1 /* Sniff out modules from ELF headers visible in memory segments.
2    Copyright (C) 2008-2012, 2014, 2015, 2018 Red Hat, Inc.
3    Copyright (C) 2021 Mark J. Wielaard <mark@klomp.org>
4    This file is part of elfutils.
5 
6    This file is free software; you can redistribute it and/or modify
7    it under the terms of either
8 
9      * the GNU Lesser General Public License as published by the Free
10        Software Foundation; either version 3 of the License, or (at
11        your option) any later version
12 
13    or
14 
15      * the GNU General Public License as published by the Free
16        Software Foundation; either version 2 of the License, or (at
17        your option) any later version
18 
19    or both in parallel, as here.
20 
21    elfutils is distributed in the hope that it will be useful, but
22    WITHOUT ANY WARRANTY; without even the implied warranty of
23    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
24    General Public License for more details.
25 
26    You should have received copies of the GNU General Public License and
27    the GNU Lesser General Public License along with this program.  If
28    not, see <http://www.gnu.org/licenses/>.  */
29 
30 #include <config.h>
31 #include "../libelf/libelfP.h"	/* For NOTE_ALIGN4 and NOTE_ALIGN8.  */
32 #undef	_
33 #include "libdwflP.h"
34 #include "common.h"
35 
36 #include <elf.h>
37 #include <gelf.h>
38 #include <inttypes.h>
39 #include <fcntl.h>
40 
41 #include <system.h>
42 
43 
44 /* A good size for the initial read from memory, if it's not too costly.
45    This more than covers the phdrs and note segment in the average 64-bit
46    binary.  */
47 
48 #define INITIAL_READ	1024
49 
50 #if BYTE_ORDER == LITTLE_ENDIAN
51 # define MY_ELFDATA	ELFDATA2LSB
52 #else
53 # define MY_ELFDATA	ELFDATA2MSB
54 #endif
55 
56 struct elf_build_id
57 {
58   void *memory;
59   size_t len;
60   GElf_Addr vaddr;
61 };
62 
63 struct read_state
64 {
65   Dwfl *dwfl;
66   Dwfl_Memory_Callback *memory_callback;
67   void *memory_callback_arg;
68   void **buffer;
69   size_t *buffer_available;
70 };
71 
72 /* Return user segment index closest to ADDR but not above it.
73    If NEXT, return the closest to ADDR but not below it.  */
74 static int
addr_segndx(Dwfl *dwfl, size_t segment, GElf_Addr addr, bool next)75 addr_segndx (Dwfl *dwfl, size_t segment, GElf_Addr addr, bool next)
76 {
77   int ndx = -1;
78   do
79     {
80       if (dwfl->lookup_segndx[segment] >= 0)
81 	ndx = dwfl->lookup_segndx[segment];
82       if (++segment >= dwfl->lookup_elts - 1)
83 	return next ? ndx + 1 : ndx;
84     }
85   while (dwfl->lookup_addr[segment] < addr);
86 
87   if (next)
88     {
89       while (dwfl->lookup_segndx[segment] < 0)
90 	if (++segment >= dwfl->lookup_elts - 1)
91 	  return ndx + 1;
92       ndx = dwfl->lookup_segndx[segment];
93     }
94 
95   return ndx;
96 }
97 
98 /* Return whether there is SZ bytes available at PTR till END.  */
99 
100 static bool
buf_has_data(const void *ptr, const void *end, size_t sz)101 buf_has_data (const void *ptr, const void *end, size_t sz)
102 {
103   return ptr < end && (size_t) (end - ptr) >= sz;
104 }
105 
106 /* Read SZ bytes into *RETP from *PTRP (limited by END) in format EI_DATA.
107    Function comes from src/readelf.c .  */
108 
109 static bool
buf_read_ulong(unsigned char ei_data, size_t sz, const void **ptrp, const void *end, uint64_t *retp)110 buf_read_ulong (unsigned char ei_data, size_t sz,
111 		const void **ptrp, const void *end, uint64_t *retp)
112 {
113   if (! buf_has_data (*ptrp, end, sz))
114     return false;
115 
116   union
117   {
118     uint64_t u64;
119     uint32_t u32;
120   } u;
121 
122   memcpy (&u, *ptrp, sz);
123   (*ptrp) += sz;
124 
125   if (retp == NULL)
126     return true;
127 
128   if (MY_ELFDATA != ei_data)
129     {
130       if (sz == 4)
131 	CONVERT (u.u32);
132       else
133 	CONVERT (u.u64);
134     }
135   if (sz == 4)
136     *retp = u.u32;
137   else
138     *retp = u.u64;
139   return true;
140 }
141 
142 /* Try to find matching entry for module from address MODULE_START to
143    MODULE_END in NT_FILE note located at NOTE_FILE of NOTE_FILE_SIZE
144    bytes in format EI_CLASS and EI_DATA.  */
145 
146 static const char *
handle_file_note(GElf_Addr module_start, GElf_Addr module_end, unsigned char ei_class, unsigned char ei_data, const void *note_file, size_t note_file_size)147 handle_file_note (GElf_Addr module_start, GElf_Addr module_end,
148 		  unsigned char ei_class, unsigned char ei_data,
149 		  const void *note_file, size_t note_file_size)
150 {
151   if (note_file == NULL)
152     return NULL;
153 
154   size_t sz;
155   switch (ei_class)
156     {
157     case ELFCLASS32:
158       sz = 4;
159       break;
160     case ELFCLASS64:
161       sz = 8;
162       break;
163     default:
164       return NULL;
165     }
166 
167   const void *ptr = note_file;
168   const void *end = note_file + note_file_size;
169   uint64_t count;
170   if (! buf_read_ulong (ei_data, sz, &ptr, end, &count))
171     return NULL;
172   if (! buf_read_ulong (ei_data, sz, &ptr, end, NULL)) // page_size
173     return NULL;
174 
175   uint64_t maxcount = (size_t) (end - ptr) / (3 * sz);
176   if (count > maxcount)
177     return NULL;
178 
179   /* Where file names are stored.  */
180   const char *fptr = ptr + 3 * count * sz;
181 
182   ssize_t firstix = -1;
183   ssize_t lastix = -1;
184   for (size_t mix = 0; mix < count; mix++)
185     {
186       uint64_t mstart, mend, moffset;
187       if (! buf_read_ulong (ei_data, sz, &ptr, fptr, &mstart)
188 	  || ! buf_read_ulong (ei_data, sz, &ptr, fptr, &mend)
189 	  || ! buf_read_ulong (ei_data, sz, &ptr, fptr, &moffset))
190 	return NULL;
191       if (mstart == module_start && moffset == 0)
192 	firstix = lastix = mix;
193       if (firstix != -1 && mstart < module_end)
194 	lastix = mix;
195       if (mend >= module_end)
196 	break;
197     }
198   if (firstix == -1)
199     return NULL;
200 
201   const char *retval = NULL;
202   for (ssize_t mix = 0; mix <= lastix; mix++)
203     {
204       const char *fnext = memchr (fptr, 0, (const char *) end - fptr);
205       if (fnext == NULL)
206 	return NULL;
207       if (mix == firstix)
208 	retval = fptr;
209       if (firstix < mix && mix <= lastix && strcmp (fptr, retval) != 0)
210 	return NULL;
211       fptr = fnext + 1;
212     }
213   return retval;
214 }
215 
216 /* Return true iff we are certain ELF cannot match BUILD_ID of
217    BUILD_ID_LEN bytes.  Pass DISK_FILE_HAS_BUILD_ID as false if it is
218    certain ELF does not contain build-id (it is only a performance hit
219    to pass it always as true).  */
220 
221 static bool
invalid_elf(Elf *elf, bool disk_file_has_build_id, struct elf_build_id *build_id)222 invalid_elf (Elf *elf, bool disk_file_has_build_id,
223              struct elf_build_id *build_id)
224 {
225   if (! disk_file_has_build_id && build_id->len > 0)
226     {
227       /* Module found in segments with build-id is more reliable
228 	 than a module found via DT_DEBUG on disk without any
229 	 build-id.   */
230       return true;
231     }
232   if (disk_file_has_build_id && build_id->len > 0)
233     {
234       const void *elf_build_id;
235       ssize_t elf_build_id_len;
236 
237       /* If there is a build id in the elf file, check it.  */
238       elf_build_id_len = INTUSE(dwelf_elf_gnu_build_id) (elf, &elf_build_id);
239       if (elf_build_id_len > 0)
240 	{
241 	  if (build_id->len != (size_t) elf_build_id_len
242 	      || memcmp (build_id->memory, elf_build_id, build_id->len) != 0)
243 	    return true;
244 	}
245     }
246   return false;
247 }
248 
249 static void
finish_portion(struct read_state *read_state, void **data, size_t *data_size)250 finish_portion (struct read_state *read_state,
251 		void **data, size_t *data_size)
252 {
253   if (*data_size != 0 && *data != NULL)
254     (*read_state->memory_callback) (read_state->dwfl, -1, data, data_size,
255 				    0, 0, read_state->memory_callback_arg);
256 }
257 
258 static inline bool
read_portion(struct read_state *read_state, void **data, size_t *data_size, GElf_Addr start, size_t segment, GElf_Addr vaddr, size_t filesz)259 read_portion (struct read_state *read_state,
260 	      void **data, size_t *data_size,
261 	      GElf_Addr start, size_t segment,
262 	      GElf_Addr vaddr, size_t filesz)
263 {
264   /* Check whether we will have to read the segment data, or if it
265      can be returned from the existing buffer.  */
266   if (filesz > *read_state->buffer_available
267       || vaddr - start > *read_state->buffer_available - filesz
268       /* If we're in string mode, then don't consider the buffer we have
269 	 sufficient unless it contains the terminator of the string.  */
270       || (filesz == 0 && memchr (vaddr - start + *read_state->buffer, '\0',
271 				 (*read_state->buffer_available
272 				  - (vaddr - start))) == NULL))
273     {
274       *data = NULL;
275       *data_size = filesz;
276       return !(*read_state->memory_callback) (read_state->dwfl,
277 					      addr_segndx (read_state->dwfl,
278 							   segment, vaddr,
279 							   false),
280 					      data, data_size, vaddr, filesz,
281 					      read_state->memory_callback_arg);
282     }
283 
284   /* We already have this whole note segment from our initial read.  */
285   *data = vaddr - start + (*read_state->buffer);
286   *data_size = 0;
287   return false;
288 }
289 
290 int
dwfl_segment_report_module(Dwfl *dwfl, int ndx, const char *name, Dwfl_Memory_Callback *memory_callback, void *memory_callback_arg, Dwfl_Module_Callback *read_eagerly, void *read_eagerly_arg, size_t maxread, const void *note_file, size_t note_file_size, const struct r_debug_info *r_debug_info)291 dwfl_segment_report_module (Dwfl *dwfl, int ndx, const char *name,
292 			    Dwfl_Memory_Callback *memory_callback,
293 			    void *memory_callback_arg,
294 			    Dwfl_Module_Callback *read_eagerly,
295 			    void *read_eagerly_arg,
296 			    size_t maxread,
297 			    const void *note_file, size_t note_file_size,
298 			    const struct r_debug_info *r_debug_info)
299 {
300   size_t segment = ndx;
301   struct read_state read_state;
302 
303   if (segment >= dwfl->lookup_elts)
304     segment = dwfl->lookup_elts - 1;
305 
306   while (segment > 0
307 	 && (dwfl->lookup_segndx[segment] > ndx
308 	     || dwfl->lookup_segndx[segment] == -1))
309     --segment;
310 
311   while (dwfl->lookup_segndx[segment] < ndx)
312     if (++segment == dwfl->lookup_elts)
313       return 0;
314 
315   GElf_Addr start = dwfl->lookup_addr[segment];
316 
317   /* First read in the file header and check its sanity.  */
318 
319   void *buffer = NULL;
320   size_t buffer_available = INITIAL_READ;
321   Elf *elf = NULL;
322   int fd = -1;
323 
324   read_state.dwfl = dwfl;
325   read_state.memory_callback = memory_callback;
326   read_state.memory_callback_arg = memory_callback_arg;
327   read_state.buffer = &buffer;
328   read_state.buffer_available = &buffer_available;
329 
330   /* We might have to reserve some memory for the phdrs.  Set to NULL
331      here so we can always safely free it.  */
332   void *phdrsp = NULL;
333 
334   /* Collect the build ID bits here.  */
335   struct elf_build_id build_id;
336   build_id.memory = NULL;
337   build_id.len = 0;
338   build_id.vaddr = 0;
339 
340   if (! (*memory_callback) (dwfl, ndx, &buffer, &buffer_available,
341 			    start, sizeof (Elf64_Ehdr), memory_callback_arg)
342       || memcmp (buffer, ELFMAG, SELFMAG) != 0)
343     goto out;
344 
345   /* Extract the information we need from the file header.  */
346   const unsigned char *e_ident;
347   unsigned char ei_class;
348   unsigned char ei_data;
349   uint16_t e_type;
350   union
351   {
352     Elf32_Ehdr e32;
353     Elf64_Ehdr e64;
354   } ehdr;
355   GElf_Off phoff;
356   uint_fast16_t phnum;
357   uint_fast16_t phentsize;
358   GElf_Off shdrs_end;
359   Elf_Data xlatefrom =
360     {
361       .d_type = ELF_T_EHDR,
362       .d_buf = (void *) buffer,
363       .d_version = EV_CURRENT,
364     };
365   Elf_Data xlateto =
366     {
367       .d_type = ELF_T_EHDR,
368       .d_buf = &ehdr,
369       .d_size = sizeof ehdr,
370       .d_version = EV_CURRENT,
371     };
372   e_ident = ((const unsigned char *) buffer);
373   ei_class = e_ident[EI_CLASS];
374   ei_data = e_ident[EI_DATA];
375   /* buffer may be unaligned, in which case xlatetom would not work.
376      xlatetom does work when the in and out d_buf are equal (but not
377      for any other overlap).  */
378   size_t ehdr_align = (ei_class == ELFCLASS32
379 		       ? __alignof__ (Elf32_Ehdr)
380 		       : __alignof__ (Elf64_Ehdr));
381   if (((uintptr_t) buffer & (ehdr_align - 1)) != 0)
382     {
383       memcpy (&ehdr, buffer,
384 	      (ei_class == ELFCLASS32
385 	       ? sizeof (Elf32_Ehdr)
386 	       : sizeof (Elf64_Ehdr)));
387       xlatefrom.d_buf = &ehdr;
388     }
389   switch (ei_class)
390     {
391     case ELFCLASS32:
392       xlatefrom.d_size = sizeof (Elf32_Ehdr);
393       if (elf32_xlatetom (&xlateto, &xlatefrom, ei_data) == NULL)
394 	goto out;
395       e_type = ehdr.e32.e_type;
396       phoff = ehdr.e32.e_phoff;
397       phnum = ehdr.e32.e_phnum;
398       phentsize = ehdr.e32.e_phentsize;
399       if (phentsize != sizeof (Elf32_Phdr))
400 	goto out;
401       /* NOTE if the number of sections is > 0xff00 then e_shnum
402 	 is zero and the actual number would come from the section
403 	 zero sh_size field. We ignore this here because getting shdrs
404 	 is just a nice bonus (see below in the type == PT_LOAD case
405 	 where we trim the last segment).  */
406       shdrs_end = ehdr.e32.e_shoff + ehdr.e32.e_shnum * sizeof (Elf32_Shdr);
407       break;
408 
409     case ELFCLASS64:
410       xlatefrom.d_size = sizeof (Elf64_Ehdr);
411       if (elf64_xlatetom (&xlateto, &xlatefrom, ei_data) == NULL)
412 	goto out;
413       e_type = ehdr.e64.e_type;
414       phoff = ehdr.e64.e_phoff;
415       phnum = ehdr.e64.e_phnum;
416       phentsize = ehdr.e64.e_phentsize;
417       if (phentsize != sizeof (Elf64_Phdr))
418 	goto out;
419       /* See the NOTE above for shdrs_end and ehdr.e32.e_shnum.  */
420       shdrs_end = ehdr.e64.e_shoff + ehdr.e64.e_shnum * sizeof (Elf64_Shdr);
421       break;
422 
423     default:
424       goto out;
425     }
426 
427   /* The file header tells where to find the program headers.
428      These are what we need to find the boundaries of the module.
429      Without them, we don't have a module to report.  */
430 
431   if (phnum == 0)
432     goto out;
433 
434   xlatefrom.d_type = xlateto.d_type = ELF_T_PHDR;
435   xlatefrom.d_size = phnum * phentsize;
436 
437   void *ph_buffer = NULL;
438   size_t ph_buffer_size = 0;
439   if (read_portion (&read_state, &ph_buffer, &ph_buffer_size,
440 		    start, segment,
441 		    start + phoff, xlatefrom.d_size))
442     goto out;
443 
444   /* ph_buffer_size will be zero if we got everything from the initial
445      buffer, otherwise it will be the size of the new buffer that
446      could be read.  */
447   if (ph_buffer_size != 0)
448     {
449       phnum = ph_buffer_size / phentsize;
450       if (phnum == 0)
451 	goto out;
452       xlatefrom.d_size = ph_buffer_size;
453     }
454 
455   xlatefrom.d_buf = ph_buffer;
456 
457   bool class32 = ei_class == ELFCLASS32;
458   size_t phdr_size = class32 ? sizeof (Elf32_Phdr) : sizeof (Elf64_Phdr);
459   if (unlikely (phnum > SIZE_MAX / phdr_size))
460     goto out;
461   const size_t phdrsp_bytes = phnum * phdr_size;
462   phdrsp = malloc (phdrsp_bytes);
463   if (unlikely (phdrsp == NULL))
464     goto out;
465 
466   xlateto.d_buf = phdrsp;
467   xlateto.d_size = phdrsp_bytes;
468 
469   /* ph_ buffer may be unaligned, in which case xlatetom would not work.
470      xlatetom does work when the in and out d_buf are equal (but not
471      for any other overlap).  */
472   size_t phdr_align = (class32
473 		       ? __alignof__ (Elf32_Phdr)
474 		       : __alignof__ (Elf64_Phdr));
475   if (((uintptr_t) ph_buffer & (phdr_align - 1)) != 0)
476     {
477       memcpy (phdrsp, ph_buffer, phdrsp_bytes);
478       xlatefrom.d_buf = phdrsp;
479     }
480 
481   /* Track the bounds of the file visible in memory.  */
482   GElf_Off file_trimmed_end = 0; /* Proper p_vaddr + p_filesz end.  */
483   GElf_Off file_end = 0;	 /* Rounded up to effective page size.  */
484   GElf_Off contiguous = 0;	 /* Visible as contiguous file from START.  */
485   GElf_Off total_filesz = 0;	 /* Total size of data to read.  */
486 
487   /* Collect the bias between START and the containing PT_LOAD's p_vaddr.  */
488   GElf_Addr bias = 0;
489   bool found_bias = false;
490 
491   /* Collect the unbiased bounds of the module here.  */
492   GElf_Addr module_start = -1l;
493   GElf_Addr module_end = 0;
494   GElf_Addr module_address_sync = 0;
495 
496   /* If we see PT_DYNAMIC, record it here.  */
497   GElf_Addr dyn_vaddr = 0;
498   GElf_Xword dyn_filesz = 0;
499 
500   Elf32_Phdr *p32 = phdrsp;
501   Elf64_Phdr *p64 = phdrsp;
502   if ((ei_class == ELFCLASS32
503        && elf32_xlatetom (&xlateto, &xlatefrom, ei_data) == NULL)
504       || (ei_class == ELFCLASS64
505           && elf64_xlatetom (&xlateto, &xlatefrom, ei_data) == NULL))
506     {
507       found_bias = false; /* Trigger error check */
508     }
509   else
510     {
511       /* Consider each of the program headers we've read from the image.  */
512       for (uint_fast16_t i = 0; i < phnum; ++i)
513         {
514           bool is32 = (ei_class == ELFCLASS32);
515           GElf_Word type = is32 ? p32[i].p_type : p64[i].p_type;
516           GElf_Addr vaddr = is32 ? p32[i].p_vaddr : p64[i].p_vaddr;
517           GElf_Xword memsz = is32 ? p32[i].p_memsz : p64[i].p_memsz;
518           GElf_Off offset = is32 ? p32[i].p_offset : p64[i].p_offset;
519           GElf_Xword filesz = is32 ? p32[i].p_filesz : p64[i].p_filesz;
520           GElf_Xword align = is32 ? p32[i].p_align : p64[i].p_align;
521 
522           if (type == PT_DYNAMIC)
523             {
524               dyn_vaddr = vaddr;
525               dyn_filesz = filesz;
526             }
527           else if (type == PT_NOTE)
528             {
529               /* If we have already seen a build ID, we don't care any more.  */
530               if (build_id.memory != NULL || filesz == 0)
531                 continue; /* Next header */
532 
533               /* We calculate from the p_offset of the note segment,
534                because we don't yet know the bias for its p_vaddr.  */
535               const GElf_Addr note_vaddr = start + offset;
536               void *data;
537               size_t data_size;
538               if (read_portion (&read_state, &data, &data_size,
539 				start, segment, note_vaddr, filesz))
540                 continue; /* Next header */
541 
542               /* data_size will be zero if we got everything from the initial
543                  buffer, otherwise it will be the size of the new buffer that
544                  could be read.  */
545               if (data_size != 0)
546                 filesz = data_size;
547 
548 	      if (filesz > SIZE_MAX / sizeof (Elf32_Nhdr))
549 		continue;
550 
551               assert (sizeof (Elf32_Nhdr) == sizeof (Elf64_Nhdr));
552 
553               void *notes;
554               if (ei_data == MY_ELFDATA
555 		  && (uintptr_t) data == (align == 8
556 					  ? NOTE_ALIGN8 ((uintptr_t) data)
557 					  : NOTE_ALIGN4 ((uintptr_t) data)))
558                 notes = data;
559               else
560                 {
561                   const unsigned int xencoding = ehdr.e32.e_ident[EI_DATA];
562 
563 		  if (filesz > SIZE_MAX / sizeof (Elf32_Nhdr))
564 		    continue;
565                   notes = malloc (filesz);
566                   if (unlikely (notes == NULL))
567                     continue; /* Next header */
568                   xlatefrom.d_type = xlateto.d_type = (align == 8
569                                                        ? ELF_T_NHDR8
570 						       : ELF_T_NHDR);
571                   xlatefrom.d_buf = (void *) data;
572                   xlatefrom.d_size = filesz;
573                   xlateto.d_buf = notes;
574                   xlateto.d_size = filesz;
575 
576 		  /* data may be unaligned, in which case xlatetom would not work.
577 		     xlatetom does work when the in and out d_buf are equal (but not
578 		     for any other overlap).  */
579 		  if ((uintptr_t) data != (align == 8
580 					   ? NOTE_ALIGN8 ((uintptr_t) data)
581 					   : NOTE_ALIGN4 ((uintptr_t) data)))
582 		    {
583 		      memcpy (notes, data, filesz);
584 		      xlatefrom.d_buf = notes;
585 		    }
586 
587                   if (elf32_xlatetom (&xlateto, &xlatefrom, xencoding) == NULL)
588                     {
589                       free (notes);
590                       finish_portion (&read_state, &data, &data_size);
591                       continue;
592                     }
593                 }
594 
595               const GElf_Nhdr *nh = notes;
596               size_t len = 0;
597               while (filesz - len > sizeof (*nh))
598                 {
599 		  len += sizeof (*nh);
600 
601 		  size_t namesz = nh->n_namesz;
602 		  namesz = align == 8 ? NOTE_ALIGN8 (namesz) : NOTE_ALIGN4 (namesz);
603 		  if (namesz > filesz - len || len + namesz < namesz)
604 		    break;
605 
606 		  void *note_name = notes + len;
607 		  len += namesz;
608 
609 		  size_t descsz = nh->n_descsz;
610 		  descsz = align == 8 ? NOTE_ALIGN8 (descsz) : NOTE_ALIGN4 (descsz);
611 		  if (descsz > filesz - len || len + descsz < descsz)
612 		    break;
613 
614 		  void *note_desc = notes + len;
615 		  len += descsz;
616 
617 		  /* We don't handle very short or really large build-ids.  We need at
618 		     at least 3 and allow for up to 64 (normally ids are 20 long).  */
619 #define MIN_BUILD_ID_BYTES 3
620 #define MAX_BUILD_ID_BYTES 64
621 		  if (nh->n_type == NT_GNU_BUILD_ID
622 		      && nh->n_descsz >= MIN_BUILD_ID_BYTES
623 		      && nh->n_descsz <= MAX_BUILD_ID_BYTES
624 		      && nh->n_namesz == sizeof "GNU"
625 		      && !memcmp (note_name, "GNU", sizeof "GNU"))
626 		    {
627 		      build_id.vaddr = (note_desc
628 					- (const void *) notes
629 					+ note_vaddr);
630 		      build_id.len = nh->n_descsz;
631 		      build_id.memory = malloc (build_id.len);
632 		      if (likely (build_id.memory != NULL))
633 			memcpy (build_id.memory, note_desc, build_id.len);
634 		      break;
635 		    }
636 
637 		  nh = (void *) notes + len;
638 		}
639 
640               if (notes != data)
641                 free (notes);
642               finish_portion (&read_state, &data, &data_size);
643             }
644           else if (type == PT_LOAD)
645             {
646               align = (dwfl->segment_align > 1
647                        ? dwfl->segment_align : (align ?: 1));
648 
649               GElf_Addr vaddr_end = (vaddr + memsz + align - 1) & -align;
650               GElf_Addr filesz_vaddr = (filesz < memsz
651                                         ? vaddr + filesz : vaddr_end);
652               GElf_Off filesz_offset = filesz_vaddr - vaddr + offset;
653 
654               if (file_trimmed_end < offset + filesz)
655                 {
656                   file_trimmed_end = offset + filesz;
657 
658                   /* Trim the last segment so we don't bother with zeros
659                      in the last page that are off the end of the file.
660                      However, if the extra bit in that page includes the
661                      section headers, keep them.  */
662                   if (shdrs_end <= filesz_offset
663                       && shdrs_end > file_trimmed_end)
664                     {
665                       filesz += shdrs_end - file_trimmed_end;
666                       file_trimmed_end = shdrs_end;
667                     }
668                 }
669 
670               total_filesz += filesz;
671 
672               if (file_end < filesz_offset)
673                 {
674                   file_end = filesz_offset;
675                   if (filesz_vaddr - start == filesz_offset)
676                     contiguous = file_end;
677                 }
678 
679               if (!found_bias && (offset & -align) == 0
680                   && likely (filesz_offset >= phoff + phnum * phentsize))
681                 {
682                   bias = start - vaddr;
683                   found_bias = true;
684                 }
685 
686               if ((vaddr & -align) < module_start)
687                 {
688                   module_start = vaddr & -align;
689                   module_address_sync = vaddr + memsz;
690                 }
691 
692               if (module_end < vaddr_end)
693                 module_end = vaddr_end;
694             }
695         }
696     }
697 
698   finish_portion (&read_state, &ph_buffer, &ph_buffer_size);
699 
700   /* We must have seen the segment covering offset 0, or else the ELF
701      header we read at START was not produced by these program headers.  */
702   if (unlikely (!found_bias))
703     goto out;
704 
705   /* Now we know enough to report a module for sure: its bounds.  */
706   module_start += bias;
707   module_end += bias;
708 
709   dyn_vaddr += bias;
710 
711   /* NAME found from link map has precedence over DT_SONAME possibly read
712      below.  */
713   bool name_is_final = false;
714 
715   /* Try to match up DYN_VADDR against L_LD as found in link map.
716      Segments sniffing may guess invalid address as the first read-only memory
717      mapping may not be dumped to the core file (if ELF headers are not dumped)
718      and the ELF header is dumped first with the read/write mapping of the same
719      file at higher addresses.  */
720   if (r_debug_info != NULL)
721     for (const struct r_debug_info_module *module = r_debug_info->module;
722 	 module != NULL; module = module->next)
723       if (module_start <= module->l_ld && module->l_ld < module_end)
724 	{
725 	  /* L_LD read from link map must be right while DYN_VADDR is unsafe.
726 	     Therefore subtract DYN_VADDR and add L_LD to get a possibly
727 	     corrective displacement for all addresses computed so far.  */
728 	  GElf_Addr fixup = module->l_ld - dyn_vaddr;
729 	  if ((fixup & (dwfl->segment_align - 1)) == 0
730 	      && module_start + fixup <= module->l_ld
731 	      && module->l_ld < module_end + fixup)
732 	    {
733 	      module_start += fixup;
734 	      module_end += fixup;
735 	      dyn_vaddr += fixup;
736 	      bias += fixup;
737 	      if (module->name[0] != '\0')
738 		{
739 		  name = basename (module->name);
740 		  name_is_final = true;
741 		}
742 	      break;
743 	    }
744 	}
745 
746   if (r_debug_info != NULL)
747     {
748       bool skip_this_module = false;
749       for (struct r_debug_info_module *module = r_debug_info->module;
750 	   module != NULL; module = module->next)
751 	if ((module_end > module->start && module_start < module->end)
752 	    || dyn_vaddr == module->l_ld)
753 	  {
754 	    if (module->elf != NULL
755 	        && invalid_elf (module->elf, module->disk_file_has_build_id,
756 				&build_id))
757 	      {
758 		elf_end (module->elf);
759 		close (module->fd);
760 		module->elf = NULL;
761 		module->fd = -1;
762 	      }
763 	    if (module->elf != NULL)
764 	      {
765 		/* Ignore this found module if it would conflict in address
766 		   space with any already existing module of DWFL.  */
767 		skip_this_module = true;
768 	      }
769 	  }
770       if (skip_this_module)
771 	goto out;
772     }
773 
774   const char *file_note_name = handle_file_note (module_start, module_end,
775 						 ei_class, ei_data,
776 						 note_file, note_file_size);
777   if (file_note_name)
778     {
779       name = file_note_name;
780       name_is_final = true;
781       bool invalid = false;
782       fd = open (name, O_RDONLY);
783       if (fd >= 0)
784 	{
785 	  Dwfl_Error error = __libdw_open_file (&fd, &elf, true, false);
786 	  if (error == DWFL_E_NOERROR)
787 	    invalid = invalid_elf (elf, true /* disk_file_has_build_id */,
788                                    &build_id);
789 	}
790       if (invalid)
791 	{
792 	  /* The file was there, but the build_id didn't match.  We
793 	     still want to report the module, but need to get the ELF
794 	     some other way if possible.  */
795 	  close (fd);
796 	  fd = -1;
797 	  elf_end (elf);
798 	  elf = NULL;
799 	}
800     }
801 
802   /* Our return value now says to skip the segments contained
803      within the module.  */
804   ndx = addr_segndx (dwfl, segment, module_end, true);
805 
806   /* Examine its .dynamic section to get more interesting details.
807      If it has DT_SONAME, we'll use that as the module name.
808      If it has a DT_DEBUG, then it's actually a PIE rather than a DSO.
809      We need its DT_STRTAB and DT_STRSZ to decipher DT_SONAME,
810      and they also tell us the essential portion of the file
811      for fetching symbols.  */
812   GElf_Addr soname_stroff = 0;
813   GElf_Addr dynstr_vaddr = 0;
814   GElf_Xword dynstrsz = 0;
815   bool execlike = false;
816   const size_t dyn_entsize = (ei_class == ELFCLASS32
817 			      ? sizeof (Elf32_Dyn) : sizeof (Elf64_Dyn));
818   void *dyn_data = NULL;
819   size_t dyn_data_size = 0;
820   if (dyn_filesz != 0 && dyn_filesz % dyn_entsize == 0
821       && ! read_portion (&read_state, &dyn_data, &dyn_data_size,
822 			 start, segment, dyn_vaddr, dyn_filesz))
823     {
824       /* dyn_data_size will be zero if we got everything from the initial
825          buffer, otherwise it will be the size of the new buffer that
826          could be read.  */
827       if (dyn_data_size != 0)
828 	dyn_filesz = dyn_data_size;
829 
830       if ((dyn_filesz / dyn_entsize) == 0
831 	  || dyn_filesz > (SIZE_MAX / dyn_entsize))
832 	goto out;
833       void *dyns = malloc (dyn_filesz);
834       Elf32_Dyn *d32 = dyns;
835       Elf64_Dyn *d64 = dyns;
836       if (unlikely (dyns == NULL))
837 	goto out;
838 
839       xlatefrom.d_type = xlateto.d_type = ELF_T_DYN;
840       xlatefrom.d_buf = (void *) dyn_data;
841       xlatefrom.d_size = dyn_filesz;
842       xlateto.d_buf = dyns;
843       xlateto.d_size = dyn_filesz;
844 
845       /* dyn_data may be unaligned, in which case xlatetom would not work.
846 	 xlatetom does work when the in and out d_buf are equal (but not
847 	 for any other overlap).  */
848       bool is32 = (ei_class == ELFCLASS32);
849       size_t dyn_align = (is32
850 			  ? __alignof__ (Elf32_Dyn)
851 			  : __alignof__ (Elf64_Dyn));
852       if (((uintptr_t) dyn_data & (dyn_align - 1)) != 0)
853 	{
854 	  memcpy (dyns, dyn_data, dyn_filesz);
855 	  xlatefrom.d_buf = dyns;
856 	}
857 
858       if ((is32 && elf32_xlatetom (&xlateto, &xlatefrom, ei_data) != NULL)
859           || (!is32 && elf64_xlatetom (&xlateto, &xlatefrom, ei_data) != NULL))
860         {
861           size_t n = (is32
862 		      ? (dyn_filesz / sizeof (Elf32_Dyn))
863 		      : (dyn_filesz / sizeof (Elf64_Dyn)));
864           for (size_t i = 0; i < n; ++i)
865             {
866               GElf_Sxword tag = is32 ? d32[i].d_tag : d64[i].d_tag;
867               GElf_Xword val = is32 ? d32[i].d_un.d_val : d64[i].d_un.d_val;
868 
869               if (tag == DT_DEBUG)
870                 execlike = true;
871               else if (tag == DT_SONAME)
872                 soname_stroff = val;
873               else if (tag == DT_STRTAB)
874                 dynstr_vaddr = val;
875               else if (tag == DT_STRSZ)
876                 dynstrsz = val;
877               else
878                 continue;
879 
880               if (soname_stroff != 0 && dynstr_vaddr != 0 && dynstrsz != 0)
881                 break;
882             }
883         }
884       free (dyns);
885     }
886   finish_portion (&read_state, &dyn_data, &dyn_data_size);
887 
888   /* We'll use the name passed in or a stupid default if not DT_SONAME.  */
889   if (name == NULL)
890     name = e_type == ET_EXEC ? "[exe]" : execlike ? "[pie]" : "[dso]";
891 
892   void *soname = NULL;
893   size_t soname_size = 0;
894   if (! name_is_final && dynstrsz != 0 && dynstr_vaddr != 0)
895     {
896       /* We know the bounds of the .dynstr section.
897 
898 	 The DYNSTR_VADDR pointer comes from the .dynamic section
899 	 (DT_STRTAB, detected above).  Ordinarily the dynamic linker
900 	 will have adjusted this pointer in place so it's now an
901 	 absolute address.  But sometimes .dynamic is read-only (in
902 	 vDSOs and odd architectures), and sometimes the adjustment
903 	 just hasn't happened yet in the memory image we looked at.
904 	 So treat DYNSTR_VADDR as an absolute address if it falls
905 	 within the module bounds, or try applying the phdr bias
906 	 when that adjusts it to fall within the module bounds.  */
907 
908       if ((dynstr_vaddr < module_start || dynstr_vaddr >= module_end)
909 	  && dynstr_vaddr + bias >= module_start
910 	  && dynstr_vaddr + bias < module_end)
911 	dynstr_vaddr += bias;
912 
913       if (unlikely (dynstr_vaddr + dynstrsz > module_end))
914 	dynstrsz = 0;
915 
916       /* Try to get the DT_SONAME string.  */
917       if (soname_stroff != 0 && soname_stroff + 1 < dynstrsz
918 	  && ! read_portion (&read_state, &soname, &soname_size,
919 			     start, segment,
920 			     dynstr_vaddr + soname_stroff, 0))
921 	name = soname;
922     }
923 
924   /* Now that we have chosen the module's name and bounds, report it.
925      If we found a build ID, report that too.  */
926 
927   Dwfl_Module *mod = INTUSE(dwfl_report_module) (dwfl, name,
928 						 module_start, module_end);
929 
930   // !execlike && ET_EXEC is PIE.
931   // execlike && !ET_EXEC is a static executable.
932   if (mod != NULL && (execlike || ehdr.e32.e_type == ET_EXEC))
933     mod->is_executable = true;
934 
935   if (likely (mod != NULL) && build_id.memory != NULL
936       && unlikely (INTUSE(dwfl_module_report_build_id) (mod,
937 							build_id.memory,
938 							build_id.len,
939 							build_id.vaddr)))
940     {
941       mod->gc = true;
942       mod = NULL;
943     }
944 
945   /* At this point we do not need BUILD_ID or NAME any more.
946      They have been copied.  */
947   free (build_id.memory);
948   build_id.memory = NULL;
949   finish_portion (&read_state, &soname, &soname_size);
950 
951   if (unlikely (mod == NULL))
952     {
953       ndx = -1;
954       goto out;
955     }
956 
957   /* We have reported the module.  Now let the caller decide whether we
958      should read the whole thing in right now.  */
959 
960   const GElf_Off cost = (contiguous < file_trimmed_end ? total_filesz
961 			 : buffer_available >= contiguous ? 0
962 			 : contiguous - buffer_available);
963   const GElf_Off worthwhile = ((dynstr_vaddr == 0 || dynstrsz == 0) ? 0
964 			       : dynstr_vaddr + dynstrsz - start);
965   const GElf_Off whole = MAX (file_trimmed_end, shdrs_end);
966 
967   if (elf == NULL
968       && (*read_eagerly) (MODCB_ARGS (mod), &buffer, &buffer_available,
969 			  cost, worthwhile, whole, contiguous,
970 			  read_eagerly_arg, &elf)
971       && elf == NULL)
972     {
973       /* The caller wants to read the whole file in right now, but hasn't
974 	 done it for us.  Fill in a local image of the virtual file.  */
975 
976       if (file_trimmed_end > maxread)
977 	file_trimmed_end = maxread;
978 
979       void *contents = calloc (1, file_trimmed_end);
980       if (unlikely (contents == NULL))
981 	goto out;
982 
983       if (contiguous < file_trimmed_end)
984 	{
985 	  /* We can't use the memory image verbatim as the file image.
986 	     So we'll be reading into a local image of the virtual file.  */
987           for (uint_fast16_t i = 0; i < phnum; ++i)
988             {
989               bool is32 = (ei_class == ELFCLASS32);
990               GElf_Word type = is32 ? p32[i].p_type : p64[i].p_type;
991 
992               if (type != PT_LOAD)
993                 continue;
994 
995               GElf_Addr vaddr = is32 ? p32[i].p_vaddr : p64[i].p_vaddr;
996               GElf_Off offset = is32 ? p32[i].p_offset : p64[i].p_offset;
997               GElf_Xword filesz = is32 ? p32[i].p_filesz : p64[i].p_filesz;
998 
999               /* Don't try to read beyond the actual end of file.  */
1000               if (offset >= file_trimmed_end)
1001                 continue;
1002 
1003               void *into = contents + offset;
1004               size_t read_size = MIN (filesz, file_trimmed_end - offset);
1005               (*memory_callback) (dwfl, addr_segndx (dwfl, segment,
1006                                                      vaddr + bias, false),
1007                                   &into, &read_size, vaddr + bias, read_size,
1008                                   memory_callback_arg);
1009             }
1010 	}
1011       else
1012 	{
1013 	  /* The whole file sits contiguous in memory,
1014 	     but the caller didn't want to just do it.  */
1015 
1016 	  const size_t have = MIN (buffer_available, file_trimmed_end);
1017 	  memcpy (contents, buffer, have);
1018 
1019 	  if (have < file_trimmed_end)
1020             {
1021 	      void *into = contents + have;
1022 	      size_t read_size = file_trimmed_end - have;
1023 	      (*memory_callback) (dwfl,
1024 				  addr_segndx (dwfl, segment,
1025 					       start + have, false),
1026 				  &into, &read_size, start + have,
1027 				  read_size, memory_callback_arg);
1028             }
1029 	}
1030 
1031       elf = elf_memory (contents, file_trimmed_end);
1032       if (unlikely (elf == NULL))
1033 	free (contents);
1034       else
1035 	elf->flags |= ELF_F_MALLOCED;
1036     }
1037 
1038   if (elf != NULL && mod->main.elf == NULL)
1039     {
1040       /* Install the file in the module.  */
1041       mod->main.elf = elf;
1042       mod->main.fd = fd;
1043       elf = NULL;
1044       fd = -1;
1045       mod->main.vaddr = module_start - bias;
1046       mod->main.address_sync = module_address_sync;
1047       mod->main_bias = bias;
1048     }
1049 
1050 out:
1051   if (build_id.memory != NULL)
1052     free (build_id.memory);
1053   free (phdrsp);
1054   if (buffer != NULL)
1055     (*memory_callback) (dwfl, -1, &buffer, &buffer_available, 0, 0,
1056                         memory_callback_arg);
1057 
1058   if (elf != NULL)
1059     elf_end (elf);
1060   if (fd != -1)
1061     close (fd);
1062   return ndx;
1063 }
1064