016         }
1017 
1018         /* stereo rematrixing */
1019         if (s->channel_mode == AC3_CHMODE_STEREO) {
1020             if (!s->eac3 || blk > 0)
1021                 frame_bits++;
1022             if (s->blocks[blk].new_rematrixing_strategy)
1023                 frame_bits += block->num_rematrixing_bands;
1024         }
1025 
1026         /* bandwidth codes & gain range */
1027         for (ch = 1; ch <= s->fbw_channels; ch++) {
1028             if (s->exp_strategy[ch][blk] != EXP_REUSE) {
1029                 if (!block->channel_in_cpl[ch])
1030                     frame_bits += 6;
1031                 frame_bits += 2;
1032             }
1033         }
1034 
1035         /* coupling exponent strategy */
1036         if (!s->eac3 && block->cpl_in_use)
1037             frame_bits += 2;
1038 
1039         /* snr offsets and fast gain codes */
1040         if (!s->eac3) {
1041             if (block->new_snr_offsets)
1042                 frame_bits += 6 + (s->channels + block->cpl_in_use) * (4 + 3);
1043         }
1044 
1045         /* coupling leak info */
1046         if (block->cpl_in_use) {
1047             if (!s->eac3 || block->new_cpl_leak != 2)
1048                 frame_bits++;
1049             if (block->new_cpl_leak)
1050                 frame_bits += 3 + 3;
1051         }
1052     }
1053 
1054     s->frame_bits = s->frame_bits_fixed + frame_bits;
1055 }
1056 
1057 
1058 /*
1059  * Calculate masking curve based on the final exponents.
1060  * Also calculate the power spectral densities to use in future calculations.
1061  */
bit_alloc_masking(AC3EncodeContext *s)1062 static void bit_alloc_masking(AC3EncodeContext *s)
1063 {
1064     int blk, ch;
1065 
1066     for (blk = 0; blk < s->num_blocks; blk++) {
1067         AC3Block *block = &s->blocks[blk];
1068         for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1069             /* We only need psd and mask for calculating bap.
1070                Since we currently do not calculate bap when exponent
1071                strategy is EXP_REUSE we do not need to calculate psd or mask. */
1072             if (s->exp_strategy[ch][blk] != EXP_REUSE) {
1073                 ff_ac3_bit_alloc_calc_psd(block->exp[ch], s->start_freq[ch],
1074                                           block->end_freq[ch], block->psd[ch],
1075                                           block->band_psd[ch]);
1076                 ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
1077                                            s->start_freq[ch], block->end_freq[ch],
1078                                            ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
1079                                            ch == s->lfe_channel,
1080                                            DBA_NONE, 0, NULL, NULL, NULL,
1081                                            block->mask[ch]);
1082             }
1083         }
1084     }
1085 }
1086 
1087 
1088 /*
1089  * Ensure that bap for each block and channel point to the current bap_buffer.
1090  * They may have been switched during the bit allocation search.
1091  */
reset_block_bap(AC3EncodeContext *s)1092 static void reset_block_bap(AC3EncodeContext *s)
1093 {
1094     int blk, ch;
1095     uint8_t *ref_bap;
1096 
1097     if (s->ref_bap[0][0] == s->bap_buffer && s->ref_bap_set)
1098         return;
1099 
1100     ref_bap = s->bap_buffer;
1101     for (ch = 0; ch <= s->channels; ch++) {
1102         for (blk = 0; blk < s->num_blocks; blk++)
1103             s->ref_bap[ch][blk] = ref_bap + AC3_MAX_COEFS * s->exp_ref_block[ch][blk];
1104         ref_bap += AC3_MAX_COEFS * s->num_blocks;
1105     }
1106     s->ref_bap_set = 1;
1107 }
1108 
1109 
1110 /**
1111  * Initialize mantissa counts.
1112  * These are set so that they are padded to the next whole group size when bits
1113  * are counted in compute_mantissa_size.
1114  *
1115  * @param[in,out] mant_cnt  running counts for each bap value for each block
1116  */
count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16])1117 static void count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16])
1118 {
1119     int blk;
1120 
1121     for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
1122         memset(mant_cnt[blk], 0, sizeof(mant_cnt[blk]));
1123         mant_cnt[blk][1] = mant_cnt[blk][2] = 2;
1124         mant_cnt[blk][4] = 1;
1125     }
1126 }
1127 
1128 
1129 /**
1130  * Update mantissa bit counts for all blocks in 1 channel in a given bandwidth
1131  * range.
1132  *
1133  * @param s                 AC-3 encoder private context
1134  * @param ch                channel index
1135  * @param[in,out] mant_cnt  running counts for each bap value for each block
1136  * @param start             starting coefficient bin
1137  * @param end               ending coefficient bin
1138  */
count_mantissa_bits_update_ch(AC3EncodeContext *s, int ch, uint16_t mant_cnt[AC3_MAX_BLOCKS][16], int start, int end)1139 static void count_mantissa_bits_update_ch(AC3EncodeContext *s, int ch,
1140                                           uint16_t mant_cnt[AC3_MAX_BLOCKS][16],
1141                                           int start, int end)
1142 {
1143     int blk;
1144 
1145     for (blk = 0; blk < s->num_blocks; blk++) {
1146         AC3Block *block = &s->blocks[blk];
1147         if (ch == CPL_CH && !block->cpl_in_use)
1148             continue;
1149         s->ac3dsp.update_bap_counts(mant_cnt[blk],
1150                                     s->ref_bap[ch][blk] + start,
1151                                     FFMIN(end, block->end_freq[ch]) - start);
1152     }
1153 }
1154 
1155 
1156 /*
1157  * Count the number of mantissa bits in the frame based on the bap values.
1158  */
count_mantissa_bits(AC3EncodeContext *s)1159 static int count_mantissa_bits(AC3EncodeContext *s)
1160 {
1161     int ch, max_end_freq;
1162     LOCAL_ALIGNED_16(uint16_t, mant_cnt, [AC3_MAX_BLOCKS], [16]);
1163 
1164     count_mantissa_bits_init(mant_cnt);
1165 
1166     max_end_freq = s->bandwidth_code * 3 + 73;
1167     for (ch = !s->cpl_enabled; ch <= s->channels; ch++)
1168         count_mantissa_bits_update_ch(s, ch, mant_cnt, s->start_freq[ch],
1169                                       max_end_freq);
1170 
1171     return s->ac3dsp.compute_mantissa_size(mant_cnt);
1172 }
1173 
1174 
1175 /**
1176  * Run the bit allocation with a given SNR offset.
1177  * This calculates the bit allocation pointers that will be used to determine
1178  * the quantization of each mantissa.
1179  *
1180  * @param s           AC-3 encoder private context
1181  * @param snr_offset  SNR offset, 0 to 1023
1182  * @return the number of bits needed for mantissas if the given SNR offset is
1183  *         is used.
1184  */
bit_alloc(AC3EncodeContext *s, int snr_offset)1185 static int bit_alloc(AC3EncodeContext *s, int snr_offset)
1186 {
1187     int blk, ch;
1188 
1189     snr_offset = (snr_offset - 240) * 4;
1190 
1191     reset_block_bap(s);
1192     for (blk = 0; blk < s->num_blocks; blk++) {
1193         AC3Block *block = &s->blocks[blk];
1194 
1195         for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1196             /* Currently the only bit allocation parameters which vary across
1197                blocks within a frame are the exponent values.  We can take
1198                advantage of that by reusing the bit allocation pointers
1199                whenever we reuse exponents. */
1200             if (s->exp_strategy[ch][blk] != EXP_REUSE) {
1201                 s->ac3dsp.bit_alloc_calc_bap(block->mask[ch], block->psd[ch],
1202                                              s->start_freq[ch], block->end_freq[ch],
1203                                              snr_offset, s->bit_alloc.floor,
1204                                              ff_ac3_bap_tab, s->ref_bap[ch][blk]);
1205             }
1206         }
1207     }
1208     return count_mantissa_bits(s);
1209 }
1210 
1211 
1212 /*
1213  * Constant bitrate bit allocation search.
1214  * Find the largest SNR offset that will allow data to fit in the frame.
1215  */
cbr_bit_allocation(AC3EncodeContext *s)1216 static int cbr_bit_allocation(AC3EncodeContext *s)
1217 {
1218     int ch;
1219     int bits_left;
1220     int snr_offset, snr_incr;
1221 
1222     bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
1223     if (bits_left < 0)
1224         return AVERROR(EINVAL);
1225 
1226     snr_offset = s->coarse_snr_offset << 4;
1227 
1228     /* if previous frame SNR offset was 1023, check if current frame can also
1229        use SNR offset of 1023. if so, skip the search. */
1230     if ((snr_offset | s->fine_snr_offset[1]) == 1023) {
1231         if (bit_alloc(s, 1023) <= bits_left)
1232             return 0;
1233     }
1234 
1235     while (snr_offset >= 0 &&
1236            bit_alloc(s, snr_offset) > bits_left) {
1237         snr_offset -= 64;
1238     }
1239     if (snr_offset < 0)
1240         return AVERROR(EINVAL);
1241 
1242     FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1243     for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
1244         while (snr_offset + snr_incr <= 1023 &&
1245                bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
1246             snr_offset += snr_incr;
1247             FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1248         }
1249     }
1250     FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1251     reset_block_bap(s);
1252 
1253     s->coarse_snr_offset = snr_offset >> 4;
1254     for (ch = !s->cpl_on; ch <= s->channels; ch++)
1255         s->fine_snr_offset[ch] = snr_offset & 0xF;
1256 
1257     return 0;
1258 }
1259 
1260 
1261 /*
1262  * Perform bit allocation search.
1263  * Finds the SNR offset value that maximizes quality and fits in the specified
1264  * frame size.  Output is the SNR offset and a set of bit allocation pointers
1265  * used to quantize the mantissas.
1266  */
ac3_compute_bit_allocation(AC3EncodeContext *s)1267 static int ac3_compute_bit_allocation(AC3EncodeContext *s)
1268 {
1269     count_frame_bits(s);
1270 
1271     s->exponent_bits = count_exponent_bits(s);
1272 
1273     bit_alloc_masking(s);
1274 
1275     return cbr_bit_allocation(s);
1276 }
1277 
1278 
1279 /**
1280  * Symmetric quantization on 'levels' levels.
1281  *
1282  * @param c       unquantized coefficient
1283  * @param e       exponent
1284  * @param levels  number of quantization levels
1285  * @return        quantized coefficient
1286  */
sym_quant(int c, int e, int levels)1287 static inline int sym_quant(int c, int e, int levels)
1288 {
1289     int v = (((levels * c) >> (24 - e)) + levels) >> 1;
1290     av_assert2(v >= 0 && v < levels);
1291     return v;
1292 }
1293 
1294 
1295 /**
1296  * Asymmetric quantization on 2^qbits levels.
1297  *
1298  * @param c      unquantized coefficient
1299  * @param e      exponent
1300  * @param qbits  number of quantization bits
1301  * @return       quantized coefficient
1302  */
asym_quant(int c, int e, int qbits)1303 static inline int asym_quant(int c, int e, int qbits)
1304 {
1305     int m;
1306 
1307     c = (((c * (1<<e)) >> (24 - qbits)) + 1) >> 1;
1308     m = (1 << (qbits-1));
1309     if (c >= m)
1310         c = m - 1;
1311     av_assert2(c >= -m);
1312     return c;
1313 }
1314 
1315 
1316 /**
1317  * Quantize a set of mantissas for a single channel in a single block.
1318  *
1319  * @param s           Mantissa count context
1320  * @param fixed_coef  unquantized fixed-point coefficients
1321  * @param exp         exponents
1322  * @param bap         bit allocation pointer indices
1323  * @param[out] qmant  quantized coefficients
1324  * @param start_freq  starting coefficient bin
1325  * @param end_freq    ending coefficient bin
1326  */
quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef, uint8_t *exp, uint8_t *bap, int16_t *qmant, int start_freq, int end_freq)1327 static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef,
1328                                       uint8_t *exp, uint8_t *bap,
1329                                       int16_t *qmant, int start_freq,
1330                                       int end_freq)
1331 {
1332     int i;
1333 
1334     for (i = start_freq; i < end_freq; i++) {
1335         int c = fixed_coef[i];
1336         int e = exp[i];
1337         int v = bap[i];
1338         switch (v) {
1339         case 0:
1340             break;
1341         case 1:
1342             v = sym_quant(c, e, 3);
1343             switch (s->mant1_cnt) {
1344             case 0:
1345                 s->qmant1_ptr = &qmant[i];
1346                 v = 9 * v;
1347                 s->mant1_cnt = 1;
1348                 break;
1349             case 1:
1350                 *s->qmant1_ptr += 3 * v;
1351                 s->mant1_cnt = 2;
1352                 v = 128;
1353                 break;
1354             default:
1355                 *s->qmant1_ptr += v;
1356                 s->mant1_cnt = 0;
1357                 v = 128;
1358                 break;
1359             }
1360             break;
1361         case 2:
1362             v = sym_quant(c, e, 5);
1363             switch (s->mant2_cnt) {
1364             case 0:
1365                 s->qmant2_ptr = &qmant[i];
1366                 v = 25 * v;
1367                 s->mant2_cnt = 1;
1368                 break;
1369             case 1:
1370                 *s->qmant2_ptr += 5 * v;
1371                 s->mant2_cnt = 2;
1372                 v = 128;
1373                 break;
1374             default:
1375                 *s->qmant2_ptr += v;
1376                 s->mant2_cnt = 0;
1377                 v = 128;
1378                 break;
1379             }
1380             break;
1381         case 3:
1382             v = sym_quant(c, e, 7);
1383             break;
1384         case 4:
1385             v = sym_quant(c, e, 11);
1386             switch (s->mant4_cnt) {
1387             case 0:
1388                 s->qmant4_ptr = &qmant[i];
1389                 v = 11 * v;
1390                 s->mant4_cnt = 1;
1391                 break;
1392             default:
1393                 *s->qmant4_ptr += v;
1394                 s->mant4_cnt = 0;
1395                 v = 128;
1396                 break;
1397             }
1398             break;
1399         case 5:
1400             v = sym_quant(c, e, 15);
1401             break;
1402         case 14:
1403             v = asym_quant(c, e, 14);
1404             break;
1405         case 15:
1406             v = asym_quant(c, e, 16);
1407             break;
1408         default:
1409             v = asym_quant(c, e, v - 1);
1410             break;
1411         }
1412         qmant[i] = v;
1413     }
1414 }
1415 
1416 
1417 /**
1418  * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
1419  *
1420  * @param s  AC-3 encoder private context
1421  */
ac3_quantize_mantissas(AC3EncodeContext *s)1422 static void ac3_quantize_mantissas(AC3EncodeContext *s)
1423 {
1424     int blk, ch, ch0=0, got_cpl;
1425 
1426     for (blk = 0; blk < s->num_blocks; blk++) {
1427         AC3Block *block = &s->blocks[blk];
1428         AC3Mant m = { 0 };
1429 
1430         got_cpl = !block->cpl_in_use;
1431         for (ch = 1; ch <= s->channels; ch++) {
1432             if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1433                 ch0     = ch - 1;
1434                 ch      = CPL_CH;
1435                 got_cpl = 1;
1436             }
1437             quantize_mantissas_blk_ch(&m, block->fixed_coef[ch],
1438                                       s->blocks[s->exp_ref_block[ch][blk]].exp[ch],
1439                                       s->ref_bap[ch][blk], block->qmant[ch],
1440                                       s->start_freq[ch], block->end_freq[ch]);
1441             if (ch == CPL_CH)
1442                 ch = ch0;
1443         }
1444     }
1445 }
1446 
1447 
1448 /*
1449  * Write the AC-3 frame header to the output bitstream.
1450  */
ac3_output_frame_header(AC3EncodeContext *s)1451 static void ac3_output_frame_header(AC3EncodeContext *s)
1452 {
1453     AC3EncOptions *opt = &s->options;
1454 
1455     put_bits(&s->pb, 16, 0x0b77);   /* frame header */
1456     put_bits(&s->pb, 16, 0);        /* crc1: will be filled later */
1457     put_bits(&s->pb, 2,  s->bit_alloc.sr_code);
1458     put_bits(&s->pb, 6,  s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
1459     put_bits(&s->pb, 5,  s->bitstream_id);
1460     put_bits(&s->pb, 3,  s->bitstream_mode);
1461     put_bits(&s->pb, 3,  s->channel_mode);
1462     if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
1463         put_bits(&s->pb, 2, s->center_mix_level);
1464     if (s->channel_mode & 0x04)
1465         put_bits(&s->pb, 2, s->surround_mix_level);
1466     if (s->channel_mode == AC3_CHMODE_STEREO)
1467         put_bits(&s->pb, 2, opt->dolby_surround_mode);
1468     put_bits(&s->pb, 1, s->lfe_on); /* LFE */
1469     put_bits(&s->pb, 5, -opt->dialogue_level);
1470     put_bits(&s->pb, 1, 0);         /* no compression control word */
1471     put_bits(&s->pb, 1, 0);         /* no lang code */
1472     put_bits(&s->pb, 1, opt->audio_production_info);
1473     if (opt->audio_production_info) {
1474         put_bits(&s->pb, 5, opt->mixing_level - 80);
1475         put_bits(&s->pb, 2, opt->room_type);
1476     }
1477     put_bits(&s->pb, 1, opt->copyright);
1478     put_bits(&s->pb, 1, opt->original);
1479     if (s->bitstream_id == 6) {
1480         /* alternate bit stream syntax */
1481         put_bits(&s->pb, 1, opt->extended_bsi_1);
1482         if (opt->extended_bsi_1) {
1483             put_bits(&s->pb, 2, opt->preferred_stereo_downmix);
1484             put_bits(&s->pb, 3, s->ltrt_center_mix_level);
1485             put_bits(&s->pb, 3, s->ltrt_surround_mix_level);
1486             put_bits(&s->pb, 3, s->loro_center_mix_level);
1487             put_bits(&s->pb, 3, s->loro_surround_mix_level);
1488         }
1489         put_bits(&s->pb, 1, opt->extended_bsi_2);
1490         if (opt->extended_bsi_2) {
1491             put_bits(&s->pb, 2, opt->dolby_surround_ex_mode);
1492             put_bits(&s->pb, 2, opt->dolby_headphone_mode);
1493             put_bits(&s->pb, 1, opt->ad_converter_type);
1494             put_bits(&s->pb, 9, 0);     /* xbsi2 and encinfo : reserved */
1495         }
1496     } else {
1497         put_bits(&s->pb, 1, 0);     /* no time code 1 */
1498         put_bits(&s->pb, 1, 0);     /* no time code 2 */
1499     }
1500     put_bits(&s->pb, 1, 0);         /* no additional bit stream info */
1501 }
1502 
1503 
1504 /*
1505  * Write one audio block to the output bitstream.
1506  */
output_audio_block(AC3EncodeContext *s, int blk)1507 static void output_audio_block(AC3EncodeContext *s, int blk)
1508 {
1509     int ch, i, baie, bnd, got_cpl, av_uninit(ch0);
1510     AC3Block *block = &s->blocks[blk];
1511 
1512     /* block switching */
1513     if (!s->eac3) {
1514         for (ch = 0; ch < s->fbw_channels; ch++)
1515             put_bits(&s->pb, 1, 0);
1516     }
1517 
1518     /* dither flags */
1519     if (!s->eac3) {
1520         for (ch = 0; ch < s->fbw_channels; ch++)
1521             put_bits(&s->pb, 1, 1);
1522     }
1523 
1524     /* dynamic range codes */
1525     put_bits(&s->pb, 1, 0);
1526 
1527     /* spectral extension */
1528     if (s->eac3)
1529         put_bits(&s->pb, 1, 0);
1530 
1531     /* channel coupling */
1532     if (!s->eac3)
1533         put_bits(&s->pb, 1, block->new_cpl_strategy);
1534     if (block->new_cpl_strategy) {
1535         if (!s->eac3)
1536             put_bits(&s->pb, 1, block->cpl_in_use);
1537         if (block->cpl_in_use) {
1538             int start_sub, end_sub;
1539             if (s->eac3)
1540                 put_bits(&s->pb, 1, 0); /* enhanced coupling */
1541             if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO) {
1542                 for (ch = 1; ch <= s->fbw_channels; ch++)
1543                     put_bits(&s->pb, 1, block->channel_in_cpl[ch]);
1544             }
1545             if (s->channel_mode == AC3_CHMODE_STEREO)
1546                 put_bits(&s->pb, 1, 0); /* phase flags in use */
1547             start_sub = (s->start_freq[CPL_CH] - 37) / 12;
1548             end_sub   = (s->cpl_end_freq       - 37) / 12;
1549             put_bits(&s->pb, 4, start_sub);
1550             put_bits(&s->pb, 4, end_sub - 3);
1551             /* coupling band structure */
1552             if (s->eac3) {
1553                 put_bits(&s->pb, 1, 0); /* use default */
1554             } else {
1555                 for (bnd = start_sub+1; bnd < end_sub; bnd++)
1556                     put_bits(&s->pb, 1, ff_eac3_default_cpl_band_struct[bnd]);
1557             }
1558         }
1559     }
1560 
1561     /* coupling coordinates */
1562     if (block->cpl_in_use) {
1563         for (ch = 1; ch <= s->fbw_channels; ch++) {
1564             if (block->channel_in_cpl[ch]) {
1565                 if (!s->eac3 || block->new_cpl_coords[ch] != 2)
1566                     put_bits(&s->pb, 1, block->new_cpl_coords[ch]);
1567                 if (block->new_cpl_coords[ch]) {
1568                     put_bits(&s->pb, 2, block->cpl_master_exp[ch]);
1569                     for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
1570                         put_bits(&s->pb, 4, block->cpl_coord_exp [ch][bnd]);
1571                         put_bits(&s->pb, 4, block->cpl_coord_mant[ch][bnd]);
1572                     }
1573                 }
1574             }
1575         }
1576     }
1577 
1578     /* stereo rematrixing */
1579     if (s->channel_mode == AC3_CHMODE_STEREO) {
1580         if (!s->eac3 || blk > 0)
1581             put_bits(&s->pb, 1, block->new_rematrixing_strategy);
1582         if (block->new_rematrixing_strategy) {
1583             /* rematrixing flags */
1584             for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++)
1585                 put_bits(&s->pb, 1, block->rematrixing_flags[bnd]);
1586         }
1587     }
1588 
1589     /* exponent strategy */
1590     if (!s->eac3) {
1591         for (ch = !block->cpl_in_use; ch <= s->fbw_channels; ch++)
1592             put_bits(&s->pb, 2, s->exp_strategy[ch][blk]);
1593         if (s->lfe_on)
1594             put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]);
1595     }
1596 
1597     /* bandwidth */
1598     for (ch = 1; ch <= s->fbw_channels; ch++) {
1599         if (s->exp_strategy[ch][blk] != EXP_REUSE && !block->channel_in_cpl[ch])
1600             put_bits(&s->pb, 6, s->bandwidth_code);
1601     }
1602 
1603     /* exponents */
1604     for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1605         int nb_groups;
1606         int cpl = (ch == CPL_CH);
1607 
1608         if (s->exp_strategy[ch][blk] == EXP_REUSE)
1609             continue;
1610 
1611         /* DC exponent */
1612         put_bits(&s->pb, 4, block->grouped_exp[ch][0] >> cpl);
1613 
1614         /* exponent groups */
1615         nb_groups = exponent_group_tab[cpl][s->exp_strategy[ch][blk]-1][block->end_freq[ch]-s->start_freq[ch]];
1616         for (i = 1; i <= nb_groups; i++)
1617             put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
1618 
1619         /* gain range info */
1620         if (ch != s->lfe_channel && !cpl)
1621             put_bits(&s->pb, 2, 0);
1622     }
1623 
1624     /* bit allocation info */
1625     if (!s->eac3) {
1626         baie = (blk == 0);
1627         put_bits(&s->pb, 1, baie);
1628         if (baie) {
1629             put_bits(&s->pb, 2, s->slow_decay_code);
1630             put_bits(&s->pb, 2, s->fast_decay_code);
1631             put_bits(&s->pb, 2, s->slow_gain_code);
1632             put_bits(&s->pb, 2, s->db_per_bit_code);
1633             put_bits(&s->pb, 3, s->floor_code);
1634         }
1635     }
1636 
1637     /* snr offset */
1638     if (!s->eac3) {
1639         put_bits(&s->pb, 1, block->new_snr_offsets);
1640         if (block->new_snr_offsets) {
1641             put_bits(&s->pb, 6, s->coarse_snr_offset);
1642             for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1643                 put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
1644                 put_bits(&s->pb, 3, s->fast_gain_code[ch]);
1645             }
1646         }
1647     } else {
1648         put_bits(&s->pb, 1, 0); /* no converter snr offset */
1649     }
1650 
1651     /* coupling leak */
1652     if (block->cpl_in_use) {
1653         if (!s->eac3 || block->new_cpl_leak != 2)
1654             put_bits(&s->pb, 1, block->new_cpl_leak);
1655         if (block->new_cpl_leak) {
1656             put_bits(&s->pb, 3, s->bit_alloc.cpl_fast_leak);
1657             put_bits(&s->pb, 3, s->bit_alloc.cpl_slow_leak);
1658         }
1659     }
1660 
1661     if (!s->eac3) {
1662         put_bits(&s->pb, 1, 0); /* no delta bit allocation */
1663         put_bits(&s->pb, 1, 0); /* no data to skip */
1664     }
1665 
1666     /* mantissas */
1667     got_cpl = !block->cpl_in_use;
1668     for (ch = 1; ch <= s->channels; ch++) {
1669         int b, q;
1670 
1671         if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1672             ch0     = ch - 1;
1673             ch      = CPL_CH;
1674             got_cpl = 1;
1675         }
1676         for (i = s->start_freq[ch]; i < block->end_freq[ch]; i++) {
1677             q = block->qmant[ch][i];
1678             b = s->ref_bap[ch][blk][i];
1679             switch (b) {
1680             case 0:                                          break;
1681             case 1: if (q != 128) put_bits (&s->pb,   5, q); break;
1682             case 2: if (q != 128) put_bits (&s->pb,   7, q); break;
1683             case 3:               put_sbits(&s->pb,   3, q); break;
1684             case 4: if (q != 128) put_bits (&s->pb,   7, q); break;
1685             case 14:              put_sbits(&s->pb,  14, q); break;
1686             case 15:              put_sbits(&s->pb,  16, q); break;
1687             default:              put_sbits(&s->pb, b-1, q); break;
1688             }
1689         }
1690         if (ch == CPL_CH)
1691             ch = ch0;
1692     }
1693 }
1694 
1695 
1696 /** CRC-16 Polynomial */
1697 #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
1698 
1699 
mul_poly(unsigned int a, unsigned int b, unsigned int poly)1700 static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
1701 {
1702     unsigned int c;
1703 
1704     c = 0;
1705     while (a) {
1706         if (a & 1)
1707             c ^= b;
1708         a = a >> 1;
1709         b = b << 1;
1710         if (b & (1 << 16))
1711             b ^= poly;
1712     }
1713     return c;
1714 }
1715 
1716 
pow_poly(unsigned int a, unsigned int n, unsigned int poly)1717 static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
1718 {
1719     unsigned int r;
1720     r = 1;
1721     while (n) {
1722         if (n & 1)
1723             r = mul_poly(r, a, poly);
1724         a = mul_poly(a, a, poly);
1725         n >>= 1;
1726     }
1727     return r;
1728 }
1729 
1730 
1731 /*
1732  * Fill the end of the frame with 0's and compute the two CRCs.
1733  */
output_frame_end(AC3EncodeContext *s)1734 static void output_frame_end(AC3EncodeContext *s)
1735 {
1736     const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
1737     int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
1738     uint8_t *frame;
1739 
1740     frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;
1741 
1742     /* pad the remainder of the frame with zeros */
1743     av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18);
1744     flush_put_bits(&s->pb);
1745     frame = s->pb.buf;
1746     pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
1747     av_assert2(pad_bytes >= 0);
1748     if (pad_bytes > 0)
1749         memset(put_bits_ptr(&s->pb), 0, pad_bytes);
1750 
1751     if (s->eac3) {
1752         /* compute crc2 */
1753         crc2_partial = av_crc(crc_ctx, 0, frame + 2, s->frame_size - 5);
1754     } else {
1755         /* compute crc1 */
1756         /* this is not so easy because it is at the beginning of the data... */
1757         crc1    = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
1758         crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
1759         crc1    = mul_poly(crc_inv, crc1, CRC16_POLY);
1760         AV_WB16(frame + 2, crc1);
1761 
1762         /* compute crc2 */
1763         crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
1764                               s->frame_size - frame_size_58 - 3);
1765     }
1766     crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1767     /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
1768     if (crc2 == 0x770B) {
1769         frame[s->frame_size - 3] ^= 0x1;
1770         crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1771     }
1772     crc2 = av_bswap16(crc2);
1773     AV_WB16(frame + s->frame_size - 2, crc2);
1774 }
1775 
1776 
1777 /**
1778  * Write the frame to the output bitstream.
1779  *
1780  * @param s      AC-3 encoder private context
1781  * @param frame  output data buffer
1782  */
ac3_output_frame(AC3EncodeContext *s, unsigned char *frame)1783 static void ac3_output_frame(AC3EncodeContext *s, unsigned char *frame)
1784 {
1785     int blk;
1786 
1787     init_put_bits(&s->pb, frame, s->frame_size);
1788 
1789     s->output_frame_header(s);
1790 
1791     for (blk = 0; blk < s->num_blocks; blk++)
1792         output_audio_block(s, blk);
1793 
1794     output_frame_end(s);
1795 }
1796 
ff_ac3_encode_frame_common_end(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)1797 int ff_ac3_encode_frame_common_end(AVCodecContext *avctx, AVPacket *avpkt,
1798                                    const AVFrame *frame, int *got_packet_ptr)
1799 {
1800     AC3EncodeContext *const s = avctx->priv_data;
1801     int ret;
1802 
1803     ac3_apply_rematrixing(s);
1804 
1805     ac3_process_exponents(s);
1806 
1807     ret = ac3_compute_bit_allocation(s);
1808     if (ret) {
1809         av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
1810         return ret;
1811     }
1812 
1813     ac3_group_exponents(s);
1814 
1815     ac3_quantize_mantissas(s);
1816 
1817     ret = ff_get_encode_buffer(avctx, avpkt, s->frame_size, 0);
1818     if (ret < 0)
1819         return ret;
1820     ac3_output_frame(s, avpkt->data);
1821 
1822     if (frame->pts != AV_NOPTS_VALUE)
1823         avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);
1824 
1825     *got_packet_ptr = 1;
1826     return 0;
1827 }
1828 
dprint_options(AC3EncodeContext *s)1829 static void dprint_options(AC3EncodeContext *s)
1830 {
1831 #ifdef DEBUG
1832     AVCodecContext *avctx = s->avctx;
1833     AC3EncOptions *opt = &s->options;
1834     char strbuf[32];
1835 
1836     switch (s->bitstream_id) {
1837     case  6:  av_strlcpy(strbuf, "AC-3 (alt syntax)",       32); break;
1838     case  8:  av_strlcpy(strbuf, "AC-3 (standard)",         32); break;
1839     case  9:  av_strlcpy(strbuf, "AC-3 (dnet half-rate)",   32); break;
1840     case 10:  av_strlcpy(strbuf, "AC-3 (dnet quater-rate)", 32); break;
1841     case 16:  av_strlcpy(strbuf, "E-AC-3 (enhanced)",       32); break;
1842     default: snprintf(strbuf, 32, "ERROR");
1843     }
1844     ff_dlog(avctx, "bitstream_id: %s (%d)\n", strbuf, s->bitstream_id);
1845     ff_dlog(avctx, "sample_fmt: %s\n", av_get_sample_fmt_name(avctx->sample_fmt));
1846     av_channel_layout_describe(&avctx->ch_layout, strbuf, sizeof(strbuf));
1847     ff_dlog(avctx, "channel_layout: %s\n", strbuf);
1848     ff_dlog(avctx, "sample_rate: %d\n", s->sample_rate);
1849     ff_dlog(avctx, "bit_rate: %d\n", s->bit_rate);
1850     ff_dlog(avctx, "blocks/frame: %d (code=%d)\n", s->num_blocks, s->num_blks_code);
1851     if (s->cutoff)
1852         ff_dlog(avctx, "cutoff: %d\n", s->cutoff);
1853 
1854     ff_dlog(avctx, "per_frame_metadata: %s\n",
1855             opt->allow_per_frame_metadata?"on":"off");
1856     if (s->has_center)
1857         ff_dlog(avctx, "center_mixlev: %0.3f (%d)\n", opt->center_mix_level,
1858                 s->center_mix_level);
1859     else
1860         ff_dlog(avctx, "center_mixlev: {not written}\n");
1861     if (s->has_surround)
1862         ff_dlog(avctx, "surround_mixlev: %0.3f (%d)\n", opt->surround_mix_level,
1863                 s->surround_mix_level);
1864     else
1865         ff_dlog(avctx, "surround_mixlev: {not written}\n");
1866     if (opt->audio_production_info) {
1867         ff_dlog(avctx, "mixing_level: %ddB\n", opt->mixing_level);
1868         switch (opt->room_type) {
1869         case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1870         case AC3ENC_OPT_LARGE_ROOM:    av_strlcpy(strbuf, "large", 32);        break;
1871         case AC3ENC_OPT_SMALL_ROOM:    av_strlcpy(strbuf, "small", 32);        break;
1872         default: snprintf(strbuf, 32, "ERROR (%d)", opt->room_type);
1873         }
1874         ff_dlog(avctx, "room_type: %s\n", strbuf);
1875     } else {
1876         ff_dlog(avctx, "mixing_level: {not written}\n");
1877         ff_dlog(avctx, "room_type: {not written}\n");
1878     }
1879     ff_dlog(avctx, "copyright: %s\n", opt->copyright?"on":"off");
1880     ff_dlog(avctx, "dialnorm: %ddB\n", opt->dialogue_level);
1881     if (s->channel_mode == AC3_CHMODE_STEREO) {
1882         switch (opt->dolby_surround_mode) {
1883         case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1884         case AC3ENC_OPT_MODE_ON:       av_strlcpy(strbuf, "on", 32);           break;
1885         case AC3ENC_OPT_MODE_OFF:      av_strlcpy(strbuf, "off", 32);          break;
1886         default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_mode);
1887         }
1888         ff_dlog(avctx, "dsur_mode: %s\n", strbuf);
1889     } else {
1890         ff_dlog(avctx, "dsur_mode: {not written}\n");
1891     }
1892     ff_dlog(avctx, "original: %s\n", opt->original?"on":"off");
1893 
1894     if (s->bitstream_id == 6) {
1895         if (opt->extended_bsi_1) {
1896             switch (opt->preferred_stereo_downmix) {
1897             case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1898             case AC3ENC_OPT_DOWNMIX_LTRT:  av_strlcpy(strbuf, "ltrt", 32);         break;
1899             case AC3ENC_OPT_DOWNMIX_LORO:  av_strlcpy(strbuf, "loro", 32);         break;
1900             default: snprintf(strbuf, 32, "ERROR (%d)", opt->preferred_stereo_downmix);
1901             }
1902             ff_dlog(avctx, "dmix_mode: %s\n", strbuf);
1903             ff_dlog(avctx, "ltrt_cmixlev: %0.3f (%d)\n",
1904                     opt->ltrt_center_mix_level, s->ltrt_center_mix_level);
1905             ff_dlog(avctx, "ltrt_surmixlev: %0.3f (%d)\n",
1906                     opt->ltrt_surround_mix_level, s->ltrt_surround_mix_level);
1907             ff_dlog(avctx, "loro_cmixlev: %0.3f (%d)\n",
1908                     opt->loro_center_mix_level, s->loro_center_mix_level);
1909             ff_dlog(avctx, "loro_surmixlev: %0.3f (%d)\n",
1910                     opt->loro_surround_mix_level, s->loro_surround_mix_level);
1911         } else {
1912             ff_dlog(avctx, "extended bitstream info 1: {not written}\n");
1913         }
1914         if (opt->extended_bsi_2) {
1915             switch (opt->dolby_surround_ex_mode) {
1916             case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1917             case AC3ENC_OPT_MODE_ON:       av_strlcpy(strbuf, "on", 32);           break;
1918             case AC3ENC_OPT_MODE_OFF:      av_strlcpy(strbuf, "off", 32);          break;
1919             default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_ex_mode);
1920             }
1921             ff_dlog(avctx, "dsurex_mode: %s\n", strbuf);
1922             switch (opt->dolby_headphone_mode) {
1923             case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1924             case AC3ENC_OPT_MODE_ON:       av_strlcpy(strbuf, "on", 32);           break;
1925             case AC3ENC_OPT_MODE_OFF:      av_strlcpy(strbuf, "off", 32);          break;
1926             default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_headphone_mode);
1927             }
1928             ff_dlog(avctx, "dheadphone_mode: %s\n", strbuf);
1929 
1930             switch (opt->ad_converter_type) {
1931             case AC3ENC_OPT_ADCONV_STANDARD: av_strlcpy(strbuf, "standard", 32); break;
1932             case AC3ENC_OPT_ADCONV_HDCD:     av_strlcpy(strbuf, "hdcd", 32);     break;
1933             default: snprintf(strbuf, 32, "ERROR (%d)", opt->ad_converter_type);
1934             }
1935             ff_dlog(avctx, "ad_conv_type: %s\n", strbuf);
1936         } else {
1937             ff_dlog(avctx, "extended bitstream info 2: {not written}\n");
1938         }
1939     }
1940 #endif
1941 }
1942 
1943 
1944 #define FLT_OPTION_THRESHOLD 0.01
1945 
validate_float_option(float v, const float *v_list, int v_list_size)1946 static int validate_float_option(float v, const float *v_list, int v_list_size)
1947 {
1948     int i;
1949 
1950     for (i = 0; i < v_list_size; i++) {
1951         if (v < (v_list[i] + FLT_OPTION_THRESHOLD) &&
1952             v > (v_list[i] - FLT_OPTION_THRESHOLD))
1953             break;
1954     }
1955     if (i == v_list_size)
1956         return AVERROR(EINVAL);
1957 
1958     return i;
1959 }
1960 
1961 
validate_mix_level(void *log_ctx, const char *opt_name, float *opt_param, const float *list, int list_size, int default_value, int min_value, int *ctx_param)1962 static void validate_mix_level(void *log_ctx, const char *opt_name,
1963                                float *opt_param, const float *list,
1964                                int list_size, int default_value, int min_value,
1965                                int *ctx_param)
1966 {
1967     int mixlev = validate_float_option(*opt_param, list, list_size);
1968     if (mixlev < min_value) {
1969         mixlev = default_value;
1970         if (*opt_param >= 0.0) {
1971             av_log(log_ctx, AV_LOG_WARNING, "requested %s is not valid. using "
1972                    "default value: %0.3f\n", opt_name, list[mixlev]);
1973         }
1974     }
1975     *opt_param = list[mixlev];
1976     *ctx_param = mixlev;
1977 }
1978 
1979 
1980 /**
1981  * Validate metadata options as set by AVOption system.
1982  * These values can optionally be changed per-frame.
1983  *
1984  * @param s  AC-3 encoder private context
1985  */
ff_ac3_validate_metadata(AC3EncodeContext *s)1986 int ff_ac3_validate_metadata(AC3EncodeContext *s)
1987 {
1988     AVCodecContext *avctx = s->avctx;
1989     AC3EncOptions *opt = &s->options;
1990 
1991     opt->audio_production_info = 0;
1992     opt->extended_bsi_1        = 0;
1993     opt->extended_bsi_2        = 0;
1994     opt->eac3_mixing_metadata  = 0;
1995     opt->eac3_info_metadata    = 0;
1996 
1997     /* determine mixing metadata / xbsi1 use */
1998     if (s->channel_mode > AC3_CHMODE_STEREO && opt->preferred_stereo_downmix != AC3ENC_OPT_NONE) {
1999         opt->extended_bsi_1       = 1;
2000         opt->eac3_mixing_metadata = 1;
2001     }
2002     if (s->has_center &&
2003         (opt->ltrt_center_mix_level >= 0 || opt->loro_center_mix_level >= 0)) {
2004         opt->extended_bsi_1       = 1;
2005         opt->eac3_mixing_metadata = 1;
2006     }
2007     if (s->has_surround &&
2008         (opt->ltrt_surround_mix_level >= 0 || opt->loro_surround_mix_level >= 0)) {
2009         opt->extended_bsi_1       = 1;
2010         opt->eac3_mixing_metadata = 1;
2011     }
2012 
2013     if (s->eac3) {
2014         /* determine info metadata use */
2015         if (avctx->audio_service_type != AV_AUDIO_SERVICE_TYPE_MAIN)
2016             opt->eac3_info_metadata = 1;
2017         if (opt->copyright != AC3ENC_OPT_NONE || opt->original != AC3ENC_OPT_NONE)
2018             opt->eac3_info_metadata = 1;
2019         if (s->channel_mode == AC3_CHMODE_STEREO &&
2020             (opt->dolby_headphone_mode != AC3ENC_OPT_NONE || opt->dolby_surround_mode != AC3ENC_OPT_NONE))
2021             opt->eac3_info_metadata = 1;
2022         if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE)
2023             opt->eac3_info_metadata = 1;
2024         if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE ||
2025             opt->ad_converter_type != AC3ENC_OPT_NONE) {
2026             opt->audio_production_info = 1;
2027             opt->eac3_info_metadata    = 1;
2028         }
2029     } else {
2030         /* determine audio production info use */
2031         if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE)
2032             opt->audio_production_info = 1;
2033 
2034         /* determine xbsi2 use */
2035         if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE)
2036             opt->extended_bsi_2 = 1;
2037         if (s->channel_mode == AC3_CHMODE_STEREO && opt->dolby_headphone_mode != AC3ENC_OPT_NONE)
2038             opt->extended_bsi_2 = 1;
2039         if (opt->ad_converter_type != AC3ENC_OPT_NONE)
2040             opt->extended_bsi_2 = 1;
2041     }
2042 
2043     /* validate AC-3 mixing levels */
2044     if (!s->eac3) {
2045         if (s->has_center) {
2046             validate_mix_level(avctx, "center_mix_level", &opt->center_mix_level,
2047                                cmixlev_options, CMIXLEV_NUM_OPTIONS, 1, 0,
2048                                &s->center_mix_level);
2049         }
2050         if (s->has_surround) {
2051             validate_mix_level(avctx, "surround_mix_level", &opt->surround_mix_level,
2052                                surmixlev_options, SURMIXLEV_NUM_OPTIONS, 1, 0,
2053                                &s->surround_mix_level);
2054         }
2055     }
2056 
2057     /* validate extended bsi 1 / mixing metadata */
2058     if (opt->extended_bsi_1 || opt->eac3_mixing_metadata) {
2059         /* default preferred stereo downmix */
2060         if (opt->preferred_stereo_downmix == AC3ENC_OPT_NONE)
2061             opt->preferred_stereo_downmix = AC3ENC_OPT_NOT_INDICATED;
2062         if (!s->eac3 || s->has_center) {
2063             /* validate Lt/Rt center mix level */
2064             validate_mix_level(avctx, "ltrt_center_mix_level",
2065                                &opt->ltrt_center_mix_level, extmixlev_options,
2066                                EXTMIXLEV_NUM_OPTIONS, 5, 0,
2067                                &s->ltrt_center_mix_level);
2068             /* validate Lo/Ro center mix level */
2069             validate_mix_level(avctx, "loro_center_mix_level",
2070                                &opt->loro_center_mix_level, extmixlev_options,
2071                                EXTMIXLEV_NUM_OPTIONS, 5, 0,
2072                                &s->loro_center_mix_level);
2073         }
2074         if (!s->eac3 || s->has_surround) {
2075             /* validate Lt/Rt surround mix level */
2076             validate_mix_level(avctx, "ltrt_surround_mix_level",
2077                                &opt->ltrt_surround_mix_level, extmixlev_options,
2078                                EXTMIXLEV_NUM_OPTIONS, 6, 3,
2079                                &s->ltrt_surround_mix_level);
2080             /* validate Lo/Ro surround mix level */
2081             validate_mix_level(avctx, "loro_surround_mix_level",
2082                                &opt->loro_surround_mix_level, extmixlev_options,
2083                                EXTMIXLEV_NUM_OPTIONS, 6, 3,
2084                                &s->loro_surround_mix_level);
2085         }
2086     }
2087 
2088     /* validate audio service type / channels combination */
2089     if ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_KARAOKE &&
2090          avctx->ch_layout.nb_channels == 1) ||
2091         ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_COMMENTARY ||
2092           avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_EMERGENCY  ||
2093           avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_VOICE_OVER)
2094          && avctx->ch_layout.nb_channels > 1)) {
2095         av_log(avctx, AV_LOG_ERROR, "invalid audio service type for the "
2096                                     "specified number of channels\n");
2097         return AVERROR(EINVAL);
2098     }
2099 
2100     /* validate extended bsi 2 / info metadata */
2101     if (opt->extended_bsi_2 || opt->eac3_info_metadata) {
2102         /* default dolby headphone mode */
2103         if (opt->dolby_headphone_mode == AC3ENC_OPT_NONE)
2104             opt->dolby_headphone_mode = AC3ENC_OPT_NOT_INDICATED;
2105         /* default dolby surround ex mode */
2106         if (opt->dolby_surround_ex_mode == AC3ENC_OPT_NONE)
2107             opt->dolby_surround_ex_mode = AC3ENC_OPT_NOT_INDICATED;
2108         /* default A/D converter type */
2109         if (opt->ad_converter_type == AC3ENC_OPT_NONE)
2110             opt->ad_converter_type = AC3ENC_OPT_ADCONV_STANDARD;
2111     }
2112 
2113     /* copyright & original defaults */
2114     if (!s->eac3 || opt->eac3_info_metadata) {
2115         /* default copyright */
2116         if (opt->copyright == AC3ENC_OPT_NONE)
2117             opt->copyright = AC3ENC_OPT_OFF;
2118         /* default original */
2119         if (opt->original == AC3ENC_OPT_NONE)
2120             opt->original = AC3ENC_OPT_ON;
2121     }
2122 
2123     /* dolby surround mode default */
2124     if (!s->eac3 || opt->eac3_info_metadata) {
2125         if (opt->dolby_surround_mode == AC3ENC_OPT_NONE)
2126             opt->dolby_surround_mode = AC3ENC_OPT_NOT_INDICATED;
2127     }
2128 
2129     /* validate audio production info */
2130     if (opt->audio_production_info) {
2131         if (opt->mixing_level == AC3ENC_OPT_NONE) {
2132             av_log(avctx, AV_LOG_ERROR, "mixing_level must be set if "
2133                    "room_type is set\n");
2134             return AVERROR(EINVAL);
2135         }
2136         if (opt->mixing_level < 80) {
2137             av_log(avctx, AV_LOG_ERROR, "invalid mixing level. must be between "
2138                    "80dB and 111dB\n");
2139             return AVERROR(EINVAL);
2140         }
2141         /* default room type */
2142         if (opt->room_type == AC3ENC_OPT_NONE)
2143             opt->room_type = AC3ENC_OPT_NOT_INDICATED;
2144     }
2145 
2146     /* set bitstream id for alternate bitstream syntax */
2147     if (!s->eac3 && (opt->extended_bsi_1 || opt->extended_bsi_2)) {
2148         if (s->bitstream_id > 8 && s->bitstream_id < 11) {
2149             if (!s->warned_alternate_bitstream) {
2150                 av_log(avctx, AV_LOG_WARNING, "alternate bitstream syntax is "
2151                        "not compatible with reduced samplerates. writing of "
2152                        "extended bitstream information will be disabled.\n");
2153                 s->warned_alternate_bitstream = 1;
2154             }
2155         } else {
2156             s->bitstream_id = 6;
2157         }
2158     }
2159 
2160     return 0;
2161 }
2162 
2163 
2164 /**
2165  * Finalize encoding and free any memory allocated by the encoder.
2166  *
2167  * @param avctx  Codec context
2168  */
ff_ac3_encode_close(AVCodecContext *avctx)2169 av_cold int ff_ac3_encode_close(AVCodecContext *avctx)
2170 {
2171     int blk, ch;
2172     AC3EncodeContext *s = avctx->priv_data;
2173 
2174     av_freep(&s->mdct_window);
2175     av_freep(&s->windowed_samples);
2176     if (s->planar_samples)
2177         for (ch = 0; ch < s->channels; ch++)
2178             av_freep(&s->planar_samples[ch]);
2179     av_freep(&s->planar_samples);
2180     av_freep(&s->bap_buffer);
2181     av_freep(&s->bap1_buffer);
2182     av_freep(&s->mdct_coef_buffer);
2183     av_freep(&s->fixed_coef_buffer);
2184     av_freep(&s->exp_buffer);
2185     av_freep(&s->grouped_exp_buffer);
2186     av_freep(&s->psd_buffer);
2187     av_freep(&s->band_psd_buffer);
2188     av_freep(&s->mask_buffer);
2189     av_freep(&s->qmant_buffer);
2190     av_freep(&s->cpl_coord_exp_buffer);
2191     av_freep(&s->cpl_coord_mant_buffer);
2192     av_freep(&s->fdsp);
2193     for (blk = 0; blk < s->num_blocks; blk++) {
2194         AC3Block *block = &s->blocks[blk];
2195         av_freep(&block->mdct_coef);
2196         av_freep(&block->fixed_coef);
2197         av_freep(&block->exp);
2198         av_freep(&block->grouped_exp);
2199         av_freep(&block->psd);
2200         av_freep(&block->band_psd);
2201         av_freep(&block->mask);
2202         av_freep(&block->qmant);
2203         av_freep(&block->cpl_coord_exp);
2204         av_freep(&block->cpl_coord_mant);
2205     }
2206 
2207     s->mdct_end(s);
2208 
2209     return 0;
2210 }
2211 
2212 
2213 /*
2214  * Set channel information during initialization.
2215  */
set_channel_info(AVCodecContext *avctx)2216 static av_cold int set_channel_info(AVCodecContext *avctx)
2217 {
2218     AC3EncodeContext *s = avctx->priv_data;
2219     int channels = avctx->ch_layout.nb_channels;
2220     uint64_t mask = avctx->ch_layout.u.mask;
2221 
2222     if (channels < 1 || channels > AC3_MAX_CHANNELS)
2223         return AVERROR(EINVAL);
2224     if (mask > 0x7FF)
2225         return AVERROR(EINVAL);
2226 
2227     if (!mask)
2228         av_channel_layout_default(&avctx->ch_layout, channels);
2229     mask = avctx->ch_layout.u.mask;
2230 
2231     s->lfe_on       = !!(mask & AV_CH_LOW_FREQUENCY);
2232     s->channels     = channels;
2233     s->fbw_channels = channels - s->lfe_on;
2234     s->lfe_channel  = s->lfe_on ? s->fbw_channels + 1 : -1;
2235     if (s->lfe_on)
2236         mask -= AV_CH_LOW_FREQUENCY;
2237 
2238     switch (mask) {
2239     case AV_CH_LAYOUT_MONO:           s->channel_mode = AC3_CHMODE_MONO;   break;
2240     case AV_CH_LAYOUT_STEREO:         s->channel_mode = AC3_CHMODE_STEREO; break;
2241     case AV_CH_LAYOUT_SURROUND:       s->channel_mode = AC3_CHMODE_3F;     break;
2242     case AV_CH_LAYOUT_2_1:            s->channel_mode = AC3_CHMODE_2F1R;   break;
2243     case AV_CH_LAYOUT_4POINT0:        s->channel_mode = AC3_CHMODE_3F1R;   break;
2244     case AV_CH_LAYOUT_QUAD:
2245     case AV_CH_LAYOUT_2_2:            s->channel_mode = AC3_CHMODE_2F2R;   break;
2246     case AV_CH_LAYOUT_5POINT0:
2247     case AV_CH_LAYOUT_5POINT0_BACK:   s->channel_mode = AC3_CHMODE_3F2R;   break;
2248     default:
2249         return AVERROR(EINVAL);
2250     }
2251     s->has_center   = (s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO;
2252     s->has_surround =  s->channel_mode & 0x04;
2253 
2254     s->channel_map  = ac3_enc_channel_map[s->channel_mode][s->lfe_on];
2255     if (s->lfe_on)
2256         mask |= AV_CH_LOW_FREQUENCY;
2257     av_channel_layout_from_mask(&avctx->ch_layout, mask);
2258 
2259     return 0;
2260 }
2261 
2262 
validate_options(AC3EncodeContext *s)2263 static av_cold int validate_options(AC3EncodeContext *s)
2264 {
2265     AVCodecContext *avctx = s->avctx;
2266     int i, ret, max_sr;
2267 
2268     /* validate channel layout */
2269     if (!avctx->ch_layout.nb_channels) {
2270         av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
2271                                       "encoder will guess the layout, but it "
2272                                       "might be incorrect.\n");
2273     }
2274     ret = set_channel_info(avctx);
2275     if (ret) {
2276         av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
2277         return ret;
2278     }
2279 
2280     /* validate sample rate */
2281     /* note: max_sr could be changed from 2 to 5 for E-AC-3 once we find a
2282              decoder that supports half sample rate so we can validate that
2283              the generated files are correct. */
2284     max_sr = s->eac3 ? 2 : 8;
2285     for (i = 0; i <= max_sr; i++) {
2286         if ((ff_ac3_sample_rate_tab[i % 3] >> (i / 3)) == avctx->sample_rate)
2287             break;
2288     }
2289     if (i > max_sr) {
2290         av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
2291         return AVERROR(EINVAL);
2292     }
2293     s->sample_rate        = avctx->sample_rate;
2294     s->bit_alloc.sr_shift = i / 3;
2295     s->bit_alloc.sr_code  = i % 3;
2296     s->bitstream_id       = s->eac3 ? 16 : 8 + s->bit_alloc.sr_shift;
2297 
2298     /* select a default bit rate if not set by the user */
2299     if (!avctx->bit_rate) {
2300         switch (s->fbw_channels) {
2301         case 1: avctx->bit_rate =  96000; break;
2302         case 2: avctx->bit_rate = 192000; break;
2303         case 3: avctx->bit_rate = 320000; break;
2304         case 4: avctx->bit_rate = 384000; break;
2305         case 5: avctx->bit_rate = 448000; break;
2306         }
2307     }
2308 
2309     /* validate bit rate */
2310     if (s->eac3) {
2311         int max_br, min_br, wpf, min_br_code;
2312         int num_blks_code, num_blocks, frame_samples;
2313         long long min_br_dist;
2314 
2315         /* calculate min/max bitrate */
2316         /* TODO: More testing with 3 and 2 blocks. All E-AC-3 samples I've
2317                  found use either 6 blocks or 1 block, even though 2 or 3 blocks
2318                  would work as far as the bit rate is concerned. */
2319         for (num_blks_code = 3; num_blks_code >= 0; num_blks_code--) {
2320             num_blocks = ((int[]){ 1, 2, 3, 6 })[num_blks_code];
2321             frame_samples  = AC3_BLOCK_SIZE * num_blocks;
2322             max_br = 2048 * s->sample_rate / frame_samples * 16;
2323             min_br = ((s->sample_rate + (frame_samples-1)) / frame_samples) * 16;
2324             if (avctx->bit_rate <= max_br)
2325                 break;
2326         }
2327         if (avctx->bit_rate < min_br || avctx->bit_rate > max_br) {
2328             av_log(avctx, AV_LOG_ERROR, "invalid bit rate. must be %d to %d "
2329                    "for this sample rate\n", min_br, max_br);
2330             return AVERROR(EINVAL);
2331         }
2332         s->num_blks_code = num_blks_code;
2333         s->num_blocks    = num_blocks;
2334 
2335         /* calculate words-per-frame for the selected bitrate */
2336         wpf = (avctx->bit_rate / 16) * frame_samples / s->sample_rate;
2337         av_assert1(wpf > 0 && wpf <= 2048);
2338 
2339         /* find the closest AC-3 bitrate code to the selected bitrate.
2340            this is needed for lookup tables for bandwidth and coupling
2341            parameter selection */
2342         min_br_code = -1;
2343         min_br_dist = INT64_MAX;
2344         for (i = 0; i < 19; i++) {
2345             long long br_dist = llabs(ff_ac3_bitrate_tab[i] * 1000 - avctx->bit_rate);
2346             if (br_dist < min_br_dist) {
2347                 min_br_dist = br_dist;
2348                 min_br_code = i;
2349             }
2350         }
2351 
2352         /* make sure the minimum frame size is below the average frame size */
2353         s->frame_size_code = min_br_code << 1;
2354         while (wpf > 1 && wpf * s->sample_rate / AC3_FRAME_SIZE * 16 > avctx->bit_rate)
2355             wpf--;
2356         s->frame_size_min = 2 * wpf;
2357     } else {
2358         int best_br = 0, best_code = 0;
2359         long long best_diff = INT64_MAX;
2360         for (i = 0; i < 19; i++) {
2361             int br   = (ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift) * 1000;
2362             long long diff = llabs(br - avctx->bit_rate);
2363             if (diff < best_diff) {
2364                 best_br   = br;
2365                 best_code = i;
2366                 best_diff = diff;
2367             }
2368             if (!best_diff)
2369                 break;
2370         }
2371         avctx->bit_rate    = best_br;
2372         s->frame_size_code = best_code << 1;
2373         s->frame_size_min  = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
2374         s->num_blks_code   = 0x3;
2375         s->num_blocks      = 6;
2376     }
2377     s->bit_rate   = avctx->bit_rate;
2378     s->frame_size = s->frame_size_min;
2379 
2380     /* validate cutoff */
2381     if (avctx->cutoff < 0) {
2382         av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
2383         return AVERROR(EINVAL);
2384     }
2385     s->cutoff = avctx->cutoff;
2386     if (s->cutoff > (s->sample_rate >> 1))
2387         s->cutoff = s->sample_rate >> 1;
2388 
2389     ret = ff_ac3_validate_metadata(s);
2390     if (ret)
2391         return ret;
2392 
2393     s->rematrixing_enabled = s->options.stereo_rematrixing &&
2394                              (s->channel_mode == AC3_CHMODE_STEREO);
2395 
2396     s->cpl_enabled = s->options.channel_coupling &&
2397                      s->channel_mode >= AC3_CHMODE_STEREO;
2398 
2399     return 0;
2400 }
2401 
2402 
2403 /*
2404  * Set bandwidth for all channels.
2405  * The user can optionally supply a cutoff frequency. Otherwise an appropriate
2406  * default value will be used.
2407  */
set_bandwidth(AC3EncodeContext *s)2408 static av_cold void set_bandwidth(AC3EncodeContext *s)
2409 {
2410     int blk, ch, av_uninit(cpl_start);
2411 
2412     if (s->cutoff) {
2413         /* calculate bandwidth based on user-specified cutoff frequency */
2414         int fbw_coeffs;
2415         fbw_coeffs     = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
2416         s->bandwidth_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
2417     } else {
2418         /* use default bandwidth setting */
2419         s->bandwidth_code = ac3_bandwidth_tab[s->fbw_channels-1][s->bit_alloc.sr_code][s->frame_size_code/2];
2420     }
2421 
2422     /* set number of coefficients for each channel */
2423     for (ch = 1; ch <= s->fbw_channels; ch++) {
2424         s->start_freq[ch] = 0;
2425         for (blk = 0; blk < s->num_blocks; blk++)
2426             s->blocks[blk].end_freq[ch] = s->bandwidth_code * 3 + 73;
2427     }
2428     /* LFE channel always has 7 coefs */
2429     if (s->lfe_on) {
2430         s->start_freq[s->lfe_channel] = 0;
2431         for (blk = 0; blk < s->num_blocks; blk++)
2432             s->blocks[blk].end_freq[ch] = 7;
2433     }
2434 
2435     /* initialize coupling strategy */
2436     if (s->cpl_enabled) {
2437         if (s->options.cpl_start != AC3ENC_OPT_AUTO) {
2438             cpl_start = s->options.cpl_start;
2439         } else {
2440             cpl_start = ac3_coupling_start_tab[s->channel_mode-2][s->bit_alloc.sr_code][s->frame_size_code/2];
2441             if (cpl_start < 0) {
2442                 if (s->options.channel_coupling == AC3ENC_OPT_AUTO)
2443                     s->cpl_enabled = 0;
2444                 else
2445                     cpl_start = 15;
2446             }
2447         }
2448     }
2449     if (s->cpl_enabled) {
2450         int i, cpl_start_band, cpl_end_band;
2451         uint8_t *cpl_band_sizes = s->cpl_band_sizes;
2452 
2453         cpl_end_band   = s->bandwidth_code / 4 + 3;
2454         cpl_start_band = av_clip(cpl_start, 0, FFMIN(cpl_end_band-1, 15));
2455 
2456         s->num_cpl_subbands = cpl_end_band - cpl_start_band;
2457 
2458         s->num_cpl_bands = 1;
2459         *cpl_band_sizes  = 12;
2460         for (i = cpl_start_band + 1; i < cpl_end_band; i++) {
2461             if (ff_eac3_default_cpl_band_struct[i]) {
2462                 *cpl_band_sizes += 12;
2463             } else {
2464                 s->num_cpl_bands++;
2465                 cpl_band_sizes++;
2466                 *cpl_band_sizes = 12;
2467             }
2468         }
2469 
2470         s->start_freq[CPL_CH] = cpl_start_band * 12 + 37;
2471         s->cpl_end_freq       = cpl_end_band   * 12 + 37;
2472         for (blk = 0; blk < s->num_blocks; blk++)
2473             s->blocks[blk].end_freq[CPL_CH] = s->cpl_end_freq;
2474     }
2475 }
2476 
2477 
allocate_buffers(AC3EncodeContext *s)2478 static av_cold int allocate_buffers(AC3EncodeContext *s)
2479 {
2480     int blk, ch;
2481     int channels = s->channels + 1; /* includes coupling channel */
2482     int channel_blocks = channels * s->num_blocks;
2483     int total_coefs    = AC3_MAX_COEFS * channel_blocks;
2484 
2485     if (s->allocate_sample_buffers(s))
2486         return AVERROR(ENOMEM);
2487 
2488     if (!FF_ALLOC_TYPED_ARRAY(s->bap_buffer,         total_coefs)          ||
2489         !FF_ALLOC_TYPED_ARRAY(s->bap1_buffer,        total_coefs)          ||
2490         !FF_ALLOCZ_TYPED_ARRAY(s->mdct_coef_buffer,  total_coefs)          ||
2491         !FF_ALLOC_TYPED_ARRAY(s->exp_buffer,         total_coefs)          ||
2492         !FF_ALLOC_TYPED_ARRAY(s->grouped_exp_buffer, channel_blocks * 128) ||
2493         !FF_ALLOC_TYPED_ARRAY(s->psd_buffer,         total_coefs)          ||
2494         !FF_ALLOC_TYPED_ARRAY(s->band_psd_buffer,    channel_blocks * 64)  ||
2495         !FF_ALLOC_TYPED_ARRAY(s->mask_buffer,        channel_blocks * 64)  ||
2496         !FF_ALLOC_TYPED_ARRAY(s->qmant_buffer,       total_coefs))
2497         return AVERROR(ENOMEM);
2498 
2499     if (s->cpl_enabled) {
2500         if (!FF_ALLOC_TYPED_ARRAY(s->cpl_coord_exp_buffer,  channel_blocks * 16) ||
2501             !FF_ALLOC_TYPED_ARRAY(s->cpl_coord_mant_buffer, channel_blocks * 16))
2502             return AVERROR(ENOMEM);
2503     }
2504     for (blk = 0; blk < s->num_blocks; blk++) {
2505         AC3Block *block = &s->blocks[blk];
2506 
2507         if (!FF_ALLOCZ_TYPED_ARRAY(block->mdct_coef,   channels) ||
2508             !FF_ALLOCZ_TYPED_ARRAY(block->exp,         channels) ||
2509             !FF_ALLOCZ_TYPED_ARRAY(block->grouped_exp, channels) ||
2510             !FF_ALLOCZ_TYPED_ARRAY(block->psd,         channels) ||
2511             !FF_ALLOCZ_TYPED_ARRAY(block->band_psd,    channels) ||
2512             !FF_ALLOCZ_TYPED_ARRAY(block->mask,        channels) ||
2513             !FF_ALLOCZ_TYPED_ARRAY(block->qmant,       channels))
2514             return AVERROR(ENOMEM);
2515 
2516         if (s->cpl_enabled) {
2517             if (!FF_ALLOCZ_TYPED_ARRAY(block->cpl_coord_exp,  channels) ||
2518                 !FF_ALLOCZ_TYPED_ARRAY(block->cpl_coord_mant, channels))
2519                 return AVERROR(ENOMEM);
2520         }
2521 
2522         for (ch = 0; ch < channels; ch++) {
2523             /* arrangement: block, channel, coeff */
2524             block->grouped_exp[ch] = &s->grouped_exp_buffer[128           * (blk * channels + ch)];
2525             block->psd[ch]         = &s->psd_buffer        [AC3_MAX_COEFS * (blk * channels + ch)];
2526             block->band_psd[ch]    = &s->band_psd_buffer   [64            * (blk * channels + ch)];
2527             block->mask[ch]        = &s->mask_buffer       [64            * (blk * channels + ch)];
2528             block->qmant[ch]       = &s->qmant_buffer      [AC3_MAX_COEFS * (blk * channels + ch)];
2529             if (s->cpl_enabled) {
2530                 block->cpl_coord_exp[ch]  = &s->cpl_coord_exp_buffer [16  * (blk * channels + ch)];
2531                 block->cpl_coord_mant[ch] = &s->cpl_coord_mant_buffer[16  * (blk * channels + ch)];
2532             }
2533 
2534             /* arrangement: channel, block, coeff */
2535             block->exp[ch]         = &s->exp_buffer        [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2536             block->mdct_coef[ch]   = &s->mdct_coef_buffer  [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2537         }
2538     }
2539 
2540     if (!s->fixed_point) {
2541         if (!FF_ALLOCZ_TYPED_ARRAY(s->fixed_coef_buffer, total_coefs))
2542             return AVERROR(ENOMEM);
2543         for (blk = 0; blk < s->num_blocks; blk++) {
2544             AC3Block *block = &s->blocks[blk];
2545             if (!FF_ALLOCZ_TYPED_ARRAY(block->fixed_coef, channels))
2546                 return AVERROR(ENOMEM);
2547             for (ch = 0; ch < channels; ch++)
2548                 block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2549         }
2550     } else {
2551         for (blk = 0; blk < s->num_blocks; blk++) {
2552             AC3Block *block = &s->blocks[blk];
2553             if (!FF_ALLOCZ_TYPED_ARRAY(block->fixed_coef, channels))
2554                 return AVERROR(ENOMEM);
2555             for (ch = 0; ch < channels; ch++)
2556                 block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch];
2557         }
2558     }
2559 
2560     return 0;
2561 }
2562 
2563 
ff_ac3_encode_init(AVCodecContext *avctx)2564 av_cold int ff_ac3_encode_init(AVCodecContext *avctx)
2565 {
2566     static AVOnce init_static_once = AV_ONCE_INIT;
2567     AC3EncodeContext *s = avctx->priv_data;
2568     int ret, frame_size_58;
2569 
2570     s->avctx = avctx;
2571 
2572     s->eac3 = avctx->codec_id == AV_CODEC_ID_EAC3;
2573 
2574     ret = validate_options(s);
2575     if (ret)
2576         return ret;
2577 
2578     avctx->frame_size = AC3_BLOCK_SIZE * s->num_blocks;
2579     avctx->initial_padding = AC3_BLOCK_SIZE;
2580 
2581     s->bitstream_mode = avctx->audio_service_type;
2582     if (s->bitstream_mode == AV_AUDIO_SERVICE_TYPE_KARAOKE)
2583         s->bitstream_mode = 0x7;
2584 
2585     s->bits_written    = 0;
2586     s->samples_written = 0;
2587 
2588     /* calculate crc_inv for both possible frame sizes */
2589     frame_size_58 = (( s->frame_size    >> 2) + ( s->frame_size    >> 4)) << 1;
2590     s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2591     if (s->bit_alloc.sr_code == 1) {
2592         frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
2593         s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2594     }
2595 
2596     if (CONFIG_EAC3_ENCODER && s->eac3) {
2597         static AVOnce init_static_once_eac3 = AV_ONCE_INIT;
2598         ff_thread_once(&init_static_once_eac3, ff_eac3_exponent_init);
2599         s->output_frame_header = ff_eac3_output_frame_header;
2600     } else
2601         s->output_frame_header = ac3_output_frame_header;
2602 
2603     set_bandwidth(s);
2604 
2605     bit_alloc_init(s);
2606 
2607     ret = s->mdct_init(s);
2608     if (ret)
2609         return ret;
2610 
2611     ret = allocate_buffers(s);
2612     if (ret)
2613         return ret;
2614 
2615     ff_audiodsp_init(&s->adsp);
2616     ff_me_cmp_init(&s->mecc, avctx);
2617     ff_ac3dsp_init(&s->ac3dsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
2618 
2619     dprint_options(s);
2620 
2621     ff_thread_once(&init_static_once, exponent_init);
2622 
2623     return 0;
2624 }
2625