1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2011-2024 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17
18 /**
19 * @brief Functions and data declarations.
20 */
21
22 #ifndef ASTCENC_INTERNAL_INCLUDED
23 #define ASTCENC_INTERNAL_INCLUDED
24
25 #include <algorithm>
26 #include <cstddef>
27 #include <cstdint>
28 #if defined(ASTCENC_DIAGNOSTICS)
29 #include <cstdio>
30 #endif
31 #include <cstdlib>
32 #include <limits>
33
34 #ifdef ASTC_CUSTOMIZED_ENABLE
35 #include <unistd.h>
36 #include <string>
37 #if defined(_WIN32) && !defined(__CYGWIN__)
38 #define NOMINMAX
39 #include <windows.h>
40 #include <io.h>
41 #else
42 #include <dlfcn.h>
43 #endif
44 #endif
45
46 #include "astcenc.h"
47 #include "astcenc_mathlib.h"
48 #include "astcenc_vecmathlib.h"
49
50 /**
51 * @brief Make a promise to the compiler's optimizer.
52 *
53 * A promise is an expression that the optimizer is can assume is true for to help it generate
54 * faster code. Common use cases for this are to promise that a for loop will iterate more than
55 * once, or that the loop iteration count is a multiple of a vector length, which avoids pre-loop
56 * checks and can avoid loop tails if loops are unrolled by the auto-vectorizer.
57 */
58 #if defined(NDEBUG)
59 #if !defined(__clang__) && defined(_MSC_VER)
60 #define promise(cond) __assume(cond)
61 #elif defined(__clang__)
62 #if __has_builtin(__builtin_assume)
63 #define promise(cond) __builtin_assume(cond)
64 #elif __has_builtin(__builtin_unreachable)
65 #define promise(cond) if (!(cond)) { __builtin_unreachable(); }
66 #else
67 #define promise(cond)
68 #endif
69 #else // Assume GCC
70 #define promise(cond) if (!(cond)) { __builtin_unreachable(); }
71 #endif
72 #else
73 #define promise(cond) assert(cond)
74 #endif
75
76 /* ============================================================================
77 Constants
78 ============================================================================ */
79 #if !defined(ASTCENC_BLOCK_MAX_TEXELS)
80 #define ASTCENC_BLOCK_MAX_TEXELS 216 // A 3D 6x6x6 block
81 #endif
82
83 /** @brief The maximum number of texels a block can support (6x6x6 block). */
84 static constexpr unsigned int BLOCK_MAX_TEXELS { ASTCENC_BLOCK_MAX_TEXELS };
85
86 /** @brief The maximum number of components a block can support. */
87 static constexpr unsigned int BLOCK_MAX_COMPONENTS { 4 };
88
89 /** @brief The maximum number of partitions a block can support. */
90 static constexpr unsigned int BLOCK_MAX_PARTITIONS { 4 };
91
92 /** @brief The number of partitionings, per partition count, suported by the ASTC format. */
93 static constexpr unsigned int BLOCK_MAX_PARTITIONINGS { 1024 };
94
95 /** @brief The maximum number of texels used during partition selection for texel clustering. */
96 static constexpr uint8_t BLOCK_MAX_KMEANS_TEXELS { 64 };
97
98 /** @brief The maximum number of weights a block can support. */
99 static constexpr unsigned int BLOCK_MAX_WEIGHTS { 64 };
100
101 /** @brief The maximum number of weights a block can support per plane in 2 plane mode. */
102 static constexpr unsigned int BLOCK_MAX_WEIGHTS_2PLANE { BLOCK_MAX_WEIGHTS / 2 };
103
104 /** @brief The minimum number of weight bits a candidate encoding must encode. */
105 static constexpr unsigned int BLOCK_MIN_WEIGHT_BITS { 24 };
106
107 /** @brief The maximum number of weight bits a candidate encoding can encode. */
108 static constexpr unsigned int BLOCK_MAX_WEIGHT_BITS { 96 };
109
110 /** @brief The index indicating a bad (unused) block mode in the remap array. */
111 static constexpr uint16_t BLOCK_BAD_BLOCK_MODE { 0xFFFFu };
112
113 /** @brief The index indicating a bad (unused) partitioning in the remap array. */
114 static constexpr uint16_t BLOCK_BAD_PARTITIONING { 0xFFFFu };
115
116 /** @brief The number of partition index bits supported by the ASTC format . */
117 static constexpr unsigned int PARTITION_INDEX_BITS { 10 };
118
119 /** @brief The offset of the plane 2 weights in shared weight arrays. */
120 static constexpr unsigned int WEIGHTS_PLANE2_OFFSET { BLOCK_MAX_WEIGHTS_2PLANE };
121
122 /** @brief The sum of quantized weights for one texel. */
123 static constexpr float WEIGHTS_TEXEL_SUM { 16.0f };
124
125 /** @brief The number of block modes supported by the ASTC format. */
126 static constexpr unsigned int WEIGHTS_MAX_BLOCK_MODES { 2048 };
127
128 /** @brief The number of weight grid decimation modes supported by the ASTC format. */
129 static constexpr unsigned int WEIGHTS_MAX_DECIMATION_MODES { 87 };
130
131 /** @brief The high default error used to initialize error trackers. */
132 static constexpr float ERROR_CALC_DEFAULT { 1e30f };
133
134 /**
135 * @brief The minimum tuning setting threshold for the one partition fast path.
136 */
137 static constexpr float TUNE_MIN_SEARCH_MODE0 { 0.85f };
138
139 /**
140 * @brief The maximum number of candidate encodings tested for each encoding mode.
141 *
142 * This can be dynamically reduced by the compression quality preset.
143 */
144 static constexpr unsigned int TUNE_MAX_TRIAL_CANDIDATES { 8 };
145
146 /**
147 * @brief The maximum number of candidate partitionings tested for each encoding mode.
148 *
149 * This can be dynamically reduced by the compression quality preset.
150 */
151 static constexpr unsigned int TUNE_MAX_PARTITIONING_CANDIDATES { 8 };
152
153 /**
154 * @brief The maximum quant level using full angular endpoint search method.
155 *
156 * The angular endpoint search is used to find the min/max weight that should
157 * be used for a given quantization level. It is effective but expensive, so
158 * we only use it where it has the most value - low quant levels with wide
159 * spacing. It is used below TUNE_MAX_ANGULAR_QUANT (inclusive). Above this we
160 * assume the min weight is 0.0f, and the max weight is 1.0f.
161 *
162 * Note the angular algorithm is vectorized, and using QUANT_12 exactly fills
163 * one 8-wide vector. Decreasing by one doesn't buy much performance, and
164 * increasing by one is disproportionately expensive.
165 */
166 static constexpr unsigned int TUNE_MAX_ANGULAR_QUANT { 7 }; /* QUANT_12 */
167
168 static_assert((BLOCK_MAX_TEXELS % ASTCENC_SIMD_WIDTH) == 0,
169 "BLOCK_MAX_TEXELS must be multiple of ASTCENC_SIMD_WIDTH");
170
171 static_assert(BLOCK_MAX_TEXELS <= 216,
172 "BLOCK_MAX_TEXELS must not be greater than 216");
173
174 static_assert((BLOCK_MAX_WEIGHTS % ASTCENC_SIMD_WIDTH) == 0,
175 "BLOCK_MAX_WEIGHTS must be multiple of ASTCENC_SIMD_WIDTH");
176
177 static_assert((WEIGHTS_MAX_BLOCK_MODES % ASTCENC_SIMD_WIDTH) == 0,
178 "WEIGHTS_MAX_BLOCK_MODES must be multiple of ASTCENC_SIMD_WIDTH");
179
180
181 /* ============================================================================
182 Commonly used data structures
183 ============================================================================ */
184
185 /**
186 * @brief The ASTC endpoint formats.
187 *
188 * Note, the values here are used directly in the encoding in the format so do not rearrange.
189 */
190 enum endpoint_formats
191 {
192 FMT_LUMINANCE = 0,
193 FMT_LUMINANCE_DELTA = 1,
194 FMT_HDR_LUMINANCE_LARGE_RANGE = 2,
195 FMT_HDR_LUMINANCE_SMALL_RANGE = 3,
196 FMT_LUMINANCE_ALPHA = 4,
197 FMT_LUMINANCE_ALPHA_DELTA = 5,
198 FMT_RGB_SCALE = 6,
199 FMT_HDR_RGB_SCALE = 7,
200 FMT_RGB = 8,
201 FMT_RGB_DELTA = 9,
202 FMT_RGB_SCALE_ALPHA = 10,
203 FMT_HDR_RGB = 11,
204 FMT_RGBA = 12,
205 FMT_RGBA_DELTA = 13,
206 FMT_HDR_RGB_LDR_ALPHA = 14,
207 FMT_HDR_RGBA = 15
208 };
209
210 /**
211 * @brief The ASTC quantization methods.
212 *
213 * Note, the values here are used directly in the encoding in the format so do not rearrange.
214 */
215 enum quant_method
216 {
217 QUANT_2 = 0,
218 QUANT_3 = 1,
219 QUANT_4 = 2,
220 QUANT_5 = 3,
221 QUANT_6 = 4,
222 QUANT_8 = 5,
223 QUANT_10 = 6,
224 QUANT_12 = 7,
225 QUANT_16 = 8,
226 QUANT_20 = 9,
227 QUANT_24 = 10,
228 QUANT_32 = 11,
229 QUANT_40 = 12,
230 QUANT_48 = 13,
231 QUANT_64 = 14,
232 QUANT_80 = 15,
233 QUANT_96 = 16,
234 QUANT_128 = 17,
235 QUANT_160 = 18,
236 QUANT_192 = 19,
237 QUANT_256 = 20
238 };
239
240 /**
241 * @brief The number of levels use by an ASTC quantization method.
242 *
243 * @param method The quantization method
244 *
245 * @return The number of levels used by @c method.
246 */
get_quant_level(quant_method method)247 static inline unsigned int get_quant_level(quant_method method)
248 {
249 switch (method)
250 {
251 case QUANT_2: return 2;
252 case QUANT_3: return 3;
253 case QUANT_4: return 4;
254 case QUANT_5: return 5;
255 case QUANT_6: return 6;
256 case QUANT_8: return 8;
257 case QUANT_10: return 10;
258 case QUANT_12: return 12;
259 case QUANT_16: return 16;
260 case QUANT_20: return 20;
261 case QUANT_24: return 24;
262 case QUANT_32: return 32;
263 case QUANT_40: return 40;
264 case QUANT_48: return 48;
265 case QUANT_64: return 64;
266 case QUANT_80: return 80;
267 case QUANT_96: return 96;
268 case QUANT_128: return 128;
269 case QUANT_160: return 160;
270 case QUANT_192: return 192;
271 case QUANT_256: return 256;
272 }
273
274 // Unreachable - the enum is fully described
275 return 0;
276 }
277
278 /**
279 * @brief Computed metrics about a partition in a block.
280 */
281 struct partition_metrics
282 {
283 /** @brief The error-weighted average color in the partition. */
284 vfloat4 avg;
285
286 /** @brief The dominant error-weighted direction in the partition. */
287 vfloat4 dir;
288 };
289
290 /**
291 * @brief Computed lines for a a three component analysis.
292 */
293 struct partition_lines3
294 {
295 /** @brief Line for uncorrelated chroma. */
296 line3 uncor_line;
297
298 /** @brief Line for correlated chroma, passing though the origin. */
299 line3 samec_line;
300
301 /** @brief Post-processed line for uncorrelated chroma. */
302 processed_line3 uncor_pline;
303
304 /** @brief Post-processed line for correlated chroma, passing though the origin. */
305 processed_line3 samec_pline;
306
307 /**
308 * @brief The length of the line for uncorrelated chroma.
309 *
310 * This is used for both the uncorrelated and same chroma lines - they are normally very similar
311 * and only used for the relative ranking of partitionings against one another.
312 */
313 float line_length;
314 };
315
316 /**
317 * @brief The partition information for a single partition.
318 *
319 * ASTC has a total of 1024 candidate partitions for each of 2/3/4 partition counts, although this
320 * 1024 includes seeds that generate duplicates of other seeds and seeds that generate completely
321 * empty partitions. These are both valid encodings, but astcenc will skip both during compression
322 * as they are not useful.
323 */
324 struct partition_info
325 {
326 /** @brief The number of partitions in this partitioning. */
327 uint16_t partition_count;
328
329 /** @brief The index (seed) of this partitioning. */
330 uint16_t partition_index;
331
332 /**
333 * @brief The number of texels in each partition.
334 *
335 * Note that some seeds result in zero texels assigned to a partition. These are valid, but are
336 * skipped by this compressor as there is no point spending bits encoding an unused endpoints.
337 */
338 uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS];
339
340 /** @brief The partition of each texel in the block. */
341 uint8_t partition_of_texel[BLOCK_MAX_TEXELS];
342
343 /** @brief The list of texels in each partition. */
344 uint8_t texels_of_partition[BLOCK_MAX_PARTITIONS][BLOCK_MAX_TEXELS];
345 };
346
347 /**
348 * @brief The weight grid information for a single decimation pattern.
349 *
350 * ASTC can store one weight per texel, but is also capable of storing lower resolution weight grids
351 * that are interpolated during decompression to assign a with to a texel. Storing fewer weights
352 * can free up a substantial amount of bits that we can then spend on more useful things, such as
353 * more accurate endpoints and weights, or additional partitions.
354 *
355 * This data structure is used to store information about a single weight grid decimation pattern,
356 * for a single block size.
357 */
358 struct decimation_info
359 {
360 /** @brief The total number of texels in the block. */
361 uint8_t texel_count;
362
363 /** @brief The maximum number of stored weights that contribute to each texel, between 1 and 4. */
364 uint8_t max_texel_weight_count;
365
366 /** @brief The total number of weights stored. */
367 uint8_t weight_count;
368
369 /** @brief The number of stored weights in the X dimension. */
370 uint8_t weight_x;
371
372 /** @brief The number of stored weights in the Y dimension. */
373 uint8_t weight_y;
374
375 /** @brief The number of stored weights in the Z dimension. */
376 uint8_t weight_z;
377
378 /**
379 * @brief The number of weights that contribute to each texel.
380 * Value is between 1 and 4.
381 */
382 uint8_t texel_weight_count[BLOCK_MAX_TEXELS];
383
384 /**
385 * @brief The weight index of the N weights that are interpolated for each texel.
386 * Stored transposed to improve vectorization.
387 */
388 uint8_t texel_weights_tr[4][BLOCK_MAX_TEXELS];
389
390 /**
391 * @brief The bilinear contribution of the N weights that are interpolated for each texel.
392 * Value is between 0 and 16, stored transposed to improve vectorization.
393 */
394 uint8_t texel_weight_contribs_int_tr[4][BLOCK_MAX_TEXELS];
395
396 /**
397 * @brief The bilinear contribution of the N weights that are interpolated for each texel.
398 * Value is between 0 and 1, stored transposed to improve vectorization.
399 */
400 ASTCENC_ALIGNAS float texel_weight_contribs_float_tr[4][BLOCK_MAX_TEXELS];
401
402 /** @brief The number of texels that each stored weight contributes to. */
403 uint8_t weight_texel_count[BLOCK_MAX_WEIGHTS];
404
405 /**
406 * @brief The list of texels that use a specific weight index.
407 * Stored transposed to improve vectorization.
408 */
409 uint8_t weight_texels_tr[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
410
411 /**
412 * @brief The bilinear contribution to the N texels that use each weight.
413 * Value is between 0 and 1, stored transposed to improve vectorization.
414 */
415 ASTCENC_ALIGNAS float weights_texel_contribs_tr[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
416
417 /**
418 * @brief The bilinear contribution to the Nth texel that uses each weight.
419 * Value is between 0 and 1, stored transposed to improve vectorization.
420 */
421 float texel_contrib_for_weight[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
422 };
423
424 /**
425 * @brief Metadata for single block mode for a specific block size.
426 */
427 struct block_mode
428 {
429 /** @brief The block mode index in the ASTC encoded form. */
430 uint16_t mode_index;
431
432 /** @brief The decimation mode index in the compressor reindexed list. */
433 uint8_t decimation_mode;
434
435 /** @brief The weight quantization used by this block mode. */
436 uint8_t quant_mode;
437
438 /** @brief The weight quantization used by this block mode. */
439 uint8_t weight_bits;
440
441 /** @brief Is a dual weight plane used by this block mode? */
442 uint8_t is_dual_plane : 1;
443
444 /**
445 * @brief Get the weight quantization used by this block mode.
446 *
447 * @return The quantization level.
448 */
get_weight_quant_modeblock_mode449 inline quant_method get_weight_quant_mode() const
450 {
451 return static_cast<quant_method>(this->quant_mode);
452 }
453 };
454
455 /**
456 * @brief Metadata for single decimation mode for a specific block size.
457 */
458 struct decimation_mode
459 {
460 /** @brief The max weight precision for 1 plane, or -1 if not supported. */
461 int8_t maxprec_1plane;
462
463 /** @brief The max weight precision for 2 planes, or -1 if not supported. */
464 int8_t maxprec_2planes;
465
466 /**
467 * @brief Bitvector indicating weight quant modes used by active 1 plane block modes.
468 *
469 * Bit 0 = QUANT_2, Bit 1 = QUANT_3, etc.
470 */
471 uint16_t refprec_1plane;
472
473 /**
474 * @brief Bitvector indicating weight quant methods used by active 2 plane block modes.
475 *
476 * Bit 0 = QUANT_2, Bit 1 = QUANT_3, etc.
477 */
478 uint16_t refprec_2planes;
479
480 /**
481 * @brief Set a 1 plane weight quant as active.
482 *
483 * @param weight_quant The quant method to set.
484 */
set_ref_1planedecimation_mode485 void set_ref_1plane(quant_method weight_quant)
486 {
487 refprec_1plane |= (1 << weight_quant);
488 }
489
490 /**
491 * @brief Test if this mode is active below a given 1 plane weight quant (inclusive).
492 *
493 * @param max_weight_quant The max quant method to test.
494 */
is_ref_1planedecimation_mode495 bool is_ref_1plane(quant_method max_weight_quant) const
496 {
497 uint16_t mask = static_cast<uint16_t>((1 << (max_weight_quant + 1)) - 1);
498 return (refprec_1plane & mask) != 0;
499 }
500
501 /**
502 * @brief Set a 2 plane weight quant as active.
503 *
504 * @param weight_quant The quant method to set.
505 */
set_ref_2planedecimation_mode506 void set_ref_2plane(quant_method weight_quant)
507 {
508 refprec_2planes |= static_cast<uint16_t>(1 << weight_quant);
509 }
510
511 /**
512 * @brief Test if this mode is active below a given 2 plane weight quant (inclusive).
513 *
514 * @param max_weight_quant The max quant method to test.
515 */
is_ref_2planedecimation_mode516 bool is_ref_2plane(quant_method max_weight_quant) const
517 {
518 uint16_t mask = static_cast<uint16_t>((1 << (max_weight_quant + 1)) - 1);
519 return (refprec_2planes & mask) != 0;
520 }
521 };
522
523 /**
524 * @brief Data tables for a single block size.
525 *
526 * The decimation tables store the information to apply weight grid dimension reductions. We only
527 * store the decimation modes that are actually needed by the current context; many of the possible
528 * modes will be unused (too many weights for the current block size or disabled by heuristics). The
529 * actual number of weights stored is @c decimation_mode_count, and the @c decimation_modes and
530 * @c decimation_tables arrays store the active modes contiguously at the start of the array. These
531 * entries are not stored in any particular order.
532 *
533 * The block mode tables store the unpacked block mode settings. Block modes are stored in the
534 * compressed block as an 11 bit field, but for any given block size and set of compressor
535 * heuristics, only a subset of the block modes will be used. The actual number of block modes
536 * stored is indicated in @c block_mode_count, and the @c block_modes array store the active modes
537 * contiguously at the start of the array. These entries are stored in incrementing "packed" value
538 * order, which doesn't mean much once unpacked. To allow decompressors to reference the packed data
539 * efficiently the @c block_mode_packed_index array stores the mapping between physical ID and the
540 * actual remapped array index.
541 */
542 struct block_size_descriptor
543 {
544 /** @brief The block X dimension, in texels. */
545 uint8_t xdim;
546
547 /** @brief The block Y dimension, in texels. */
548 uint8_t ydim;
549
550 /** @brief The block Z dimension, in texels. */
551 uint8_t zdim;
552
553 /** @brief The block total texel count. */
554 uint8_t texel_count;
555
556 /**
557 * @brief The number of stored decimation modes which are "always" modes.
558 *
559 * Always modes are stored at the start of the decimation_modes list.
560 */
561 unsigned int decimation_mode_count_always;
562
563 /** @brief The number of stored decimation modes for selected encodings. */
564 unsigned int decimation_mode_count_selected;
565
566 /** @brief The number of stored decimation modes for any encoding. */
567 unsigned int decimation_mode_count_all;
568
569 /**
570 * @brief The number of stored block modes which are "always" modes.
571 *
572 * Always modes are stored at the start of the block_modes list.
573 */
574 unsigned int block_mode_count_1plane_always;
575
576 /** @brief The number of stored block modes for active 1 plane encodings. */
577 unsigned int block_mode_count_1plane_selected;
578
579 /** @brief The number of stored block modes for active 1 and 2 plane encodings. */
580 unsigned int block_mode_count_1plane_2plane_selected;
581
582 /** @brief The number of stored block modes for any encoding. */
583 unsigned int block_mode_count_all;
584
585 /** @brief The number of selected partitionings for 1/2/3/4 partitionings. */
586 unsigned int partitioning_count_selected[BLOCK_MAX_PARTITIONS];
587
588 /** @brief The number of partitionings for 1/2/3/4 partitionings. */
589 unsigned int partitioning_count_all[BLOCK_MAX_PARTITIONS];
590
591 /** @brief The active decimation modes, stored in low indices. */
592 decimation_mode decimation_modes[WEIGHTS_MAX_DECIMATION_MODES];
593
594 /** @brief The active decimation tables, stored in low indices. */
595 ASTCENC_ALIGNAS decimation_info decimation_tables[WEIGHTS_MAX_DECIMATION_MODES];
596
597 /** @brief The packed block mode array index, or @c BLOCK_BAD_BLOCK_MODE if not active. */
598 uint16_t block_mode_packed_index[WEIGHTS_MAX_BLOCK_MODES];
599
600 /** @brief The active block modes, stored in low indices. */
601 block_mode block_modes[WEIGHTS_MAX_BLOCK_MODES];
602
603 /** @brief The active partition tables, stored in low indices per-count. */
604 partition_info partitionings[(3 * BLOCK_MAX_PARTITIONINGS) + 1];
605
606 /**
607 * @brief The packed partition table array index, or @c BLOCK_BAD_PARTITIONING if not active.
608 *
609 * Indexed by partition_count - 2, containing 2, 3 and 4 partitions.
610 */
611 uint16_t partitioning_packed_index[3][BLOCK_MAX_PARTITIONINGS];
612
613 /** @brief The active texels for k-means partition selection. */
614 uint8_t kmeans_texels[BLOCK_MAX_KMEANS_TEXELS];
615
616 /**
617 * @brief The canonical 2-partition coverage pattern used during block partition search.
618 *
619 * Indexed by remapped index, not physical index.
620 */
621 uint64_t coverage_bitmaps_2[BLOCK_MAX_PARTITIONINGS][2];
622
623 /**
624 * @brief The canonical 3-partition coverage pattern used during block partition search.
625 *
626 * Indexed by remapped index, not physical index.
627 */
628 uint64_t coverage_bitmaps_3[BLOCK_MAX_PARTITIONINGS][3];
629
630 /**
631 * @brief The canonical 4-partition coverage pattern used during block partition search.
632 *
633 * Indexed by remapped index, not physical index.
634 */
635 uint64_t coverage_bitmaps_4[BLOCK_MAX_PARTITIONINGS][4];
636
637 /**
638 * @brief Get the block mode structure for index @c block_mode.
639 *
640 * This function can only return block modes that are enabled by the current compressor config.
641 * Decompression from an arbitrary source should not use this without first checking that the
642 * packed block mode index is not @c BLOCK_BAD_BLOCK_MODE.
643 *
644 * @param block_mode The packed block mode index.
645 *
646 * @return The block mode structure.
647 */
get_block_modeblock_size_descriptor648 const block_mode& get_block_mode(unsigned int block_mode) const
649 {
650 unsigned int packed_index = this->block_mode_packed_index[block_mode];
651 assert(packed_index != BLOCK_BAD_BLOCK_MODE && packed_index < this->block_mode_count_all);
652 return this->block_modes[packed_index];
653 }
654
655 /**
656 * @brief Get the decimation mode structure for index @c decimation_mode.
657 *
658 * This function can only return decimation modes that are enabled by the current compressor
659 * config. The mode array is stored packed, but this is only ever indexed by the packed index
660 * stored in the @c block_mode and never exists in an unpacked form.
661 *
662 * @param decimation_mode The packed decimation mode index.
663 *
664 * @return The decimation mode structure.
665 */
get_decimation_modeblock_size_descriptor666 const decimation_mode& get_decimation_mode(unsigned int decimation_mode) const
667 {
668 return this->decimation_modes[decimation_mode];
669 }
670
671 /**
672 * @brief Get the decimation info structure for index @c decimation_mode.
673 *
674 * This function can only return decimation modes that are enabled by the current compressor
675 * config. The mode array is stored packed, but this is only ever indexed by the packed index
676 * stored in the @c block_mode and never exists in an unpacked form.
677 *
678 * @param decimation_mode The packed decimation mode index.
679 *
680 * @return The decimation info structure.
681 */
get_decimation_infoblock_size_descriptor682 const decimation_info& get_decimation_info(unsigned int decimation_mode) const
683 {
684 return this->decimation_tables[decimation_mode];
685 }
686
687 /**
688 * @brief Get the partition info table for a given partition count.
689 *
690 * @param partition_count The number of partitions we want the table for.
691 *
692 * @return The pointer to the table of 1024 entries (for 2/3/4 parts) or 1 entry (for 1 part).
693 */
get_partition_tableblock_size_descriptor694 const partition_info* get_partition_table(unsigned int partition_count) const
695 {
696 if (partition_count == 1)
697 {
698 partition_count = 5;
699 }
700 unsigned int index = (partition_count - 2) * BLOCK_MAX_PARTITIONINGS;
701 return this->partitionings + index;
702 }
703
704 /**
705 * @brief Get the partition info structure for a given partition count and seed.
706 *
707 * @param partition_count The number of partitions we want the info for.
708 * @param index The partition seed (between 0 and 1023).
709 *
710 * @return The partition info structure.
711 */
get_partition_infoblock_size_descriptor712 const partition_info& get_partition_info(unsigned int partition_count, unsigned int index) const
713 {
714 unsigned int packed_index = 0;
715 if (partition_count >= 2)
716 {
717 packed_index = this->partitioning_packed_index[partition_count - 2][index];
718 }
719
720 assert(packed_index != BLOCK_BAD_PARTITIONING && packed_index < this->partitioning_count_all[partition_count - 1]);
721 auto& result = get_partition_table(partition_count)[packed_index];
722 assert(index == result.partition_index);
723 return result;
724 }
725
726 /**
727 * @brief Get the partition info structure for a given partition count and seed.
728 *
729 * @param partition_count The number of partitions we want the info for.
730 * @param packed_index The raw array offset.
731 *
732 * @return The partition info structure.
733 */
get_raw_partition_infoblock_size_descriptor734 const partition_info& get_raw_partition_info(unsigned int partition_count, unsigned int packed_index) const
735 {
736 assert(packed_index != BLOCK_BAD_PARTITIONING && packed_index < this->partitioning_count_all[partition_count - 1]);
737 auto& result = get_partition_table(partition_count)[packed_index];
738 return result;
739 }
740 };
741
742 /**
743 * @brief The image data for a single block.
744 *
745 * The @c data_[rgba] fields store the image data in an encoded SoA float form designed for easy
746 * vectorization. Input data is converted to float and stored as values between 0 and 65535. LDR
747 * data is stored as direct UNORM data, HDR data is stored as LNS data.
748 *
749 * The @c rgb_lns and @c alpha_lns fields that assigned a per-texel use of HDR are only used during
750 * decompression. The current compressor will always use HDR endpoint formats when in HDR mode.
751 */
752 struct image_block
753 {
754 /** @brief The input (compress) or output (decompress) data for the red color component. */
755 ASTCENC_ALIGNAS float data_r[BLOCK_MAX_TEXELS];
756
757 /** @brief The input (compress) or output (decompress) data for the green color component. */
758 ASTCENC_ALIGNAS float data_g[BLOCK_MAX_TEXELS];
759
760 /** @brief The input (compress) or output (decompress) data for the blue color component. */
761 ASTCENC_ALIGNAS float data_b[BLOCK_MAX_TEXELS];
762
763 /** @brief The input (compress) or output (decompress) data for the alpha color component. */
764 ASTCENC_ALIGNAS float data_a[BLOCK_MAX_TEXELS];
765
766 mutable partition_metrics pms[BLOCK_MAX_PARTITIONS];
767
768 /** @brief The number of texels in the block. */
769 uint8_t texel_count;
770
771 /** @brief The original data for texel 0 for constant color block encoding. */
772 vfloat4 origin_texel;
773
774 /** @brief The min component value of all texels in the block. */
775 vfloat4 data_min;
776
777 /** @brief The mean component value of all texels in the block. */
778 vfloat4 data_mean;
779
780 /** @brief The max component value of all texels in the block. */
781 vfloat4 data_max;
782
783 /** @brief The relative error significance of the color channels. */
784 vfloat4 channel_weight;
785
786 /** @brief Is this grayscale block where R == G == B for all texels? */
787 bool grayscale;
788
789 /** @brief Is the eventual decode using decode_unorm8 rounding? */
790 bool decode_unorm8;
791
792 /** @brief Set to 1 if a texel is using HDR RGB endpoints (decompression only). */
793 uint8_t rgb_lns[BLOCK_MAX_TEXELS];
794
795 /** @brief Set to 1 if a texel is using HDR alpha endpoints (decompression only). */
796 uint8_t alpha_lns[BLOCK_MAX_TEXELS];
797
798 /** @brief The X position of this block in the input or output image. */
799 unsigned int xpos;
800
801 /** @brief The Y position of this block in the input or output image. */
802 unsigned int ypos;
803
804 /** @brief The Z position of this block in the input or output image. */
805 unsigned int zpos;
806
807 /**
808 * @brief Get an RGBA texel value from the data.
809 *
810 * @param index The texel index.
811 *
812 * @return The texel in RGBA component ordering.
813 */
texelimage_block814 inline vfloat4 texel(unsigned int index) const
815 {
816 return vfloat4(data_r[index],
817 data_g[index],
818 data_b[index],
819 data_a[index]);
820 }
821
822 /**
823 * @brief Get an RGB texel value from the data.
824 *
825 * @param index The texel index.
826 *
827 * @return The texel in RGB0 component ordering.
828 */
texel3image_block829 inline vfloat4 texel3(unsigned int index) const
830 {
831 return vfloat3(data_r[index],
832 data_g[index],
833 data_b[index]);
834 }
835
836 /**
837 * @brief Get the default alpha value for endpoints that don't store it.
838 *
839 * The default depends on whether the alpha endpoint is LDR or HDR.
840 *
841 * @return The alpha value in the scaled range used by the compressor.
842 */
get_default_alphaimage_block843 inline float get_default_alpha() const
844 {
845 return this->alpha_lns[0] ? static_cast<float>(0x7800) : static_cast<float>(0xFFFF);
846 }
847
848 /**
849 * @brief Test if a single color channel is constant across the block.
850 *
851 * Constant color channels are easier to compress as interpolating between two identical colors
852 * always returns the same value, irrespective of the weight used. They therefore can be ignored
853 * for the purposes of weight selection and use of a second weight plane.
854 *
855 * @return @c true if the channel is constant across the block, @c false otherwise.
856 */
is_constant_channelimage_block857 inline bool is_constant_channel(int channel) const
858 {
859 vmask4 lane_mask = vint4::lane_id() == vint4(channel);
860 vmask4 color_mask = this->data_min == this->data_max;
861 return any(lane_mask & color_mask);
862 }
863
864 /**
865 * @brief Test if this block is a luminance block with constant 1.0 alpha.
866 *
867 * @return @c true if the block is a luminance block , @c false otherwise.
868 */
is_luminanceimage_block869 inline bool is_luminance() const
870 {
871 float default_alpha = this->get_default_alpha();
872 bool alpha1 = (this->data_min.lane<3>() == default_alpha) &&
873 (this->data_max.lane<3>() == default_alpha);
874 return this->grayscale && alpha1;
875 }
876
877 /**
878 * @brief Test if this block is a luminance block with variable alpha.
879 *
880 * @return @c true if the block is a luminance + alpha block , @c false otherwise.
881 */
is_luminancealphaimage_block882 inline bool is_luminancealpha() const
883 {
884 float default_alpha = this->get_default_alpha();
885 bool alpha1 = (this->data_min.lane<3>() == default_alpha) &&
886 (this->data_max.lane<3>() == default_alpha);
887 return this->grayscale && !alpha1;
888 }
889 };
890
891 /**
892 * @brief Data structure storing the color endpoints for a block.
893 */
894 struct endpoints
895 {
896 /** @brief The number of partition endpoints stored. */
897 unsigned int partition_count;
898
899 /** @brief The colors for endpoint 0. */
900 vfloat4 endpt0[BLOCK_MAX_PARTITIONS];
901
902 /** @brief The colors for endpoint 1. */
903 vfloat4 endpt1[BLOCK_MAX_PARTITIONS];
904 };
905
906 /**
907 * @brief Data structure storing the color endpoints and weights.
908 */
909 struct endpoints_and_weights
910 {
911 /** @brief True if all active values in weight_error_scale are the same. */
912 bool is_constant_weight_error_scale;
913
914 /** @brief The color endpoints. */
915 endpoints ep;
916
917 /** @brief The ideal weight for each texel; may be undecimated or decimated. */
918 ASTCENC_ALIGNAS float weights[BLOCK_MAX_TEXELS];
919
920 /** @brief The ideal weight error scaling for each texel; may be undecimated or decimated. */
921 ASTCENC_ALIGNAS float weight_error_scale[BLOCK_MAX_TEXELS];
922 };
923
924 /**
925 * @brief Utility storing estimated errors from choosing particular endpoint encodings.
926 */
927 struct encoding_choice_errors
928 {
929 /** @brief Error of using LDR RGB-scale instead of complete endpoints. */
930 float rgb_scale_error;
931
932 /** @brief Error of using HDR RGB-scale instead of complete endpoints. */
933 float rgb_luma_error;
934
935 /** @brief Error of using luminance instead of RGB. */
936 float luminance_error;
937
938 /** @brief Error of discarding alpha and using a constant 1.0 alpha. */
939 float alpha_drop_error;
940
941 /** @brief Can we use delta offset encoding? */
942 bool can_offset_encode;
943
944 /** @brief Can we use blue contraction encoding? */
945 bool can_blue_contract;
946 };
947
948 /**
949 * @brief Preallocated working buffers, allocated per thread during context creation.
950 */
951 struct ASTCENC_ALIGNAS compression_working_buffers
952 {
953 /** @brief Ideal endpoints and weights for plane 1. */
954 endpoints_and_weights ei1;
955
956 /** @brief Ideal endpoints and weights for plane 2. */
957 endpoints_and_weights ei2;
958
959 /**
960 * @brief Decimated ideal weight values in the ~0-1 range.
961 *
962 * Note that values can be slightly below zero or higher than one due to
963 * endpoint extents being inside the ideal color representation.
964 *
965 * For two planes, second plane starts at @c WEIGHTS_PLANE2_OFFSET offsets.
966 */
967 ASTCENC_ALIGNAS float dec_weights_ideal[WEIGHTS_MAX_DECIMATION_MODES * BLOCK_MAX_WEIGHTS];
968
969 /**
970 * @brief Decimated quantized weight values in the unquantized 0-64 range.
971 *
972 * For two planes, second plane starts at @c WEIGHTS_PLANE2_OFFSET offsets.
973 */
974 uint8_t dec_weights_uquant[WEIGHTS_MAX_BLOCK_MODES * BLOCK_MAX_WEIGHTS];
975
976 /** @brief Error of the best encoding combination for each block mode. */
977 ASTCENC_ALIGNAS float errors_of_best_combination[WEIGHTS_MAX_BLOCK_MODES];
978
979 /** @brief The best color quant for each block mode. */
980 uint8_t best_quant_levels[WEIGHTS_MAX_BLOCK_MODES];
981
982 /** @brief The best color quant for each block mode if modes are the same and we have spare bits. */
983 uint8_t best_quant_levels_mod[WEIGHTS_MAX_BLOCK_MODES];
984
985 /** @brief The best endpoint format for each partition. */
986 uint8_t best_ep_formats[WEIGHTS_MAX_BLOCK_MODES][BLOCK_MAX_PARTITIONS];
987
988 /** @brief The total bit storage needed for quantized weights for each block mode. */
989 int8_t qwt_bitcounts[WEIGHTS_MAX_BLOCK_MODES];
990
991 /** @brief The cumulative error for quantized weights for each block mode. */
992 float qwt_errors[WEIGHTS_MAX_BLOCK_MODES];
993
994 /** @brief The low weight value in plane 1 for each block mode. */
995 float weight_low_value1[WEIGHTS_MAX_BLOCK_MODES];
996
997 /** @brief The high weight value in plane 1 for each block mode. */
998 float weight_high_value1[WEIGHTS_MAX_BLOCK_MODES];
999
1000 /** @brief The low weight value in plane 1 for each quant level and decimation mode. */
1001 float weight_low_values1[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1002
1003 /** @brief The high weight value in plane 1 for each quant level and decimation mode. */
1004 float weight_high_values1[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1005
1006 /** @brief The low weight value in plane 2 for each block mode. */
1007 float weight_low_value2[WEIGHTS_MAX_BLOCK_MODES];
1008
1009 /** @brief The high weight value in plane 2 for each block mode. */
1010 float weight_high_value2[WEIGHTS_MAX_BLOCK_MODES];
1011
1012 /** @brief The low weight value in plane 2 for each quant level and decimation mode. */
1013 float weight_low_values2[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1014
1015 /** @brief The high weight value in plane 2 for each quant level and decimation mode. */
1016 float weight_high_values2[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1017 };
1018
1019 struct dt_init_working_buffers
1020 {
1021 uint8_t weight_count_of_texel[BLOCK_MAX_TEXELS];
1022 uint8_t grid_weights_of_texel[BLOCK_MAX_TEXELS][4];
1023 uint8_t weights_of_texel[BLOCK_MAX_TEXELS][4];
1024
1025 uint8_t texel_count_of_weight[BLOCK_MAX_WEIGHTS];
1026 uint8_t texels_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
1027 uint8_t texel_weights_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
1028 };
1029
1030 /**
1031 * @brief Weight quantization transfer table.
1032 *
1033 * ASTC can store texel weights at many quantization levels, so for performance we store essential
1034 * information about each level as a precomputed data structure. Unquantized weights are integers
1035 * or floats in the range [0, 64].
1036 *
1037 * This structure provides a table, used to estimate the closest quantized weight for a given
1038 * floating-point weight. For each quantized weight, the corresponding unquantized values. For each
1039 * quantized weight, a previous-value and a next-value.
1040 */
1041 struct quant_and_transfer_table
1042 {
1043 /** @brief The unscrambled unquantized value. */
1044 uint8_t quant_to_unquant[32];
1045
1046 /** @brief The scrambling order: scrambled_quant = map[unscrambled_quant]. */
1047 uint8_t scramble_map[32];
1048
1049 /** @brief The unscrambling order: unscrambled_unquant = map[scrambled_quant]. */
1050 uint8_t unscramble_and_unquant_map[32];
1051
1052 /**
1053 * @brief A table of previous-and-next weights, indexed by the current unquantized value.
1054 * * bits 7:0 = previous-index, unquantized
1055 * * bits 15:8 = next-index, unquantized
1056 */
1057 uint16_t prev_next_values[65];
1058 };
1059
1060 /** @brief The precomputed quant and transfer table. */
1061 extern const quant_and_transfer_table quant_and_xfer_tables[12];
1062
1063 /** @brief The block is an error block, and will return error color or NaN. */
1064 static constexpr uint8_t SYM_BTYPE_ERROR { 0 };
1065
1066 /** @brief The block is a constant color block using FP16 colors. */
1067 static constexpr uint8_t SYM_BTYPE_CONST_F16 { 1 };
1068
1069 /** @brief The block is a constant color block using UNORM16 colors. */
1070 static constexpr uint8_t SYM_BTYPE_CONST_U16 { 2 };
1071
1072 /** @brief The block is a normal non-constant color block. */
1073 static constexpr uint8_t SYM_BTYPE_NONCONST { 3 };
1074
1075 /**
1076 * @brief A symbolic representation of a compressed block.
1077 *
1078 * The symbolic representation stores the unpacked content of a single
1079 * physical compressed block, in a form which is much easier to access for
1080 * the rest of the compressor code.
1081 */
1082 struct symbolic_compressed_block
1083 {
1084 /** @brief The block type, one of the @c SYM_BTYPE_* constants. */
1085 uint8_t block_type;
1086
1087 /** @brief The number of partitions; valid for @c NONCONST blocks. */
1088 uint8_t partition_count;
1089
1090 /** @brief Non-zero if the color formats matched; valid for @c NONCONST blocks. */
1091 uint8_t color_formats_matched;
1092
1093 /** @brief The plane 2 color component, or -1 if single plane; valid for @c NONCONST blocks. */
1094 int8_t plane2_component;
1095
1096 /** @brief The block mode; valid for @c NONCONST blocks. */
1097 uint16_t block_mode;
1098
1099 /** @brief The partition index; valid for @c NONCONST blocks if 2 or more partitions. */
1100 uint16_t partition_index;
1101
1102 /** @brief The endpoint color formats for each partition; valid for @c NONCONST blocks. */
1103 uint8_t color_formats[BLOCK_MAX_PARTITIONS];
1104
1105 /** @brief The endpoint color quant mode; valid for @c NONCONST blocks. */
1106 quant_method quant_mode;
1107
1108 /** @brief The error of the current encoding; valid for @c NONCONST blocks. */
1109 float errorval;
1110
1111 // We can't have both of these at the same time
1112 union {
1113 /** @brief The constant color; valid for @c CONST blocks. */
1114 int constant_color[BLOCK_MAX_COMPONENTS];
1115
1116 /** @brief The quantized endpoint color pairs; valid for @c NONCONST blocks. */
1117 uint8_t color_values[BLOCK_MAX_PARTITIONS][8];
1118 };
1119
1120 /** @brief The quantized and decimated weights.
1121 *
1122 * Weights are stored in the 0-64 unpacked range allowing them to be used
1123 * directly in encoding passes without per-use unpacking. Packing happens
1124 * when converting to/from the physical bitstream encoding.
1125 *
1126 * If dual plane, the second plane starts at @c weights[WEIGHTS_PLANE2_OFFSET].
1127 */
1128 uint8_t weights[BLOCK_MAX_WEIGHTS];
1129
1130 /**
1131 * @brief Get the weight quantization used by this block mode.
1132 *
1133 * @return The quantization level.
1134 */
get_color_quant_modesymbolic_compressed_block1135 inline quant_method get_color_quant_mode() const
1136 {
1137 return this->quant_mode;
1138 }
1139 QualityProfile privateProfile;
1140 };
1141
1142 /**
1143 * @brief Parameter structure for @c compute_pixel_region_variance().
1144 *
1145 * This function takes a structure to avoid spilling arguments to the stack on every function
1146 * invocation, as there are a lot of parameters.
1147 */
1148 struct pixel_region_args
1149 {
1150 /** @brief The image to analyze. */
1151 const astcenc_image* img;
1152
1153 /** @brief The component swizzle pattern. */
1154 astcenc_swizzle swz;
1155
1156 /** @brief Should the algorithm bother with Z axis processing? */
1157 bool have_z;
1158
1159 /** @brief The kernel radius for alpha processing. */
1160 unsigned int alpha_kernel_radius;
1161
1162 /** @brief The X dimension of the working data to process. */
1163 unsigned int size_x;
1164
1165 /** @brief The Y dimension of the working data to process. */
1166 unsigned int size_y;
1167
1168 /** @brief The Z dimension of the working data to process. */
1169 unsigned int size_z;
1170
1171 /** @brief The X position of first src and dst data in the data set. */
1172 unsigned int offset_x;
1173
1174 /** @brief The Y position of first src and dst data in the data set. */
1175 unsigned int offset_y;
1176
1177 /** @brief The Z position of first src and dst data in the data set. */
1178 unsigned int offset_z;
1179
1180 /** @brief The working memory buffer. */
1181 vfloat4 *work_memory;
1182 };
1183
1184 /**
1185 * @brief Parameter structure for @c compute_averages_proc().
1186 */
1187 struct avg_args
1188 {
1189 /** @brief The arguments for the nested variance computation. */
1190 pixel_region_args arg;
1191
1192 /** @brief The image Stride dimensions. */
1193 unsigned int img_size_stride;
1194
1195 /** @brief The image X dimensions. */
1196 unsigned int img_size_x;
1197
1198 /** @brief The image Y dimensions. */
1199 unsigned int img_size_y;
1200
1201 /** @brief The image Z dimensions. */
1202 unsigned int img_size_z;
1203
1204 /** @brief The maximum working block dimensions in X and Y dimensions. */
1205 unsigned int blk_size_xy;
1206
1207 /** @brief The maximum working block dimensions in Z dimensions. */
1208 unsigned int blk_size_z;
1209
1210 /** @brief The working block memory size. */
1211 unsigned int work_memory_size;
1212 };
1213
1214 #if defined(ASTCENC_DIAGNOSTICS)
1215 /* See astcenc_diagnostic_trace header for details. */
1216 class TraceLog;
1217 #endif
1218
1219 /**
1220 * @brief The astcenc compression context.
1221 */
1222 struct astcenc_contexti
1223 {
1224 /** @brief The configuration this context was created with. */
1225 astcenc_config config;
1226
1227 /** @brief The thread count supported by this context. */
1228 unsigned int thread_count;
1229
1230 /** @brief The block size descriptor this context was created with. */
1231 block_size_descriptor* bsd;
1232
1233 /*
1234 * Fields below here are not needed in a decompress-only build, but some remain as they are
1235 * small and it avoids littering the code with #ifdefs. The most significant contributors to
1236 * large structure size are omitted.
1237 */
1238
1239 /** @brief The input image alpha channel averages table, may be @c nullptr if not needed. */
1240 float* input_alpha_averages;
1241
1242 /** @brief The scratch working buffers, one per thread (see @c thread_count). */
1243 compression_working_buffers* working_buffers;
1244
1245 #if !defined(ASTCENC_DECOMPRESS_ONLY)
1246 /** @brief The pixel region and variance worker arguments. */
1247 avg_args avg_preprocess_args;
1248 #endif
1249
1250 #if defined(ASTCENC_DIAGNOSTICS)
1251 /**
1252 * @brief The diagnostic trace logger.
1253 *
1254 * Note that this is a singleton, so can only be used in single threaded mode. It only exists
1255 * here so we have a reference to close the file at the end of the capture.
1256 */
1257 TraceLog* trace_log;
1258 #endif
1259 };
1260
1261 /* ============================================================================
1262 Functionality for managing block sizes and partition tables.
1263 ============================================================================ */
1264
1265 /**
1266 * @brief Populate the block size descriptor for the target block size.
1267 *
1268 * This will also initialize the partition table metadata, which is stored as part of the BSD
1269 * structure.
1270 *
1271 * @param x_texels The number of texels in the block X dimension.
1272 * @param y_texels The number of texels in the block Y dimension.
1273 * @param z_texels The number of texels in the block Z dimension.
1274 * @param can_omit_modes Can we discard modes and partitionings that astcenc won't use?
1275 * @param partition_count_cutoff The partition count cutoff to use, if we can omit partitionings.
1276 * @param mode_cutoff The block mode percentile cutoff [0-1].
1277 * @param[out] bsd The descriptor to initialize.
1278 */
1279 #ifdef ASTC_CUSTOMIZED_ENABLE
1280 bool init_block_size_descriptor(
1281 #else
1282 void init_block_size_descriptor(
1283 #endif
1284 QualityProfile privateProfile,
1285 unsigned int x_texels,
1286 unsigned int y_texels,
1287 unsigned int z_texels,
1288 bool can_omit_modes,
1289 unsigned int partition_count_cutoff,
1290 float mode_cutoff,
1291 block_size_descriptor& bsd);
1292
1293 /**
1294 * @brief Populate the partition tables for the target block size.
1295 *
1296 * Note the @c bsd descriptor must be initialized by calling @c init_block_size_descriptor() before
1297 * calling this function.
1298 *
1299 * @param[out] bsd The block size information structure to populate.
1300 * @param can_omit_partitionings True if we can we drop partitionings that astcenc won't use.
1301 * @param partition_count_cutoff The partition count cutoff to use, if we can omit partitionings.
1302 */
1303 void init_partition_tables(
1304 block_size_descriptor& bsd,
1305 bool can_omit_partitionings,
1306 unsigned int partition_count_cutoff);
1307
1308 /**
1309 * @brief Get the percentile table for 2D block modes.
1310 *
1311 * This is an empirically determined prioritization of which block modes to use in the search in
1312 * terms of their centile (lower centiles = more useful).
1313 *
1314 * Returns a dynamically allocated array; caller must free with delete[].
1315 *
1316 * @param xdim The block x size.
1317 * @param ydim The block y size.
1318 *
1319 * @return The unpacked table.
1320 */
1321 const float* get_2d_percentile_table(
1322 unsigned int xdim,
1323 unsigned int ydim);
1324
1325 /**
1326 * @brief Query if a 2D block size is legal.
1327 *
1328 * @return True if legal, false otherwise.
1329 */
1330 bool is_legal_2d_block_size(
1331 unsigned int xdim,
1332 unsigned int ydim);
1333
1334 /**
1335 * @brief Query if a 3D block size is legal.
1336 *
1337 * @return True if legal, false otherwise.
1338 */
1339 bool is_legal_3d_block_size(
1340 unsigned int xdim,
1341 unsigned int ydim,
1342 unsigned int zdim);
1343
1344 /* ============================================================================
1345 Functionality for managing BISE quantization and unquantization.
1346 ============================================================================ */
1347
1348 /**
1349 * @brief The precomputed table for quantizing color values.
1350 *
1351 * Converts unquant value in 0-255 range into quant value in 0-255 range.
1352 * No BISE scrambling is applied at this stage.
1353 *
1354 * The BISE encoding results in ties where available quant<256> values are
1355 * equidistant the available quant<BISE> values. This table stores two values
1356 * for each input - one for use with a negative residual, and one for use with
1357 * a positive residual.
1358 *
1359 * Indexed by [quant_mode - 4][data_value * 2 + residual].
1360 */
1361 extern const uint8_t color_unquant_to_uquant_tables[17][512];
1362
1363 /**
1364 * @brief The precomputed table for packing quantized color values.
1365 *
1366 * Converts quant value in 0-255 range into packed quant value in 0-N range,
1367 * with BISE scrambling applied.
1368 *
1369 * Indexed by [quant_mode - 4][data_value].
1370 */
1371 extern const uint8_t color_uquant_to_scrambled_pquant_tables[17][256];
1372
1373 /**
1374 * @brief The precomputed table for unpacking color values.
1375 *
1376 * Converts quant value in 0-N range into unpacked value in 0-255 range,
1377 * with BISE unscrambling applied.
1378 *
1379 * Indexed by [quant_mode - 4][data_value].
1380 */
1381 extern const uint8_t* color_scrambled_pquant_to_uquant_tables[17];
1382
1383 /**
1384 * @brief The precomputed quant mode storage table.
1385 *
1386 * Indexing by [integer_count/2][bits] gives us the quantization level for a given integer count and
1387 * number of compressed storage bits. Returns -1 for cases where the requested integer count cannot
1388 * ever fit in the supplied storage size.
1389 */
1390 extern const int8_t quant_mode_table[10][128];
1391
1392 /**
1393 * @brief Encode a packed string using BISE.
1394 *
1395 * Note that BISE can return strings that are not a whole number of bytes in length, and ASTC can
1396 * start storing strings in a block at arbitrary bit offsets in the encoded data.
1397 *
1398 * @param quant_level The BISE alphabet size.
1399 * @param character_count The number of characters in the string.
1400 * @param input_data The unpacked string, one byte per character.
1401 * @param[in,out] output_data The output packed string.
1402 * @param bit_offset The starting offset in the output storage.
1403 */
1404 void encode_ise(
1405 quant_method quant_level,
1406 unsigned int character_count,
1407 const uint8_t* input_data,
1408 uint8_t* output_data,
1409 unsigned int bit_offset);
1410
1411 /**
1412 * @brief Decode a packed string using BISE.
1413 *
1414 * Note that BISE input strings are not a whole number of bytes in length, and ASTC can start
1415 * strings at arbitrary bit offsets in the encoded data.
1416 *
1417 * @param quant_level The BISE alphabet size.
1418 * @param character_count The number of characters in the string.
1419 * @param input_data The packed string.
1420 * @param[in,out] output_data The output storage, one byte per character.
1421 * @param bit_offset The starting offset in the output storage.
1422 */
1423 void decode_ise(
1424 quant_method quant_level,
1425 unsigned int character_count,
1426 const uint8_t* input_data,
1427 uint8_t* output_data,
1428 unsigned int bit_offset);
1429
1430 /**
1431 * @brief Return the number of bits needed to encode an ISE sequence.
1432 *
1433 * This implementation assumes that the @c quant level is untrusted, given it may come from random
1434 * data being decompressed, so we return an arbitrary unencodable size if that is the case.
1435 *
1436 * @param character_count The number of items in the sequence.
1437 * @param quant_level The desired quantization level.
1438 *
1439 * @return The number of bits needed to encode the BISE string.
1440 */
1441 unsigned int get_ise_sequence_bitcount(
1442 unsigned int character_count,
1443 quant_method quant_level);
1444
1445 /* ============================================================================
1446 Functionality for managing color partitioning.
1447 ============================================================================ */
1448
1449 /**
1450 * @brief Compute averages and dominant directions for each partition in a 2 component texture.
1451 *
1452 * @param pi The partition info for the current trial.
1453 * @param blk The image block color data to be compressed.
1454 * @param component1 The first component included in the analysis.
1455 * @param component2 The second component included in the analysis.
1456 * @param[out] pm The output partition metrics.
1457 * - Only pi.partition_count array entries actually get initialized.
1458 * - Direction vectors @c pm.dir are not normalized.
1459 */
1460 void compute_avgs_and_dirs_2_comp(
1461 const partition_info& pi,
1462 const image_block& blk,
1463 unsigned int component1,
1464 unsigned int component2,
1465 partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1466
1467 /**
1468 * @brief Compute averages and dominant directions for each partition in a 3 component texture.
1469 *
1470 * @param pi The partition info for the current trial.
1471 * @param blk The image block color data to be compressed.
1472 * @param omitted_component The component excluded from the analysis.
1473 * @param[out] pm The output partition metrics.
1474 * - Only pi.partition_count array entries actually get initialized.
1475 * - Direction vectors @c pm.dir are not normalized.
1476 */
1477 void compute_avgs_and_dirs_3_comp(
1478 const partition_info& pi,
1479 const image_block& blk,
1480 unsigned int omitted_component,
1481 partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1482
1483 /**
1484 * @brief Compute averages and dominant directions for each partition in a 3 component texture.
1485 *
1486 * This is a specialization of @c compute_avgs_and_dirs_3_comp where the omitted component is
1487 * always alpha, a common case during partition search.
1488 *
1489 * @param pi The partition info for the current trial.
1490 * @param blk The image block color data to be compressed.
1491 * @param[out] pm The output partition metrics.
1492 * - Only pi.partition_count array entries actually get initialized.
1493 * - Direction vectors @c pm.dir are not normalized.
1494 */
1495 void compute_avgs_and_dirs_3_comp_rgb(
1496 const partition_info& pi,
1497 const image_block& blk,
1498 partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1499
1500 /**
1501 * @brief Compute averages and dominant directions for each partition in a 4 component texture.
1502 *
1503 * @param pi The partition info for the current trial.
1504 * @param blk The image block color data to be compressed.
1505 * @param[out] pm The output partition metrics.
1506 * - Only pi.partition_count array entries actually get initialized.
1507 * - Direction vectors @c pm.dir are not normalized.
1508 */
1509 void compute_avgs_and_dirs_4_comp(
1510 const partition_info& pi,
1511 const image_block& blk,
1512 partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1513
1514 /**
1515 * @brief Compute the RGB error for uncorrelated and same chroma projections.
1516 *
1517 * The output of compute averages and dirs is post processed to define two lines, both of which go
1518 * through the mean-color-value. One line has a direction defined by the dominant direction; this
1519 * is used to assess the error from using an uncorrelated color representation. The other line goes
1520 * through (0,0,0) and is used to assess the error from using an RGBS color representation.
1521 *
1522 * This function computes the squared error when using these two representations.
1523 *
1524 * @param pi The partition info for the current trial.
1525 * @param blk The image block color data to be compressed.
1526 * @param[in,out] plines Processed line inputs, and line length outputs.
1527 * @param[out] uncor_error The cumulative error for using the uncorrelated line.
1528 * @param[out] samec_error The cumulative error for using the same chroma line.
1529 */
1530 void compute_error_squared_rgb(
1531 const partition_info& pi,
1532 const image_block& blk,
1533 partition_lines3 plines[BLOCK_MAX_PARTITIONS],
1534 float& uncor_error,
1535 float& samec_error);
1536
1537 /**
1538 * @brief Compute the RGBA error for uncorrelated and same chroma projections.
1539 *
1540 * The output of compute averages and dirs is post processed to define two lines, both of which go
1541 * through the mean-color-value. One line has a direction defined by the dominant direction; this
1542 * is used to assess the error from using an uncorrelated color representation. The other line goes
1543 * through (0,0,0,1) and is used to assess the error from using an RGBS color representation.
1544 *
1545 * This function computes the squared error when using these two representations.
1546 *
1547 * @param pi The partition info for the current trial.
1548 * @param blk The image block color data to be compressed.
1549 * @param uncor_plines Processed uncorrelated partition lines for each partition.
1550 * @param samec_plines Processed same chroma partition lines for each partition.
1551 * @param[out] line_lengths The length of each components deviation from the line.
1552 * @param[out] uncor_error The cumulative error for using the uncorrelated line.
1553 * @param[out] samec_error The cumulative error for using the same chroma line.
1554 */
1555 void compute_error_squared_rgba(
1556 const partition_info& pi,
1557 const image_block& blk,
1558 const processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS],
1559 const processed_line4 samec_plines[BLOCK_MAX_PARTITIONS],
1560 float line_lengths[BLOCK_MAX_PARTITIONS],
1561 float& uncor_error,
1562 float& samec_error);
1563
1564 /**
1565 * @brief Find the best set of partitions to trial for a given block.
1566 *
1567 * On return the @c best_partitions list will contain the two best partition
1568 * candidates; one assuming data has uncorrelated chroma and one assuming the
1569 * data has correlated chroma. The best candidate is returned first in the list.
1570 *
1571 * @param bsd The block size information.
1572 * @param blk The image block color data to compress.
1573 * @param partition_count The number of partitions in the block.
1574 * @param partition_search_limit The number of candidate partition encodings to trial.
1575 * @param[out] best_partitions The best partition candidates.
1576 * @param requested_candidates The number of requested partitionings. May return fewer if
1577 * candidates are not available.
1578 *
1579 * @return The actual number of candidates returned.
1580 */
1581 unsigned int find_best_partition_candidates(
1582 const block_size_descriptor& bsd,
1583 const image_block& blk,
1584 unsigned int partition_count,
1585 unsigned int partition_search_limit,
1586 unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES],
1587 unsigned int requested_candidates);
1588
1589 /* ============================================================================
1590 Functionality for managing images and image related data.
1591 ============================================================================ */
1592
1593 /**
1594 * @brief Get a vector mask indicating lanes decompressing into a UNORM8 value.
1595 *
1596 * @param decode_mode The color profile for LDR_SRGB settings.
1597 * @param blk The image block for output image bitness settings.
1598 *
1599 * @return The component mask vector.
1600 */
get_u8_component_mask( astcenc_profile decode_mode, const image_block& blk )1601 static inline vmask4 get_u8_component_mask(
1602 astcenc_profile decode_mode,
1603 const image_block& blk
1604 ) {
1605 vmask4 u8_mask(false);
1606 // Decode mode writing to a unorm8 output value
1607 if (blk.decode_unorm8)
1608 {
1609 u8_mask = vmask4(true);
1610 }
1611 // SRGB writing to a unorm8 RGB value
1612 else if (decode_mode == ASTCENC_PRF_LDR_SRGB)
1613 {
1614 u8_mask = vmask4(true, true, true, false);
1615 }
1616
1617 return u8_mask;
1618 }
1619
1620 /**
1621 * @brief Setup computation of regional averages in an image.
1622 *
1623 * This must be done by only a single thread per image, before any thread calls
1624 * @c compute_averages().
1625 *
1626 * Results are written back into @c img->input_alpha_averages.
1627 *
1628 * @param img The input image data, also holds output data.
1629 * @param alpha_kernel_radius The kernel radius (in pixels) for alpha mods.
1630 * @param swz Input data component swizzle.
1631 * @param[out] ag The average variance arguments to init.
1632 *
1633 * @return The number of tasks in the processing stage.
1634 */
1635 unsigned int init_compute_averages(
1636 const astcenc_image& img,
1637 unsigned int alpha_kernel_radius,
1638 const astcenc_swizzle& swz,
1639 avg_args& ag);
1640
1641 /**
1642 * @brief Compute averages for a pixel region.
1643 *
1644 * The routine computes both in a single pass, using a summed-area table to decouple the running
1645 * time from the averaging/variance kernel size.
1646 *
1647 * @param[out] ctx The compressor context storing the output data.
1648 * @param arg The input parameter structure.
1649 */
1650 void compute_pixel_region_variance(
1651 astcenc_contexti& ctx,
1652 const pixel_region_args& arg);
1653 /**
1654 * @brief Load a single image block from the input image.
1655 *
1656 * @param decode_mode The compression color profile.
1657 * @param img The input image data.
1658 * @param[out] blk The image block to populate.
1659 * @param bsd The block size information.
1660 * @param xpos The block X coordinate in the input image.
1661 * @param ypos The block Y coordinate in the input image.
1662 * @param zpos The block Z coordinate in the input image.
1663 * @param swz The swizzle to apply on load.
1664 */
1665 void load_image_block(
1666 astcenc_profile decode_mode,
1667 const astcenc_image& img,
1668 image_block& blk,
1669 const block_size_descriptor& bsd,
1670 unsigned int xpos,
1671 unsigned int ypos,
1672 unsigned int zpos,
1673 const astcenc_swizzle& swz);
1674
1675 /**
1676 * @brief Load a single image block from the input image.
1677 *
1678 * This specialized variant can be used only if the block is 2D LDR U8 data,
1679 * with no swizzle.
1680 *
1681 * @param decode_mode The compression color profile.
1682 * @param img The input image data.
1683 * @param[out] blk The image block to populate.
1684 * @param bsd The block size information.
1685 * @param xpos The block X coordinate in the input image.
1686 * @param ypos The block Y coordinate in the input image.
1687 * @param zpos The block Z coordinate in the input image.
1688 * @param swz The swizzle to apply on load.
1689 */
1690 void load_image_block_fast_ldr(
1691 astcenc_profile decode_mode,
1692 const astcenc_image& img,
1693 image_block& blk,
1694 const block_size_descriptor& bsd,
1695 unsigned int xpos,
1696 unsigned int ypos,
1697 unsigned int zpos,
1698 const astcenc_swizzle& swz);
1699
1700 /**
1701 * @brief Store a single image block to the output image.
1702 *
1703 * @param[out] img The output image data.
1704 * @param blk The image block to export.
1705 * @param bsd The block size information.
1706 * @param xpos The block X coordinate in the input image.
1707 * @param ypos The block Y coordinate in the input image.
1708 * @param zpos The block Z coordinate in the input image.
1709 * @param swz The swizzle to apply on store.
1710 */
1711 void store_image_block(
1712 astcenc_image& img,
1713 const image_block& blk,
1714 const block_size_descriptor& bsd,
1715 unsigned int xpos,
1716 unsigned int ypos,
1717 unsigned int zpos,
1718 const astcenc_swizzle& swz);
1719
1720 /* ============================================================================
1721 Functionality for computing endpoint colors and weights for a block.
1722 ============================================================================ */
1723
1724 /**
1725 * @brief Compute ideal endpoint colors and weights for 1 plane of weights.
1726 *
1727 * The ideal endpoints define a color line for the partition. For each texel the ideal weight
1728 * defines an exact position on the partition color line. We can then use these to assess the error
1729 * introduced by removing and quantizing the weight grid.
1730 *
1731 * @param blk The image block color data to compress.
1732 * @param pi The partition info for the current trial.
1733 * @param[out] ei The endpoint and weight values.
1734 */
1735 void compute_ideal_colors_and_weights_1plane(
1736 const image_block& blk,
1737 const partition_info& pi,
1738 endpoints_and_weights& ei);
1739
1740 /**
1741 * @brief Compute ideal endpoint colors and weights for 2 planes of weights.
1742 *
1743 * The ideal endpoints define a color line for the partition. For each texel the ideal weight
1744 * defines an exact position on the partition color line. We can then use these to assess the error
1745 * introduced by removing and quantizing the weight grid.
1746 *
1747 * @param bsd The block size information.
1748 * @param blk The image block color data to compress.
1749 * @param plane2_component The component assigned to plane 2.
1750 * @param[out] ei1 The endpoint and weight values for plane 1.
1751 * @param[out] ei2 The endpoint and weight values for plane 2.
1752 */
1753 void compute_ideal_colors_and_weights_2planes(
1754 const block_size_descriptor& bsd,
1755 const image_block& blk,
1756 unsigned int plane2_component,
1757 endpoints_and_weights& ei1,
1758 endpoints_and_weights& ei2);
1759
1760 /**
1761 * @brief Compute the optimal unquantized weights for a decimation table.
1762 *
1763 * After computing ideal weights for the case for a complete weight grid, we we want to compute the
1764 * ideal weights for the case where weights exist only for some texels. We do this with a
1765 * steepest-descent grid solver which works as follows:
1766 *
1767 * First, for each actual weight, perform a weighted averaging of the texels affected by the weight.
1768 * Then, set step size to <some initial value> and attempt one step towards the original ideal
1769 * weight if it helps to reduce error.
1770 *
1771 * @param ei The non-decimated endpoints and weights.
1772 * @param di The selected weight decimation.
1773 * @param[out] dec_weight_ideal_value The ideal values for the decimated weight set.
1774 */
1775 void compute_ideal_weights_for_decimation(
1776 const endpoints_and_weights& ei,
1777 const decimation_info& di,
1778 float* dec_weight_ideal_value);
1779
1780 /**
1781 * @brief Compute the optimal quantized weights for a decimation table.
1782 *
1783 * We test the two closest weight indices in the allowed quantization range and keep the weight that
1784 * is the closest match.
1785 *
1786 * @param di The selected weight decimation.
1787 * @param low_bound The lowest weight allowed.
1788 * @param high_bound The highest weight allowed.
1789 * @param dec_weight_ideal_value The ideal weight set.
1790 * @param[out] dec_weight_quant_uvalue The output quantized weight as a float.
1791 * @param[out] dec_weight_uquant The output quantized weight as encoded int.
1792 * @param quant_level The desired weight quant level.
1793 */
1794 void compute_quantized_weights_for_decimation(
1795 const decimation_info& di,
1796 float low_bound,
1797 float high_bound,
1798 const float* dec_weight_ideal_value,
1799 float* dec_weight_quant_uvalue,
1800 uint8_t* dec_weight_uquant,
1801 quant_method quant_level);
1802
1803 /**
1804 * @brief Compute the error of a decimated weight set for 1 plane.
1805 *
1806 * After computing ideal weights for the case with one weight per texel, we want to compute the
1807 * error for decimated weight grids where weights are stored at a lower resolution. This function
1808 * computes the error of the reduced grid, compared to the full grid.
1809 *
1810 * @param eai The ideal weights for the full grid.
1811 * @param di The selected weight decimation.
1812 * @param dec_weight_quant_uvalue The quantized weights for the decimated grid.
1813 *
1814 * @return The accumulated error.
1815 */
1816 float compute_error_of_weight_set_1plane(
1817 const endpoints_and_weights& eai,
1818 const decimation_info& di,
1819 const float* dec_weight_quant_uvalue);
1820
1821 /**
1822 * @brief Compute the error of a decimated weight set for 2 planes.
1823 *
1824 * After computing ideal weights for the case with one weight per texel, we want to compute the
1825 * error for decimated weight grids where weights are stored at a lower resolution. This function
1826 * computes the error of the reduced grid, compared to the full grid.
1827 *
1828 * @param eai1 The ideal weights for the full grid and plane 1.
1829 * @param eai2 The ideal weights for the full grid and plane 2.
1830 * @param di The selected weight decimation.
1831 * @param dec_weight_quant_uvalue_plane1 The quantized weights for the decimated grid plane 1.
1832 * @param dec_weight_quant_uvalue_plane2 The quantized weights for the decimated grid plane 2.
1833 *
1834 * @return The accumulated error.
1835 */
1836 float compute_error_of_weight_set_2planes(
1837 const endpoints_and_weights& eai1,
1838 const endpoints_and_weights& eai2,
1839 const decimation_info& di,
1840 const float* dec_weight_quant_uvalue_plane1,
1841 const float* dec_weight_quant_uvalue_plane2);
1842
1843 /**
1844 * @brief Pack a single pair of color endpoints as effectively as possible.
1845 *
1846 * The user requests a base color endpoint mode in @c format, but the quantizer may choose a
1847 * delta-based representation. It will report back the format variant it actually used.
1848 *
1849 * @param color0 The input unquantized color0 endpoint for absolute endpoint pairs.
1850 * @param color1 The input unquantized color1 endpoint for absolute endpoint pairs.
1851 * @param rgbs_color The input unquantized RGBS variant endpoint for same chroma endpoints.
1852 * @param rgbo_color The input unquantized RGBS variant endpoint for HDR endpoints.
1853 * @param format The desired base format.
1854 * @param[out] output The output storage for the quantized colors/
1855 * @param quant_level The quantization level requested.
1856 *
1857 * @return The actual endpoint mode used.
1858 */
1859 uint8_t pack_color_endpoints(
1860 QualityProfile privateProfile,
1861 vfloat4 color0,
1862 vfloat4 color1,
1863 vfloat4 rgbs_color,
1864 vfloat4 rgbo_color,
1865 int format,
1866 uint8_t* output,
1867 quant_method quant_level);
1868
1869 /**
1870 * @brief Unpack a single pair of encoded endpoints.
1871 *
1872 * Endpoints must be unscrambled and converted into the 0-255 range before calling this functions.
1873 *
1874 * @param decode_mode The decode mode (LDR, HDR, etc).
1875 * @param format The color endpoint mode used.
1876 * @param input The raw array of encoded input integers. The length of this array
1877 * depends on @c format; it can be safely assumed to be large enough.
1878 * @param[out] rgb_hdr Is the endpoint using HDR for the RGB channels?
1879 * @param[out] alpha_hdr Is the endpoint using HDR for the A channel?
1880 * @param[out] output0 The output color for endpoint 0.
1881 * @param[out] output1 The output color for endpoint 1.
1882 */
1883 void unpack_color_endpoints(
1884 astcenc_profile decode_mode,
1885 int format,
1886 const uint8_t* input,
1887 bool& rgb_hdr,
1888 bool& alpha_hdr,
1889 vint4& output0,
1890 vint4& output1);
1891
1892 /**
1893 * @brief Unpack an LDR RGBA color that uses delta encoding.
1894 *
1895 * @param input0 The packed endpoint 0 color.
1896 * @param input1 The packed endpoint 1 color deltas.
1897 * @param[out] output0 The unpacked endpoint 0 color.
1898 * @param[out] output1 The unpacked endpoint 1 color.
1899 */
1900 void rgba_delta_unpack(
1901 vint4 input0,
1902 vint4 input1,
1903 vint4& output0,
1904 vint4& output1);
1905
1906 /**
1907 * @brief Unpack an LDR RGBA color that uses direct encoding.
1908 *
1909 * @param input0 The packed endpoint 0 color.
1910 * @param input1 The packed endpoint 1 color.
1911 * @param[out] output0 The unpacked endpoint 0 color.
1912 * @param[out] output1 The unpacked endpoint 1 color.
1913 */
1914 void rgba_unpack(
1915 vint4 input0,
1916 vint4 input1,
1917 vint4& output0,
1918 vint4& output1);
1919
1920 /**
1921 * @brief Unpack a set of quantized and decimated weights.
1922 *
1923 * TODO: Can we skip this for non-decimated weights now that the @c scb is
1924 * already storing unquantized weights?
1925 *
1926 * @param bsd The block size information.
1927 * @param scb The symbolic compressed encoding.
1928 * @param di The weight grid decimation table.
1929 * @param is_dual_plane @c true if this is a dual plane block, @c false otherwise.
1930 * @param[out] weights_plane1 The output array for storing the plane 1 weights.
1931 * @param[out] weights_plane2 The output array for storing the plane 2 weights.
1932 */
1933 void unpack_weights(
1934 const block_size_descriptor& bsd,
1935 const symbolic_compressed_block& scb,
1936 const decimation_info& di,
1937 bool is_dual_plane,
1938 int weights_plane1[BLOCK_MAX_TEXELS],
1939 int weights_plane2[BLOCK_MAX_TEXELS]);
1940
1941 /**
1942 * @brief Identify, for each mode, which set of color endpoint produces the best result.
1943 *
1944 * Returns the best @c tune_candidate_limit best looking modes, along with the ideal color encoding
1945 * combination for each. The modified quantization level can be used when all formats are the same,
1946 * as this frees up two additional bits of storage.
1947 *
1948 * @param pi The partition info for the current trial.
1949 * @param blk The image block color data to compress.
1950 * @param ep The ideal endpoints.
1951 * @param qwt_bitcounts Bit counts for different quantization methods.
1952 * @param qwt_errors Errors for different quantization methods.
1953 * @param tune_candidate_limit The max number of candidates to return, may be less.
1954 * @param start_block_mode The first block mode to inspect.
1955 * @param end_block_mode The last block mode to inspect.
1956 * @param[out] partition_format_specifiers The best formats per partition.
1957 * @param[out] block_mode The best packed block mode indexes.
1958 * @param[out] quant_level The best color quant level.
1959 * @param[out] quant_level_mod The best color quant level if endpoints are the same.
1960 * @param[out] tmpbuf Preallocated scratch buffers for the compressor.
1961 *
1962 * @return The actual number of candidate matches returned.
1963 */
1964 unsigned int compute_ideal_endpoint_formats(
1965 QualityProfile privateProfile,
1966 const partition_info& pi,
1967 const image_block& blk,
1968 const endpoints& ep,
1969 const int8_t* qwt_bitcounts,
1970 const float* qwt_errors,
1971 unsigned int tune_candidate_limit,
1972 unsigned int start_block_mode,
1973 unsigned int end_block_mode,
1974 uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS],
1975 int block_mode[TUNE_MAX_TRIAL_CANDIDATES],
1976 quant_method quant_level[TUNE_MAX_TRIAL_CANDIDATES],
1977 quant_method quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES],
1978 compression_working_buffers& tmpbuf);
1979
1980 /**
1981 * @brief For a given 1 plane weight set recompute the endpoint colors.
1982 *
1983 * As we quantize and decimate weights the optimal endpoint colors may change slightly, so we must
1984 * recompute the ideal colors for a specific weight set.
1985 *
1986 * @param blk The image block color data to compress.
1987 * @param pi The partition info for the current trial.
1988 * @param di The weight grid decimation table.
1989 * @param dec_weights_uquant The quantized weight set.
1990 * @param[in,out] ep The color endpoints (modifed in place).
1991 * @param[out] rgbs_vectors The RGB+scale vectors for LDR blocks.
1992 * @param[out] rgbo_vectors The RGB+offset vectors for HDR blocks.
1993 */
1994 void recompute_ideal_colors_1plane(
1995 const image_block& blk,
1996 const partition_info& pi,
1997 const decimation_info& di,
1998 const uint8_t* dec_weights_uquant,
1999 endpoints& ep,
2000 vfloat4 rgbs_vectors[BLOCK_MAX_PARTITIONS],
2001 vfloat4 rgbo_vectors[BLOCK_MAX_PARTITIONS]);
2002
2003 /**
2004 * @brief For a given 2 plane weight set recompute the endpoint colors.
2005 *
2006 * As we quantize and decimate weights the optimal endpoint colors may change slightly, so we must
2007 * recompute the ideal colors for a specific weight set.
2008 *
2009 * @param blk The image block color data to compress.
2010 * @param bsd The block_size descriptor.
2011 * @param di The weight grid decimation table.
2012 * @param dec_weights_uquant_plane1 The quantized weight set for plane 1.
2013 * @param dec_weights_uquant_plane2 The quantized weight set for plane 2.
2014 * @param[in,out] ep The color endpoints (modifed in place).
2015 * @param[out] rgbs_vector The RGB+scale color for LDR blocks.
2016 * @param[out] rgbo_vector The RGB+offset color for HDR blocks.
2017 * @param plane2_component The component assigned to plane 2.
2018 */
2019 void recompute_ideal_colors_2planes(
2020 const image_block& blk,
2021 const block_size_descriptor& bsd,
2022 const decimation_info& di,
2023 const uint8_t* dec_weights_uquant_plane1,
2024 const uint8_t* dec_weights_uquant_plane2,
2025 endpoints& ep,
2026 vfloat4& rgbs_vector,
2027 vfloat4& rgbo_vector,
2028 int plane2_component);
2029
2030 /**
2031 * @brief Expand the angular tables needed for the alternative to PCA that we use.
2032 */
2033 void prepare_angular_tables();
2034
2035 /**
2036 * @brief Compute the angular endpoints for one plane for each block mode.
2037 *
2038 * @param only_always Only consider block modes that are always enabled.
2039 * @param bsd The block size descriptor for the current trial.
2040 * @param dec_weight_ideal_value The ideal decimated unquantized weight values.
2041 * @param max_weight_quant The maximum block mode weight quantization allowed.
2042 * @param[out] tmpbuf Preallocated scratch buffers for the compressor.
2043 */
2044 void compute_angular_endpoints_1plane(
2045 QualityProfile privateProfile,
2046 bool only_always,
2047 const block_size_descriptor& bsd,
2048 const float* dec_weight_ideal_value,
2049 unsigned int max_weight_quant,
2050 compression_working_buffers& tmpbuf);
2051
2052 /**
2053 * @brief Compute the angular endpoints for two planes for each block mode.
2054 *
2055 * @param bsd The block size descriptor for the current trial.
2056 * @param dec_weight_ideal_value The ideal decimated unquantized weight values.
2057 * @param max_weight_quant The maximum block mode weight quantization allowed.
2058 * @param[out] tmpbuf Preallocated scratch buffers for the compressor.
2059 */
2060 void compute_angular_endpoints_2planes(
2061 QualityProfile privateProfile,
2062 const block_size_descriptor& bsd,
2063 const float* dec_weight_ideal_value,
2064 unsigned int max_weight_quant,
2065 compression_working_buffers& tmpbuf);
2066
2067 /* ============================================================================
2068 Functionality for high level compression and decompression access.
2069 ============================================================================ */
2070
2071 /**
2072 * @brief Compress an image block into a physical block.
2073 *
2074 * @param ctx The compressor context and configuration.
2075 * @param blk The image block color data to compress.
2076 * @param[out] pcb The physical compressed block output.
2077 * @param[out] tmpbuf Preallocated scratch buffers for the compressor.
2078 */
2079 void compress_block(
2080 const astcenc_contexti& ctx,
2081 const image_block& blk,
2082 uint8_t pcb[16],
2083 #if QUALITY_CONTROL
2084 compression_working_buffers& tmpbuf,
2085 bool calQualityEnable,
2086 int32_t *mseBlock[RGBA_COM]
2087 #else
2088 compression_working_buffers& tmpbuf
2089 #endif
2090 );
2091
2092 /**
2093 * @brief Decompress a symbolic block in to an image block.
2094 *
2095 * @param decode_mode The decode mode (LDR, HDR, etc).
2096 * @param bsd The block size information.
2097 * @param xpos The X coordinate of the block in the overall image.
2098 * @param ypos The Y coordinate of the block in the overall image.
2099 * @param zpos The Z coordinate of the block in the overall image.
2100 * @param[out] blk The decompressed image block color data.
2101 */
2102 void decompress_symbolic_block(
2103 astcenc_profile decode_mode,
2104 const block_size_descriptor& bsd,
2105 int xpos,
2106 int ypos,
2107 int zpos,
2108 const symbolic_compressed_block& scb,
2109 image_block& blk);
2110
2111 /**
2112 * @brief Compute the error between a symbolic block and the original input data.
2113 *
2114 * This function is specialized for 2 plane and 1 partition search.
2115 *
2116 * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2117 *
2118 * @param config The compressor config.
2119 * @param bsd The block size information.
2120 * @param scb The symbolic compressed encoding.
2121 * @param blk The original image block color data.
2122 *
2123 * @return Returns the computed error, or a negative value if the encoding
2124 * should be rejected for any reason.
2125 */
2126 float compute_symbolic_block_difference_2plane(
2127 const astcenc_config& config,
2128 const block_size_descriptor& bsd,
2129 const symbolic_compressed_block& scb,
2130 const image_block& blk);
2131
2132 /**
2133 * @brief Compute the error between a symbolic block and the original input data.
2134 *
2135 * This function is specialized for 1 plane and N partition search.
2136 *
2137 * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2138 *
2139 * @param config The compressor config.
2140 * @param bsd The block size information.
2141 * @param scb The symbolic compressed encoding.
2142 * @param blk The original image block color data.
2143 *
2144 * @return Returns the computed error, or a negative value if the encoding
2145 * should be rejected for any reason.
2146 */
2147 float compute_symbolic_block_difference_1plane(
2148 const astcenc_config& config,
2149 const block_size_descriptor& bsd,
2150 const symbolic_compressed_block& scb,
2151 const image_block& blk);
2152
2153 /**
2154 * @brief Compute the error between a symbolic block and the original input data.
2155 *
2156 * This function is specialized for 1 plane and 1 partition search.
2157 *
2158 * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2159 *
2160 * @param config The compressor config.
2161 * @param bsd The block size information.
2162 * @param scb The symbolic compressed encoding.
2163 * @param blk The original image block color data.
2164 *
2165 * @return Returns the computed error, or a negative value if the encoding
2166 * should be rejected for any reason.
2167 */
2168 float compute_symbolic_block_difference_1plane_1partition(
2169 const astcenc_config& config,
2170 const block_size_descriptor& bsd,
2171 const symbolic_compressed_block& scb,
2172 const image_block& blk);
2173
2174 /**
2175 * @brief Convert a symbolic representation into a binary physical encoding.
2176 *
2177 * It is assumed that the symbolic encoding is valid and encodable, or
2178 * previously flagged as an error block if an error color it to be encoded.
2179 *
2180 * @param bsd The block size information.
2181 * @param scb The symbolic representation.
2182 * @param[out] pcb The physical compressed block output.
2183 */
2184 void symbolic_to_physical(
2185 const block_size_descriptor& bsd,
2186 const symbolic_compressed_block& scb,
2187 uint8_t pcb[16]);
2188
2189 /**
2190 * @brief Convert a binary physical encoding into a symbolic representation.
2191 *
2192 * This function can cope with arbitrary input data; output blocks will be
2193 * flagged as an error block if the encoding is invalid.
2194 *
2195 * @param bsd The block size information.
2196 * @param pcb The physical compresesd block input.
2197 * @param[out] scb The output symbolic representation.
2198 */
2199 void physical_to_symbolic(
2200 const block_size_descriptor& bsd,
2201 const uint8_t pcb[16],
2202 symbolic_compressed_block& scb);
2203
2204 /* ============================================================================
2205 Platform-specific functions.
2206 ============================================================================ */
2207 /**
2208 * @brief Allocate an aligned memory buffer.
2209 *
2210 * Allocated memory must be freed by aligned_free.
2211 *
2212 * @param size The desired buffer size.
2213 * @param align The desired buffer alignment; must be 2^N, may be increased
2214 * by the implementation to a minimum allowable alignment.
2215 *
2216 * @return The memory buffer pointer or nullptr on allocation failure.
2217 */
2218 template<typename T>
aligned_malloc(size_t size, size_t align)2219 T* aligned_malloc(size_t size, size_t align)
2220 {
2221 void* ptr;
2222 int error = 0;
2223
2224 // Don't allow this to under-align a type
2225 size_t min_align = astc::max(alignof(T), sizeof(void*));
2226 size_t real_align = astc::max(min_align, align);
2227
2228 #if defined(_WIN32)
2229 ptr = _aligned_malloc(size, real_align);
2230 #else
2231 error = posix_memalign(&ptr, real_align, size);
2232 #endif
2233
2234 if (error || (!ptr))
2235 {
2236 return nullptr;
2237 }
2238
2239 return static_cast<T*>(ptr);
2240 }
2241
2242 /**
2243 * @brief Free an aligned memory buffer.
2244 *
2245 * @param ptr The buffer to free.
2246 */
2247 template<typename T>
aligned_free(T* ptr)2248 void aligned_free(T* ptr)
2249 {
2250 #if defined(_WIN32)
2251 _aligned_free(ptr);
2252 #else
2253 free(ptr);
2254 #endif
2255 }
2256
2257 #ifdef ASTC_CUSTOMIZED_ENABLE
2258 #ifdef BUILD_HMOS_SDK
2259 #if defined(_WIN32) && !defined(__CYGWIN__)
2260 const LPCSTR g_astcCustomizedSo = "../../hms/toolchains/lib/libastcCustomizedEncode.dll";
2261 #elif defined(__APPLE__)
2262 const std::string g_astcCustomizedSo = "../../hms/toolchains/lib/libastcCustomizedEncode.dylib";
2263 #else
2264 const std::string g_astcCustomizedSo = "../../hms/toolchains/lib/libastcCustomizedEncode.so";
2265 #endif
2266 #else
2267 const std::string g_astcCustomizedSo = "/system/lib64/module/hms/graphic/libastcCustomizedEncode.z.so";
2268 #endif
2269 using IsCustomizedBlockMode = bool (*)(const int);
2270 using CustomizedMaxPartitions = int (*)();
2271 using CustomizedBlockMode = int (*)();
2272
2273 class AstcCustomizedSoManager
2274 {
2275 public:
AstcCustomizedSoManager()2276 AstcCustomizedSoManager()
2277 {
2278 astcCustomizedSoOpened_ = false;
2279 astcCustomizedSoHandle_ = nullptr;
2280 isCustomizedBlockModeFunc_ = nullptr;
2281 customizedMaxPartitionsFunc_ = nullptr;
2282 customizedBlockModeFunc_ = nullptr;
2283 }
~AstcCustomizedSoManager()2284 ~AstcCustomizedSoManager()
2285 {
2286 if (!astcCustomizedSoOpened_ || astcCustomizedSoHandle_ == nullptr)
2287 {
2288 printf("astcenc customized so is not be opened when dlclose!\n");
2289 return;
2290 }
2291 #if defined(_WIN32) && !defined(__CYGWIN__)
2292 if (!FreeLibrary(astcCustomizedSoHandle_))
2293 {
2294 printf("astc dll FreeLibrary failed: %s\n", g_astcCustomizedSo);
2295 }
2296 #else
2297 if (dlclose(astcCustomizedSoHandle_) != 0)
2298 {
2299 printf("astcenc so dlclose failed: %s\n", g_astcCustomizedSo.c_str());
2300 }
2301 #endif
2302 }
2303 IsCustomizedBlockMode isCustomizedBlockModeFunc_;
2304 CustomizedMaxPartitions customizedMaxPartitionsFunc_;
2305 CustomizedBlockMode customizedBlockModeFunc_;
LoadSutCustomizedSo()2306 bool LoadSutCustomizedSo()
2307 {
2308 if (!astcCustomizedSoOpened_)
2309 {
2310 #if defined(_WIN32) && !defined(__CYGWIN__)
2311 if ((_access(g_astcCustomizedSo, 0) == -1))
2312 {
2313 printf("astc customized dll(%s) is not found!\n", g_astcCustomizedSo);
2314 return false;
2315 }
2316 astcCustomizedSoHandle_ = LoadLibrary(g_astcCustomizedSo);
2317 if (astcCustomizedSoHandle_ == nullptr)
2318 {
2319 printf("astc libAstcCustomizedEnc LoadLibrary failed!\n");
2320 return false;
2321 }
2322 isCustomizedBlockModeFunc_ =
2323 reinterpret_cast<IsCustomizedBlockMode>(GetProcAddress(astcCustomizedSoHandle_,
2324 "IsCustomizedBlockMode"));
2325 if (isCustomizedBlockModeFunc_ == nullptr)
2326 {
2327 printf("astc isCustomizedBlockModeFunc_ GetProcAddress failed!\n");
2328 if (!FreeLibrary(astcCustomizedSoHandle_))
2329 {
2330 printf("astc isCustomizedBlockModeFunc_ FreeLibrary failed!\n");
2331 }
2332 return false;
2333 }
2334 customizedMaxPartitionsFunc_ =
2335 reinterpret_cast<CustomizedMaxPartitions>(GetProcAddress(astcCustomizedSoHandle_,
2336 "CustomizedMaxPartitions"));
2337 if (customizedMaxPartitionsFunc_ == nullptr)
2338 {
2339 printf("astc customizedMaxPartitionsFunc_ GetProcAddress failed!\n");
2340 if (!FreeLibrary(astcCustomizedSoHandle_))
2341 {
2342 printf("astc customizedMaxPartitionsFunc_ FreeLibrary failed!\n");
2343 }
2344 return false;
2345 }
2346 customizedBlockModeFunc_ =
2347 reinterpret_cast<CustomizedBlockMode>(GetProcAddress(astcCustomizedSoHandle_,
2348 "CustomizedBlockMode"));
2349 if (customizedBlockModeFunc_ == nullptr)
2350 {
2351 printf("astc customizedBlockModeFunc_ GetProcAddress failed!\n");
2352 if (!FreeLibrary(astcCustomizedSoHandle_))
2353 {
2354 printf("astc customizedBlockModeFunc_ FreeLibrary failed!\n");
2355 }
2356 return false;
2357 }
2358 printf("astcenc customized dll load success: %s!\n", g_astcCustomizedSo);
2359 #else
2360 if (access(g_astcCustomizedSo.c_str(), F_OK) == -1)
2361 {
2362 printf("astc customized so(%s) is not found!\n", g_astcCustomizedSo.c_str());
2363 return false;
2364 }
2365 astcCustomizedSoHandle_ = dlopen(g_astcCustomizedSo.c_str(), 1);
2366 if (astcCustomizedSoHandle_ == nullptr)
2367 {
2368 printf("astc libAstcCustomizedEnc dlopen failed!\n");
2369 return false;
2370 }
2371 isCustomizedBlockModeFunc_ =
2372 reinterpret_cast<IsCustomizedBlockMode>(dlsym(astcCustomizedSoHandle_,
2373 "IsCustomizedBlockMode"));
2374 if (isCustomizedBlockModeFunc_ == nullptr)
2375 {
2376 printf("astc isCustomizedBlockModeFunc_ dlsym failed!\n");
2377 dlclose(astcCustomizedSoHandle_);
2378 astcCustomizedSoHandle_ = nullptr;
2379 return false;
2380 }
2381 customizedMaxPartitionsFunc_ =
2382 reinterpret_cast<CustomizedMaxPartitions>(dlsym(astcCustomizedSoHandle_,
2383 "CustomizedMaxPartitions"));
2384 if (customizedMaxPartitionsFunc_ == nullptr)
2385 {
2386 printf("astc customizedMaxPartitionsFunc_ dlsym failed!\n");
2387 dlclose(astcCustomizedSoHandle_);
2388 astcCustomizedSoHandle_ = nullptr;
2389 return false;
2390 }
2391 customizedBlockModeFunc_ =
2392 reinterpret_cast<CustomizedBlockMode>(dlsym(astcCustomizedSoHandle_,
2393 "CustomizedBlockMode"));
2394 if (customizedBlockModeFunc_ == nullptr)
2395 {
2396 printf("astc customizedBlockModeFunc_ dlsym failed!\n");
2397 dlclose(astcCustomizedSoHandle_);
2398 astcCustomizedSoHandle_ = nullptr;
2399 return false;
2400 }
2401 printf("astcenc customized so dlopen success: %s\n", g_astcCustomizedSo.c_str());
2402 #endif
2403 astcCustomizedSoOpened_ = true;
2404 }
2405 return true;
2406 }
2407 private:
2408 bool astcCustomizedSoOpened_;
2409 #if defined(_WIN32) && !defined(__CYGWIN__)
2410 HINSTANCE astcCustomizedSoHandle_;
2411 #else
2412 void *astcCustomizedSoHandle_;
2413 #endif
2414 };
2415 extern AstcCustomizedSoManager g_astcCustomizedSoManager;
2416 #endif
2417
2418 #endif
2419