1 /* Functions to compute MD5 message digest of files or memory blocks.
2    according to the definition of MD5 in RFC 1321 from April 1992.
3    Copyright (C) 1995,1996,1997,1999,2000,2001 Free Software Foundation, Inc.
4    This file is part of the GNU C Library.
5 
6    The GNU C Library is free software; you can redistribute it and/or
7    modify it under the terms of the GNU Lesser General Public
8    License as published by the Free Software Foundation; either
9    version 2.1 of the License, or (at your option) any later version.
10 
11    The GNU C Library is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    Lesser General Public License for more details.
15 
16    You should have received a copy of the GNU Lesser General Public
17    License along with the GNU C Library.
18    If not, see <https://www.gnu.org/licenses/>.  */
19 
20 /* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.  */
21 
22 #ifdef HAVE_CONFIG_H
23 # include <config.h>
24 #endif
25 
26 #include <sys/types.h>
27 
28 #include <stdlib.h>
29 #include <string.h>
30 
31 #include "md5.h"
32 
33 #ifdef _LIBC
34 # include <endian.h>
35 # if __BYTE_ORDER == __BIG_ENDIAN
36 #  define WORDS_BIGENDIAN 1
37 # endif
38 /* We need to keep the namespace clean so define the MD5 function
39    protected using leading __ .  */
40 # define md5_init_ctx __md5_init_ctx
41 # define md5_process_block __md5_process_block
42 # define md5_process_bytes __md5_process_bytes
43 # define md5_finish_ctx __md5_finish_ctx
44 # define md5_read_ctx __md5_read_ctx
45 # define md5_stream __md5_stream
46 # define md5_buffer __md5_buffer
47 #endif
48 
49 #ifdef WORDS_BIGENDIAN
50 # define SWAP(n)							\
51     (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
52 #else
53 # define SWAP(n) (n)
54 #endif
55 
56 
57 /* This array contains the bytes used to pad the buffer to the next
58    64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
59 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
60 
61 
62 void
63 md5_init_ctx (struct md5_ctx *ctx);
64 void *
65 md5_read_ctx (const struct md5_ctx *ctx, void *resbuf);
66 void *
67 md5_finish_ctx (struct md5_ctx *ctx, void *resbuf);
68 int
69 md5_stream (FILE *stream, void *resblock);
70 void *
71 md5_buffer (const char *buffer, size_t len, void *resblock);
72 void
73 md5_process_bytes (const void *buffer, size_t len, struct md5_ctx *ctx);
74 void
75 md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx);
76 
77 
78 /* Initialize structure containing state of computation.
79    (RFC 1321, 3.3: Step 3)  */
80 void
md5_init_ctx(struct md5_ctx *ctx)81 md5_init_ctx (struct md5_ctx *ctx)
82 {
83   ctx->A = 0x67452301;
84   ctx->B = 0xefcdab89;
85   ctx->C = 0x98badcfe;
86   ctx->D = 0x10325476;
87 
88   ctx->total[0] = ctx->total[1] = 0;
89   ctx->buflen = 0;
90 }
91 
92 /* Put result from CTX in first 16 bytes following RESBUF.  The result
93    must be in little endian byte order.
94 
95    IMPORTANT: On some systems it is required that RESBUF is correctly
96    aligned for a 32 bits value.  */
97 void *
md5_read_ctx(const struct md5_ctx *ctx, void *resbuf)98 md5_read_ctx (const struct md5_ctx *ctx, void *resbuf)
99 {
100   ((md5_uint32 *) resbuf)[0] = SWAP (ctx->A);
101   ((md5_uint32 *) resbuf)[1] = SWAP (ctx->B);
102   ((md5_uint32 *) resbuf)[2] = SWAP (ctx->C);
103   ((md5_uint32 *) resbuf)[3] = SWAP (ctx->D);
104 
105   return resbuf;
106 }
107 
108 /* Process the remaining bytes in the internal buffer and the usual
109    prolog according to the standard and write the result to RESBUF.
110 
111    IMPORTANT: On some systems it is required that RESBUF is correctly
112    aligned for a 32 bits value.  */
113 void *
md5_finish_ctx(struct md5_ctx *ctx, void *resbuf)114 md5_finish_ctx (struct md5_ctx *ctx, void *resbuf)
115 {
116   /* Take yet unprocessed bytes into account.  */
117   md5_uint32 bytes = ctx->buflen;
118   size_t pad;
119   size_t offset;
120 
121   /* Now count remaining bytes.  */
122   ctx->total[0] += bytes;
123   if (ctx->total[0] < bytes)
124     ++ctx->total[1];
125 
126   pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
127   memcpy (&ctx->buffer[bytes], fillbuf, pad);
128 
129   /* Put the 64-bit file length in *bits* at the end of the buffer.  */
130   offset = (bytes + pad) / sizeof (md5_uint32);
131   ((md5_uint32 *) ctx->buffer)[offset] = SWAP (ctx->total[0] << 3);
132   offset = (bytes + pad + 4) / sizeof (md5_uint32);
133   ((md5_uint32 *) ctx->buffer)[offset] = SWAP ((ctx->total[1] << 3) |
134 					       (ctx->total[0] >> 29));
135 
136   /* Process last bytes.  */
137   md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
138 
139   return md5_read_ctx (ctx, resbuf);
140 }
141 
142 /* Compute MD5 message digest for bytes read from STREAM.  The
143    resulting message digest number will be written into the 16 bytes
144    beginning at RESBLOCK.  */
145 int
md5_stream(FILE *stream, void *resblock)146 md5_stream (FILE *stream, void *resblock)
147 {
148   /* Important: BLOCKSIZE must be a multiple of 64.  */
149 #define BLOCKSIZE 4096
150   struct md5_ctx ctx;
151   char buffer[BLOCKSIZE + 72];
152   size_t sum;
153 
154   /* Initialize the computation context.  */
155   md5_init_ctx (&ctx);
156 
157   /* Iterate over full file contents.  */
158   while (1)
159     {
160       /* We read the file in blocks of BLOCKSIZE bytes.  One call of the
161 	 computation function processes the whole buffer so that with the
162 	 next round of the loop another block can be read.  */
163       size_t n;
164       sum = 0;
165 
166       /* Read block.  Take care for partial reads.  */
167       do
168 	{
169 	  n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
170 
171 	  sum += n;
172 	}
173       while (sum < BLOCKSIZE && n != 0);
174       if (n == 0 && ferror (stream))
175         return 1;
176 
177       /* If end of file is reached, end the loop.  */
178       if (n == 0)
179 	break;
180 
181       /* Process buffer with BLOCKSIZE bytes.  Note that
182 			BLOCKSIZE % 64 == 0
183        */
184       md5_process_block (buffer, BLOCKSIZE, &ctx);
185     }
186 
187   /* Add the last bytes if necessary.  */
188   if (sum > 0)
189     md5_process_bytes (buffer, sum, &ctx);
190 
191   /* Construct result in desired memory.  */
192   md5_finish_ctx (&ctx, resblock);
193   return 0;
194 }
195 
196 /* Compute MD5 message digest for LEN bytes beginning at BUFFER.  The
197    result is always in little endian byte order, so that a byte-wise
198    output yields to the wanted ASCII representation of the message
199    digest.  */
200 void *
md5_buffer(const char *buffer, size_t len, void *resblock)201 md5_buffer (const char *buffer, size_t len, void *resblock)
202 {
203   struct md5_ctx ctx;
204 
205   /* Initialize the computation context.  */
206   md5_init_ctx (&ctx);
207 
208   /* Process whole buffer but last len % 64 bytes.  */
209   md5_process_bytes (buffer, len, &ctx);
210 
211   /* Put result in desired memory area.  */
212   return md5_finish_ctx (&ctx, resblock);
213 }
214 
215 
216 void
md5_process_bytes(const void *buffer, size_t len, struct md5_ctx *ctx)217 md5_process_bytes (const void *buffer, size_t len, struct md5_ctx *ctx)
218 {
219   /* When we already have some bits in our internal buffer concatenate
220      both inputs first.  */
221   if (ctx->buflen != 0)
222     {
223       size_t left_over = ctx->buflen;
224       size_t add = 128 - left_over > len ? len : 128 - left_over;
225 
226       memcpy (&ctx->buffer[left_over], buffer, add);
227       ctx->buflen += add;
228 
229       if (ctx->buflen > 64)
230 	{
231 	  md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
232 
233 	  ctx->buflen &= 63;
234 	  /* The regions in the following copy operation cannot overlap.  */
235 	  memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
236 		  ctx->buflen);
237 	}
238 
239       buffer = (const char *) buffer + add;
240       len -= add;
241     }
242 
243   /* Process available complete blocks.  */
244   if (len >= 64)
245     {
246 #if !_STRING_ARCH_unaligned
247 /* To check alignment gcc has an appropriate operator.  Other
248    compilers don't.  */
249 # if __GNUC__ >= 2
250 #  define UNALIGNED_P(p) (((md5_uintptr) p) % __alignof__ (md5_uint32) != 0)
251 # else
252 #  define UNALIGNED_P(p) (((md5_uintptr) p) % sizeof (md5_uint32) != 0)
253 # endif
254       if (UNALIGNED_P (buffer))
255 	while (len > 64)
256 	  {
257 	    md5_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
258 	    buffer = (const char *) buffer + 64;
259 	    len -= 64;
260 	  }
261       else
262 #endif
263 	{
264 	  md5_process_block (buffer, len & ~63, ctx);
265 	  buffer = (const char *) buffer + (len & ~63);
266 	  len &= 63;
267 	}
268     }
269 
270   /* Move remaining bytes in internal buffer.  */
271   if (len > 0)
272     {
273       size_t left_over = ctx->buflen;
274 
275       memcpy (&ctx->buffer[left_over], buffer, len);
276       left_over += len;
277       if (left_over >= 64)
278 	{
279 	  md5_process_block (ctx->buffer, 64, ctx);
280 	  left_over -= 64;
281 	  memcpy (ctx->buffer, &ctx->buffer[64], left_over);
282 	}
283       ctx->buflen = left_over;
284     }
285 }
286 
287 
288 /* These are the four functions used in the four steps of the MD5 algorithm
289    and defined in the RFC 1321.  The first function is a little bit optimized
290    (as found in Colin Plumbs public domain implementation).  */
291 /* #define FF(b, c, d) ((b & c) | (~b & d)) */
292 #define FF(b, c, d) (d ^ (b & (c ^ d)))
293 #define FG(b, c, d) FF (d, b, c)
294 #define FH(b, c, d) (b ^ c ^ d)
295 #define FI(b, c, d) (c ^ (b | ~d))
296 
297 /* Process LEN bytes of BUFFER, accumulating context into CTX.
298    It is assumed that LEN % 64 == 0.  */
299 
300 void
md5_process_block(const void *buffer, size_t len, struct md5_ctx *ctx)301 md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx)
302 {
303   md5_uint32 correct_words[16];
304   const md5_uint32 *words = buffer;
305   size_t nwords = len / sizeof (md5_uint32);
306   const md5_uint32 *endp = words + nwords;
307   md5_uint32 A = ctx->A;
308   md5_uint32 B = ctx->B;
309   md5_uint32 C = ctx->C;
310   md5_uint32 D = ctx->D;
311 
312   /* First increment the byte count.  RFC 1321 specifies the possible
313      length of the file up to 2^64 bits.  Here we only compute the
314      number of bytes.  Do a double word increment.  */
315   ctx->total[0] += len;
316   if (ctx->total[0] < len)
317     ++ctx->total[1];
318 
319   /* Process all bytes in the buffer with 64 bytes in each round of
320      the loop.  */
321   while (words < endp)
322     {
323       md5_uint32 *cwp = correct_words;
324       md5_uint32 A_save = A;
325       md5_uint32 B_save = B;
326       md5_uint32 C_save = C;
327       md5_uint32 D_save = D;
328 
329       /* First round: using the given function, the context and a constant
330 	 the next context is computed.  Because the algorithms processing
331 	 unit is a 32-bit word and it is determined to work on words in
332 	 little endian byte order we perhaps have to change the byte order
333 	 before the computation.  To reduce the work for the next steps
334 	 we store the swapped words in the array CORRECT_WORDS.  */
335 
336 #define OP(a, b, c, d, s, T)						\
337       do								\
338         {								\
339 	  a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T;		\
340 	  ++words;							\
341 	  CYCLIC (a, s);						\
342 	  a += b;							\
343         }								\
344       while (0)
345 
346       /* It is unfortunate that C does not provide an operator for
347 	 cyclic rotation.  Hope the C compiler is smart enough.  */
348 #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
349 
350       /* Before we start, one word to the strange constants.
351 	 They are defined in RFC 1321 as
352 
353 	 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
354        */
355 
356       /* Round 1.  */
357       OP (A, B, C, D,  7, 0xd76aa478);
358       OP (D, A, B, C, 12, 0xe8c7b756);
359       OP (C, D, A, B, 17, 0x242070db);
360       OP (B, C, D, A, 22, 0xc1bdceee);
361       OP (A, B, C, D,  7, 0xf57c0faf);
362       OP (D, A, B, C, 12, 0x4787c62a);
363       OP (C, D, A, B, 17, 0xa8304613);
364       OP (B, C, D, A, 22, 0xfd469501);
365       OP (A, B, C, D,  7, 0x698098d8);
366       OP (D, A, B, C, 12, 0x8b44f7af);
367       OP (C, D, A, B, 17, 0xffff5bb1);
368       OP (B, C, D, A, 22, 0x895cd7be);
369       OP (A, B, C, D,  7, 0x6b901122);
370       OP (D, A, B, C, 12, 0xfd987193);
371       OP (C, D, A, B, 17, 0xa679438e);
372       OP (B, C, D, A, 22, 0x49b40821);
373 
374       /* For the second to fourth round we have the possibly swapped words
375 	 in CORRECT_WORDS.  Redefine the macro to take an additional first
376 	 argument specifying the function to use.  */
377 #undef OP
378 #define OP(f, a, b, c, d, k, s, T)					\
379       do 								\
380 	{								\
381 	  a += f (b, c, d) + correct_words[k] + T;			\
382 	  CYCLIC (a, s);						\
383 	  a += b;							\
384 	}								\
385       while (0)
386 
387       /* Round 2.  */
388       OP (FG, A, B, C, D,  1,  5, 0xf61e2562);
389       OP (FG, D, A, B, C,  6,  9, 0xc040b340);
390       OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
391       OP (FG, B, C, D, A,  0, 20, 0xe9b6c7aa);
392       OP (FG, A, B, C, D,  5,  5, 0xd62f105d);
393       OP (FG, D, A, B, C, 10,  9, 0x02441453);
394       OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
395       OP (FG, B, C, D, A,  4, 20, 0xe7d3fbc8);
396       OP (FG, A, B, C, D,  9,  5, 0x21e1cde6);
397       OP (FG, D, A, B, C, 14,  9, 0xc33707d6);
398       OP (FG, C, D, A, B,  3, 14, 0xf4d50d87);
399       OP (FG, B, C, D, A,  8, 20, 0x455a14ed);
400       OP (FG, A, B, C, D, 13,  5, 0xa9e3e905);
401       OP (FG, D, A, B, C,  2,  9, 0xfcefa3f8);
402       OP (FG, C, D, A, B,  7, 14, 0x676f02d9);
403       OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
404 
405       /* Round 3.  */
406       OP (FH, A, B, C, D,  5,  4, 0xfffa3942);
407       OP (FH, D, A, B, C,  8, 11, 0x8771f681);
408       OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
409       OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
410       OP (FH, A, B, C, D,  1,  4, 0xa4beea44);
411       OP (FH, D, A, B, C,  4, 11, 0x4bdecfa9);
412       OP (FH, C, D, A, B,  7, 16, 0xf6bb4b60);
413       OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
414       OP (FH, A, B, C, D, 13,  4, 0x289b7ec6);
415       OP (FH, D, A, B, C,  0, 11, 0xeaa127fa);
416       OP (FH, C, D, A, B,  3, 16, 0xd4ef3085);
417       OP (FH, B, C, D, A,  6, 23, 0x04881d05);
418       OP (FH, A, B, C, D,  9,  4, 0xd9d4d039);
419       OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
420       OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
421       OP (FH, B, C, D, A,  2, 23, 0xc4ac5665);
422 
423       /* Round 4.  */
424       OP (FI, A, B, C, D,  0,  6, 0xf4292244);
425       OP (FI, D, A, B, C,  7, 10, 0x432aff97);
426       OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
427       OP (FI, B, C, D, A,  5, 21, 0xfc93a039);
428       OP (FI, A, B, C, D, 12,  6, 0x655b59c3);
429       OP (FI, D, A, B, C,  3, 10, 0x8f0ccc92);
430       OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
431       OP (FI, B, C, D, A,  1, 21, 0x85845dd1);
432       OP (FI, A, B, C, D,  8,  6, 0x6fa87e4f);
433       OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
434       OP (FI, C, D, A, B,  6, 15, 0xa3014314);
435       OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
436       OP (FI, A, B, C, D,  4,  6, 0xf7537e82);
437       OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
438       OP (FI, C, D, A, B,  2, 15, 0x2ad7d2bb);
439       OP (FI, B, C, D, A,  9, 21, 0xeb86d391);
440 
441       /* Add the starting values of the context.  */
442       A += A_save;
443       B += B_save;
444       C += C_save;
445       D += D_save;
446     }
447 
448   /* Put checksum in context given as argument.  */
449   ctx->A = A;
450   ctx->B = B;
451   ctx->C = C;
452   ctx->D = D;
453 }
454