1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2011-2024 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 //     http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17 
18 /**
19  * @brief Functions and data declarations.
20  */
21 
22 #ifndef ASTCENC_INTERNAL_INCLUDED
23 #define ASTCENC_INTERNAL_INCLUDED
24 
25 #include <algorithm>
26 #include <cstddef>
27 #include <cstdint>
28 #if defined(ASTCENC_DIAGNOSTICS)
29 	#include <cstdio>
30 #endif
31 #include <cstdlib>
32 #include <limits>
33 
34 #ifdef ASTC_CUSTOMIZED_ENABLE
35 #include <unistd.h>
36 #include <string>
37 #if defined(_WIN32) && !defined(__CYGWIN__)
38 #define NOMINMAX
39 #include <windows.h>
40 #include <io.h>
41 #else
42 #include <dlfcn.h>
43 #endif
44 #endif
45 
46 #include "astcenc.h"
47 #include "astcenc_mathlib.h"
48 #include "astcenc_vecmathlib.h"
49 
50 /**
51  * @brief Make a promise to the compiler's optimizer.
52  *
53  * A promise is an expression that the optimizer is can assume is true for to help it generate
54  * faster code. Common use cases for this are to promise that a for loop will iterate more than
55  * once, or that the loop iteration count is a multiple of a vector length, which avoids pre-loop
56  * checks and can avoid loop tails if loops are unrolled by the auto-vectorizer.
57  */
58 #if defined(NDEBUG)
59 	#if !defined(__clang__) && defined(_MSC_VER)
60 		#define promise(cond) __assume(cond)
61 	#elif defined(__clang__)
62 		#if __has_builtin(__builtin_assume)
63 			#define promise(cond) __builtin_assume(cond)
64 		#elif __has_builtin(__builtin_unreachable)
65 			#define promise(cond) if (!(cond)) { __builtin_unreachable(); }
66 		#else
67 			#define promise(cond)
68 		#endif
69 	#else // Assume GCC
70 		#define promise(cond) if (!(cond)) { __builtin_unreachable(); }
71 	#endif
72 #else
73 	#define promise(cond) assert(cond)
74 #endif
75 
76 /* ============================================================================
77   Constants
78 ============================================================================ */
79 #if !defined(ASTCENC_BLOCK_MAX_TEXELS)
80 	#define ASTCENC_BLOCK_MAX_TEXELS 216 // A 3D 6x6x6 block
81 #endif
82 
83 /** @brief The maximum number of texels a block can support (6x6x6 block). */
84 static constexpr unsigned int BLOCK_MAX_TEXELS { ASTCENC_BLOCK_MAX_TEXELS };
85 
86 /** @brief The maximum number of components a block can support. */
87 static constexpr unsigned int BLOCK_MAX_COMPONENTS { 4 };
88 
89 /** @brief The maximum number of partitions a block can support. */
90 static constexpr unsigned int BLOCK_MAX_PARTITIONS { 4 };
91 
92 /** @brief The number of partitionings, per partition count, suported by the ASTC format. */
93 static constexpr unsigned int BLOCK_MAX_PARTITIONINGS { 1024 };
94 
95 /** @brief The maximum number of texels used during partition selection for texel clustering. */
96 static constexpr uint8_t BLOCK_MAX_KMEANS_TEXELS { 64 };
97 
98 /** @brief The maximum number of weights a block can support. */
99 static constexpr unsigned int BLOCK_MAX_WEIGHTS { 64 };
100 
101 /** @brief The maximum number of weights a block can support per plane in 2 plane mode. */
102 static constexpr unsigned int BLOCK_MAX_WEIGHTS_2PLANE { BLOCK_MAX_WEIGHTS / 2 };
103 
104 /** @brief The minimum number of weight bits a candidate encoding must encode. */
105 static constexpr unsigned int BLOCK_MIN_WEIGHT_BITS { 24 };
106 
107 /** @brief The maximum number of weight bits a candidate encoding can encode. */
108 static constexpr unsigned int BLOCK_MAX_WEIGHT_BITS { 96 };
109 
110 /** @brief The index indicating a bad (unused) block mode in the remap array. */
111 static constexpr uint16_t BLOCK_BAD_BLOCK_MODE { 0xFFFFu };
112 
113 /** @brief The index indicating a bad (unused) partitioning in the remap array. */
114 static constexpr uint16_t BLOCK_BAD_PARTITIONING { 0xFFFFu };
115 
116 /** @brief The number of partition index bits supported by the ASTC format . */
117 static constexpr unsigned int PARTITION_INDEX_BITS { 10 };
118 
119 /** @brief The offset of the plane 2 weights in shared weight arrays. */
120 static constexpr unsigned int WEIGHTS_PLANE2_OFFSET { BLOCK_MAX_WEIGHTS_2PLANE };
121 
122 /** @brief The sum of quantized weights for one texel. */
123 static constexpr float WEIGHTS_TEXEL_SUM { 16.0f };
124 
125 /** @brief The number of block modes supported by the ASTC format. */
126 static constexpr unsigned int WEIGHTS_MAX_BLOCK_MODES { 2048 };
127 
128 /** @brief The number of weight grid decimation modes supported by the ASTC format. */
129 static constexpr unsigned int WEIGHTS_MAX_DECIMATION_MODES { 87 };
130 
131 /** @brief The high default error used to initialize error trackers. */
132 static constexpr float ERROR_CALC_DEFAULT { 1e30f };
133 
134 /**
135  * @brief The minimum tuning setting threshold for the one partition fast path.
136  */
137 static constexpr float TUNE_MIN_SEARCH_MODE0 { 0.85f };
138 
139 /**
140  * @brief The maximum number of candidate encodings tested for each encoding mode.
141  *
142  * This can be dynamically reduced by the compression quality preset.
143  */
144 static constexpr unsigned int TUNE_MAX_TRIAL_CANDIDATES { 8 };
145 
146 /**
147  * @brief The maximum number of candidate partitionings tested for each encoding mode.
148  *
149  * This can be dynamically reduced by the compression quality preset.
150  */
151 static constexpr unsigned int TUNE_MAX_PARTITIONING_CANDIDATES { 8 };
152 
153 /**
154  * @brief The maximum quant level using full angular endpoint search method.
155  *
156  * The angular endpoint search is used to find the min/max weight that should
157  * be used for a given quantization level. It is effective but expensive, so
158  * we only use it where it has the most value - low quant levels with wide
159  * spacing. It is used below TUNE_MAX_ANGULAR_QUANT (inclusive). Above this we
160  * assume the min weight is 0.0f, and the max weight is 1.0f.
161  *
162  * Note the angular algorithm is vectorized, and using QUANT_12 exactly fills
163  * one 8-wide vector. Decreasing by one doesn't buy much performance, and
164  * increasing by one is disproportionately expensive.
165  */
166 static constexpr unsigned int TUNE_MAX_ANGULAR_QUANT { 7 }; /* QUANT_12 */
167 
168 static_assert((BLOCK_MAX_TEXELS % ASTCENC_SIMD_WIDTH) == 0,
169               "BLOCK_MAX_TEXELS must be multiple of ASTCENC_SIMD_WIDTH");
170 
171 static_assert(BLOCK_MAX_TEXELS <= 216,
172               "BLOCK_MAX_TEXELS must not be greater than 216");
173 
174 static_assert((BLOCK_MAX_WEIGHTS % ASTCENC_SIMD_WIDTH) == 0,
175               "BLOCK_MAX_WEIGHTS must be multiple of ASTCENC_SIMD_WIDTH");
176 
177 static_assert((WEIGHTS_MAX_BLOCK_MODES % ASTCENC_SIMD_WIDTH) == 0,
178               "WEIGHTS_MAX_BLOCK_MODES must be multiple of ASTCENC_SIMD_WIDTH");
179 
180 
181 /* ============================================================================
182   Commonly used data structures
183 ============================================================================ */
184 
185 /**
186  * @brief The ASTC endpoint formats.
187  *
188  * Note, the values here are used directly in the encoding in the format so do not rearrange.
189  */
190 enum endpoint_formats
191 {
192 	FMT_LUMINANCE = 0,
193 	FMT_LUMINANCE_DELTA = 1,
194 	FMT_HDR_LUMINANCE_LARGE_RANGE = 2,
195 	FMT_HDR_LUMINANCE_SMALL_RANGE = 3,
196 	FMT_LUMINANCE_ALPHA = 4,
197 	FMT_LUMINANCE_ALPHA_DELTA = 5,
198 	FMT_RGB_SCALE = 6,
199 	FMT_HDR_RGB_SCALE = 7,
200 	FMT_RGB = 8,
201 	FMT_RGB_DELTA = 9,
202 	FMT_RGB_SCALE_ALPHA = 10,
203 	FMT_HDR_RGB = 11,
204 	FMT_RGBA = 12,
205 	FMT_RGBA_DELTA = 13,
206 	FMT_HDR_RGB_LDR_ALPHA = 14,
207 	FMT_HDR_RGBA = 15
208 };
209 
210 /**
211  * @brief The ASTC quantization methods.
212  *
213  * Note, the values here are used directly in the encoding in the format so do not rearrange.
214  */
215 enum quant_method
216 {
217 	QUANT_2 = 0,
218 	QUANT_3 = 1,
219 	QUANT_4 = 2,
220 	QUANT_5 = 3,
221 	QUANT_6 = 4,
222 	QUANT_8 = 5,
223 	QUANT_10 = 6,
224 	QUANT_12 = 7,
225 	QUANT_16 = 8,
226 	QUANT_20 = 9,
227 	QUANT_24 = 10,
228 	QUANT_32 = 11,
229 	QUANT_40 = 12,
230 	QUANT_48 = 13,
231 	QUANT_64 = 14,
232 	QUANT_80 = 15,
233 	QUANT_96 = 16,
234 	QUANT_128 = 17,
235 	QUANT_160 = 18,
236 	QUANT_192 = 19,
237 	QUANT_256 = 20
238 };
239 
240 /**
241  * @brief The number of levels use by an ASTC quantization method.
242  *
243  * @param method   The quantization method
244  *
245  * @return   The number of levels used by @c method.
246  */
get_quant_level(quant_method method)247 static inline unsigned int get_quant_level(quant_method method)
248 {
249 	switch (method)
250 	{
251 	case QUANT_2:   return   2;
252 	case QUANT_3:   return   3;
253 	case QUANT_4:   return   4;
254 	case QUANT_5:   return   5;
255 	case QUANT_6:   return   6;
256 	case QUANT_8:   return   8;
257 	case QUANT_10:  return  10;
258 	case QUANT_12:  return  12;
259 	case QUANT_16:  return  16;
260 	case QUANT_20:  return  20;
261 	case QUANT_24:  return  24;
262 	case QUANT_32:  return  32;
263 	case QUANT_40:  return  40;
264 	case QUANT_48:  return  48;
265 	case QUANT_64:  return  64;
266 	case QUANT_80:  return  80;
267 	case QUANT_96:  return  96;
268 	case QUANT_128: return 128;
269 	case QUANT_160: return 160;
270 	case QUANT_192: return 192;
271 	case QUANT_256: return 256;
272 	}
273 
274 	// Unreachable - the enum is fully described
275 	return 0;
276 }
277 
278 /**
279  * @brief Computed metrics about a partition in a block.
280  */
281 struct partition_metrics
282 {
283 	/** @brief The error-weighted average color in the partition. */
284 	vfloat4 avg;
285 
286 	/** @brief The dominant error-weighted direction in the partition. */
287 	vfloat4 dir;
288 };
289 
290 /**
291  * @brief Computed lines for a a three component analysis.
292  */
293 struct partition_lines3
294 {
295 	/** @brief Line for uncorrelated chroma. */
296 	line3 uncor_line;
297 
298 	/** @brief Line for correlated chroma, passing though the origin. */
299 	line3 samec_line;
300 
301 	/** @brief Post-processed line for uncorrelated chroma. */
302 	processed_line3 uncor_pline;
303 
304 	/** @brief Post-processed line for correlated chroma, passing though the origin. */
305 	processed_line3 samec_pline;
306 
307 	/**
308 	 * @brief The length of the line for uncorrelated chroma.
309 	 *
310 	 * This is used for both the uncorrelated and same chroma lines - they are normally very similar
311 	 * and only used for the relative ranking of partitionings against one another.
312 	 */
313 	float line_length;
314 };
315 
316 /**
317  * @brief The partition information for a single partition.
318  *
319  * ASTC has a total of 1024 candidate partitions for each of 2/3/4 partition counts, although this
320  * 1024 includes seeds that generate duplicates of other seeds and seeds that generate completely
321  * empty partitions. These are both valid encodings, but astcenc will skip both during compression
322  * as they are not useful.
323  */
324 struct partition_info
325 {
326 	/** @brief The number of partitions in this partitioning. */
327 	uint16_t partition_count;
328 
329 	/** @brief The index (seed) of this partitioning. */
330 	uint16_t partition_index;
331 
332 	/**
333 	 * @brief The number of texels in each partition.
334 	 *
335 	 * Note that some seeds result in zero texels assigned to a partition. These are valid, but are
336 	 * skipped by this compressor as there is no point spending bits encoding an unused endpoints.
337 	 */
338 	uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS];
339 
340 	/** @brief The partition of each texel in the block. */
341 	uint8_t partition_of_texel[BLOCK_MAX_TEXELS];
342 
343 	/** @brief The list of texels in each partition. */
344 	uint8_t texels_of_partition[BLOCK_MAX_PARTITIONS][BLOCK_MAX_TEXELS];
345 };
346 
347 /**
348  * @brief The weight grid information for a single decimation pattern.
349  *
350  * ASTC can store one weight per texel, but is also capable of storing lower resolution weight grids
351  * that are interpolated during decompression to assign a with to a texel. Storing fewer weights
352  * can free up a substantial amount of bits that we can then spend on more useful things, such as
353  * more accurate endpoints and weights, or additional partitions.
354  *
355  * This data structure is used to store information about a single weight grid decimation pattern,
356  * for a single block size.
357  */
358 struct decimation_info
359 {
360 	/** @brief The total number of texels in the block. */
361 	uint8_t texel_count;
362 
363 	/** @brief The maximum number of stored weights that contribute to each texel, between 1 and 4. */
364 	uint8_t max_texel_weight_count;
365 
366 	/** @brief The total number of weights stored. */
367 	uint8_t weight_count;
368 
369 	/** @brief The number of stored weights in the X dimension. */
370 	uint8_t weight_x;
371 
372 	/** @brief The number of stored weights in the Y dimension. */
373 	uint8_t weight_y;
374 
375 	/** @brief The number of stored weights in the Z dimension. */
376 	uint8_t weight_z;
377 
378 	/**
379 	 * @brief The number of weights that contribute to each texel.
380 	 * Value is between 1 and 4.
381 	 */
382 	uint8_t texel_weight_count[BLOCK_MAX_TEXELS];
383 
384 	/**
385 	 * @brief The weight index of the N weights that are interpolated for each texel.
386 	 * Stored transposed to improve vectorization.
387 	 */
388 	uint8_t texel_weights_tr[4][BLOCK_MAX_TEXELS];
389 
390 	/**
391 	 * @brief The bilinear contribution of the N weights that are interpolated for each texel.
392 	 * Value is between 0 and 16, stored transposed to improve vectorization.
393 	 */
394 	uint8_t texel_weight_contribs_int_tr[4][BLOCK_MAX_TEXELS];
395 
396 	/**
397 	 * @brief The bilinear contribution of the N weights that are interpolated for each texel.
398 	 * Value is between 0 and 1, stored transposed to improve vectorization.
399 	 */
400 	ASTCENC_ALIGNAS float texel_weight_contribs_float_tr[4][BLOCK_MAX_TEXELS];
401 
402 	/** @brief The number of texels that each stored weight contributes to. */
403 	uint8_t weight_texel_count[BLOCK_MAX_WEIGHTS];
404 
405 	/**
406 	 * @brief The list of texels that use a specific weight index.
407 	 * Stored transposed to improve vectorization.
408 	 */
409 	uint8_t weight_texels_tr[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
410 
411 	/**
412 	 * @brief The bilinear contribution to the N texels that use each weight.
413 	 * Value is between 0 and 1, stored transposed to improve vectorization.
414 	 */
415 	ASTCENC_ALIGNAS float weights_texel_contribs_tr[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
416 
417 	/**
418 	 * @brief The bilinear contribution to the Nth texel that uses each weight.
419 	 * Value is between 0 and 1, stored transposed to improve vectorization.
420 	 */
421 	float texel_contrib_for_weight[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
422 };
423 
424 /**
425  * @brief Metadata for single block mode for a specific block size.
426  */
427 struct block_mode
428 {
429 	/** @brief The block mode index in the ASTC encoded form. */
430 	uint16_t mode_index;
431 
432 	/** @brief The decimation mode index in the compressor reindexed list. */
433 	uint8_t decimation_mode;
434 
435 	/** @brief The weight quantization used by this block mode. */
436 	uint8_t quant_mode;
437 
438 	/** @brief The weight quantization used by this block mode. */
439 	uint8_t weight_bits;
440 
441 	/** @brief Is a dual weight plane used by this block mode? */
442 	uint8_t is_dual_plane : 1;
443 
444 	/**
445 	 * @brief Get the weight quantization used by this block mode.
446 	 *
447 	 * @return The quantization level.
448 	 */
get_weight_quant_modeblock_mode449 	inline quant_method get_weight_quant_mode() const
450 	{
451 		return static_cast<quant_method>(this->quant_mode);
452 	}
453 };
454 
455 /**
456  * @brief Metadata for single decimation mode for a specific block size.
457  */
458 struct decimation_mode
459 {
460 	/** @brief The max weight precision for 1 plane, or -1 if not supported. */
461 	int8_t maxprec_1plane;
462 
463 	/** @brief The max weight precision for 2 planes, or -1 if not supported. */
464 	int8_t maxprec_2planes;
465 
466 	/**
467 	 * @brief Bitvector indicating weight quant modes used by active 1 plane block modes.
468 	 *
469 	 * Bit 0 = QUANT_2, Bit 1 = QUANT_3, etc.
470 	 */
471 	uint16_t refprec_1plane;
472 
473 	/**
474 	 * @brief Bitvector indicating weight quant methods used by active 2 plane block modes.
475 	 *
476 	 * Bit 0 = QUANT_2, Bit 1 = QUANT_3, etc.
477 	 */
478 	uint16_t refprec_2planes;
479 
480 	/**
481 	 * @brief Set a 1 plane weight quant as active.
482 	 *
483 	 * @param weight_quant   The quant method to set.
484 	 */
set_ref_1planedecimation_mode485 	void set_ref_1plane(quant_method weight_quant)
486 	{
487 		refprec_1plane |= (1 << weight_quant);
488 	}
489 
490 	/**
491 	 * @brief Test if this mode is active below a given 1 plane weight quant (inclusive).
492 	 *
493 	 * @param max_weight_quant   The max quant method to test.
494 	 */
is_ref_1planedecimation_mode495 	bool is_ref_1plane(quant_method max_weight_quant) const
496 	{
497 		uint16_t mask = static_cast<uint16_t>((1 << (max_weight_quant + 1)) - 1);
498 		return (refprec_1plane & mask) != 0;
499 	}
500 
501 	/**
502 	 * @brief Set a 2 plane weight quant as active.
503 	 *
504 	 * @param weight_quant   The quant method to set.
505 	 */
set_ref_2planedecimation_mode506 	void set_ref_2plane(quant_method weight_quant)
507 	{
508 		refprec_2planes |= static_cast<uint16_t>(1 << weight_quant);
509 	}
510 
511 	/**
512 	 * @brief Test if this mode is active below a given 2 plane weight quant (inclusive).
513 	 *
514 	 * @param max_weight_quant   The max quant method to test.
515 	 */
is_ref_2planedecimation_mode516 	bool is_ref_2plane(quant_method max_weight_quant) const
517 	{
518 		uint16_t mask = static_cast<uint16_t>((1 << (max_weight_quant + 1)) - 1);
519 		return (refprec_2planes & mask) != 0;
520 	}
521 };
522 
523 /**
524  * @brief Data tables for a single block size.
525  *
526  * The decimation tables store the information to apply weight grid dimension reductions. We only
527  * store the decimation modes that are actually needed by the current context; many of the possible
528  * modes will be unused (too many weights for the current block size or disabled by heuristics). The
529  * actual number of weights stored is @c decimation_mode_count, and the @c decimation_modes and
530  * @c decimation_tables arrays store the active modes contiguously at the start of the array. These
531  * entries are not stored in any particular order.
532  *
533  * The block mode tables store the unpacked block mode settings. Block modes are stored in the
534  * compressed block as an 11 bit field, but for any given block size and set of compressor
535  * heuristics, only a subset of the block modes will be used. The actual number of block modes
536  * stored is indicated in @c block_mode_count, and the @c block_modes array store the active modes
537  * contiguously at the start of the array. These entries are stored in incrementing "packed" value
538  * order, which doesn't mean much once unpacked. To allow decompressors to reference the packed data
539  * efficiently the @c block_mode_packed_index array stores the mapping between physical ID and the
540  * actual remapped array index.
541  */
542 struct block_size_descriptor
543 {
544 	/** @brief The block X dimension, in texels. */
545 	uint8_t xdim;
546 
547 	/** @brief The block Y dimension, in texels. */
548 	uint8_t ydim;
549 
550 	/** @brief The block Z dimension, in texels. */
551 	uint8_t zdim;
552 
553 	/** @brief The block total texel count. */
554 	uint8_t texel_count;
555 
556 	/**
557 	 * @brief The number of stored decimation modes which are "always" modes.
558 	 *
559 	 * Always modes are stored at the start of the decimation_modes list.
560 	 */
561 	unsigned int decimation_mode_count_always;
562 
563 	/** @brief The number of stored decimation modes for selected encodings. */
564 	unsigned int decimation_mode_count_selected;
565 
566 	/** @brief The number of stored decimation modes for any encoding. */
567 	unsigned int decimation_mode_count_all;
568 
569 	/**
570 	 * @brief The number of stored block modes which are "always" modes.
571 	 *
572 	 * Always modes are stored at the start of the block_modes list.
573 	 */
574 	unsigned int block_mode_count_1plane_always;
575 
576 	/** @brief The number of stored block modes for active 1 plane encodings. */
577 	unsigned int block_mode_count_1plane_selected;
578 
579 	/** @brief The number of stored block modes for active 1 and 2 plane encodings. */
580 	unsigned int block_mode_count_1plane_2plane_selected;
581 
582 	/** @brief The number of stored block modes for any encoding. */
583 	unsigned int block_mode_count_all;
584 
585 	/** @brief The number of selected partitionings for 1/2/3/4 partitionings. */
586 	unsigned int partitioning_count_selected[BLOCK_MAX_PARTITIONS];
587 
588 	/** @brief The number of partitionings for 1/2/3/4 partitionings. */
589 	unsigned int partitioning_count_all[BLOCK_MAX_PARTITIONS];
590 
591 	/** @brief The active decimation modes, stored in low indices. */
592 	decimation_mode decimation_modes[WEIGHTS_MAX_DECIMATION_MODES];
593 
594 	/** @brief The active decimation tables, stored in low indices. */
595 	ASTCENC_ALIGNAS decimation_info decimation_tables[WEIGHTS_MAX_DECIMATION_MODES];
596 
597 	/** @brief The packed block mode array index, or @c BLOCK_BAD_BLOCK_MODE if not active. */
598 	uint16_t block_mode_packed_index[WEIGHTS_MAX_BLOCK_MODES];
599 
600 	/** @brief The active block modes, stored in low indices. */
601 	block_mode block_modes[WEIGHTS_MAX_BLOCK_MODES];
602 
603 	/** @brief The active partition tables, stored in low indices per-count. */
604 	partition_info partitionings[(3 * BLOCK_MAX_PARTITIONINGS) + 1];
605 
606 	/**
607 	 * @brief The packed partition table array index, or @c BLOCK_BAD_PARTITIONING if not active.
608 	 *
609 	 * Indexed by partition_count - 2, containing 2, 3 and 4 partitions.
610 	 */
611 	uint16_t partitioning_packed_index[3][BLOCK_MAX_PARTITIONINGS];
612 
613 	/** @brief The active texels for k-means partition selection. */
614 	uint8_t kmeans_texels[BLOCK_MAX_KMEANS_TEXELS];
615 
616 	/**
617 	 * @brief The canonical 2-partition coverage pattern used during block partition search.
618 	 *
619 	 * Indexed by remapped index, not physical index.
620 	 */
621 	uint64_t coverage_bitmaps_2[BLOCK_MAX_PARTITIONINGS][2];
622 
623 	/**
624 	 * @brief The canonical 3-partition coverage pattern used during block partition search.
625 	 *
626 	 * Indexed by remapped index, not physical index.
627 	 */
628 	uint64_t coverage_bitmaps_3[BLOCK_MAX_PARTITIONINGS][3];
629 
630 	/**
631 	 * @brief The canonical 4-partition coverage pattern used during block partition search.
632 	 *
633 	 * Indexed by remapped index, not physical index.
634 	 */
635 	uint64_t coverage_bitmaps_4[BLOCK_MAX_PARTITIONINGS][4];
636 
637 	/**
638 	 * @brief Get the block mode structure for index @c block_mode.
639 	 *
640 	 * This function can only return block modes that are enabled by the current compressor config.
641 	 * Decompression from an arbitrary source should not use this without first checking that the
642 	 * packed block mode index is not @c BLOCK_BAD_BLOCK_MODE.
643 	 *
644 	 * @param block_mode   The packed block mode index.
645 	 *
646 	 * @return The block mode structure.
647 	 */
get_block_modeblock_size_descriptor648 	const block_mode& get_block_mode(unsigned int block_mode) const
649 	{
650 		unsigned int packed_index = this->block_mode_packed_index[block_mode];
651 		assert(packed_index != BLOCK_BAD_BLOCK_MODE && packed_index < this->block_mode_count_all);
652 		return this->block_modes[packed_index];
653 	}
654 
655 	/**
656 	 * @brief Get the decimation mode structure for index @c decimation_mode.
657 	 *
658 	 * This function can only return decimation modes that are enabled by the current compressor
659 	 * config. The mode array is stored packed, but this is only ever indexed by the packed index
660 	 * stored in the @c block_mode and never exists in an unpacked form.
661 	 *
662 	 * @param decimation_mode   The packed decimation mode index.
663 	 *
664 	 * @return The decimation mode structure.
665 	 */
get_decimation_modeblock_size_descriptor666 	const decimation_mode& get_decimation_mode(unsigned int decimation_mode) const
667 	{
668 		return this->decimation_modes[decimation_mode];
669 	}
670 
671 	/**
672 	 * @brief Get the decimation info structure for index @c decimation_mode.
673 	 *
674 	 * This function can only return decimation modes that are enabled by the current compressor
675 	 * config. The mode array is stored packed, but this is only ever indexed by the packed index
676 	 * stored in the @c block_mode and never exists in an unpacked form.
677 	 *
678 	 * @param decimation_mode   The packed decimation mode index.
679 	 *
680 	 * @return The decimation info structure.
681 	 */
get_decimation_infoblock_size_descriptor682 	const decimation_info& get_decimation_info(unsigned int decimation_mode) const
683 	{
684 		return this->decimation_tables[decimation_mode];
685 	}
686 
687 	/**
688 	 * @brief Get the partition info table for a given partition count.
689 	 *
690 	 * @param partition_count   The number of partitions we want the table for.
691 	 *
692 	 * @return The pointer to the table of 1024 entries (for 2/3/4 parts) or 1 entry (for 1 part).
693 	 */
get_partition_tableblock_size_descriptor694 	const partition_info* get_partition_table(unsigned int partition_count) const
695 	{
696 		if (partition_count == 1)
697 		{
698 			partition_count = 5;
699 		}
700 		unsigned int index = (partition_count - 2) * BLOCK_MAX_PARTITIONINGS;
701 		return this->partitionings + index;
702 	}
703 
704 	/**
705 	 * @brief Get the partition info structure for a given partition count and seed.
706 	 *
707 	 * @param partition_count   The number of partitions we want the info for.
708 	 * @param index             The partition seed (between 0 and 1023).
709 	 *
710 	 * @return The partition info structure.
711 	 */
get_partition_infoblock_size_descriptor712 	const partition_info& get_partition_info(unsigned int partition_count, unsigned int index) const
713 	{
714 		unsigned int packed_index = 0;
715 		if (partition_count >= 2)
716 		{
717 			packed_index = this->partitioning_packed_index[partition_count - 2][index];
718 		}
719 
720 		assert(packed_index != BLOCK_BAD_PARTITIONING && packed_index < this->partitioning_count_all[partition_count - 1]);
721 		auto& result = get_partition_table(partition_count)[packed_index];
722 		assert(index == result.partition_index);
723 		return result;
724 	}
725 
726 	/**
727 	 * @brief Get the partition info structure for a given partition count and seed.
728 	 *
729 	 * @param partition_count   The number of partitions we want the info for.
730 	 * @param packed_index      The raw array offset.
731 	 *
732 	 * @return The partition info structure.
733 	 */
get_raw_partition_infoblock_size_descriptor734 	const partition_info& get_raw_partition_info(unsigned int partition_count, unsigned int packed_index) const
735 	{
736 		assert(packed_index != BLOCK_BAD_PARTITIONING && packed_index < this->partitioning_count_all[partition_count - 1]);
737 		auto& result = get_partition_table(partition_count)[packed_index];
738 		return result;
739 	}
740 };
741 
742 /**
743  * @brief The image data for a single block.
744  *
745  * The @c data_[rgba] fields store the image data in an encoded SoA float form designed for easy
746  * vectorization. Input data is converted to float and stored as values between 0 and 65535. LDR
747  * data is stored as direct UNORM data, HDR data is stored as LNS data.
748  *
749  * The @c rgb_lns and @c alpha_lns fields that assigned a per-texel use of HDR are only used during
750  * decompression. The current compressor will always use HDR endpoint formats when in HDR mode.
751  */
752 struct image_block
753 {
754 	/** @brief The input (compress) or output (decompress) data for the red color component. */
755 	ASTCENC_ALIGNAS float data_r[BLOCK_MAX_TEXELS];
756 
757 	/** @brief The input (compress) or output (decompress) data for the green color component. */
758 	ASTCENC_ALIGNAS float data_g[BLOCK_MAX_TEXELS];
759 
760 	/** @brief The input (compress) or output (decompress) data for the blue color component. */
761 	ASTCENC_ALIGNAS float data_b[BLOCK_MAX_TEXELS];
762 
763 	/** @brief The input (compress) or output (decompress) data for the alpha color component. */
764 	ASTCENC_ALIGNAS float data_a[BLOCK_MAX_TEXELS];
765 
766 	mutable partition_metrics pms[BLOCK_MAX_PARTITIONS];
767 
768 	/** @brief The number of texels in the block. */
769 	uint8_t texel_count;
770 
771 	/** @brief The original data for texel 0 for constant color block encoding. */
772 	vfloat4 origin_texel;
773 
774 	/** @brief The min component value of all texels in the block. */
775 	vfloat4 data_min;
776 
777 	/** @brief The mean component value of all texels in the block. */
778 	vfloat4 data_mean;
779 
780 	/** @brief The max component value of all texels in the block. */
781 	vfloat4 data_max;
782 
783 	/** @brief The relative error significance of the color channels. */
784 	vfloat4 channel_weight;
785 
786 	/** @brief Is this grayscale block where R == G == B for all texels? */
787 	bool grayscale;
788 
789 	/** @brief Is the eventual decode using decode_unorm8 rounding? */
790 	bool decode_unorm8;
791 
792 	/** @brief Set to 1 if a texel is using HDR RGB endpoints (decompression only). */
793 	uint8_t rgb_lns[BLOCK_MAX_TEXELS];
794 
795 	/** @brief Set to 1 if a texel is using HDR alpha endpoints (decompression only). */
796 	uint8_t alpha_lns[BLOCK_MAX_TEXELS];
797 
798 	/** @brief The X position of this block in the input or output image. */
799 	unsigned int xpos;
800 
801 	/** @brief The Y position of this block in the input or output image. */
802 	unsigned int ypos;
803 
804 	/** @brief The Z position of this block in the input or output image. */
805 	unsigned int zpos;
806 
807 	/**
808 	 * @brief Get an RGBA texel value from the data.
809 	 *
810 	 * @param index   The texel index.
811 	 *
812 	 * @return The texel in RGBA component ordering.
813 	 */
texelimage_block814 	inline vfloat4 texel(unsigned int index) const
815 	{
816 		return vfloat4(data_r[index],
817 		               data_g[index],
818 		               data_b[index],
819 		               data_a[index]);
820 	}
821 
822 	/**
823 	 * @brief Get an RGB texel value from the data.
824 	 *
825 	 * @param index   The texel index.
826 	 *
827 	 * @return The texel in RGB0 component ordering.
828 	 */
texel3image_block829 	inline vfloat4 texel3(unsigned int index) const
830 	{
831 		return vfloat3(data_r[index],
832 		               data_g[index],
833 		               data_b[index]);
834 	}
835 
836 	/**
837 	 * @brief Get the default alpha value for endpoints that don't store it.
838 	 *
839 	 * The default depends on whether the alpha endpoint is LDR or HDR.
840 	 *
841 	 * @return The alpha value in the scaled range used by the compressor.
842 	 */
get_default_alphaimage_block843 	inline float get_default_alpha() const
844 	{
845 		return this->alpha_lns[0] ? static_cast<float>(0x7800) : static_cast<float>(0xFFFF);
846 	}
847 
848 	/**
849 	 * @brief Test if a single color channel is constant across the block.
850 	 *
851 	 * Constant color channels are easier to compress as interpolating between two identical colors
852 	 * always returns the same value, irrespective of the weight used. They therefore can be ignored
853 	 * for the purposes of weight selection and use of a second weight plane.
854 	 *
855 	 * @return @c true if the channel is constant across the block, @c false otherwise.
856 	 */
is_constant_channelimage_block857 	inline bool is_constant_channel(int channel) const
858 	{
859 		vmask4 lane_mask = vint4::lane_id() == vint4(channel);
860 		vmask4 color_mask = this->data_min == this->data_max;
861 		return any(lane_mask & color_mask);
862 	}
863 
864 	/**
865 	 * @brief Test if this block is a luminance block with constant 1.0 alpha.
866 	 *
867 	 * @return @c true if the block is a luminance block , @c false otherwise.
868 	 */
is_luminanceimage_block869 	inline bool is_luminance() const
870 	{
871 		float default_alpha = this->get_default_alpha();
872 		bool alpha1 = (this->data_min.lane<3>() == default_alpha) &&
873 		              (this->data_max.lane<3>() == default_alpha);
874 		return this->grayscale && alpha1;
875 	}
876 
877 	/**
878 	 * @brief Test if this block is a luminance block with variable alpha.
879 	 *
880 	 * @return @c true if the block is a luminance + alpha block , @c false otherwise.
881 	 */
is_luminancealphaimage_block882 	inline bool is_luminancealpha() const
883 	{
884 		float default_alpha = this->get_default_alpha();
885 		bool alpha1 = (this->data_min.lane<3>() == default_alpha) &&
886 		              (this->data_max.lane<3>() == default_alpha);
887 		return this->grayscale && !alpha1;
888 	}
889 };
890 
891 /**
892  * @brief Data structure storing the color endpoints for a block.
893  */
894 struct endpoints
895 {
896 	/** @brief The number of partition endpoints stored. */
897 	unsigned int partition_count;
898 
899 	/** @brief The colors for endpoint 0. */
900 	vfloat4 endpt0[BLOCK_MAX_PARTITIONS];
901 
902 	/** @brief The colors for endpoint 1. */
903 	vfloat4 endpt1[BLOCK_MAX_PARTITIONS];
904 };
905 
906 /**
907  * @brief Data structure storing the color endpoints and weights.
908  */
909 struct endpoints_and_weights
910 {
911 	/** @brief True if all active values in weight_error_scale are the same. */
912 	bool is_constant_weight_error_scale;
913 
914 	/** @brief The color endpoints. */
915 	endpoints ep;
916 
917 	/** @brief The ideal weight for each texel; may be undecimated or decimated. */
918 	ASTCENC_ALIGNAS float weights[BLOCK_MAX_TEXELS];
919 
920 	/** @brief The ideal weight error scaling for each texel; may be undecimated or decimated. */
921 	ASTCENC_ALIGNAS float weight_error_scale[BLOCK_MAX_TEXELS];
922 };
923 
924 /**
925  * @brief Utility storing estimated errors from choosing particular endpoint encodings.
926  */
927 struct encoding_choice_errors
928 {
929 	/** @brief Error of using LDR RGB-scale instead of complete endpoints. */
930 	float rgb_scale_error;
931 
932 	/** @brief Error of using HDR RGB-scale instead of complete endpoints. */
933 	float rgb_luma_error;
934 
935 	/** @brief Error of using luminance instead of RGB. */
936 	float luminance_error;
937 
938 	/** @brief Error of discarding alpha and using a constant 1.0 alpha. */
939 	float alpha_drop_error;
940 
941 	/** @brief Can we use delta offset encoding? */
942 	bool can_offset_encode;
943 
944 	/** @brief Can we use blue contraction encoding? */
945 	bool can_blue_contract;
946 };
947 
948 /**
949  * @brief Preallocated working buffers, allocated per thread during context creation.
950  */
951 struct ASTCENC_ALIGNAS compression_working_buffers
952 {
953 	/** @brief Ideal endpoints and weights for plane 1. */
954 	endpoints_and_weights ei1;
955 
956 	/** @brief Ideal endpoints and weights for plane 2. */
957 	endpoints_and_weights ei2;
958 
959 	/**
960 	 * @brief Decimated ideal weight values in the ~0-1 range.
961 	 *
962 	 * Note that values can be slightly below zero or higher than one due to
963 	 * endpoint extents being inside the ideal color representation.
964 	 *
965 	 * For two planes, second plane starts at @c WEIGHTS_PLANE2_OFFSET offsets.
966 	 */
967 	ASTCENC_ALIGNAS float dec_weights_ideal[WEIGHTS_MAX_DECIMATION_MODES * BLOCK_MAX_WEIGHTS];
968 
969 	/**
970 	 * @brief Decimated quantized weight values in the unquantized 0-64 range.
971 	 *
972 	 * For two planes, second plane starts at @c WEIGHTS_PLANE2_OFFSET offsets.
973 	 */
974 	uint8_t dec_weights_uquant[WEIGHTS_MAX_BLOCK_MODES * BLOCK_MAX_WEIGHTS];
975 
976 	/** @brief Error of the best encoding combination for each block mode. */
977 	ASTCENC_ALIGNAS float errors_of_best_combination[WEIGHTS_MAX_BLOCK_MODES];
978 
979 	/** @brief The best color quant for each block mode. */
980 	uint8_t best_quant_levels[WEIGHTS_MAX_BLOCK_MODES];
981 
982 	/** @brief The best color quant for each block mode if modes are the same and we have spare bits. */
983 	uint8_t best_quant_levels_mod[WEIGHTS_MAX_BLOCK_MODES];
984 
985 	/** @brief The best endpoint format for each partition. */
986 	uint8_t best_ep_formats[WEIGHTS_MAX_BLOCK_MODES][BLOCK_MAX_PARTITIONS];
987 
988 	/** @brief The total bit storage needed for quantized weights for each block mode. */
989 	int8_t qwt_bitcounts[WEIGHTS_MAX_BLOCK_MODES];
990 
991 	/** @brief The cumulative error for quantized weights for each block mode. */
992 	float qwt_errors[WEIGHTS_MAX_BLOCK_MODES];
993 
994 	/** @brief The low weight value in plane 1 for each block mode. */
995 	float weight_low_value1[WEIGHTS_MAX_BLOCK_MODES];
996 
997 	/** @brief The high weight value in plane 1 for each block mode. */
998 	float weight_high_value1[WEIGHTS_MAX_BLOCK_MODES];
999 
1000 	/** @brief The low weight value in plane 1 for each quant level and decimation mode. */
1001 	float weight_low_values1[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1002 
1003 	/** @brief The high weight value in plane 1 for each quant level and decimation mode. */
1004 	float weight_high_values1[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1005 
1006 	/** @brief The low weight value in plane 2 for each block mode. */
1007 	float weight_low_value2[WEIGHTS_MAX_BLOCK_MODES];
1008 
1009 	/** @brief The high weight value in plane 2 for each block mode. */
1010 	float weight_high_value2[WEIGHTS_MAX_BLOCK_MODES];
1011 
1012 	/** @brief The low weight value in plane 2 for each quant level and decimation mode. */
1013 	float weight_low_values2[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1014 
1015 	/** @brief The high weight value in plane 2 for each quant level and decimation mode. */
1016 	float weight_high_values2[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1017 };
1018 
1019 struct dt_init_working_buffers
1020 {
1021 	uint8_t weight_count_of_texel[BLOCK_MAX_TEXELS];
1022 	uint8_t grid_weights_of_texel[BLOCK_MAX_TEXELS][4];
1023 	uint8_t weights_of_texel[BLOCK_MAX_TEXELS][4];
1024 
1025 	uint8_t texel_count_of_weight[BLOCK_MAX_WEIGHTS];
1026 	uint8_t texels_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
1027 	uint8_t texel_weights_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
1028 };
1029 
1030 /**
1031  * @brief Weight quantization transfer table.
1032  *
1033  * ASTC can store texel weights at many quantization levels, so for performance we store essential
1034  * information about each level as a precomputed data structure. Unquantized weights are integers
1035  * or floats in the range [0, 64].
1036  *
1037  * This structure provides a table, used to estimate the closest quantized weight for a given
1038  * floating-point weight. For each quantized weight, the corresponding unquantized values. For each
1039  * quantized weight, a previous-value and a next-value.
1040 */
1041 struct quant_and_transfer_table
1042 {
1043 	/** @brief The unscrambled unquantized value. */
1044 	uint8_t quant_to_unquant[32];
1045 
1046 	/** @brief The scrambling order: scrambled_quant = map[unscrambled_quant]. */
1047 	uint8_t scramble_map[32];
1048 
1049 	/** @brief The unscrambling order: unscrambled_unquant = map[scrambled_quant]. */
1050 	uint8_t unscramble_and_unquant_map[32];
1051 
1052 	/**
1053 	 * @brief A table of previous-and-next weights, indexed by the current unquantized value.
1054 	 *  * bits 7:0 = previous-index, unquantized
1055 	 *  * bits 15:8 = next-index, unquantized
1056 	 */
1057 	uint16_t prev_next_values[65];
1058 };
1059 
1060 /** @brief The precomputed quant and transfer table. */
1061 extern const quant_and_transfer_table quant_and_xfer_tables[12];
1062 
1063 /** @brief The block is an error block, and will return error color or NaN. */
1064 static constexpr uint8_t SYM_BTYPE_ERROR { 0 };
1065 
1066 /** @brief The block is a constant color block using FP16 colors. */
1067 static constexpr uint8_t SYM_BTYPE_CONST_F16 { 1 };
1068 
1069 /** @brief The block is a constant color block using UNORM16 colors. */
1070 static constexpr uint8_t SYM_BTYPE_CONST_U16 { 2 };
1071 
1072 /** @brief The block is a normal non-constant color block. */
1073 static constexpr uint8_t SYM_BTYPE_NONCONST { 3 };
1074 
1075 /**
1076  * @brief A symbolic representation of a compressed block.
1077  *
1078  * The symbolic representation stores the unpacked content of a single
1079  * physical compressed block, in a form which is much easier to access for
1080  * the rest of the compressor code.
1081  */
1082 struct symbolic_compressed_block
1083 {
1084 	/** @brief The block type, one of the @c SYM_BTYPE_* constants. */
1085 	uint8_t block_type;
1086 
1087 	/** @brief The number of partitions; valid for @c NONCONST blocks. */
1088 	uint8_t partition_count;
1089 
1090 	/** @brief Non-zero if the color formats matched; valid for @c NONCONST blocks. */
1091 	uint8_t color_formats_matched;
1092 
1093 	/** @brief The plane 2 color component, or -1 if single plane; valid for @c NONCONST blocks. */
1094 	int8_t plane2_component;
1095 
1096 	/** @brief The block mode; valid for @c NONCONST blocks. */
1097 	uint16_t block_mode;
1098 
1099 	/** @brief The partition index; valid for @c NONCONST blocks if 2 or more partitions. */
1100 	uint16_t partition_index;
1101 
1102 	/** @brief The endpoint color formats for each partition; valid for @c NONCONST blocks. */
1103 	uint8_t color_formats[BLOCK_MAX_PARTITIONS];
1104 
1105 	/** @brief The endpoint color quant mode; valid for @c NONCONST blocks. */
1106 	quant_method quant_mode;
1107 
1108 	/** @brief The error of the current encoding; valid for @c NONCONST blocks. */
1109 	float errorval;
1110 
1111 	// We can't have both of these at the same time
1112 	union {
1113 		/** @brief The constant color; valid for @c CONST blocks. */
1114 		int constant_color[BLOCK_MAX_COMPONENTS];
1115 
1116 		/** @brief The quantized endpoint color pairs; valid for @c NONCONST blocks. */
1117 		uint8_t color_values[BLOCK_MAX_PARTITIONS][8];
1118 	};
1119 
1120 	/** @brief The quantized and decimated weights.
1121 	 *
1122 	 * Weights are stored in the 0-64 unpacked range allowing them to be used
1123 	 * directly in encoding passes without per-use unpacking. Packing happens
1124 	 * when converting to/from the physical bitstream encoding.
1125 	 *
1126 	 * If dual plane, the second plane starts at @c weights[WEIGHTS_PLANE2_OFFSET].
1127 	 */
1128 	uint8_t weights[BLOCK_MAX_WEIGHTS];
1129 
1130 	/**
1131 	 * @brief Get the weight quantization used by this block mode.
1132 	 *
1133 	 * @return The quantization level.
1134 	 */
get_color_quant_modesymbolic_compressed_block1135 	inline quant_method get_color_quant_mode() const
1136 	{
1137 		return this->quant_mode;
1138 	}
1139 	QualityProfile privateProfile;
1140 };
1141 
1142 /**
1143  * @brief Parameter structure for @c compute_pixel_region_variance().
1144  *
1145  * This function takes a structure to avoid spilling arguments to the stack on every function
1146  * invocation, as there are a lot of parameters.
1147  */
1148 struct pixel_region_args
1149 {
1150 	/** @brief The image to analyze. */
1151 	const astcenc_image* img;
1152 
1153 	/** @brief The component swizzle pattern. */
1154 	astcenc_swizzle swz;
1155 
1156 	/** @brief Should the algorithm bother with Z axis processing? */
1157 	bool have_z;
1158 
1159 	/** @brief The kernel radius for alpha processing. */
1160 	unsigned int alpha_kernel_radius;
1161 
1162 	/** @brief The X dimension of the working data to process. */
1163 	unsigned int size_x;
1164 
1165 	/** @brief The Y dimension of the working data to process. */
1166 	unsigned int size_y;
1167 
1168 	/** @brief The Z dimension of the working data to process. */
1169 	unsigned int size_z;
1170 
1171 	/** @brief The X position of first src and dst data in the data set. */
1172 	unsigned int offset_x;
1173 
1174 	/** @brief The Y position of first src and dst data in the data set. */
1175 	unsigned int offset_y;
1176 
1177 	/** @brief The Z position of first src and dst data in the data set. */
1178 	unsigned int offset_z;
1179 
1180 	/** @brief The working memory buffer. */
1181 	vfloat4 *work_memory;
1182 };
1183 
1184 /**
1185  * @brief Parameter structure for @c compute_averages_proc().
1186  */
1187 struct avg_args
1188 {
1189 	/** @brief The arguments for the nested variance computation. */
1190 	pixel_region_args arg;
1191 
1192 	/** @brief The image Stride dimensions. */
1193 	unsigned int img_size_stride;
1194 
1195 	/** @brief The image X dimensions. */
1196 	unsigned int img_size_x;
1197 
1198 	/** @brief The image Y dimensions. */
1199 	unsigned int img_size_y;
1200 
1201 	/** @brief The image Z dimensions. */
1202 	unsigned int img_size_z;
1203 
1204 	/** @brief The maximum working block dimensions in X and Y dimensions. */
1205 	unsigned int blk_size_xy;
1206 
1207 	/** @brief The maximum working block dimensions in Z dimensions. */
1208 	unsigned int blk_size_z;
1209 
1210 	/** @brief The working block memory size. */
1211 	unsigned int work_memory_size;
1212 };
1213 
1214 #if defined(ASTCENC_DIAGNOSTICS)
1215 /* See astcenc_diagnostic_trace header for details. */
1216 class TraceLog;
1217 #endif
1218 
1219 /**
1220  * @brief The astcenc compression context.
1221  */
1222 struct astcenc_contexti
1223 {
1224 	/** @brief The configuration this context was created with. */
1225 	astcenc_config config;
1226 
1227 	/** @brief The thread count supported by this context. */
1228 	unsigned int thread_count;
1229 
1230 	/** @brief The block size descriptor this context was created with. */
1231 	block_size_descriptor* bsd;
1232 
1233 	/*
1234 	 * Fields below here are not needed in a decompress-only build, but some remain as they are
1235 	 * small and it avoids littering the code with #ifdefs. The most significant contributors to
1236 	 * large structure size are omitted.
1237 	 */
1238 
1239 	/** @brief The input image alpha channel averages table, may be @c nullptr if not needed. */
1240 	float* input_alpha_averages;
1241 
1242 	/** @brief The scratch working buffers, one per thread (see @c thread_count). */
1243 	compression_working_buffers* working_buffers;
1244 
1245 #if !defined(ASTCENC_DECOMPRESS_ONLY)
1246 	/** @brief The pixel region and variance worker arguments. */
1247 	avg_args avg_preprocess_args;
1248 #endif
1249 
1250 #if defined(ASTCENC_DIAGNOSTICS)
1251 	/**
1252 	 * @brief The diagnostic trace logger.
1253 	 *
1254 	 * Note that this is a singleton, so can only be used in single threaded mode. It only exists
1255 	 * here so we have a reference to close the file at the end of the capture.
1256 	 */
1257 	TraceLog* trace_log;
1258 #endif
1259 };
1260 
1261 /* ============================================================================
1262   Functionality for managing block sizes and partition tables.
1263 ============================================================================ */
1264 
1265 /**
1266  * @brief Populate the block size descriptor for the target block size.
1267  *
1268  * This will also initialize the partition table metadata, which is stored as part of the BSD
1269  * structure.
1270  *
1271  * @param      x_texels                 The number of texels in the block X dimension.
1272  * @param      y_texels                 The number of texels in the block Y dimension.
1273  * @param      z_texels                 The number of texels in the block Z dimension.
1274  * @param      can_omit_modes           Can we discard modes and partitionings that astcenc won't use?
1275  * @param      partition_count_cutoff   The partition count cutoff to use, if we can omit partitionings.
1276  * @param      mode_cutoff              The block mode percentile cutoff [0-1].
1277  * @param[out] bsd                      The descriptor to initialize.
1278  */
1279 #ifdef ASTC_CUSTOMIZED_ENABLE
1280 bool init_block_size_descriptor(
1281 #else
1282 void init_block_size_descriptor(
1283 #endif
1284 	QualityProfile privateProfile,
1285 	unsigned int x_texels,
1286 	unsigned int y_texels,
1287 	unsigned int z_texels,
1288 	bool can_omit_modes,
1289 	unsigned int partition_count_cutoff,
1290 	float mode_cutoff,
1291 	block_size_descriptor& bsd);
1292 
1293 /**
1294  * @brief Populate the partition tables for the target block size.
1295  *
1296  * Note the @c bsd descriptor must be initialized by calling @c init_block_size_descriptor() before
1297  * calling this function.
1298  *
1299  * @param[out] bsd                      The block size information structure to populate.
1300  * @param      can_omit_partitionings   True if we can we drop partitionings that astcenc won't use.
1301  * @param      partition_count_cutoff   The partition count cutoff to use, if we can omit partitionings.
1302  */
1303 void init_partition_tables(
1304 	block_size_descriptor& bsd,
1305 	bool can_omit_partitionings,
1306 	unsigned int partition_count_cutoff);
1307 
1308 /**
1309  * @brief Get the percentile table for 2D block modes.
1310  *
1311  * This is an empirically determined prioritization of which block modes to use in the search in
1312  * terms of their centile (lower centiles = more useful).
1313  *
1314  * Returns a dynamically allocated array; caller must free with delete[].
1315  *
1316  * @param xdim The block x size.
1317  * @param ydim The block y size.
1318  *
1319  * @return The unpacked table.
1320  */
1321 const float* get_2d_percentile_table(
1322 	unsigned int xdim,
1323 	unsigned int ydim);
1324 
1325 /**
1326  * @brief Query if a 2D block size is legal.
1327  *
1328  * @return True if legal, false otherwise.
1329  */
1330 bool is_legal_2d_block_size(
1331 	unsigned int xdim,
1332 	unsigned int ydim);
1333 
1334 /**
1335  * @brief Query if a 3D block size is legal.
1336  *
1337  * @return True if legal, false otherwise.
1338  */
1339 bool is_legal_3d_block_size(
1340 	unsigned int xdim,
1341 	unsigned int ydim,
1342 	unsigned int zdim);
1343 
1344 /* ============================================================================
1345   Functionality for managing BISE quantization and unquantization.
1346 ============================================================================ */
1347 
1348 /**
1349  * @brief The precomputed table for quantizing color values.
1350  *
1351  * Converts unquant value in 0-255 range into quant value in 0-255 range.
1352  * No BISE scrambling is applied at this stage.
1353  *
1354  * The BISE encoding results in ties where available quant<256> values are
1355  * equidistant the available quant<BISE> values. This table stores two values
1356  * for each input - one for use with a negative residual, and one for use with
1357  * a positive residual.
1358  *
1359  * Indexed by [quant_mode - 4][data_value * 2 + residual].
1360  */
1361 extern const uint8_t color_unquant_to_uquant_tables[17][512];
1362 
1363 /**
1364  * @brief The precomputed table for packing quantized color values.
1365  *
1366  * Converts quant value in 0-255 range into packed quant value in 0-N range,
1367  * with BISE scrambling applied.
1368  *
1369  * Indexed by [quant_mode - 4][data_value].
1370  */
1371 extern const uint8_t color_uquant_to_scrambled_pquant_tables[17][256];
1372 
1373 /**
1374  * @brief The precomputed table for unpacking color values.
1375  *
1376  * Converts quant value in 0-N range into unpacked value in 0-255 range,
1377  * with BISE unscrambling applied.
1378  *
1379  * Indexed by [quant_mode - 4][data_value].
1380  */
1381 extern const uint8_t* color_scrambled_pquant_to_uquant_tables[17];
1382 
1383 /**
1384  * @brief The precomputed quant mode storage table.
1385  *
1386  * Indexing by [integer_count/2][bits] gives us the quantization level for a given integer count and
1387  * number of compressed storage bits. Returns -1 for cases where the requested integer count cannot
1388  * ever fit in the supplied storage size.
1389  */
1390 extern const int8_t quant_mode_table[10][128];
1391 
1392 /**
1393  * @brief Encode a packed string using BISE.
1394  *
1395  * Note that BISE can return strings that are not a whole number of bytes in length, and ASTC can
1396  * start storing strings in a block at arbitrary bit offsets in the encoded data.
1397  *
1398  * @param         quant_level       The BISE alphabet size.
1399  * @param         character_count   The number of characters in the string.
1400  * @param         input_data        The unpacked string, one byte per character.
1401  * @param[in,out] output_data       The output packed string.
1402  * @param         bit_offset        The starting offset in the output storage.
1403  */
1404 void encode_ise(
1405 	quant_method quant_level,
1406 	unsigned int character_count,
1407 	const uint8_t* input_data,
1408 	uint8_t* output_data,
1409 	unsigned int bit_offset);
1410 
1411 /**
1412  * @brief Decode a packed string using BISE.
1413  *
1414  * Note that BISE input strings are not a whole number of bytes in length, and ASTC can start
1415  * strings at arbitrary bit offsets in the encoded data.
1416  *
1417  * @param         quant_level       The BISE alphabet size.
1418  * @param         character_count   The number of characters in the string.
1419  * @param         input_data        The packed string.
1420  * @param[in,out] output_data       The output storage, one byte per character.
1421  * @param         bit_offset        The starting offset in the output storage.
1422  */
1423 void decode_ise(
1424 	quant_method quant_level,
1425 	unsigned int character_count,
1426 	const uint8_t* input_data,
1427 	uint8_t* output_data,
1428 	unsigned int bit_offset);
1429 
1430 /**
1431  * @brief Return the number of bits needed to encode an ISE sequence.
1432  *
1433  * This implementation assumes that the @c quant level is untrusted, given it may come from random
1434  * data being decompressed, so we return an arbitrary unencodable size if that is the case.
1435  *
1436  * @param character_count   The number of items in the sequence.
1437  * @param quant_level       The desired quantization level.
1438  *
1439  * @return The number of bits needed to encode the BISE string.
1440  */
1441 unsigned int get_ise_sequence_bitcount(
1442 	unsigned int character_count,
1443 	quant_method quant_level);
1444 
1445 /* ============================================================================
1446   Functionality for managing color partitioning.
1447 ============================================================================ */
1448 
1449 /**
1450  * @brief Compute averages and dominant directions for each partition in a 2 component texture.
1451  *
1452  * @param      pi           The partition info for the current trial.
1453  * @param      blk          The image block color data to be compressed.
1454  * @param      component1   The first component included in the analysis.
1455  * @param      component2   The second component included in the analysis.
1456  * @param[out] pm           The output partition metrics.
1457  *                          - Only pi.partition_count array entries actually get initialized.
1458  *                          - Direction vectors @c pm.dir are not normalized.
1459  */
1460 void compute_avgs_and_dirs_2_comp(
1461 	const partition_info& pi,
1462 	const image_block& blk,
1463 	unsigned int component1,
1464 	unsigned int component2,
1465 	partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1466 
1467 /**
1468  * @brief Compute averages and dominant directions for each partition in a 3 component texture.
1469  *
1470  * @param      pi                  The partition info for the current trial.
1471  * @param      blk                 The image block color data to be compressed.
1472  * @param      omitted_component   The component excluded from the analysis.
1473  * @param[out] pm                  The output partition metrics.
1474  *                                 - Only pi.partition_count array entries actually get initialized.
1475  *                                 - Direction vectors @c pm.dir are not normalized.
1476  */
1477 void compute_avgs_and_dirs_3_comp(
1478 	const partition_info& pi,
1479 	const image_block& blk,
1480 	unsigned int omitted_component,
1481 	partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1482 
1483 /**
1484  * @brief Compute averages and dominant directions for each partition in a 3 component texture.
1485  *
1486  * This is a specialization of @c compute_avgs_and_dirs_3_comp where the omitted component is
1487  * always alpha, a common case during partition search.
1488  *
1489  * @param      pi    The partition info for the current trial.
1490  * @param      blk   The image block color data to be compressed.
1491  * @param[out] pm    The output partition metrics.
1492  *                   - Only pi.partition_count array entries actually get initialized.
1493  *                   - Direction vectors @c pm.dir are not normalized.
1494  */
1495 void compute_avgs_and_dirs_3_comp_rgb(
1496 	const partition_info& pi,
1497 	const image_block& blk,
1498 	partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1499 
1500 /**
1501  * @brief Compute averages and dominant directions for each partition in a 4 component texture.
1502  *
1503  * @param      pi    The partition info for the current trial.
1504  * @param      blk   The image block color data to be compressed.
1505  * @param[out] pm    The output partition metrics.
1506  *                   - Only pi.partition_count array entries actually get initialized.
1507  *                   - Direction vectors @c pm.dir are not normalized.
1508  */
1509 void compute_avgs_and_dirs_4_comp(
1510 	const partition_info& pi,
1511 	const image_block& blk,
1512 	partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1513 
1514 /**
1515  * @brief Compute the RGB error for uncorrelated and same chroma projections.
1516  *
1517  * The output of compute averages and dirs is post processed to define two lines, both of which go
1518  * through the mean-color-value.  One line has a direction defined by the dominant direction; this
1519  * is used to assess the error from using an uncorrelated color representation. The other line goes
1520  * through (0,0,0) and is used to assess the error from using an RGBS color representation.
1521  *
1522  * This function computes the squared error when using these two representations.
1523  *
1524  * @param         pi            The partition info for the current trial.
1525  * @param         blk           The image block color data to be compressed.
1526  * @param[in,out] plines        Processed line inputs, and line length outputs.
1527  * @param[out]    uncor_error   The cumulative error for using the uncorrelated line.
1528  * @param[out]    samec_error   The cumulative error for using the same chroma line.
1529  */
1530 void compute_error_squared_rgb(
1531 	const partition_info& pi,
1532 	const image_block& blk,
1533 	partition_lines3 plines[BLOCK_MAX_PARTITIONS],
1534 	float& uncor_error,
1535 	float& samec_error);
1536 
1537 /**
1538  * @brief Compute the RGBA error for uncorrelated and same chroma projections.
1539  *
1540  * The output of compute averages and dirs is post processed to define two lines, both of which go
1541  * through the mean-color-value.  One line has a direction defined by the dominant direction; this
1542  * is used to assess the error from using an uncorrelated color representation. The other line goes
1543  * through (0,0,0,1) and is used to assess the error from using an RGBS color representation.
1544  *
1545  * This function computes the squared error when using these two representations.
1546  *
1547  * @param      pi              The partition info for the current trial.
1548  * @param      blk             The image block color data to be compressed.
1549  * @param      uncor_plines    Processed uncorrelated partition lines for each partition.
1550  * @param      samec_plines    Processed same chroma partition lines for each partition.
1551  * @param[out] line_lengths    The length of each components deviation from the line.
1552  * @param[out] uncor_error     The cumulative error for using the uncorrelated line.
1553  * @param[out] samec_error     The cumulative error for using the same chroma line.
1554  */
1555 void compute_error_squared_rgba(
1556 	const partition_info& pi,
1557 	const image_block& blk,
1558 	const processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS],
1559 	const processed_line4 samec_plines[BLOCK_MAX_PARTITIONS],
1560 	float line_lengths[BLOCK_MAX_PARTITIONS],
1561 	float& uncor_error,
1562 	float& samec_error);
1563 
1564 /**
1565  * @brief Find the best set of partitions to trial for a given block.
1566  *
1567  * On return the @c best_partitions list will contain the two best partition
1568  * candidates; one assuming data has uncorrelated chroma and one assuming the
1569  * data has correlated chroma. The best candidate is returned first in the list.
1570  *
1571  * @param      bsd                      The block size information.
1572  * @param      blk                      The image block color data to compress.
1573  * @param      partition_count          The number of partitions in the block.
1574  * @param      partition_search_limit   The number of candidate partition encodings to trial.
1575  * @param[out] best_partitions          The best partition candidates.
1576  * @param      requested_candidates     The number of requested partitionings. May return fewer if
1577  *                                      candidates are not available.
1578  *
1579  * @return The actual number of candidates returned.
1580  */
1581 unsigned int find_best_partition_candidates(
1582 	const block_size_descriptor& bsd,
1583 	const image_block& blk,
1584 	unsigned int partition_count,
1585 	unsigned int partition_search_limit,
1586 	unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES],
1587 	unsigned int requested_candidates);
1588 
1589 /* ============================================================================
1590   Functionality for managing images and image related data.
1591 ============================================================================ */
1592 
1593 /**
1594  * @brief Get a vector mask indicating lanes decompressing into a UNORM8 value.
1595  *
1596  * @param decode_mode   The color profile for LDR_SRGB settings.
1597  * @param blk           The image block for output image bitness settings.
1598  *
1599  * @return The component mask vector.
1600  */
get_u8_component_mask( astcenc_profile decode_mode, const image_block& blk )1601 static inline vmask4 get_u8_component_mask(
1602 	astcenc_profile decode_mode,
1603 	const image_block& blk
1604 ) {
1605 	vmask4 u8_mask(false);
1606 	// Decode mode writing to a unorm8 output value
1607 	if (blk.decode_unorm8)
1608 	{
1609 		u8_mask = vmask4(true);
1610 	}
1611 	// SRGB writing to a unorm8 RGB value
1612 	else if (decode_mode == ASTCENC_PRF_LDR_SRGB)
1613 	{
1614 		u8_mask = vmask4(true, true, true, false);
1615 	}
1616 
1617 	return u8_mask;
1618 }
1619 
1620 /**
1621  * @brief Setup computation of regional averages in an image.
1622  *
1623  * This must be done by only a single thread per image, before any thread calls
1624  * @c compute_averages().
1625  *
1626  * Results are written back into @c img->input_alpha_averages.
1627  *
1628  * @param      img                   The input image data, also holds output data.
1629  * @param      alpha_kernel_radius   The kernel radius (in pixels) for alpha mods.
1630  * @param      swz                   Input data component swizzle.
1631  * @param[out] ag                    The average variance arguments to init.
1632  *
1633  * @return The number of tasks in the processing stage.
1634  */
1635 unsigned int init_compute_averages(
1636 	const astcenc_image& img,
1637 	unsigned int alpha_kernel_radius,
1638 	const astcenc_swizzle& swz,
1639 	avg_args& ag);
1640 
1641 /**
1642  * @brief Compute averages for a pixel region.
1643  *
1644  * The routine computes both in a single pass, using a summed-area table to decouple the running
1645  * time from the averaging/variance kernel size.
1646  *
1647  * @param[out] ctx   The compressor context storing the output data.
1648  * @param      arg   The input parameter structure.
1649  */
1650 void compute_pixel_region_variance(
1651 	astcenc_contexti& ctx,
1652 	const pixel_region_args& arg);
1653 /**
1654  * @brief Load a single image block from the input image.
1655  *
1656  * @param      decode_mode   The compression color profile.
1657  * @param      img           The input image data.
1658  * @param[out] blk           The image block to populate.
1659  * @param      bsd           The block size information.
1660  * @param      xpos          The block X coordinate in the input image.
1661  * @param      ypos          The block Y coordinate in the input image.
1662  * @param      zpos          The block Z coordinate in the input image.
1663  * @param      swz           The swizzle to apply on load.
1664  */
1665 void load_image_block(
1666 	astcenc_profile decode_mode,
1667 	const astcenc_image& img,
1668 	image_block& blk,
1669 	const block_size_descriptor& bsd,
1670 	unsigned int xpos,
1671 	unsigned int ypos,
1672 	unsigned int zpos,
1673 	const astcenc_swizzle& swz);
1674 
1675 /**
1676  * @brief Load a single image block from the input image.
1677  *
1678  * This specialized variant can be used only if the block is 2D LDR U8 data,
1679  * with no swizzle.
1680  *
1681  * @param      decode_mode   The compression color profile.
1682  * @param      img           The input image data.
1683  * @param[out] blk           The image block to populate.
1684  * @param      bsd           The block size information.
1685  * @param      xpos          The block X coordinate in the input image.
1686  * @param      ypos          The block Y coordinate in the input image.
1687  * @param      zpos          The block Z coordinate in the input image.
1688  * @param      swz           The swizzle to apply on load.
1689  */
1690 void load_image_block_fast_ldr(
1691 	astcenc_profile decode_mode,
1692 	const astcenc_image& img,
1693 	image_block& blk,
1694 	const block_size_descriptor& bsd,
1695 	unsigned int xpos,
1696 	unsigned int ypos,
1697 	unsigned int zpos,
1698 	const astcenc_swizzle& swz);
1699 
1700 /**
1701  * @brief Store a single image block to the output image.
1702  *
1703  * @param[out] img    The output image data.
1704  * @param      blk    The image block to export.
1705  * @param      bsd    The block size information.
1706  * @param      xpos   The block X coordinate in the input image.
1707  * @param      ypos   The block Y coordinate in the input image.
1708  * @param      zpos   The block Z coordinate in the input image.
1709  * @param      swz    The swizzle to apply on store.
1710  */
1711 void store_image_block(
1712 	astcenc_image& img,
1713 	const image_block& blk,
1714 	const block_size_descriptor& bsd,
1715 	unsigned int xpos,
1716 	unsigned int ypos,
1717 	unsigned int zpos,
1718 	const astcenc_swizzle& swz);
1719 
1720 /* ============================================================================
1721   Functionality for computing endpoint colors and weights for a block.
1722 ============================================================================ */
1723 
1724 /**
1725  * @brief Compute ideal endpoint colors and weights for 1 plane of weights.
1726  *
1727  * The ideal endpoints define a color line for the partition. For each texel the ideal weight
1728  * defines an exact position on the partition color line. We can then use these to assess the error
1729  * introduced by removing and quantizing the weight grid.
1730  *
1731  * @param      blk   The image block color data to compress.
1732  * @param      pi    The partition info for the current trial.
1733  * @param[out] ei    The endpoint and weight values.
1734  */
1735 void compute_ideal_colors_and_weights_1plane(
1736 	const image_block& blk,
1737 	const partition_info& pi,
1738 	endpoints_and_weights& ei);
1739 
1740 /**
1741  * @brief Compute ideal endpoint colors and weights for 2 planes of weights.
1742  *
1743  * The ideal endpoints define a color line for the partition. For each texel the ideal weight
1744  * defines an exact position on the partition color line. We can then use these to assess the error
1745  * introduced by removing and quantizing the weight grid.
1746  *
1747  * @param      bsd                The block size information.
1748  * @param      blk                The image block color data to compress.
1749  * @param      plane2_component   The component assigned to plane 2.
1750  * @param[out] ei1                The endpoint and weight values for plane 1.
1751  * @param[out] ei2                The endpoint and weight values for plane 2.
1752  */
1753 void compute_ideal_colors_and_weights_2planes(
1754 	const block_size_descriptor& bsd,
1755 	const image_block& blk,
1756 	unsigned int plane2_component,
1757 	endpoints_and_weights& ei1,
1758 	endpoints_and_weights& ei2);
1759 
1760 /**
1761  * @brief Compute the optimal unquantized weights for a decimation table.
1762  *
1763  * After computing ideal weights for the case for a complete weight grid, we we want to compute the
1764  * ideal weights for the case where weights exist only for some texels. We do this with a
1765  * steepest-descent grid solver which works as follows:
1766  *
1767  * First, for each actual weight, perform a weighted averaging of the texels affected by the weight.
1768  * Then, set step size to <some initial value> and attempt one step towards the original ideal
1769  * weight if it helps to reduce error.
1770  *
1771  * @param      ei                       The non-decimated endpoints and weights.
1772  * @param      di                       The selected weight decimation.
1773  * @param[out] dec_weight_ideal_value   The ideal values for the decimated weight set.
1774  */
1775 void compute_ideal_weights_for_decimation(
1776 	const endpoints_and_weights& ei,
1777 	const decimation_info& di,
1778 	float* dec_weight_ideal_value);
1779 
1780 /**
1781  * @brief Compute the optimal quantized weights for a decimation table.
1782  *
1783  * We test the two closest weight indices in the allowed quantization range and keep the weight that
1784  * is the closest match.
1785  *
1786  * @param      di                        The selected weight decimation.
1787  * @param      low_bound                 The lowest weight allowed.
1788  * @param      high_bound                The highest weight allowed.
1789  * @param      dec_weight_ideal_value    The ideal weight set.
1790  * @param[out] dec_weight_quant_uvalue   The output quantized weight as a float.
1791  * @param[out] dec_weight_uquant         The output quantized weight as encoded int.
1792  * @param      quant_level               The desired weight quant level.
1793  */
1794 void compute_quantized_weights_for_decimation(
1795 	const decimation_info& di,
1796 	float low_bound,
1797 	float high_bound,
1798 	const float* dec_weight_ideal_value,
1799 	float* dec_weight_quant_uvalue,
1800 	uint8_t* dec_weight_uquant,
1801 	quant_method quant_level);
1802 
1803 /**
1804  * @brief Compute the error of a decimated weight set for 1 plane.
1805  *
1806  * After computing ideal weights for the case with one weight per texel, we want to compute the
1807  * error for decimated weight grids where weights are stored at a lower resolution. This function
1808  * computes the error of the reduced grid, compared to the full grid.
1809  *
1810  * @param eai                       The ideal weights for the full grid.
1811  * @param di                        The selected weight decimation.
1812  * @param dec_weight_quant_uvalue   The quantized weights for the decimated grid.
1813  *
1814  * @return The accumulated error.
1815  */
1816 float compute_error_of_weight_set_1plane(
1817 	const endpoints_and_weights& eai,
1818 	const decimation_info& di,
1819 	const float* dec_weight_quant_uvalue);
1820 
1821 /**
1822  * @brief Compute the error of a decimated weight set for 2 planes.
1823  *
1824  * After computing ideal weights for the case with one weight per texel, we want to compute the
1825  * error for decimated weight grids where weights are stored at a lower resolution. This function
1826  * computes the error of the reduced grid, compared to the full grid.
1827  *
1828  * @param eai1                             The ideal weights for the full grid and plane 1.
1829  * @param eai2                             The ideal weights for the full grid and plane 2.
1830  * @param di                               The selected weight decimation.
1831  * @param dec_weight_quant_uvalue_plane1   The quantized weights for the decimated grid plane 1.
1832  * @param dec_weight_quant_uvalue_plane2   The quantized weights for the decimated grid plane 2.
1833  *
1834  * @return The accumulated error.
1835  */
1836 float compute_error_of_weight_set_2planes(
1837 	const endpoints_and_weights& eai1,
1838 	const endpoints_and_weights& eai2,
1839 	const decimation_info& di,
1840 	const float* dec_weight_quant_uvalue_plane1,
1841 	const float* dec_weight_quant_uvalue_plane2);
1842 
1843 /**
1844  * @brief Pack a single pair of color endpoints as effectively as possible.
1845  *
1846  * The user requests a base color endpoint mode in @c format, but the quantizer may choose a
1847  * delta-based representation. It will report back the format variant it actually used.
1848  *
1849  * @param      color0        The input unquantized color0 endpoint for absolute endpoint pairs.
1850  * @param      color1        The input unquantized color1 endpoint for absolute endpoint pairs.
1851  * @param      rgbs_color    The input unquantized RGBS variant endpoint for same chroma endpoints.
1852  * @param      rgbo_color    The input unquantized RGBS variant endpoint for HDR endpoints.
1853  * @param      format        The desired base format.
1854  * @param[out] output        The output storage for the quantized colors/
1855  * @param      quant_level   The quantization level requested.
1856  *
1857  * @return The actual endpoint mode used.
1858  */
1859 uint8_t pack_color_endpoints(
1860 	QualityProfile privateProfile,
1861 	vfloat4 color0,
1862 	vfloat4 color1,
1863 	vfloat4 rgbs_color,
1864 	vfloat4 rgbo_color,
1865 	int format,
1866 	uint8_t* output,
1867 	quant_method quant_level);
1868 
1869 /**
1870  * @brief Unpack a single pair of encoded endpoints.
1871  *
1872  * Endpoints must be unscrambled and converted into the 0-255 range before calling this functions.
1873  *
1874  * @param      decode_mode   The decode mode (LDR, HDR, etc).
1875  * @param      format        The color endpoint mode used.
1876  * @param      input         The raw array of encoded input integers. The length of this array
1877  *                           depends on @c format; it can be safely assumed to be large enough.
1878  * @param[out] rgb_hdr       Is the endpoint using HDR for the RGB channels?
1879  * @param[out] alpha_hdr     Is the endpoint using HDR for the A channel?
1880  * @param[out] output0       The output color for endpoint 0.
1881  * @param[out] output1       The output color for endpoint 1.
1882  */
1883 void unpack_color_endpoints(
1884 	astcenc_profile decode_mode,
1885 	int format,
1886 	const uint8_t* input,
1887 	bool& rgb_hdr,
1888 	bool& alpha_hdr,
1889 	vint4& output0,
1890 	vint4& output1);
1891 
1892 /**
1893  * @brief Unpack an LDR RGBA color that uses delta encoding.
1894  *
1895  * @param      input0    The packed endpoint 0 color.
1896  * @param      input1    The packed endpoint 1 color deltas.
1897  * @param[out] output0   The unpacked endpoint 0 color.
1898  * @param[out] output1   The unpacked endpoint 1 color.
1899  */
1900 void rgba_delta_unpack(
1901 	vint4 input0,
1902 	vint4 input1,
1903 	vint4& output0,
1904 	vint4& output1);
1905 
1906 /**
1907  * @brief Unpack an LDR RGBA color that uses direct encoding.
1908  *
1909  * @param      input0    The packed endpoint 0 color.
1910  * @param      input1    The packed endpoint 1 color.
1911  * @param[out] output0   The unpacked endpoint 0 color.
1912  * @param[out] output1   The unpacked endpoint 1 color.
1913  */
1914 void rgba_unpack(
1915 	vint4 input0,
1916 	vint4 input1,
1917 	vint4& output0,
1918 	vint4& output1);
1919 
1920 /**
1921  * @brief Unpack a set of quantized and decimated weights.
1922  *
1923  * TODO: Can we skip this for non-decimated weights now that the @c scb is
1924  * already storing unquantized weights?
1925  *
1926  * @param      bsd              The block size information.
1927  * @param      scb              The symbolic compressed encoding.
1928  * @param      di               The weight grid decimation table.
1929  * @param      is_dual_plane    @c true if this is a dual plane block, @c false otherwise.
1930  * @param[out] weights_plane1   The output array for storing the plane 1 weights.
1931  * @param[out] weights_plane2   The output array for storing the plane 2 weights.
1932  */
1933 void unpack_weights(
1934 	const block_size_descriptor& bsd,
1935 	const symbolic_compressed_block& scb,
1936 	const decimation_info& di,
1937 	bool is_dual_plane,
1938 	int weights_plane1[BLOCK_MAX_TEXELS],
1939 	int weights_plane2[BLOCK_MAX_TEXELS]);
1940 
1941 /**
1942  * @brief Identify, for each mode, which set of color endpoint produces the best result.
1943  *
1944  * Returns the best @c tune_candidate_limit best looking modes, along with the ideal color encoding
1945  * combination for each. The modified quantization level can be used when all formats are the same,
1946  * as this frees up two additional bits of storage.
1947  *
1948  * @param      pi                            The partition info for the current trial.
1949  * @param      blk                           The image block color data to compress.
1950  * @param      ep                            The ideal endpoints.
1951  * @param      qwt_bitcounts                 Bit counts for different quantization methods.
1952  * @param      qwt_errors                    Errors for different quantization methods.
1953  * @param      tune_candidate_limit          The max number of candidates to return, may be less.
1954  * @param      start_block_mode              The first block mode to inspect.
1955  * @param      end_block_mode                The last block mode to inspect.
1956  * @param[out] partition_format_specifiers   The best formats per partition.
1957  * @param[out] block_mode                    The best packed block mode indexes.
1958  * @param[out] quant_level                   The best color quant level.
1959  * @param[out] quant_level_mod               The best color quant level if endpoints are the same.
1960  * @param[out] tmpbuf                        Preallocated scratch buffers for the compressor.
1961  *
1962  * @return The actual number of candidate matches returned.
1963  */
1964 unsigned int compute_ideal_endpoint_formats(
1965 	QualityProfile privateProfile,
1966 	const partition_info& pi,
1967 	const image_block& blk,
1968 	const endpoints& ep,
1969 	const int8_t* qwt_bitcounts,
1970 	const float* qwt_errors,
1971 	unsigned int tune_candidate_limit,
1972 	unsigned int start_block_mode,
1973 	unsigned int end_block_mode,
1974 	uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS],
1975 	int block_mode[TUNE_MAX_TRIAL_CANDIDATES],
1976 	quant_method quant_level[TUNE_MAX_TRIAL_CANDIDATES],
1977 	quant_method quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES],
1978 	compression_working_buffers& tmpbuf);
1979 
1980 /**
1981  * @brief For a given 1 plane weight set recompute the endpoint colors.
1982  *
1983  * As we quantize and decimate weights the optimal endpoint colors may change slightly, so we must
1984  * recompute the ideal colors for a specific weight set.
1985  *
1986  * @param         blk                  The image block color data to compress.
1987  * @param         pi                   The partition info for the current trial.
1988  * @param         di                   The weight grid decimation table.
1989  * @param         dec_weights_uquant   The quantized weight set.
1990  * @param[in,out] ep                   The color endpoints (modifed in place).
1991  * @param[out]    rgbs_vectors         The RGB+scale vectors for LDR blocks.
1992  * @param[out]    rgbo_vectors         The RGB+offset vectors for HDR blocks.
1993  */
1994 void recompute_ideal_colors_1plane(
1995 	const image_block& blk,
1996 	const partition_info& pi,
1997 	const decimation_info& di,
1998 	const uint8_t* dec_weights_uquant,
1999 	endpoints& ep,
2000 	vfloat4 rgbs_vectors[BLOCK_MAX_PARTITIONS],
2001 	vfloat4 rgbo_vectors[BLOCK_MAX_PARTITIONS]);
2002 
2003 /**
2004  * @brief For a given 2 plane weight set recompute the endpoint colors.
2005  *
2006  * As we quantize and decimate weights the optimal endpoint colors may change slightly, so we must
2007  * recompute the ideal colors for a specific weight set.
2008  *
2009  * @param         blk                         The image block color data to compress.
2010  * @param         bsd                         The block_size descriptor.
2011  * @param         di                          The weight grid decimation table.
2012  * @param         dec_weights_uquant_plane1   The quantized weight set for plane 1.
2013  * @param         dec_weights_uquant_plane2   The quantized weight set for plane 2.
2014  * @param[in,out] ep                          The color endpoints (modifed in place).
2015  * @param[out]    rgbs_vector                 The RGB+scale color for LDR blocks.
2016  * @param[out]    rgbo_vector                 The RGB+offset color for HDR blocks.
2017  * @param         plane2_component            The component assigned to plane 2.
2018  */
2019 void recompute_ideal_colors_2planes(
2020 	const image_block& blk,
2021 	const block_size_descriptor& bsd,
2022 	const decimation_info& di,
2023 	const uint8_t* dec_weights_uquant_plane1,
2024 	const uint8_t* dec_weights_uquant_plane2,
2025 	endpoints& ep,
2026 	vfloat4& rgbs_vector,
2027 	vfloat4& rgbo_vector,
2028 	int plane2_component);
2029 
2030 /**
2031  * @brief Expand the angular tables needed for the alternative to PCA that we use.
2032  */
2033 void prepare_angular_tables();
2034 
2035 /**
2036  * @brief Compute the angular endpoints for one plane for each block mode.
2037  *
2038  * @param      only_always              Only consider block modes that are always enabled.
2039  * @param      bsd                      The block size descriptor for the current trial.
2040  * @param      dec_weight_ideal_value   The ideal decimated unquantized weight values.
2041  * @param      max_weight_quant         The maximum block mode weight quantization allowed.
2042  * @param[out] tmpbuf                   Preallocated scratch buffers for the compressor.
2043  */
2044 void compute_angular_endpoints_1plane(
2045 	QualityProfile privateProfile,
2046 	bool only_always,
2047 	const block_size_descriptor& bsd,
2048 	const float* dec_weight_ideal_value,
2049 	unsigned int max_weight_quant,
2050 	compression_working_buffers& tmpbuf);
2051 
2052 /**
2053  * @brief Compute the angular endpoints for two planes for each block mode.
2054  *
2055  * @param      bsd                      The block size descriptor for the current trial.
2056  * @param      dec_weight_ideal_value   The ideal decimated unquantized weight values.
2057  * @param      max_weight_quant         The maximum block mode weight quantization allowed.
2058  * @param[out] tmpbuf                   Preallocated scratch buffers for the compressor.
2059  */
2060 void compute_angular_endpoints_2planes(
2061 	QualityProfile privateProfile,
2062 	const block_size_descriptor& bsd,
2063 	const float* dec_weight_ideal_value,
2064 	unsigned int max_weight_quant,
2065 	compression_working_buffers& tmpbuf);
2066 
2067 /* ============================================================================
2068   Functionality for high level compression and decompression access.
2069 ============================================================================ */
2070 
2071 /**
2072  * @brief Compress an image block into a physical block.
2073  *
2074  * @param      ctx      The compressor context and configuration.
2075  * @param      blk      The image block color data to compress.
2076  * @param[out] pcb      The physical compressed block output.
2077  * @param[out] tmpbuf   Preallocated scratch buffers for the compressor.
2078  */
2079 void compress_block(
2080 	const astcenc_contexti& ctx,
2081 	const image_block& blk,
2082 	uint8_t pcb[16],
2083 #if QUALITY_CONTROL
2084 	compression_working_buffers& tmpbuf,
2085 	bool calQualityEnable,
2086 	int32_t *mseBlock[RGBA_COM]
2087 #else
2088     compression_working_buffers& tmpbuf
2089 #endif
2090 	);
2091 
2092 /**
2093  * @brief Decompress a symbolic block in to an image block.
2094  *
2095  * @param      decode_mode   The decode mode (LDR, HDR, etc).
2096  * @param      bsd           The block size information.
2097  * @param      xpos          The X coordinate of the block in the overall image.
2098  * @param      ypos          The Y coordinate of the block in the overall image.
2099  * @param      zpos          The Z coordinate of the block in the overall image.
2100  * @param[out] blk           The decompressed image block color data.
2101  */
2102 void decompress_symbolic_block(
2103 	astcenc_profile decode_mode,
2104 	const block_size_descriptor& bsd,
2105 	int xpos,
2106 	int ypos,
2107 	int zpos,
2108 	const symbolic_compressed_block& scb,
2109 	image_block& blk);
2110 
2111 /**
2112  * @brief Compute the error between a symbolic block and the original input data.
2113  *
2114  * This function is specialized for 2 plane and 1 partition search.
2115  *
2116  * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2117  *
2118  * @param config   The compressor config.
2119  * @param bsd      The block size information.
2120  * @param scb      The symbolic compressed encoding.
2121  * @param blk      The original image block color data.
2122  *
2123  * @return Returns the computed error, or a negative value if the encoding
2124  *         should be rejected for any reason.
2125  */
2126 float compute_symbolic_block_difference_2plane(
2127 	const astcenc_config& config,
2128 	const block_size_descriptor& bsd,
2129 	const symbolic_compressed_block& scb,
2130 	const image_block& blk);
2131 
2132 /**
2133  * @brief Compute the error between a symbolic block and the original input data.
2134  *
2135  * This function is specialized for 1 plane and N partition search.
2136  *
2137  * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2138  *
2139  * @param config   The compressor config.
2140  * @param bsd      The block size information.
2141  * @param scb      The symbolic compressed encoding.
2142  * @param blk      The original image block color data.
2143  *
2144  * @return Returns the computed error, or a negative value if the encoding
2145  *         should be rejected for any reason.
2146  */
2147 float compute_symbolic_block_difference_1plane(
2148 	const astcenc_config& config,
2149 	const block_size_descriptor& bsd,
2150 	const symbolic_compressed_block& scb,
2151 	const image_block& blk);
2152 
2153 /**
2154  * @brief Compute the error between a symbolic block and the original input data.
2155  *
2156  * This function is specialized for 1 plane and 1 partition search.
2157  *
2158  * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2159  *
2160  * @param config   The compressor config.
2161  * @param bsd      The block size information.
2162  * @param scb      The symbolic compressed encoding.
2163  * @param blk      The original image block color data.
2164  *
2165  * @return Returns the computed error, or a negative value if the encoding
2166  *         should be rejected for any reason.
2167  */
2168 float compute_symbolic_block_difference_1plane_1partition(
2169 	const astcenc_config& config,
2170 	const block_size_descriptor& bsd,
2171 	const symbolic_compressed_block& scb,
2172 	const image_block& blk);
2173 
2174 /**
2175  * @brief Convert a symbolic representation into a binary physical encoding.
2176  *
2177  * It is assumed that the symbolic encoding is valid and encodable, or
2178  * previously flagged as an error block if an error color it to be encoded.
2179  *
2180  * @param      bsd   The block size information.
2181  * @param      scb   The symbolic representation.
2182  * @param[out] pcb   The physical compressed block output.
2183  */
2184 void symbolic_to_physical(
2185 	const block_size_descriptor& bsd,
2186 	const symbolic_compressed_block& scb,
2187 	uint8_t pcb[16]);
2188 
2189 /**
2190  * @brief Convert a binary physical encoding into a symbolic representation.
2191  *
2192  * This function can cope with arbitrary input data; output blocks will be
2193  * flagged as an error block if the encoding is invalid.
2194  *
2195  * @param      bsd   The block size information.
2196  * @param      pcb   The physical compresesd block input.
2197  * @param[out] scb   The output symbolic representation.
2198  */
2199 void physical_to_symbolic(
2200 	const block_size_descriptor& bsd,
2201 	const uint8_t pcb[16],
2202 	symbolic_compressed_block& scb);
2203 
2204 /* ============================================================================
2205 Platform-specific functions.
2206 ============================================================================ */
2207 /**
2208  * @brief Allocate an aligned memory buffer.
2209  *
2210  * Allocated memory must be freed by aligned_free.
2211  *
2212  * @param size    The desired buffer size.
2213  * @param align   The desired buffer alignment; must be 2^N, may be increased
2214  *                by the implementation to a minimum allowable alignment.
2215  *
2216  * @return The memory buffer pointer or nullptr on allocation failure.
2217  */
2218 template<typename T>
aligned_malloc(size_t size, size_t align)2219 T* aligned_malloc(size_t size, size_t align)
2220 {
2221 	void* ptr;
2222 	int error = 0;
2223 
2224 	// Don't allow this to under-align a type
2225 	size_t min_align = astc::max(alignof(T), sizeof(void*));
2226 	size_t real_align = astc::max(min_align, align);
2227 
2228 #if defined(_WIN32)
2229 	ptr = _aligned_malloc(size, real_align);
2230 #else
2231 	error = posix_memalign(&ptr, real_align, size);
2232 #endif
2233 
2234 	if (error || (!ptr))
2235 	{
2236 		return nullptr;
2237 	}
2238 
2239 	return static_cast<T*>(ptr);
2240 }
2241 
2242 /**
2243  * @brief Free an aligned memory buffer.
2244  *
2245  * @param ptr   The buffer to free.
2246  */
2247 template<typename T>
aligned_free(T* ptr)2248 void aligned_free(T* ptr)
2249 {
2250 #if defined(_WIN32)
2251 	_aligned_free(ptr);
2252 #else
2253 	free(ptr);
2254 #endif
2255 }
2256 
2257 #ifdef ASTC_CUSTOMIZED_ENABLE
2258 #ifdef BUILD_HMOS_SDK
2259 #if defined(_WIN32) && !defined(__CYGWIN__)
2260 const LPCSTR g_astcCustomizedSo = "../../hms/toolchains/lib/libastcCustomizedEncode.dll";
2261 #elif defined(__APPLE__)
2262 const std::string g_astcCustomizedSo = "../../hms/toolchains/lib/libastcCustomizedEncode.dylib";
2263 #else
2264 const std::string g_astcCustomizedSo = "../../hms/toolchains/lib/libastcCustomizedEncode.so";
2265 #endif
2266 #else
2267 const std::string g_astcCustomizedSo = "/system/lib64/module/hms/graphic/libastcCustomizedEncode.z.so";
2268 #endif
2269 using IsCustomizedBlockMode = bool (*)(const int);
2270 using CustomizedMaxPartitions = int (*)();
2271 using CustomizedBlockMode = int (*)();
2272 
2273 class AstcCustomizedSoManager
2274 {
2275 public:
AstcCustomizedSoManager()2276 	AstcCustomizedSoManager()
2277 	{
2278 		astcCustomizedSoOpened_ = false;
2279 		astcCustomizedSoHandle_ = nullptr;
2280 		isCustomizedBlockModeFunc_ = nullptr;
2281 		customizedMaxPartitionsFunc_ = nullptr;
2282 		customizedBlockModeFunc_ = nullptr;
2283 	}
~AstcCustomizedSoManager()2284 	~AstcCustomizedSoManager()
2285 	{
2286 		if (!astcCustomizedSoOpened_ || astcCustomizedSoHandle_ == nullptr)
2287 		{
2288 			printf("astcenc customized so is not be opened when dlclose!\n");
2289 			return;
2290 		}
2291 #if defined(_WIN32) && !defined(__CYGWIN__)
2292 		if (!FreeLibrary(astcCustomizedSoHandle_))
2293 		{
2294 			printf("astc dll FreeLibrary failed: %s\n", g_astcCustomizedSo);
2295 		}
2296 #else
2297 		if (dlclose(astcCustomizedSoHandle_) != 0)
2298 		{
2299 			printf("astcenc so dlclose failed: %s\n", g_astcCustomizedSo.c_str());
2300 		}
2301 #endif
2302 	}
2303 	IsCustomizedBlockMode isCustomizedBlockModeFunc_;
2304 	CustomizedMaxPartitions customizedMaxPartitionsFunc_;
2305 	CustomizedBlockMode customizedBlockModeFunc_;
LoadSutCustomizedSo()2306 	bool LoadSutCustomizedSo()
2307 	{
2308 		if (!astcCustomizedSoOpened_)
2309 		{
2310 #if defined(_WIN32) && !defined(__CYGWIN__)
2311 			if ((_access(g_astcCustomizedSo, 0) == -1))
2312 			{
2313 				printf("astc customized dll(%s) is not found!\n", g_astcCustomizedSo);
2314 				return false;
2315 			}
2316 			astcCustomizedSoHandle_ = LoadLibrary(g_astcCustomizedSo);
2317 			if (astcCustomizedSoHandle_ == nullptr)
2318 			{
2319 				printf("astc libAstcCustomizedEnc LoadLibrary failed!\n");
2320 				return false;
2321 			}
2322 			isCustomizedBlockModeFunc_ =
2323 				reinterpret_cast<IsCustomizedBlockMode>(GetProcAddress(astcCustomizedSoHandle_,
2324 				"IsCustomizedBlockMode"));
2325 			if (isCustomizedBlockModeFunc_ == nullptr)
2326 			{
2327 				printf("astc isCustomizedBlockModeFunc_ GetProcAddress failed!\n");
2328 				if (!FreeLibrary(astcCustomizedSoHandle_))
2329 				{
2330 					printf("astc isCustomizedBlockModeFunc_ FreeLibrary failed!\n");
2331 				}
2332 				return false;
2333 			}
2334 			customizedMaxPartitionsFunc_ =
2335 				reinterpret_cast<CustomizedMaxPartitions>(GetProcAddress(astcCustomizedSoHandle_,
2336 				"CustomizedMaxPartitions"));
2337 			if (customizedMaxPartitionsFunc_ == nullptr)
2338 			{
2339 				printf("astc customizedMaxPartitionsFunc_ GetProcAddress failed!\n");
2340 				if (!FreeLibrary(astcCustomizedSoHandle_))
2341 				{
2342 					printf("astc customizedMaxPartitionsFunc_ FreeLibrary failed!\n");
2343 				}
2344 				return false;
2345 			}
2346 			customizedBlockModeFunc_ =
2347 				reinterpret_cast<CustomizedBlockMode>(GetProcAddress(astcCustomizedSoHandle_,
2348 				"CustomizedBlockMode"));
2349 			if (customizedBlockModeFunc_ == nullptr)
2350 			{
2351 				printf("astc customizedBlockModeFunc_ GetProcAddress failed!\n");
2352 				if (!FreeLibrary(astcCustomizedSoHandle_))
2353 				{
2354 					printf("astc customizedBlockModeFunc_ FreeLibrary failed!\n");
2355 				}
2356 				return false;
2357 			}
2358 			printf("astcenc customized dll load success: %s!\n", g_astcCustomizedSo);
2359 #else
2360 			if (access(g_astcCustomizedSo.c_str(), F_OK) == -1)
2361 			{
2362 				printf("astc customized so(%s) is not found!\n", g_astcCustomizedSo.c_str());
2363 				return false;
2364 			}
2365 			astcCustomizedSoHandle_ = dlopen(g_astcCustomizedSo.c_str(), 1);
2366 			if (astcCustomizedSoHandle_ == nullptr)
2367 			{
2368 				printf("astc libAstcCustomizedEnc dlopen failed!\n");
2369 				return false;
2370 			}
2371 			isCustomizedBlockModeFunc_ =
2372 				reinterpret_cast<IsCustomizedBlockMode>(dlsym(astcCustomizedSoHandle_,
2373 				"IsCustomizedBlockMode"));
2374 			if (isCustomizedBlockModeFunc_ == nullptr)
2375 			{
2376 				printf("astc isCustomizedBlockModeFunc_ dlsym failed!\n");
2377 				dlclose(astcCustomizedSoHandle_);
2378 				astcCustomizedSoHandle_ = nullptr;
2379 				return false;
2380 			}
2381 			customizedMaxPartitionsFunc_ =
2382 				reinterpret_cast<CustomizedMaxPartitions>(dlsym(astcCustomizedSoHandle_,
2383 				"CustomizedMaxPartitions"));
2384 			if (customizedMaxPartitionsFunc_ == nullptr)
2385 			{
2386 				printf("astc customizedMaxPartitionsFunc_ dlsym failed!\n");
2387 				dlclose(astcCustomizedSoHandle_);
2388 				astcCustomizedSoHandle_ = nullptr;
2389 				return false;
2390 			}
2391 			customizedBlockModeFunc_ =
2392 				reinterpret_cast<CustomizedBlockMode>(dlsym(astcCustomizedSoHandle_,
2393 				"CustomizedBlockMode"));
2394 			if (customizedBlockModeFunc_ == nullptr)
2395 			{
2396 				printf("astc customizedBlockModeFunc_ dlsym failed!\n");
2397 				dlclose(astcCustomizedSoHandle_);
2398 				astcCustomizedSoHandle_ = nullptr;
2399 				return false;
2400 			}
2401 			printf("astcenc customized so dlopen success: %s\n", g_astcCustomizedSo.c_str());
2402 #endif
2403 			astcCustomizedSoOpened_ = true;
2404 		}
2405 		return true;
2406 	}
2407 private:
2408 	bool astcCustomizedSoOpened_;
2409 #if defined(_WIN32) && !defined(__CYGWIN__)
2410 	HINSTANCE astcCustomizedSoHandle_;
2411 #else
2412 	void *astcCustomizedSoHandle_;
2413 #endif
2414 };
2415 extern AstcCustomizedSoManager g_astcCustomizedSoManager;
2416 #endif
2417 
2418 #endif
2419