1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3 *
4 * Copyright (c) 2017 - 2019, Intel Corporation.
5 */
6
7 #define pr_fmt(fmt) "MPTCP: " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 struct mptcp_sock msk;
35 struct ipv6_pinfo np;
36 };
37 #endif
38
39 enum {
40 MPTCP_CMSG_TS = BIT(0),
41 MPTCP_CMSG_INQ = BIT(1),
42 };
43
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51
52 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock *msk)53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 return READ_ONCE(msk->wnd_end);
56 }
57
mptcp_is_tcpsk(struct sock *sk)58 static bool mptcp_is_tcpsk(struct sock *sk)
59 {
60 struct socket *sock = sk->sk_socket;
61
62 if (unlikely(sk->sk_prot == &tcp_prot)) {
63 /* we are being invoked after mptcp_accept() has
64 * accepted a non-mp-capable flow: sk is a tcp_sk,
65 * not an mptcp one.
66 *
67 * Hand the socket over to tcp so all further socket ops
68 * bypass mptcp.
69 */
70 WRITE_ONCE(sock->ops, &inet_stream_ops);
71 return true;
72 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
73 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
74 WRITE_ONCE(sock->ops, &inet6_stream_ops);
75 return true;
76 #endif
77 }
78
79 return false;
80 }
81
__mptcp_socket_create(struct mptcp_sock *msk)82 static int __mptcp_socket_create(struct mptcp_sock *msk)
83 {
84 struct mptcp_subflow_context *subflow;
85 struct sock *sk = (struct sock *)msk;
86 struct socket *ssock;
87 int err;
88
89 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
90 if (err)
91 return err;
92
93 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
94 WRITE_ONCE(msk->first, ssock->sk);
95 subflow = mptcp_subflow_ctx(ssock->sk);
96 list_add(&subflow->node, &msk->conn_list);
97 sock_hold(ssock->sk);
98 subflow->request_mptcp = 1;
99 subflow->subflow_id = msk->subflow_id++;
100
101 /* This is the first subflow, always with id 0 */
102 WRITE_ONCE(subflow->local_id, 0);
103 mptcp_sock_graft(msk->first, sk->sk_socket);
104 iput(SOCK_INODE(ssock));
105
106 return 0;
107 }
108
109 /* If the MPC handshake is not started, returns the first subflow,
110 * eventually allocating it.
111 */
__mptcp_nmpc_sk(struct mptcp_sock *msk)112 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
113 {
114 struct sock *sk = (struct sock *)msk;
115 int ret;
116
117 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
118 return ERR_PTR(-EINVAL);
119
120 if (!msk->first) {
121 ret = __mptcp_socket_create(msk);
122 if (ret)
123 return ERR_PTR(ret);
124
125 mptcp_sockopt_sync(msk, msk->first);
126 }
127
128 return msk->first;
129 }
130
mptcp_drop(struct sock *sk, struct sk_buff *skb)131 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
132 {
133 sk_drops_add(sk, skb);
134 __kfree_skb(skb);
135 }
136
mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)137 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
138 {
139 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
140 mptcp_sk(sk)->rmem_fwd_alloc + size);
141 }
142
mptcp_rmem_charge(struct sock *sk, int size)143 static void mptcp_rmem_charge(struct sock *sk, int size)
144 {
145 mptcp_rmem_fwd_alloc_add(sk, -size);
146 }
147
mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, struct sk_buff *from)148 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
149 struct sk_buff *from)
150 {
151 bool fragstolen;
152 int delta;
153
154 if (MPTCP_SKB_CB(from)->offset ||
155 !skb_try_coalesce(to, from, &fragstolen, &delta))
156 return false;
157
158 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
159 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
160 to->len, MPTCP_SKB_CB(from)->end_seq);
161 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
162
163 /* note the fwd memory can reach a negative value after accounting
164 * for the delta, but the later skb free will restore a non
165 * negative one
166 */
167 atomic_add(delta, &sk->sk_rmem_alloc);
168 mptcp_rmem_charge(sk, delta);
169 kfree_skb_partial(from, fragstolen);
170
171 return true;
172 }
173
mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, struct sk_buff *from)174 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
175 struct sk_buff *from)
176 {
177 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
178 return false;
179
180 return mptcp_try_coalesce((struct sock *)msk, to, from);
181 }
182
__mptcp_rmem_reclaim(struct sock *sk, int amount)183 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
184 {
185 amount >>= PAGE_SHIFT;
186 mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
187 __sk_mem_reduce_allocated(sk, amount);
188 }
189
mptcp_rmem_uncharge(struct sock *sk, int size)190 static void mptcp_rmem_uncharge(struct sock *sk, int size)
191 {
192 struct mptcp_sock *msk = mptcp_sk(sk);
193 int reclaimable;
194
195 mptcp_rmem_fwd_alloc_add(sk, size);
196 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
197
198 /* see sk_mem_uncharge() for the rationale behind the following schema */
199 if (unlikely(reclaimable >= PAGE_SIZE))
200 __mptcp_rmem_reclaim(sk, reclaimable);
201 }
202
mptcp_rfree(struct sk_buff *skb)203 static void mptcp_rfree(struct sk_buff *skb)
204 {
205 unsigned int len = skb->truesize;
206 struct sock *sk = skb->sk;
207
208 atomic_sub(len, &sk->sk_rmem_alloc);
209 mptcp_rmem_uncharge(sk, len);
210 }
211
mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)212 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
213 {
214 skb_orphan(skb);
215 skb->sk = sk;
216 skb->destructor = mptcp_rfree;
217 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
218 mptcp_rmem_charge(sk, skb->truesize);
219 }
220
221 /* "inspired" by tcp_data_queue_ofo(), main differences:
222 * - use mptcp seqs
223 * - don't cope with sacks
224 */
mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)225 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
226 {
227 struct sock *sk = (struct sock *)msk;
228 struct rb_node **p, *parent;
229 u64 seq, end_seq, max_seq;
230 struct sk_buff *skb1;
231
232 seq = MPTCP_SKB_CB(skb)->map_seq;
233 end_seq = MPTCP_SKB_CB(skb)->end_seq;
234 max_seq = atomic64_read(&msk->rcv_wnd_sent);
235
236 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
237 RB_EMPTY_ROOT(&msk->out_of_order_queue));
238 if (after64(end_seq, max_seq)) {
239 /* out of window */
240 mptcp_drop(sk, skb);
241 pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
242 (unsigned long long)end_seq - (unsigned long)max_seq,
243 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
245 return;
246 }
247
248 p = &msk->out_of_order_queue.rb_node;
249 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
250 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
251 rb_link_node(&skb->rbnode, NULL, p);
252 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
253 msk->ooo_last_skb = skb;
254 goto end;
255 }
256
257 /* with 2 subflows, adding at end of ooo queue is quite likely
258 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
259 */
260 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
261 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
262 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
263 return;
264 }
265
266 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
267 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
268 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
269 parent = &msk->ooo_last_skb->rbnode;
270 p = &parent->rb_right;
271 goto insert;
272 }
273
274 /* Find place to insert this segment. Handle overlaps on the way. */
275 parent = NULL;
276 while (*p) {
277 parent = *p;
278 skb1 = rb_to_skb(parent);
279 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
280 p = &parent->rb_left;
281 continue;
282 }
283 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
284 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
285 /* All the bits are present. Drop. */
286 mptcp_drop(sk, skb);
287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
288 return;
289 }
290 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
291 /* partial overlap:
292 * | skb |
293 * | skb1 |
294 * continue traversing
295 */
296 } else {
297 /* skb's seq == skb1's seq and skb covers skb1.
298 * Replace skb1 with skb.
299 */
300 rb_replace_node(&skb1->rbnode, &skb->rbnode,
301 &msk->out_of_order_queue);
302 mptcp_drop(sk, skb1);
303 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
304 goto merge_right;
305 }
306 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
307 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
308 return;
309 }
310 p = &parent->rb_right;
311 }
312
313 insert:
314 /* Insert segment into RB tree. */
315 rb_link_node(&skb->rbnode, parent, p);
316 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
317
318 merge_right:
319 /* Remove other segments covered by skb. */
320 while ((skb1 = skb_rb_next(skb)) != NULL) {
321 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
322 break;
323 rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
324 mptcp_drop(sk, skb1);
325 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
326 }
327 /* If there is no skb after us, we are the last_skb ! */
328 if (!skb1)
329 msk->ooo_last_skb = skb;
330
331 end:
332 skb_condense(skb);
333 mptcp_set_owner_r(skb, sk);
334 }
335
mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)336 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
337 {
338 struct mptcp_sock *msk = mptcp_sk(sk);
339 int amt, amount;
340
341 if (size <= msk->rmem_fwd_alloc)
342 return true;
343
344 size -= msk->rmem_fwd_alloc;
345 amt = sk_mem_pages(size);
346 amount = amt << PAGE_SHIFT;
347 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
348 return false;
349
350 mptcp_rmem_fwd_alloc_add(sk, amount);
351 return true;
352 }
353
__mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, struct sk_buff *skb, unsigned int offset, size_t copy_len)354 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
355 struct sk_buff *skb, unsigned int offset,
356 size_t copy_len)
357 {
358 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
359 struct sock *sk = (struct sock *)msk;
360 struct sk_buff *tail;
361 bool has_rxtstamp;
362
363 __skb_unlink(skb, &ssk->sk_receive_queue);
364
365 skb_ext_reset(skb);
366 skb_orphan(skb);
367
368 /* try to fetch required memory from subflow */
369 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
370 goto drop;
371
372 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
373
374 /* the skb map_seq accounts for the skb offset:
375 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
376 * value
377 */
378 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
379 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
380 MPTCP_SKB_CB(skb)->offset = offset;
381 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
382
383 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
384 /* in sequence */
385 msk->bytes_received += copy_len;
386 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
387 tail = skb_peek_tail(&sk->sk_receive_queue);
388 if (tail && mptcp_try_coalesce(sk, tail, skb))
389 return true;
390
391 mptcp_set_owner_r(skb, sk);
392 __skb_queue_tail(&sk->sk_receive_queue, skb);
393 return true;
394 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
395 mptcp_data_queue_ofo(msk, skb);
396 return false;
397 }
398
399 /* old data, keep it simple and drop the whole pkt, sender
400 * will retransmit as needed, if needed.
401 */
402 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
403 drop:
404 mptcp_drop(sk, skb);
405 return false;
406 }
407
mptcp_stop_rtx_timer(struct sock *sk)408 static void mptcp_stop_rtx_timer(struct sock *sk)
409 {
410 struct inet_connection_sock *icsk = inet_csk(sk);
411
412 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
413 mptcp_sk(sk)->timer_ival = 0;
414 }
415
mptcp_close_wake_up(struct sock *sk)416 static void mptcp_close_wake_up(struct sock *sk)
417 {
418 if (sock_flag(sk, SOCK_DEAD))
419 return;
420
421 sk->sk_state_change(sk);
422 if (sk->sk_shutdown == SHUTDOWN_MASK ||
423 sk->sk_state == TCP_CLOSE)
424 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
425 else
426 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
427 }
428
mptcp_pending_data_fin_ack(struct sock *sk)429 static bool mptcp_pending_data_fin_ack(struct sock *sk)
430 {
431 struct mptcp_sock *msk = mptcp_sk(sk);
432
433 return ((1 << sk->sk_state) &
434 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
435 msk->write_seq == READ_ONCE(msk->snd_una);
436 }
437
mptcp_check_data_fin_ack(struct sock *sk)438 static void mptcp_check_data_fin_ack(struct sock *sk)
439 {
440 struct mptcp_sock *msk = mptcp_sk(sk);
441
442 /* Look for an acknowledged DATA_FIN */
443 if (mptcp_pending_data_fin_ack(sk)) {
444 WRITE_ONCE(msk->snd_data_fin_enable, 0);
445
446 switch (sk->sk_state) {
447 case TCP_FIN_WAIT1:
448 mptcp_set_state(sk, TCP_FIN_WAIT2);
449 break;
450 case TCP_CLOSING:
451 case TCP_LAST_ACK:
452 mptcp_set_state(sk, TCP_CLOSE);
453 break;
454 }
455
456 mptcp_close_wake_up(sk);
457 }
458 }
459
mptcp_pending_data_fin(struct sock *sk, u64 *seq)460 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
461 {
462 struct mptcp_sock *msk = mptcp_sk(sk);
463
464 if (READ_ONCE(msk->rcv_data_fin) &&
465 ((1 << sk->sk_state) &
466 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
467 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
468
469 if (msk->ack_seq == rcv_data_fin_seq) {
470 if (seq)
471 *seq = rcv_data_fin_seq;
472
473 return true;
474 }
475 }
476
477 return false;
478 }
479
mptcp_set_datafin_timeout(struct sock *sk)480 static void mptcp_set_datafin_timeout(struct sock *sk)
481 {
482 struct inet_connection_sock *icsk = inet_csk(sk);
483 u32 retransmits;
484
485 retransmits = min_t(u32, icsk->icsk_retransmits,
486 ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
487
488 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
489 }
490
__mptcp_set_timeout(struct sock *sk, long tout)491 static void __mptcp_set_timeout(struct sock *sk, long tout)
492 {
493 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
494 }
495
mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)496 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
497 {
498 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
499
500 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
501 inet_csk(ssk)->icsk_timeout - jiffies : 0;
502 }
503
mptcp_set_timeout(struct sock *sk)504 static void mptcp_set_timeout(struct sock *sk)
505 {
506 struct mptcp_subflow_context *subflow;
507 long tout = 0;
508
509 mptcp_for_each_subflow(mptcp_sk(sk), subflow)
510 tout = max(tout, mptcp_timeout_from_subflow(subflow));
511 __mptcp_set_timeout(sk, tout);
512 }
513
tcp_can_send_ack(const struct sock *ssk)514 static inline bool tcp_can_send_ack(const struct sock *ssk)
515 {
516 return !((1 << inet_sk_state_load(ssk)) &
517 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
518 }
519
__mptcp_subflow_send_ack(struct sock *ssk)520 void __mptcp_subflow_send_ack(struct sock *ssk)
521 {
522 if (tcp_can_send_ack(ssk))
523 tcp_send_ack(ssk);
524 }
525
mptcp_subflow_send_ack(struct sock *ssk)526 static void mptcp_subflow_send_ack(struct sock *ssk)
527 {
528 bool slow;
529
530 slow = lock_sock_fast(ssk);
531 __mptcp_subflow_send_ack(ssk);
532 unlock_sock_fast(ssk, slow);
533 }
534
mptcp_send_ack(struct mptcp_sock *msk)535 static void mptcp_send_ack(struct mptcp_sock *msk)
536 {
537 struct mptcp_subflow_context *subflow;
538
539 mptcp_for_each_subflow(msk, subflow)
540 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
541 }
542
mptcp_subflow_cleanup_rbuf(struct sock *ssk)543 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
544 {
545 bool slow;
546
547 slow = lock_sock_fast(ssk);
548 if (tcp_can_send_ack(ssk))
549 tcp_cleanup_rbuf(ssk, 1);
550 unlock_sock_fast(ssk, slow);
551 }
552
mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)553 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
554 {
555 const struct inet_connection_sock *icsk = inet_csk(ssk);
556 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
557 const struct tcp_sock *tp = tcp_sk(ssk);
558
559 return (ack_pending & ICSK_ACK_SCHED) &&
560 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
561 READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
562 (rx_empty && ack_pending &
563 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
564 }
565
mptcp_cleanup_rbuf(struct mptcp_sock *msk)566 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
567 {
568 int old_space = READ_ONCE(msk->old_wspace);
569 struct mptcp_subflow_context *subflow;
570 struct sock *sk = (struct sock *)msk;
571 int space = __mptcp_space(sk);
572 bool cleanup, rx_empty;
573
574 cleanup = (space > 0) && (space >= (old_space << 1));
575 rx_empty = !__mptcp_rmem(sk);
576
577 mptcp_for_each_subflow(msk, subflow) {
578 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
579
580 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
581 mptcp_subflow_cleanup_rbuf(ssk);
582 }
583 }
584
mptcp_check_data_fin(struct sock *sk)585 static bool mptcp_check_data_fin(struct sock *sk)
586 {
587 struct mptcp_sock *msk = mptcp_sk(sk);
588 u64 rcv_data_fin_seq;
589 bool ret = false;
590
591 /* Need to ack a DATA_FIN received from a peer while this side
592 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
593 * msk->rcv_data_fin was set when parsing the incoming options
594 * at the subflow level and the msk lock was not held, so this
595 * is the first opportunity to act on the DATA_FIN and change
596 * the msk state.
597 *
598 * If we are caught up to the sequence number of the incoming
599 * DATA_FIN, send the DATA_ACK now and do state transition. If
600 * not caught up, do nothing and let the recv code send DATA_ACK
601 * when catching up.
602 */
603
604 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
605 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
606 WRITE_ONCE(msk->rcv_data_fin, 0);
607
608 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
609 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
610
611 switch (sk->sk_state) {
612 case TCP_ESTABLISHED:
613 mptcp_set_state(sk, TCP_CLOSE_WAIT);
614 break;
615 case TCP_FIN_WAIT1:
616 mptcp_set_state(sk, TCP_CLOSING);
617 break;
618 case TCP_FIN_WAIT2:
619 mptcp_set_state(sk, TCP_CLOSE);
620 break;
621 default:
622 /* Other states not expected */
623 WARN_ON_ONCE(1);
624 break;
625 }
626
627 ret = true;
628 if (!__mptcp_check_fallback(msk))
629 mptcp_send_ack(msk);
630 mptcp_close_wake_up(sk);
631 }
632 return ret;
633 }
634
__mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, struct sock *ssk, unsigned int *bytes)635 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
636 struct sock *ssk,
637 unsigned int *bytes)
638 {
639 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
640 struct sock *sk = (struct sock *)msk;
641 unsigned int moved = 0;
642 bool more_data_avail;
643 struct tcp_sock *tp;
644 bool done = false;
645 int sk_rbuf;
646
647 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
648
649 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
650 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
651
652 if (unlikely(ssk_rbuf > sk_rbuf)) {
653 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
654 sk_rbuf = ssk_rbuf;
655 }
656 }
657
658 pr_debug("msk=%p ssk=%p", msk, ssk);
659 tp = tcp_sk(ssk);
660 do {
661 u32 map_remaining, offset;
662 u32 seq = tp->copied_seq;
663 struct sk_buff *skb;
664 bool fin;
665
666 /* try to move as much data as available */
667 map_remaining = subflow->map_data_len -
668 mptcp_subflow_get_map_offset(subflow);
669
670 skb = skb_peek(&ssk->sk_receive_queue);
671 if (!skb) {
672 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
673 * a different CPU can have already processed the pending
674 * data, stop here or we can enter an infinite loop
675 */
676 if (!moved)
677 done = true;
678 break;
679 }
680
681 if (__mptcp_check_fallback(msk)) {
682 /* Under fallback skbs have no MPTCP extension and TCP could
683 * collapse them between the dummy map creation and the
684 * current dequeue. Be sure to adjust the map size.
685 */
686 map_remaining = skb->len;
687 subflow->map_data_len = skb->len;
688 }
689
690 offset = seq - TCP_SKB_CB(skb)->seq;
691 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
692 if (fin) {
693 done = true;
694 seq++;
695 }
696
697 if (offset < skb->len) {
698 size_t len = skb->len - offset;
699
700 if (tp->urg_data)
701 done = true;
702
703 if (__mptcp_move_skb(msk, ssk, skb, offset, len))
704 moved += len;
705 seq += len;
706
707 if (WARN_ON_ONCE(map_remaining < len))
708 break;
709 } else {
710 WARN_ON_ONCE(!fin);
711 sk_eat_skb(ssk, skb);
712 done = true;
713 }
714
715 WRITE_ONCE(tp->copied_seq, seq);
716 more_data_avail = mptcp_subflow_data_available(ssk);
717
718 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
719 done = true;
720 break;
721 }
722 } while (more_data_avail);
723
724 *bytes += moved;
725 return done;
726 }
727
__mptcp_ofo_queue(struct mptcp_sock *msk)728 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
729 {
730 struct sock *sk = (struct sock *)msk;
731 struct sk_buff *skb, *tail;
732 bool moved = false;
733 struct rb_node *p;
734 u64 end_seq;
735
736 p = rb_first(&msk->out_of_order_queue);
737 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
738 while (p) {
739 skb = rb_to_skb(p);
740 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
741 break;
742
743 p = rb_next(p);
744 rb_erase(&skb->rbnode, &msk->out_of_order_queue);
745
746 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
747 msk->ack_seq))) {
748 mptcp_drop(sk, skb);
749 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
750 continue;
751 }
752
753 end_seq = MPTCP_SKB_CB(skb)->end_seq;
754 tail = skb_peek_tail(&sk->sk_receive_queue);
755 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
756 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
757
758 /* skip overlapping data, if any */
759 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
760 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
761 delta);
762 MPTCP_SKB_CB(skb)->offset += delta;
763 MPTCP_SKB_CB(skb)->map_seq += delta;
764 __skb_queue_tail(&sk->sk_receive_queue, skb);
765 }
766 msk->bytes_received += end_seq - msk->ack_seq;
767 msk->ack_seq = end_seq;
768 moved = true;
769 }
770 return moved;
771 }
772
__mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)773 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
774 {
775 int err = sock_error(ssk);
776 int ssk_state;
777
778 if (!err)
779 return false;
780
781 /* only propagate errors on fallen-back sockets or
782 * on MPC connect
783 */
784 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
785 return false;
786
787 /* We need to propagate only transition to CLOSE state.
788 * Orphaned socket will see such state change via
789 * subflow_sched_work_if_closed() and that path will properly
790 * destroy the msk as needed.
791 */
792 ssk_state = inet_sk_state_load(ssk);
793 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
794 mptcp_set_state(sk, ssk_state);
795 WRITE_ONCE(sk->sk_err, -err);
796
797 /* This barrier is coupled with smp_rmb() in mptcp_poll() */
798 smp_wmb();
799 sk_error_report(sk);
800 return true;
801 }
802
__mptcp_error_report(struct sock *sk)803 void __mptcp_error_report(struct sock *sk)
804 {
805 struct mptcp_subflow_context *subflow;
806 struct mptcp_sock *msk = mptcp_sk(sk);
807
808 mptcp_for_each_subflow(msk, subflow)
809 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
810 break;
811 }
812
813 /* In most cases we will be able to lock the mptcp socket. If its already
814 * owned, we need to defer to the work queue to avoid ABBA deadlock.
815 */
move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)816 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
817 {
818 struct sock *sk = (struct sock *)msk;
819 unsigned int moved = 0;
820
821 __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
822 __mptcp_ofo_queue(msk);
823 if (unlikely(ssk->sk_err)) {
824 if (!sock_owned_by_user(sk))
825 __mptcp_error_report(sk);
826 else
827 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
828 }
829
830 /* If the moves have caught up with the DATA_FIN sequence number
831 * it's time to ack the DATA_FIN and change socket state, but
832 * this is not a good place to change state. Let the workqueue
833 * do it.
834 */
835 if (mptcp_pending_data_fin(sk, NULL))
836 mptcp_schedule_work(sk);
837 return moved > 0;
838 }
839
mptcp_data_ready(struct sock *sk, struct sock *ssk)840 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
841 {
842 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
843 struct mptcp_sock *msk = mptcp_sk(sk);
844 int sk_rbuf, ssk_rbuf;
845
846 /* The peer can send data while we are shutting down this
847 * subflow at msk destruction time, but we must avoid enqueuing
848 * more data to the msk receive queue
849 */
850 if (unlikely(subflow->disposable))
851 return;
852
853 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
854 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
855 if (unlikely(ssk_rbuf > sk_rbuf))
856 sk_rbuf = ssk_rbuf;
857
858 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/
859 if (__mptcp_rmem(sk) > sk_rbuf) {
860 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
861 return;
862 }
863
864 /* Wake-up the reader only for in-sequence data */
865 mptcp_data_lock(sk);
866 if (move_skbs_to_msk(msk, ssk))
867 sk->sk_data_ready(sk);
868
869 mptcp_data_unlock(sk);
870 }
871
mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)872 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
873 {
874 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
875 WRITE_ONCE(msk->allow_infinite_fallback, false);
876 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
877 }
878
__mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)879 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
880 {
881 struct sock *sk = (struct sock *)msk;
882
883 if (sk->sk_state != TCP_ESTABLISHED)
884 return false;
885
886 /* attach to msk socket only after we are sure we will deal with it
887 * at close time
888 */
889 if (sk->sk_socket && !ssk->sk_socket)
890 mptcp_sock_graft(ssk, sk->sk_socket);
891
892 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
893 mptcp_sockopt_sync_locked(msk, ssk);
894 mptcp_subflow_joined(msk, ssk);
895 mptcp_stop_tout_timer(sk);
896 __mptcp_propagate_sndbuf(sk, ssk);
897 return true;
898 }
899
__mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)900 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
901 {
902 struct mptcp_subflow_context *tmp, *subflow;
903 struct mptcp_sock *msk = mptcp_sk(sk);
904
905 list_for_each_entry_safe(subflow, tmp, join_list, node) {
906 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
907 bool slow = lock_sock_fast(ssk);
908
909 list_move_tail(&subflow->node, &msk->conn_list);
910 if (!__mptcp_finish_join(msk, ssk))
911 mptcp_subflow_reset(ssk);
912 unlock_sock_fast(ssk, slow);
913 }
914 }
915
mptcp_rtx_timer_pending(struct sock *sk)916 static bool mptcp_rtx_timer_pending(struct sock *sk)
917 {
918 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
919 }
920
mptcp_reset_rtx_timer(struct sock *sk)921 static void mptcp_reset_rtx_timer(struct sock *sk)
922 {
923 struct inet_connection_sock *icsk = inet_csk(sk);
924 unsigned long tout;
925
926 /* prevent rescheduling on close */
927 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
928 return;
929
930 tout = mptcp_sk(sk)->timer_ival;
931 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
932 }
933
mptcp_schedule_work(struct sock *sk)934 bool mptcp_schedule_work(struct sock *sk)
935 {
936 if (inet_sk_state_load(sk) != TCP_CLOSE &&
937 schedule_work(&mptcp_sk(sk)->work)) {
938 /* each subflow already holds a reference to the sk, and the
939 * workqueue is invoked by a subflow, so sk can't go away here.
940 */
941 sock_hold(sk);
942 return true;
943 }
944 return false;
945 }
946
mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)947 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
948 {
949 struct mptcp_subflow_context *subflow;
950
951 msk_owned_by_me(msk);
952
953 mptcp_for_each_subflow(msk, subflow) {
954 if (READ_ONCE(subflow->data_avail))
955 return mptcp_subflow_tcp_sock(subflow);
956 }
957
958 return NULL;
959 }
960
mptcp_skb_can_collapse_to(u64 write_seq, const struct sk_buff *skb, const struct mptcp_ext *mpext)961 static bool mptcp_skb_can_collapse_to(u64 write_seq,
962 const struct sk_buff *skb,
963 const struct mptcp_ext *mpext)
964 {
965 if (!tcp_skb_can_collapse_to(skb))
966 return false;
967
968 /* can collapse only if MPTCP level sequence is in order and this
969 * mapping has not been xmitted yet
970 */
971 return mpext && mpext->data_seq + mpext->data_len == write_seq &&
972 !mpext->frozen;
973 }
974
975 /* we can append data to the given data frag if:
976 * - there is space available in the backing page_frag
977 * - the data frag tail matches the current page_frag free offset
978 * - the data frag end sequence number matches the current write seq
979 */
mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, const struct page_frag *pfrag, const struct mptcp_data_frag *df)980 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
981 const struct page_frag *pfrag,
982 const struct mptcp_data_frag *df)
983 {
984 return df && pfrag->page == df->page &&
985 pfrag->size - pfrag->offset > 0 &&
986 pfrag->offset == (df->offset + df->data_len) &&
987 df->data_seq + df->data_len == msk->write_seq;
988 }
989
dfrag_uncharge(struct sock *sk, int len)990 static void dfrag_uncharge(struct sock *sk, int len)
991 {
992 sk_mem_uncharge(sk, len);
993 sk_wmem_queued_add(sk, -len);
994 }
995
dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)996 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
997 {
998 int len = dfrag->data_len + dfrag->overhead;
999
1000 list_del(&dfrag->list);
1001 dfrag_uncharge(sk, len);
1002 put_page(dfrag->page);
1003 }
1004
__mptcp_clean_una(struct sock *sk)1005 static void __mptcp_clean_una(struct sock *sk)
1006 {
1007 struct mptcp_sock *msk = mptcp_sk(sk);
1008 struct mptcp_data_frag *dtmp, *dfrag;
1009 u64 snd_una;
1010
1011 snd_una = msk->snd_una;
1012 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1013 if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1014 break;
1015
1016 if (unlikely(dfrag == msk->first_pending)) {
1017 /* in recovery mode can see ack after the current snd head */
1018 if (WARN_ON_ONCE(!msk->recovery))
1019 break;
1020
1021 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1022 }
1023
1024 dfrag_clear(sk, dfrag);
1025 }
1026
1027 dfrag = mptcp_rtx_head(sk);
1028 if (dfrag && after64(snd_una, dfrag->data_seq)) {
1029 u64 delta = snd_una - dfrag->data_seq;
1030
1031 /* prevent wrap around in recovery mode */
1032 if (unlikely(delta > dfrag->already_sent)) {
1033 if (WARN_ON_ONCE(!msk->recovery))
1034 goto out;
1035 if (WARN_ON_ONCE(delta > dfrag->data_len))
1036 goto out;
1037 dfrag->already_sent += delta - dfrag->already_sent;
1038 }
1039
1040 dfrag->data_seq += delta;
1041 dfrag->offset += delta;
1042 dfrag->data_len -= delta;
1043 dfrag->already_sent -= delta;
1044
1045 dfrag_uncharge(sk, delta);
1046 }
1047
1048 /* all retransmitted data acked, recovery completed */
1049 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1050 msk->recovery = false;
1051
1052 out:
1053 if (snd_una == READ_ONCE(msk->snd_nxt) &&
1054 snd_una == READ_ONCE(msk->write_seq)) {
1055 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1056 mptcp_stop_rtx_timer(sk);
1057 } else {
1058 mptcp_reset_rtx_timer(sk);
1059 }
1060 }
1061
__mptcp_clean_una_wakeup(struct sock *sk)1062 static void __mptcp_clean_una_wakeup(struct sock *sk)
1063 {
1064 lockdep_assert_held_once(&sk->sk_lock.slock);
1065
1066 __mptcp_clean_una(sk);
1067 mptcp_write_space(sk);
1068 }
1069
mptcp_clean_una_wakeup(struct sock *sk)1070 static void mptcp_clean_una_wakeup(struct sock *sk)
1071 {
1072 mptcp_data_lock(sk);
1073 __mptcp_clean_una_wakeup(sk);
1074 mptcp_data_unlock(sk);
1075 }
1076
mptcp_enter_memory_pressure(struct sock *sk)1077 static void mptcp_enter_memory_pressure(struct sock *sk)
1078 {
1079 struct mptcp_subflow_context *subflow;
1080 struct mptcp_sock *msk = mptcp_sk(sk);
1081 bool first = true;
1082
1083 mptcp_for_each_subflow(msk, subflow) {
1084 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1085
1086 if (first)
1087 tcp_enter_memory_pressure(ssk);
1088 sk_stream_moderate_sndbuf(ssk);
1089
1090 first = false;
1091 }
1092 __mptcp_sync_sndbuf(sk);
1093 }
1094
1095 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1096 * data
1097 */
mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)1098 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1099 {
1100 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1101 pfrag, sk->sk_allocation)))
1102 return true;
1103
1104 mptcp_enter_memory_pressure(sk);
1105 return false;
1106 }
1107
1108 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, int orig_offset)1109 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1110 int orig_offset)
1111 {
1112 int offset = ALIGN(orig_offset, sizeof(long));
1113 struct mptcp_data_frag *dfrag;
1114
1115 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1116 dfrag->data_len = 0;
1117 dfrag->data_seq = msk->write_seq;
1118 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1119 dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1120 dfrag->already_sent = 0;
1121 dfrag->page = pfrag->page;
1122
1123 return dfrag;
1124 }
1125
1126 struct mptcp_sendmsg_info {
1127 int mss_now;
1128 int size_goal;
1129 u16 limit;
1130 u16 sent;
1131 unsigned int flags;
1132 bool data_lock_held;
1133 };
1134
mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, u64 data_seq, int avail_size)1135 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1136 u64 data_seq, int avail_size)
1137 {
1138 u64 window_end = mptcp_wnd_end(msk);
1139 u64 mptcp_snd_wnd;
1140
1141 if (__mptcp_check_fallback(msk))
1142 return avail_size;
1143
1144 mptcp_snd_wnd = window_end - data_seq;
1145 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1146
1147 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1148 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1149 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1150 }
1151
1152 return avail_size;
1153 }
1154
__mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)1155 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1156 {
1157 struct skb_ext *mpext = __skb_ext_alloc(gfp);
1158
1159 if (!mpext)
1160 return false;
1161 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1162 return true;
1163 }
1164
__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)1165 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1166 {
1167 struct sk_buff *skb;
1168
1169 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1170 if (likely(skb)) {
1171 if (likely(__mptcp_add_ext(skb, gfp))) {
1172 skb_reserve(skb, MAX_TCP_HEADER);
1173 skb->ip_summed = CHECKSUM_PARTIAL;
1174 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1175 return skb;
1176 }
1177 __kfree_skb(skb);
1178 } else {
1179 mptcp_enter_memory_pressure(sk);
1180 }
1181 return NULL;
1182 }
1183
__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)1184 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1185 {
1186 struct sk_buff *skb;
1187
1188 skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1189 if (!skb)
1190 return NULL;
1191
1192 if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1193 tcp_skb_entail(ssk, skb);
1194 return skb;
1195 }
1196 tcp_skb_tsorted_anchor_cleanup(skb);
1197 kfree_skb(skb);
1198 return NULL;
1199 }
1200
mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)1201 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1202 {
1203 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1204
1205 return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1206 }
1207
1208 /* note: this always recompute the csum on the whole skb, even
1209 * if we just appended a single frag. More status info needed
1210 */
mptcp_update_data_checksum(struct sk_buff *skb, int added)1211 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1212 {
1213 struct mptcp_ext *mpext = mptcp_get_ext(skb);
1214 __wsum csum = ~csum_unfold(mpext->csum);
1215 int offset = skb->len - added;
1216
1217 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1218 }
1219
mptcp_update_infinite_map(struct mptcp_sock *msk, struct sock *ssk, struct mptcp_ext *mpext)1220 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1221 struct sock *ssk,
1222 struct mptcp_ext *mpext)
1223 {
1224 if (!mpext)
1225 return;
1226
1227 mpext->infinite_map = 1;
1228 mpext->data_len = 0;
1229
1230 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1231 mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1232 pr_fallback(msk);
1233 mptcp_do_fallback(ssk);
1234 }
1235
1236 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1237
mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, struct mptcp_data_frag *dfrag, struct mptcp_sendmsg_info *info)1238 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1239 struct mptcp_data_frag *dfrag,
1240 struct mptcp_sendmsg_info *info)
1241 {
1242 u64 data_seq = dfrag->data_seq + info->sent;
1243 int offset = dfrag->offset + info->sent;
1244 struct mptcp_sock *msk = mptcp_sk(sk);
1245 bool zero_window_probe = false;
1246 struct mptcp_ext *mpext = NULL;
1247 bool can_coalesce = false;
1248 bool reuse_skb = true;
1249 struct sk_buff *skb;
1250 size_t copy;
1251 int i;
1252
1253 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1254 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1255
1256 if (WARN_ON_ONCE(info->sent > info->limit ||
1257 info->limit > dfrag->data_len))
1258 return 0;
1259
1260 if (unlikely(!__tcp_can_send(ssk)))
1261 return -EAGAIN;
1262
1263 /* compute send limit */
1264 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1265 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1266 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1267 copy = info->size_goal;
1268
1269 skb = tcp_write_queue_tail(ssk);
1270 if (skb && copy > skb->len) {
1271 /* Limit the write to the size available in the
1272 * current skb, if any, so that we create at most a new skb.
1273 * Explicitly tells TCP internals to avoid collapsing on later
1274 * queue management operation, to avoid breaking the ext <->
1275 * SSN association set here
1276 */
1277 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1278 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1279 TCP_SKB_CB(skb)->eor = 1;
1280 tcp_mark_push(tcp_sk(ssk), skb);
1281 goto alloc_skb;
1282 }
1283
1284 i = skb_shinfo(skb)->nr_frags;
1285 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1286 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1287 tcp_mark_push(tcp_sk(ssk), skb);
1288 goto alloc_skb;
1289 }
1290
1291 copy -= skb->len;
1292 } else {
1293 alloc_skb:
1294 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1295 if (!skb)
1296 return -ENOMEM;
1297
1298 i = skb_shinfo(skb)->nr_frags;
1299 reuse_skb = false;
1300 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1301 }
1302
1303 /* Zero window and all data acked? Probe. */
1304 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1305 if (copy == 0) {
1306 u64 snd_una = READ_ONCE(msk->snd_una);
1307
1308 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1309 tcp_remove_empty_skb(ssk);
1310 return 0;
1311 }
1312
1313 zero_window_probe = true;
1314 data_seq = snd_una - 1;
1315 copy = 1;
1316 }
1317
1318 copy = min_t(size_t, copy, info->limit - info->sent);
1319 if (!sk_wmem_schedule(ssk, copy)) {
1320 tcp_remove_empty_skb(ssk);
1321 return -ENOMEM;
1322 }
1323
1324 if (can_coalesce) {
1325 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1326 } else {
1327 get_page(dfrag->page);
1328 skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1329 }
1330
1331 skb->len += copy;
1332 skb->data_len += copy;
1333 skb->truesize += copy;
1334 sk_wmem_queued_add(ssk, copy);
1335 sk_mem_charge(ssk, copy);
1336 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1337 TCP_SKB_CB(skb)->end_seq += copy;
1338 tcp_skb_pcount_set(skb, 0);
1339
1340 /* on skb reuse we just need to update the DSS len */
1341 if (reuse_skb) {
1342 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1343 mpext->data_len += copy;
1344 goto out;
1345 }
1346
1347 memset(mpext, 0, sizeof(*mpext));
1348 mpext->data_seq = data_seq;
1349 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1350 mpext->data_len = copy;
1351 mpext->use_map = 1;
1352 mpext->dsn64 = 1;
1353
1354 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1355 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1356 mpext->dsn64);
1357
1358 if (zero_window_probe) {
1359 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1360 mpext->frozen = 1;
1361 if (READ_ONCE(msk->csum_enabled))
1362 mptcp_update_data_checksum(skb, copy);
1363 tcp_push_pending_frames(ssk);
1364 return 0;
1365 }
1366 out:
1367 if (READ_ONCE(msk->csum_enabled))
1368 mptcp_update_data_checksum(skb, copy);
1369 if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1370 mptcp_update_infinite_map(msk, ssk, mpext);
1371 trace_mptcp_sendmsg_frag(mpext);
1372 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1373 return copy;
1374 }
1375
1376 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1377 sizeof(struct tcphdr) - \
1378 MAX_TCP_OPTION_SPACE - \
1379 sizeof(struct ipv6hdr) - \
1380 sizeof(struct frag_hdr))
1381
1382 struct subflow_send_info {
1383 struct sock *ssk;
1384 u64 linger_time;
1385 };
1386
mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)1387 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1388 {
1389 if (!subflow->stale)
1390 return;
1391
1392 subflow->stale = 0;
1393 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1394 }
1395
mptcp_subflow_active(struct mptcp_subflow_context *subflow)1396 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1397 {
1398 if (unlikely(subflow->stale)) {
1399 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1400
1401 if (subflow->stale_rcv_tstamp == rcv_tstamp)
1402 return false;
1403
1404 mptcp_subflow_set_active(subflow);
1405 }
1406 return __mptcp_subflow_active(subflow);
1407 }
1408
1409 #define SSK_MODE_ACTIVE 0
1410 #define SSK_MODE_BACKUP 1
1411 #define SSK_MODE_MAX 2
1412
1413 /* implement the mptcp packet scheduler;
1414 * returns the subflow that will transmit the next DSS
1415 * additionally updates the rtx timeout
1416 */
mptcp_subflow_get_send(struct mptcp_sock *msk)1417 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1418 {
1419 struct subflow_send_info send_info[SSK_MODE_MAX];
1420 struct mptcp_subflow_context *subflow;
1421 struct sock *sk = (struct sock *)msk;
1422 u32 pace, burst, wmem;
1423 int i, nr_active = 0;
1424 struct sock *ssk;
1425 u64 linger_time;
1426 long tout = 0;
1427
1428 /* pick the subflow with the lower wmem/wspace ratio */
1429 for (i = 0; i < SSK_MODE_MAX; ++i) {
1430 send_info[i].ssk = NULL;
1431 send_info[i].linger_time = -1;
1432 }
1433
1434 mptcp_for_each_subflow(msk, subflow) {
1435 trace_mptcp_subflow_get_send(subflow);
1436 ssk = mptcp_subflow_tcp_sock(subflow);
1437 if (!mptcp_subflow_active(subflow))
1438 continue;
1439
1440 tout = max(tout, mptcp_timeout_from_subflow(subflow));
1441 nr_active += !subflow->backup;
1442 pace = subflow->avg_pacing_rate;
1443 if (unlikely(!pace)) {
1444 /* init pacing rate from socket */
1445 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1446 pace = subflow->avg_pacing_rate;
1447 if (!pace)
1448 continue;
1449 }
1450
1451 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1452 if (linger_time < send_info[subflow->backup].linger_time) {
1453 send_info[subflow->backup].ssk = ssk;
1454 send_info[subflow->backup].linger_time = linger_time;
1455 }
1456 }
1457 __mptcp_set_timeout(sk, tout);
1458
1459 /* pick the best backup if no other subflow is active */
1460 if (!nr_active)
1461 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1462
1463 /* According to the blest algorithm, to avoid HoL blocking for the
1464 * faster flow, we need to:
1465 * - estimate the faster flow linger time
1466 * - use the above to estimate the amount of byte transferred
1467 * by the faster flow
1468 * - check that the amount of queued data is greter than the above,
1469 * otherwise do not use the picked, slower, subflow
1470 * We select the subflow with the shorter estimated time to flush
1471 * the queued mem, which basically ensure the above. We just need
1472 * to check that subflow has a non empty cwin.
1473 */
1474 ssk = send_info[SSK_MODE_ACTIVE].ssk;
1475 if (!ssk || !sk_stream_memory_free(ssk))
1476 return NULL;
1477
1478 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1479 wmem = READ_ONCE(ssk->sk_wmem_queued);
1480 if (!burst)
1481 return ssk;
1482
1483 subflow = mptcp_subflow_ctx(ssk);
1484 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1485 READ_ONCE(ssk->sk_pacing_rate) * burst,
1486 burst + wmem);
1487 msk->snd_burst = burst;
1488 return ssk;
1489 }
1490
mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)1491 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1492 {
1493 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1494 release_sock(ssk);
1495 }
1496
mptcp_update_post_push(struct mptcp_sock *msk, struct mptcp_data_frag *dfrag, u32 sent)1497 static void mptcp_update_post_push(struct mptcp_sock *msk,
1498 struct mptcp_data_frag *dfrag,
1499 u32 sent)
1500 {
1501 u64 snd_nxt_new = dfrag->data_seq;
1502
1503 dfrag->already_sent += sent;
1504
1505 msk->snd_burst -= sent;
1506
1507 snd_nxt_new += dfrag->already_sent;
1508
1509 /* snd_nxt_new can be smaller than snd_nxt in case mptcp
1510 * is recovering after a failover. In that event, this re-sends
1511 * old segments.
1512 *
1513 * Thus compute snd_nxt_new candidate based on
1514 * the dfrag->data_seq that was sent and the data
1515 * that has been handed to the subflow for transmission
1516 * and skip update in case it was old dfrag.
1517 */
1518 if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1519 msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1520 msk->snd_nxt = snd_nxt_new;
1521 }
1522 }
1523
mptcp_check_and_set_pending(struct sock *sk)1524 void mptcp_check_and_set_pending(struct sock *sk)
1525 {
1526 if (mptcp_send_head(sk)) {
1527 mptcp_data_lock(sk);
1528 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1529 mptcp_data_unlock(sk);
1530 }
1531 }
1532
__subflow_push_pending(struct sock *sk, struct sock *ssk, struct mptcp_sendmsg_info *info)1533 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1534 struct mptcp_sendmsg_info *info)
1535 {
1536 struct mptcp_sock *msk = mptcp_sk(sk);
1537 struct mptcp_data_frag *dfrag;
1538 int len, copied = 0, err = 0;
1539
1540 while ((dfrag = mptcp_send_head(sk))) {
1541 info->sent = dfrag->already_sent;
1542 info->limit = dfrag->data_len;
1543 len = dfrag->data_len - dfrag->already_sent;
1544 while (len > 0) {
1545 int ret = 0;
1546
1547 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1548 if (ret <= 0) {
1549 err = copied ? : ret;
1550 goto out;
1551 }
1552
1553 info->sent += ret;
1554 copied += ret;
1555 len -= ret;
1556
1557 mptcp_update_post_push(msk, dfrag, ret);
1558 }
1559 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1560
1561 if (msk->snd_burst <= 0 ||
1562 !sk_stream_memory_free(ssk) ||
1563 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1564 err = copied;
1565 goto out;
1566 }
1567 mptcp_set_timeout(sk);
1568 }
1569 err = copied;
1570
1571 out:
1572 return err;
1573 }
1574
__mptcp_push_pending(struct sock *sk, unsigned int flags)1575 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1576 {
1577 struct sock *prev_ssk = NULL, *ssk = NULL;
1578 struct mptcp_sock *msk = mptcp_sk(sk);
1579 struct mptcp_sendmsg_info info = {
1580 .flags = flags,
1581 };
1582 bool do_check_data_fin = false;
1583 int push_count = 1;
1584
1585 while (mptcp_send_head(sk) && (push_count > 0)) {
1586 struct mptcp_subflow_context *subflow;
1587 int ret = 0;
1588
1589 if (mptcp_sched_get_send(msk))
1590 break;
1591
1592 push_count = 0;
1593
1594 mptcp_for_each_subflow(msk, subflow) {
1595 if (READ_ONCE(subflow->scheduled)) {
1596 mptcp_subflow_set_scheduled(subflow, false);
1597
1598 prev_ssk = ssk;
1599 ssk = mptcp_subflow_tcp_sock(subflow);
1600 if (ssk != prev_ssk) {
1601 /* First check. If the ssk has changed since
1602 * the last round, release prev_ssk
1603 */
1604 if (prev_ssk)
1605 mptcp_push_release(prev_ssk, &info);
1606
1607 /* Need to lock the new subflow only if different
1608 * from the previous one, otherwise we are still
1609 * helding the relevant lock
1610 */
1611 lock_sock(ssk);
1612 }
1613
1614 push_count++;
1615
1616 ret = __subflow_push_pending(sk, ssk, &info);
1617 if (ret <= 0) {
1618 if (ret != -EAGAIN ||
1619 (1 << ssk->sk_state) &
1620 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1621 push_count--;
1622 continue;
1623 }
1624 do_check_data_fin = true;
1625 }
1626 }
1627 }
1628
1629 /* at this point we held the socket lock for the last subflow we used */
1630 if (ssk)
1631 mptcp_push_release(ssk, &info);
1632
1633 /* ensure the rtx timer is running */
1634 if (!mptcp_rtx_timer_pending(sk))
1635 mptcp_reset_rtx_timer(sk);
1636 if (do_check_data_fin)
1637 mptcp_check_send_data_fin(sk);
1638 }
1639
__mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)1640 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1641 {
1642 struct mptcp_sock *msk = mptcp_sk(sk);
1643 struct mptcp_sendmsg_info info = {
1644 .data_lock_held = true,
1645 };
1646 bool keep_pushing = true;
1647 struct sock *xmit_ssk;
1648 int copied = 0;
1649
1650 info.flags = 0;
1651 while (mptcp_send_head(sk) && keep_pushing) {
1652 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1653 int ret = 0;
1654
1655 /* check for a different subflow usage only after
1656 * spooling the first chunk of data
1657 */
1658 if (first) {
1659 mptcp_subflow_set_scheduled(subflow, false);
1660 ret = __subflow_push_pending(sk, ssk, &info);
1661 first = false;
1662 if (ret <= 0)
1663 break;
1664 copied += ret;
1665 continue;
1666 }
1667
1668 if (mptcp_sched_get_send(msk))
1669 goto out;
1670
1671 if (READ_ONCE(subflow->scheduled)) {
1672 mptcp_subflow_set_scheduled(subflow, false);
1673 ret = __subflow_push_pending(sk, ssk, &info);
1674 if (ret <= 0)
1675 keep_pushing = false;
1676 copied += ret;
1677 }
1678
1679 mptcp_for_each_subflow(msk, subflow) {
1680 if (READ_ONCE(subflow->scheduled)) {
1681 xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1682 if (xmit_ssk != ssk) {
1683 mptcp_subflow_delegate(subflow,
1684 MPTCP_DELEGATE_SEND);
1685 keep_pushing = false;
1686 }
1687 }
1688 }
1689 }
1690
1691 out:
1692 /* __mptcp_alloc_tx_skb could have released some wmem and we are
1693 * not going to flush it via release_sock()
1694 */
1695 if (copied) {
1696 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1697 info.size_goal);
1698 if (!mptcp_rtx_timer_pending(sk))
1699 mptcp_reset_rtx_timer(sk);
1700
1701 if (msk->snd_data_fin_enable &&
1702 msk->snd_nxt + 1 == msk->write_seq)
1703 mptcp_schedule_work(sk);
1704 }
1705 }
1706
mptcp_set_nospace(struct sock *sk)1707 static void mptcp_set_nospace(struct sock *sk)
1708 {
1709 /* enable autotune */
1710 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1711
1712 /* will be cleared on avail space */
1713 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1714 }
1715
1716 static int mptcp_disconnect(struct sock *sk, int flags);
1717
mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, size_t len, int *copied_syn)1718 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1719 size_t len, int *copied_syn)
1720 {
1721 unsigned int saved_flags = msg->msg_flags;
1722 struct mptcp_sock *msk = mptcp_sk(sk);
1723 struct sock *ssk;
1724 int ret;
1725
1726 /* on flags based fastopen the mptcp is supposed to create the
1727 * first subflow right now. Otherwise we are in the defer_connect
1728 * path, and the first subflow must be already present.
1729 * Since the defer_connect flag is cleared after the first succsful
1730 * fastopen attempt, no need to check for additional subflow status.
1731 */
1732 if (msg->msg_flags & MSG_FASTOPEN) {
1733 ssk = __mptcp_nmpc_sk(msk);
1734 if (IS_ERR(ssk))
1735 return PTR_ERR(ssk);
1736 }
1737 if (!msk->first)
1738 return -EINVAL;
1739
1740 ssk = msk->first;
1741
1742 lock_sock(ssk);
1743 msg->msg_flags |= MSG_DONTWAIT;
1744 msk->fastopening = 1;
1745 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1746 msk->fastopening = 0;
1747 msg->msg_flags = saved_flags;
1748 release_sock(ssk);
1749
1750 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1751 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1752 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1753 msg->msg_namelen, msg->msg_flags, 1);
1754
1755 /* Keep the same behaviour of plain TCP: zero the copied bytes in
1756 * case of any error, except timeout or signal
1757 */
1758 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1759 *copied_syn = 0;
1760 } else if (ret && ret != -EINPROGRESS) {
1761 /* The disconnect() op called by tcp_sendmsg_fastopen()/
1762 * __inet_stream_connect() can fail, due to looking check,
1763 * see mptcp_disconnect().
1764 * Attempt it again outside the problematic scope.
1765 */
1766 if (!mptcp_disconnect(sk, 0))
1767 sk->sk_socket->state = SS_UNCONNECTED;
1768 }
1769 inet_clear_bit(DEFER_CONNECT, sk);
1770
1771 return ret;
1772 }
1773
mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)1774 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1775 {
1776 struct mptcp_sock *msk = mptcp_sk(sk);
1777 struct page_frag *pfrag;
1778 size_t copied = 0;
1779 int ret = 0;
1780 long timeo;
1781
1782 /* silently ignore everything else */
1783 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1784
1785 lock_sock(sk);
1786
1787 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1788 msg->msg_flags & MSG_FASTOPEN)) {
1789 int copied_syn = 0;
1790
1791 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1792 copied += copied_syn;
1793 if (ret == -EINPROGRESS && copied_syn > 0)
1794 goto out;
1795 else if (ret)
1796 goto do_error;
1797 }
1798
1799 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1800
1801 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1802 ret = sk_stream_wait_connect(sk, &timeo);
1803 if (ret)
1804 goto do_error;
1805 }
1806
1807 ret = -EPIPE;
1808 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1809 goto do_error;
1810
1811 pfrag = sk_page_frag(sk);
1812
1813 while (msg_data_left(msg)) {
1814 int total_ts, frag_truesize = 0;
1815 struct mptcp_data_frag *dfrag;
1816 bool dfrag_collapsed;
1817 size_t psize, offset;
1818
1819 /* reuse tail pfrag, if possible, or carve a new one from the
1820 * page allocator
1821 */
1822 dfrag = mptcp_pending_tail(sk);
1823 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1824 if (!dfrag_collapsed) {
1825 if (!sk_stream_memory_free(sk))
1826 goto wait_for_memory;
1827
1828 if (!mptcp_page_frag_refill(sk, pfrag))
1829 goto wait_for_memory;
1830
1831 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1832 frag_truesize = dfrag->overhead;
1833 }
1834
1835 /* we do not bound vs wspace, to allow a single packet.
1836 * memory accounting will prevent execessive memory usage
1837 * anyway
1838 */
1839 offset = dfrag->offset + dfrag->data_len;
1840 psize = pfrag->size - offset;
1841 psize = min_t(size_t, psize, msg_data_left(msg));
1842 total_ts = psize + frag_truesize;
1843
1844 if (!sk_wmem_schedule(sk, total_ts))
1845 goto wait_for_memory;
1846
1847 if (copy_page_from_iter(dfrag->page, offset, psize,
1848 &msg->msg_iter) != psize) {
1849 ret = -EFAULT;
1850 goto do_error;
1851 }
1852
1853 /* data successfully copied into the write queue */
1854 sk_forward_alloc_add(sk, -total_ts);
1855 copied += psize;
1856 dfrag->data_len += psize;
1857 frag_truesize += psize;
1858 pfrag->offset += frag_truesize;
1859 WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1860
1861 /* charge data on mptcp pending queue to the msk socket
1862 * Note: we charge such data both to sk and ssk
1863 */
1864 sk_wmem_queued_add(sk, frag_truesize);
1865 if (!dfrag_collapsed) {
1866 get_page(dfrag->page);
1867 list_add_tail(&dfrag->list, &msk->rtx_queue);
1868 if (!msk->first_pending)
1869 WRITE_ONCE(msk->first_pending, dfrag);
1870 }
1871 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1872 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1873 !dfrag_collapsed);
1874
1875 continue;
1876
1877 wait_for_memory:
1878 mptcp_set_nospace(sk);
1879 __mptcp_push_pending(sk, msg->msg_flags);
1880 ret = sk_stream_wait_memory(sk, &timeo);
1881 if (ret)
1882 goto do_error;
1883 }
1884
1885 if (copied)
1886 __mptcp_push_pending(sk, msg->msg_flags);
1887
1888 out:
1889 release_sock(sk);
1890 return copied;
1891
1892 do_error:
1893 if (copied)
1894 goto out;
1895
1896 copied = sk_stream_error(sk, msg->msg_flags, ret);
1897 goto out;
1898 }
1899
__mptcp_recvmsg_mskq(struct mptcp_sock *msk, struct msghdr *msg, size_t len, int flags, struct scm_timestamping_internal *tss, int *cmsg_flags)1900 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1901 struct msghdr *msg,
1902 size_t len, int flags,
1903 struct scm_timestamping_internal *tss,
1904 int *cmsg_flags)
1905 {
1906 struct sk_buff *skb, *tmp;
1907 int copied = 0;
1908
1909 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1910 u32 offset = MPTCP_SKB_CB(skb)->offset;
1911 u32 data_len = skb->len - offset;
1912 u32 count = min_t(size_t, len - copied, data_len);
1913 int err;
1914
1915 if (!(flags & MSG_TRUNC)) {
1916 err = skb_copy_datagram_msg(skb, offset, msg, count);
1917 if (unlikely(err < 0)) {
1918 if (!copied)
1919 return err;
1920 break;
1921 }
1922 }
1923
1924 if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1925 tcp_update_recv_tstamps(skb, tss);
1926 *cmsg_flags |= MPTCP_CMSG_TS;
1927 }
1928
1929 copied += count;
1930
1931 if (count < data_len) {
1932 if (!(flags & MSG_PEEK)) {
1933 MPTCP_SKB_CB(skb)->offset += count;
1934 MPTCP_SKB_CB(skb)->map_seq += count;
1935 }
1936 break;
1937 }
1938
1939 if (!(flags & MSG_PEEK)) {
1940 /* we will bulk release the skb memory later */
1941 skb->destructor = NULL;
1942 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1943 __skb_unlink(skb, &msk->receive_queue);
1944 __kfree_skb(skb);
1945 }
1946
1947 if (copied >= len)
1948 break;
1949 }
1950
1951 return copied;
1952 }
1953
1954 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
1955 *
1956 * Only difference: Use highest rtt estimate of the subflows in use.
1957 */
mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)1958 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1959 {
1960 struct mptcp_subflow_context *subflow;
1961 struct sock *sk = (struct sock *)msk;
1962 u8 scaling_ratio = U8_MAX;
1963 u32 time, advmss = 1;
1964 u64 rtt_us, mstamp;
1965
1966 msk_owned_by_me(msk);
1967
1968 if (copied <= 0)
1969 return;
1970
1971 if (!msk->rcvspace_init)
1972 mptcp_rcv_space_init(msk, msk->first);
1973
1974 msk->rcvq_space.copied += copied;
1975
1976 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1977 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1978
1979 rtt_us = msk->rcvq_space.rtt_us;
1980 if (rtt_us && time < (rtt_us >> 3))
1981 return;
1982
1983 rtt_us = 0;
1984 mptcp_for_each_subflow(msk, subflow) {
1985 const struct tcp_sock *tp;
1986 u64 sf_rtt_us;
1987 u32 sf_advmss;
1988
1989 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1990
1991 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1992 sf_advmss = READ_ONCE(tp->advmss);
1993
1994 rtt_us = max(sf_rtt_us, rtt_us);
1995 advmss = max(sf_advmss, advmss);
1996 scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1997 }
1998
1999 msk->rcvq_space.rtt_us = rtt_us;
2000 msk->scaling_ratio = scaling_ratio;
2001 if (time < (rtt_us >> 3) || rtt_us == 0)
2002 return;
2003
2004 if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2005 goto new_measure;
2006
2007 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2008 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2009 u64 rcvwin, grow;
2010 int rcvbuf;
2011
2012 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2013
2014 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2015
2016 do_div(grow, msk->rcvq_space.space);
2017 rcvwin += (grow << 1);
2018
2019 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2020 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2021
2022 if (rcvbuf > sk->sk_rcvbuf) {
2023 u32 window_clamp;
2024
2025 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2026 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2027
2028 /* Make subflows follow along. If we do not do this, we
2029 * get drops at subflow level if skbs can't be moved to
2030 * the mptcp rx queue fast enough (announced rcv_win can
2031 * exceed ssk->sk_rcvbuf).
2032 */
2033 mptcp_for_each_subflow(msk, subflow) {
2034 struct sock *ssk;
2035 bool slow;
2036
2037 ssk = mptcp_subflow_tcp_sock(subflow);
2038 slow = lock_sock_fast(ssk);
2039 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2040 tcp_sk(ssk)->window_clamp = window_clamp;
2041 tcp_cleanup_rbuf(ssk, 1);
2042 unlock_sock_fast(ssk, slow);
2043 }
2044 }
2045 }
2046
2047 msk->rcvq_space.space = msk->rcvq_space.copied;
2048 new_measure:
2049 msk->rcvq_space.copied = 0;
2050 msk->rcvq_space.time = mstamp;
2051 }
2052
__mptcp_update_rmem(struct sock *sk)2053 static void __mptcp_update_rmem(struct sock *sk)
2054 {
2055 struct mptcp_sock *msk = mptcp_sk(sk);
2056
2057 if (!msk->rmem_released)
2058 return;
2059
2060 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2061 mptcp_rmem_uncharge(sk, msk->rmem_released);
2062 WRITE_ONCE(msk->rmem_released, 0);
2063 }
2064
__mptcp_splice_receive_queue(struct sock *sk)2065 static void __mptcp_splice_receive_queue(struct sock *sk)
2066 {
2067 struct mptcp_sock *msk = mptcp_sk(sk);
2068
2069 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2070 }
2071
__mptcp_move_skbs(struct mptcp_sock *msk)2072 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2073 {
2074 struct sock *sk = (struct sock *)msk;
2075 unsigned int moved = 0;
2076 bool ret, done;
2077
2078 do {
2079 struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2080 bool slowpath;
2081
2082 /* we can have data pending in the subflows only if the msk
2083 * receive buffer was full at subflow_data_ready() time,
2084 * that is an unlikely slow path.
2085 */
2086 if (likely(!ssk))
2087 break;
2088
2089 slowpath = lock_sock_fast(ssk);
2090 mptcp_data_lock(sk);
2091 __mptcp_update_rmem(sk);
2092 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2093 mptcp_data_unlock(sk);
2094
2095 if (unlikely(ssk->sk_err))
2096 __mptcp_error_report(sk);
2097 unlock_sock_fast(ssk, slowpath);
2098 } while (!done);
2099
2100 /* acquire the data lock only if some input data is pending */
2101 ret = moved > 0;
2102 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2103 !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2104 mptcp_data_lock(sk);
2105 __mptcp_update_rmem(sk);
2106 ret |= __mptcp_ofo_queue(msk);
2107 __mptcp_splice_receive_queue(sk);
2108 mptcp_data_unlock(sk);
2109 }
2110 if (ret)
2111 mptcp_check_data_fin((struct sock *)msk);
2112 return !skb_queue_empty(&msk->receive_queue);
2113 }
2114
mptcp_inq_hint(const struct sock *sk)2115 static unsigned int mptcp_inq_hint(const struct sock *sk)
2116 {
2117 const struct mptcp_sock *msk = mptcp_sk(sk);
2118 const struct sk_buff *skb;
2119
2120 skb = skb_peek(&msk->receive_queue);
2121 if (skb) {
2122 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2123
2124 if (hint_val >= INT_MAX)
2125 return INT_MAX;
2126
2127 return (unsigned int)hint_val;
2128 }
2129
2130 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2131 return 1;
2132
2133 return 0;
2134 }
2135
mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len)2136 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2137 int flags, int *addr_len)
2138 {
2139 struct mptcp_sock *msk = mptcp_sk(sk);
2140 struct scm_timestamping_internal tss;
2141 int copied = 0, cmsg_flags = 0;
2142 int target;
2143 long timeo;
2144
2145 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2146 if (unlikely(flags & MSG_ERRQUEUE))
2147 return inet_recv_error(sk, msg, len, addr_len);
2148
2149 lock_sock(sk);
2150 if (unlikely(sk->sk_state == TCP_LISTEN)) {
2151 copied = -ENOTCONN;
2152 goto out_err;
2153 }
2154
2155 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2156
2157 len = min_t(size_t, len, INT_MAX);
2158 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2159
2160 if (unlikely(msk->recvmsg_inq))
2161 cmsg_flags = MPTCP_CMSG_INQ;
2162
2163 while (copied < len) {
2164 int bytes_read;
2165
2166 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2167 if (unlikely(bytes_read < 0)) {
2168 if (!copied)
2169 copied = bytes_read;
2170 goto out_err;
2171 }
2172
2173 copied += bytes_read;
2174
2175 /* be sure to advertise window change */
2176 mptcp_cleanup_rbuf(msk);
2177
2178 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2179 continue;
2180
2181 /* only the master socket status is relevant here. The exit
2182 * conditions mirror closely tcp_recvmsg()
2183 */
2184 if (copied >= target)
2185 break;
2186
2187 if (copied) {
2188 if (sk->sk_err ||
2189 sk->sk_state == TCP_CLOSE ||
2190 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2191 !timeo ||
2192 signal_pending(current))
2193 break;
2194 } else {
2195 if (sk->sk_err) {
2196 copied = sock_error(sk);
2197 break;
2198 }
2199
2200 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2201 /* race breaker: the shutdown could be after the
2202 * previous receive queue check
2203 */
2204 if (__mptcp_move_skbs(msk))
2205 continue;
2206 break;
2207 }
2208
2209 if (sk->sk_state == TCP_CLOSE) {
2210 copied = -ENOTCONN;
2211 break;
2212 }
2213
2214 if (!timeo) {
2215 copied = -EAGAIN;
2216 break;
2217 }
2218
2219 if (signal_pending(current)) {
2220 copied = sock_intr_errno(timeo);
2221 break;
2222 }
2223 }
2224
2225 pr_debug("block timeout %ld", timeo);
2226 sk_wait_data(sk, &timeo, NULL);
2227 }
2228
2229 out_err:
2230 if (cmsg_flags && copied >= 0) {
2231 if (cmsg_flags & MPTCP_CMSG_TS)
2232 tcp_recv_timestamp(msg, sk, &tss);
2233
2234 if (cmsg_flags & MPTCP_CMSG_INQ) {
2235 unsigned int inq = mptcp_inq_hint(sk);
2236
2237 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2238 }
2239 }
2240
2241 pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2242 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2243 skb_queue_empty(&msk->receive_queue), copied);
2244 if (!(flags & MSG_PEEK))
2245 mptcp_rcv_space_adjust(msk, copied);
2246
2247 release_sock(sk);
2248 return copied;
2249 }
2250
mptcp_retransmit_timer(struct timer_list *t)2251 static void mptcp_retransmit_timer(struct timer_list *t)
2252 {
2253 struct inet_connection_sock *icsk = from_timer(icsk, t,
2254 icsk_retransmit_timer);
2255 struct sock *sk = &icsk->icsk_inet.sk;
2256 struct mptcp_sock *msk = mptcp_sk(sk);
2257
2258 bh_lock_sock(sk);
2259 if (!sock_owned_by_user(sk)) {
2260 /* we need a process context to retransmit */
2261 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2262 mptcp_schedule_work(sk);
2263 } else {
2264 /* delegate our work to tcp_release_cb() */
2265 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2266 }
2267 bh_unlock_sock(sk);
2268 sock_put(sk);
2269 }
2270
mptcp_tout_timer(struct timer_list *t)2271 static void mptcp_tout_timer(struct timer_list *t)
2272 {
2273 struct sock *sk = from_timer(sk, t, sk_timer);
2274
2275 mptcp_schedule_work(sk);
2276 sock_put(sk);
2277 }
2278
2279 /* Find an idle subflow. Return NULL if there is unacked data at tcp
2280 * level.
2281 *
2282 * A backup subflow is returned only if that is the only kind available.
2283 */
mptcp_subflow_get_retrans(struct mptcp_sock *msk)2284 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2285 {
2286 struct sock *backup = NULL, *pick = NULL;
2287 struct mptcp_subflow_context *subflow;
2288 int min_stale_count = INT_MAX;
2289
2290 mptcp_for_each_subflow(msk, subflow) {
2291 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2292
2293 if (!__mptcp_subflow_active(subflow))
2294 continue;
2295
2296 /* still data outstanding at TCP level? skip this */
2297 if (!tcp_rtx_and_write_queues_empty(ssk)) {
2298 mptcp_pm_subflow_chk_stale(msk, ssk);
2299 min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2300 continue;
2301 }
2302
2303 if (subflow->backup) {
2304 if (!backup)
2305 backup = ssk;
2306 continue;
2307 }
2308
2309 if (!pick)
2310 pick = ssk;
2311 }
2312
2313 if (pick)
2314 return pick;
2315
2316 /* use backup only if there are no progresses anywhere */
2317 return min_stale_count > 1 ? backup : NULL;
2318 }
2319
__mptcp_retransmit_pending_data(struct sock *sk)2320 bool __mptcp_retransmit_pending_data(struct sock *sk)
2321 {
2322 struct mptcp_data_frag *cur, *rtx_head;
2323 struct mptcp_sock *msk = mptcp_sk(sk);
2324
2325 if (__mptcp_check_fallback(msk))
2326 return false;
2327
2328 /* the closing socket has some data untransmitted and/or unacked:
2329 * some data in the mptcp rtx queue has not really xmitted yet.
2330 * keep it simple and re-inject the whole mptcp level rtx queue
2331 */
2332 mptcp_data_lock(sk);
2333 __mptcp_clean_una_wakeup(sk);
2334 rtx_head = mptcp_rtx_head(sk);
2335 if (!rtx_head) {
2336 mptcp_data_unlock(sk);
2337 return false;
2338 }
2339
2340 msk->recovery_snd_nxt = msk->snd_nxt;
2341 msk->recovery = true;
2342 mptcp_data_unlock(sk);
2343
2344 msk->first_pending = rtx_head;
2345 msk->snd_burst = 0;
2346
2347 /* be sure to clear the "sent status" on all re-injected fragments */
2348 list_for_each_entry(cur, &msk->rtx_queue, list) {
2349 if (!cur->already_sent)
2350 break;
2351 cur->already_sent = 0;
2352 }
2353
2354 return true;
2355 }
2356
2357 /* flags for __mptcp_close_ssk() */
2358 #define MPTCP_CF_PUSH BIT(1)
2359 #define MPTCP_CF_FASTCLOSE BIT(2)
2360
2361 /* be sure to send a reset only if the caller asked for it, also
2362 * clean completely the subflow status when the subflow reaches
2363 * TCP_CLOSE state
2364 */
__mptcp_subflow_disconnect(struct sock *ssk, struct mptcp_subflow_context *subflow, unsigned int flags)2365 static void __mptcp_subflow_disconnect(struct sock *ssk,
2366 struct mptcp_subflow_context *subflow,
2367 unsigned int flags)
2368 {
2369 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2370 (flags & MPTCP_CF_FASTCLOSE)) {
2371 /* The MPTCP code never wait on the subflow sockets, TCP-level
2372 * disconnect should never fail
2373 */
2374 WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2375 mptcp_subflow_ctx_reset(subflow);
2376 } else {
2377 tcp_shutdown(ssk, SEND_SHUTDOWN);
2378 }
2379 }
2380
2381 /* subflow sockets can be either outgoing (connect) or incoming
2382 * (accept).
2383 *
2384 * Outgoing subflows use in-kernel sockets.
2385 * Incoming subflows do not have their own 'struct socket' allocated,
2386 * so we need to use tcp_close() after detaching them from the mptcp
2387 * parent socket.
2388 */
__mptcp_close_ssk(struct sock *sk, struct sock *ssk, struct mptcp_subflow_context *subflow, unsigned int flags)2389 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2390 struct mptcp_subflow_context *subflow,
2391 unsigned int flags)
2392 {
2393 struct mptcp_sock *msk = mptcp_sk(sk);
2394 bool dispose_it, need_push = false;
2395
2396 /* If the first subflow moved to a close state before accept, e.g. due
2397 * to an incoming reset or listener shutdown, the subflow socket is
2398 * already deleted by inet_child_forget() and the mptcp socket can't
2399 * survive too.
2400 */
2401 if (msk->in_accept_queue && msk->first == ssk &&
2402 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2403 /* ensure later check in mptcp_worker() will dispose the msk */
2404 mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1));
2405 sock_set_flag(sk, SOCK_DEAD);
2406 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2407 mptcp_subflow_drop_ctx(ssk);
2408 goto out_release;
2409 }
2410
2411 dispose_it = msk->free_first || ssk != msk->first;
2412 if (dispose_it)
2413 list_del(&subflow->node);
2414
2415 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2416
2417 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2418 /* be sure to force the tcp_close path
2419 * to generate the egress reset
2420 */
2421 ssk->sk_lingertime = 0;
2422 sock_set_flag(ssk, SOCK_LINGER);
2423 subflow->send_fastclose = 1;
2424 }
2425
2426 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2427 if (!dispose_it) {
2428 __mptcp_subflow_disconnect(ssk, subflow, flags);
2429 release_sock(ssk);
2430
2431 goto out;
2432 }
2433
2434 subflow->disposable = 1;
2435
2436 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2437 * the ssk has been already destroyed, we just need to release the
2438 * reference owned by msk;
2439 */
2440 if (!inet_csk(ssk)->icsk_ulp_ops) {
2441 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2442 kfree_rcu(subflow, rcu);
2443 } else {
2444 /* otherwise tcp will dispose of the ssk and subflow ctx */
2445 __tcp_close(ssk, 0);
2446
2447 /* close acquired an extra ref */
2448 __sock_put(ssk);
2449 }
2450
2451 out_release:
2452 __mptcp_subflow_error_report(sk, ssk);
2453 release_sock(ssk);
2454
2455 sock_put(ssk);
2456
2457 if (ssk == msk->first)
2458 WRITE_ONCE(msk->first, NULL);
2459
2460 out:
2461 __mptcp_sync_sndbuf(sk);
2462 if (need_push)
2463 __mptcp_push_pending(sk, 0);
2464
2465 /* Catch every 'all subflows closed' scenario, including peers silently
2466 * closing them, e.g. due to timeout.
2467 * For established sockets, allow an additional timeout before closing,
2468 * as the protocol can still create more subflows.
2469 */
2470 if (list_is_singular(&msk->conn_list) && msk->first &&
2471 inet_sk_state_load(msk->first) == TCP_CLOSE) {
2472 if (sk->sk_state != TCP_ESTABLISHED ||
2473 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2474 mptcp_set_state(sk, TCP_CLOSE);
2475 mptcp_close_wake_up(sk);
2476 } else {
2477 mptcp_start_tout_timer(sk);
2478 }
2479 }
2480 }
2481
mptcp_close_ssk(struct sock *sk, struct sock *ssk, struct mptcp_subflow_context *subflow)2482 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2483 struct mptcp_subflow_context *subflow)
2484 {
2485 if (sk->sk_state == TCP_ESTABLISHED)
2486 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2487
2488 /* subflow aborted before reaching the fully_established status
2489 * attempt the creation of the next subflow
2490 */
2491 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2492
2493 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2494 }
2495
mptcp_sync_mss(struct sock *sk, u32 pmtu)2496 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2497 {
2498 return 0;
2499 }
2500
__mptcp_close_subflow(struct sock *sk)2501 static void __mptcp_close_subflow(struct sock *sk)
2502 {
2503 struct mptcp_subflow_context *subflow, *tmp;
2504 struct mptcp_sock *msk = mptcp_sk(sk);
2505
2506 might_sleep();
2507
2508 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2509 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2510
2511 if (inet_sk_state_load(ssk) != TCP_CLOSE)
2512 continue;
2513
2514 /* 'subflow_data_ready' will re-sched once rx queue is empty */
2515 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2516 continue;
2517
2518 mptcp_close_ssk(sk, ssk, subflow);
2519 }
2520
2521 }
2522
mptcp_close_tout_expired(const struct sock *sk)2523 static bool mptcp_close_tout_expired(const struct sock *sk)
2524 {
2525 if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2526 sk->sk_state == TCP_CLOSE)
2527 return false;
2528
2529 return time_after32(tcp_jiffies32,
2530 inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN);
2531 }
2532
mptcp_check_fastclose(struct mptcp_sock *msk)2533 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2534 {
2535 struct mptcp_subflow_context *subflow, *tmp;
2536 struct sock *sk = (struct sock *)msk;
2537
2538 if (likely(!READ_ONCE(msk->rcv_fastclose)))
2539 return;
2540
2541 mptcp_token_destroy(msk);
2542
2543 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2544 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2545 bool slow;
2546
2547 slow = lock_sock_fast(tcp_sk);
2548 if (tcp_sk->sk_state != TCP_CLOSE) {
2549 tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2550 tcp_set_state(tcp_sk, TCP_CLOSE);
2551 }
2552 unlock_sock_fast(tcp_sk, slow);
2553 }
2554
2555 /* Mirror the tcp_reset() error propagation */
2556 switch (sk->sk_state) {
2557 case TCP_SYN_SENT:
2558 WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2559 break;
2560 case TCP_CLOSE_WAIT:
2561 WRITE_ONCE(sk->sk_err, EPIPE);
2562 break;
2563 case TCP_CLOSE:
2564 return;
2565 default:
2566 WRITE_ONCE(sk->sk_err, ECONNRESET);
2567 }
2568
2569 mptcp_set_state(sk, TCP_CLOSE);
2570 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2571 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2572 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2573
2574 /* the calling mptcp_worker will properly destroy the socket */
2575 if (sock_flag(sk, SOCK_DEAD))
2576 return;
2577
2578 sk->sk_state_change(sk);
2579 sk_error_report(sk);
2580 }
2581
__mptcp_retrans(struct sock *sk)2582 static void __mptcp_retrans(struct sock *sk)
2583 {
2584 struct mptcp_sock *msk = mptcp_sk(sk);
2585 struct mptcp_subflow_context *subflow;
2586 struct mptcp_sendmsg_info info = {};
2587 struct mptcp_data_frag *dfrag;
2588 struct sock *ssk;
2589 int ret, err;
2590 u16 len = 0;
2591
2592 mptcp_clean_una_wakeup(sk);
2593
2594 /* first check ssk: need to kick "stale" logic */
2595 err = mptcp_sched_get_retrans(msk);
2596 dfrag = mptcp_rtx_head(sk);
2597 if (!dfrag) {
2598 if (mptcp_data_fin_enabled(msk)) {
2599 struct inet_connection_sock *icsk = inet_csk(sk);
2600
2601 icsk->icsk_retransmits++;
2602 mptcp_set_datafin_timeout(sk);
2603 mptcp_send_ack(msk);
2604
2605 goto reset_timer;
2606 }
2607
2608 if (!mptcp_send_head(sk))
2609 return;
2610
2611 goto reset_timer;
2612 }
2613
2614 if (err)
2615 goto reset_timer;
2616
2617 mptcp_for_each_subflow(msk, subflow) {
2618 if (READ_ONCE(subflow->scheduled)) {
2619 u16 copied = 0;
2620
2621 mptcp_subflow_set_scheduled(subflow, false);
2622
2623 ssk = mptcp_subflow_tcp_sock(subflow);
2624
2625 lock_sock(ssk);
2626
2627 /* limit retransmission to the bytes already sent on some subflows */
2628 info.sent = 0;
2629 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2630 dfrag->already_sent;
2631 while (info.sent < info.limit) {
2632 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2633 if (ret <= 0)
2634 break;
2635
2636 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2637 copied += ret;
2638 info.sent += ret;
2639 }
2640 if (copied) {
2641 len = max(copied, len);
2642 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2643 info.size_goal);
2644 WRITE_ONCE(msk->allow_infinite_fallback, false);
2645 }
2646
2647 release_sock(ssk);
2648 }
2649 }
2650
2651 msk->bytes_retrans += len;
2652 dfrag->already_sent = max(dfrag->already_sent, len);
2653
2654 reset_timer:
2655 mptcp_check_and_set_pending(sk);
2656
2657 if (!mptcp_rtx_timer_pending(sk))
2658 mptcp_reset_rtx_timer(sk);
2659 }
2660
2661 /* schedule the timeout timer for the relevant event: either close timeout
2662 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2663 */
mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)2664 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2665 {
2666 struct sock *sk = (struct sock *)msk;
2667 unsigned long timeout, close_timeout;
2668
2669 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2670 return;
2671
2672 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
2673 TCP_TIMEWAIT_LEN;
2674
2675 /* the close timeout takes precedence on the fail one, and here at least one of
2676 * them is active
2677 */
2678 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2679
2680 sk_reset_timer(sk, &sk->sk_timer, timeout);
2681 }
2682
mptcp_mp_fail_no_response(struct mptcp_sock *msk)2683 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2684 {
2685 struct sock *ssk = msk->first;
2686 bool slow;
2687
2688 if (!ssk)
2689 return;
2690
2691 pr_debug("MP_FAIL doesn't respond, reset the subflow");
2692
2693 slow = lock_sock_fast(ssk);
2694 mptcp_subflow_reset(ssk);
2695 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2696 unlock_sock_fast(ssk, slow);
2697 }
2698
mptcp_do_fastclose(struct sock *sk)2699 static void mptcp_do_fastclose(struct sock *sk)
2700 {
2701 struct mptcp_subflow_context *subflow, *tmp;
2702 struct mptcp_sock *msk = mptcp_sk(sk);
2703
2704 mptcp_set_state(sk, TCP_CLOSE);
2705 mptcp_for_each_subflow_safe(msk, subflow, tmp)
2706 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2707 subflow, MPTCP_CF_FASTCLOSE);
2708 }
2709
mptcp_worker(struct work_struct *work)2710 static void mptcp_worker(struct work_struct *work)
2711 {
2712 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2713 struct sock *sk = (struct sock *)msk;
2714 unsigned long fail_tout;
2715 int state;
2716
2717 lock_sock(sk);
2718 state = sk->sk_state;
2719 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2720 goto unlock;
2721
2722 mptcp_check_fastclose(msk);
2723
2724 mptcp_pm_nl_work(msk);
2725
2726 mptcp_check_send_data_fin(sk);
2727 mptcp_check_data_fin_ack(sk);
2728 mptcp_check_data_fin(sk);
2729
2730 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2731 __mptcp_close_subflow(sk);
2732
2733 if (mptcp_close_tout_expired(sk)) {
2734 mptcp_do_fastclose(sk);
2735 mptcp_close_wake_up(sk);
2736 }
2737
2738 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2739 __mptcp_destroy_sock(sk);
2740 goto unlock;
2741 }
2742
2743 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2744 __mptcp_retrans(sk);
2745
2746 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2747 if (fail_tout && time_after(jiffies, fail_tout))
2748 mptcp_mp_fail_no_response(msk);
2749
2750 unlock:
2751 release_sock(sk);
2752 sock_put(sk);
2753 }
2754
__mptcp_init_sock(struct sock *sk)2755 static void __mptcp_init_sock(struct sock *sk)
2756 {
2757 struct mptcp_sock *msk = mptcp_sk(sk);
2758
2759 INIT_LIST_HEAD(&msk->conn_list);
2760 INIT_LIST_HEAD(&msk->join_list);
2761 INIT_LIST_HEAD(&msk->rtx_queue);
2762 INIT_WORK(&msk->work, mptcp_worker);
2763 __skb_queue_head_init(&msk->receive_queue);
2764 msk->out_of_order_queue = RB_ROOT;
2765 msk->first_pending = NULL;
2766 msk->rmem_fwd_alloc = 0;
2767 WRITE_ONCE(msk->rmem_released, 0);
2768 msk->timer_ival = TCP_RTO_MIN;
2769
2770 WRITE_ONCE(msk->first, NULL);
2771 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2772 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2773 WRITE_ONCE(msk->allow_infinite_fallback, true);
2774 msk->recovery = false;
2775 msk->subflow_id = 1;
2776
2777 mptcp_pm_data_init(msk);
2778
2779 /* re-use the csk retrans timer for MPTCP-level retrans */
2780 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2781 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2782 }
2783
mptcp_ca_reset(struct sock *sk)2784 static void mptcp_ca_reset(struct sock *sk)
2785 {
2786 struct inet_connection_sock *icsk = inet_csk(sk);
2787
2788 tcp_assign_congestion_control(sk);
2789 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2790
2791 /* no need to keep a reference to the ops, the name will suffice */
2792 tcp_cleanup_congestion_control(sk);
2793 icsk->icsk_ca_ops = NULL;
2794 }
2795
mptcp_init_sock(struct sock *sk)2796 static int mptcp_init_sock(struct sock *sk)
2797 {
2798 struct net *net = sock_net(sk);
2799 int ret;
2800
2801 __mptcp_init_sock(sk);
2802
2803 if (!mptcp_is_enabled(net))
2804 return -ENOPROTOOPT;
2805
2806 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2807 return -ENOMEM;
2808
2809 ret = mptcp_init_sched(mptcp_sk(sk),
2810 mptcp_sched_find(mptcp_get_scheduler(net)));
2811 if (ret)
2812 return ret;
2813
2814 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2815
2816 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2817 * propagate the correct value
2818 */
2819 mptcp_ca_reset(sk);
2820
2821 sk_sockets_allocated_inc(sk);
2822 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2823 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2824
2825 return 0;
2826 }
2827
__mptcp_clear_xmit(struct sock *sk)2828 static void __mptcp_clear_xmit(struct sock *sk)
2829 {
2830 struct mptcp_sock *msk = mptcp_sk(sk);
2831 struct mptcp_data_frag *dtmp, *dfrag;
2832
2833 WRITE_ONCE(msk->first_pending, NULL);
2834 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2835 dfrag_clear(sk, dfrag);
2836 }
2837
mptcp_cancel_work(struct sock *sk)2838 void mptcp_cancel_work(struct sock *sk)
2839 {
2840 struct mptcp_sock *msk = mptcp_sk(sk);
2841
2842 if (cancel_work_sync(&msk->work))
2843 __sock_put(sk);
2844 }
2845
mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)2846 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2847 {
2848 lock_sock(ssk);
2849
2850 switch (ssk->sk_state) {
2851 case TCP_LISTEN:
2852 if (!(how & RCV_SHUTDOWN))
2853 break;
2854 fallthrough;
2855 case TCP_SYN_SENT:
2856 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2857 break;
2858 default:
2859 if (__mptcp_check_fallback(mptcp_sk(sk))) {
2860 pr_debug("Fallback");
2861 ssk->sk_shutdown |= how;
2862 tcp_shutdown(ssk, how);
2863
2864 /* simulate the data_fin ack reception to let the state
2865 * machine move forward
2866 */
2867 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2868 mptcp_schedule_work(sk);
2869 } else {
2870 pr_debug("Sending DATA_FIN on subflow %p", ssk);
2871 tcp_send_ack(ssk);
2872 if (!mptcp_rtx_timer_pending(sk))
2873 mptcp_reset_rtx_timer(sk);
2874 }
2875 break;
2876 }
2877
2878 release_sock(ssk);
2879 }
2880
mptcp_set_state(struct sock *sk, int state)2881 void mptcp_set_state(struct sock *sk, int state)
2882 {
2883 int oldstate = sk->sk_state;
2884
2885 switch (state) {
2886 case TCP_ESTABLISHED:
2887 if (oldstate != TCP_ESTABLISHED)
2888 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2889 break;
2890
2891 default:
2892 if (oldstate == TCP_ESTABLISHED)
2893 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2894 }
2895
2896 inet_sk_state_store(sk, state);
2897 }
2898
2899 static const unsigned char new_state[16] = {
2900 /* current state: new state: action: */
2901 [0 /* (Invalid) */] = TCP_CLOSE,
2902 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2903 [TCP_SYN_SENT] = TCP_CLOSE,
2904 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2905 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2906 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2907 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
2908 [TCP_CLOSE] = TCP_CLOSE,
2909 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2910 [TCP_LAST_ACK] = TCP_LAST_ACK,
2911 [TCP_LISTEN] = TCP_CLOSE,
2912 [TCP_CLOSING] = TCP_CLOSING,
2913 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2914 };
2915
mptcp_close_state(struct sock *sk)2916 static int mptcp_close_state(struct sock *sk)
2917 {
2918 int next = (int)new_state[sk->sk_state];
2919 int ns = next & TCP_STATE_MASK;
2920
2921 mptcp_set_state(sk, ns);
2922
2923 return next & TCP_ACTION_FIN;
2924 }
2925
mptcp_check_send_data_fin(struct sock *sk)2926 static void mptcp_check_send_data_fin(struct sock *sk)
2927 {
2928 struct mptcp_subflow_context *subflow;
2929 struct mptcp_sock *msk = mptcp_sk(sk);
2930
2931 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2932 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2933 msk->snd_nxt, msk->write_seq);
2934
2935 /* we still need to enqueue subflows or not really shutting down,
2936 * skip this
2937 */
2938 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2939 mptcp_send_head(sk))
2940 return;
2941
2942 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2943
2944 mptcp_for_each_subflow(msk, subflow) {
2945 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2946
2947 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2948 }
2949 }
2950
__mptcp_wr_shutdown(struct sock *sk)2951 static void __mptcp_wr_shutdown(struct sock *sk)
2952 {
2953 struct mptcp_sock *msk = mptcp_sk(sk);
2954
2955 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2956 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2957 !!mptcp_send_head(sk));
2958
2959 /* will be ignored by fallback sockets */
2960 WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2961 WRITE_ONCE(msk->snd_data_fin_enable, 1);
2962
2963 mptcp_check_send_data_fin(sk);
2964 }
2965
__mptcp_destroy_sock(struct sock *sk)2966 static void __mptcp_destroy_sock(struct sock *sk)
2967 {
2968 struct mptcp_sock *msk = mptcp_sk(sk);
2969
2970 pr_debug("msk=%p", msk);
2971
2972 might_sleep();
2973
2974 mptcp_stop_rtx_timer(sk);
2975 sk_stop_timer(sk, &sk->sk_timer);
2976 msk->pm.status = 0;
2977 mptcp_release_sched(msk);
2978
2979 sk->sk_prot->destroy(sk);
2980
2981 WARN_ON_ONCE(msk->rmem_fwd_alloc);
2982 WARN_ON_ONCE(msk->rmem_released);
2983 sk_stream_kill_queues(sk);
2984 xfrm_sk_free_policy(sk);
2985
2986 sock_put(sk);
2987 }
2988
__mptcp_unaccepted_force_close(struct sock *sk)2989 void __mptcp_unaccepted_force_close(struct sock *sk)
2990 {
2991 sock_set_flag(sk, SOCK_DEAD);
2992 mptcp_do_fastclose(sk);
2993 __mptcp_destroy_sock(sk);
2994 }
2995
mptcp_check_readable(struct mptcp_sock *msk)2996 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
2997 {
2998 /* Concurrent splices from sk_receive_queue into receive_queue will
2999 * always show at least one non-empty queue when checked in this order.
3000 */
3001 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
3002 skb_queue_empty_lockless(&msk->receive_queue))
3003 return 0;
3004
3005 return EPOLLIN | EPOLLRDNORM;
3006 }
3007
mptcp_check_listen_stop(struct sock *sk)3008 static void mptcp_check_listen_stop(struct sock *sk)
3009 {
3010 struct sock *ssk;
3011
3012 if (inet_sk_state_load(sk) != TCP_LISTEN)
3013 return;
3014
3015 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3016 ssk = mptcp_sk(sk)->first;
3017 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3018 return;
3019
3020 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3021 tcp_set_state(ssk, TCP_CLOSE);
3022 mptcp_subflow_queue_clean(sk, ssk);
3023 inet_csk_listen_stop(ssk);
3024 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3025 release_sock(ssk);
3026 }
3027
__mptcp_close(struct sock *sk, long timeout)3028 bool __mptcp_close(struct sock *sk, long timeout)
3029 {
3030 struct mptcp_subflow_context *subflow;
3031 struct mptcp_sock *msk = mptcp_sk(sk);
3032 bool do_cancel_work = false;
3033 int subflows_alive = 0;
3034
3035 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3036
3037 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3038 mptcp_check_listen_stop(sk);
3039 mptcp_set_state(sk, TCP_CLOSE);
3040 goto cleanup;
3041 }
3042
3043 if (mptcp_check_readable(msk) || timeout < 0) {
3044 /* If the msk has read data, or the caller explicitly ask it,
3045 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3046 */
3047 mptcp_do_fastclose(sk);
3048 timeout = 0;
3049 } else if (mptcp_close_state(sk)) {
3050 __mptcp_wr_shutdown(sk);
3051 }
3052
3053 sk_stream_wait_close(sk, timeout);
3054
3055 cleanup:
3056 /* orphan all the subflows */
3057 mptcp_for_each_subflow(msk, subflow) {
3058 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3059 bool slow = lock_sock_fast_nested(ssk);
3060
3061 subflows_alive += ssk->sk_state != TCP_CLOSE;
3062
3063 /* since the close timeout takes precedence on the fail one,
3064 * cancel the latter
3065 */
3066 if (ssk == msk->first)
3067 subflow->fail_tout = 0;
3068
3069 /* detach from the parent socket, but allow data_ready to
3070 * push incoming data into the mptcp stack, to properly ack it
3071 */
3072 ssk->sk_socket = NULL;
3073 ssk->sk_wq = NULL;
3074 unlock_sock_fast(ssk, slow);
3075 }
3076 sock_orphan(sk);
3077
3078 /* all the subflows are closed, only timeout can change the msk
3079 * state, let's not keep resources busy for no reasons
3080 */
3081 if (subflows_alive == 0)
3082 mptcp_set_state(sk, TCP_CLOSE);
3083
3084 sock_hold(sk);
3085 pr_debug("msk=%p state=%d", sk, sk->sk_state);
3086 if (msk->token)
3087 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3088
3089 if (sk->sk_state == TCP_CLOSE) {
3090 __mptcp_destroy_sock(sk);
3091 do_cancel_work = true;
3092 } else {
3093 mptcp_start_tout_timer(sk);
3094 }
3095
3096 return do_cancel_work;
3097 }
3098
mptcp_close(struct sock *sk, long timeout)3099 static void mptcp_close(struct sock *sk, long timeout)
3100 {
3101 bool do_cancel_work;
3102
3103 lock_sock(sk);
3104
3105 do_cancel_work = __mptcp_close(sk, timeout);
3106 release_sock(sk);
3107 if (do_cancel_work)
3108 mptcp_cancel_work(sk);
3109
3110 sock_put(sk);
3111 }
3112
mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)3113 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3114 {
3115 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3116 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3117 struct ipv6_pinfo *msk6 = inet6_sk(msk);
3118
3119 msk->sk_v6_daddr = ssk->sk_v6_daddr;
3120 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3121
3122 if (msk6 && ssk6) {
3123 msk6->saddr = ssk6->saddr;
3124 msk6->flow_label = ssk6->flow_label;
3125 }
3126 #endif
3127
3128 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3129 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3130 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3131 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3132 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3133 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3134 }
3135
mptcp_disconnect(struct sock *sk, int flags)3136 static int mptcp_disconnect(struct sock *sk, int flags)
3137 {
3138 struct mptcp_sock *msk = mptcp_sk(sk);
3139
3140 /* We are on the fastopen error path. We can't call straight into the
3141 * subflows cleanup code due to lock nesting (we are already under
3142 * msk->firstsocket lock).
3143 */
3144 if (msk->fastopening)
3145 return -EBUSY;
3146
3147 mptcp_check_listen_stop(sk);
3148 mptcp_set_state(sk, TCP_CLOSE);
3149
3150 mptcp_stop_rtx_timer(sk);
3151 mptcp_stop_tout_timer(sk);
3152
3153 if (msk->token)
3154 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3155
3156 /* msk->subflow is still intact, the following will not free the first
3157 * subflow
3158 */
3159 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3160 WRITE_ONCE(msk->flags, 0);
3161 msk->cb_flags = 0;
3162 msk->recovery = false;
3163 msk->can_ack = false;
3164 msk->fully_established = false;
3165 msk->rcv_data_fin = false;
3166 msk->snd_data_fin_enable = false;
3167 msk->rcv_fastclose = false;
3168 msk->use_64bit_ack = false;
3169 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3170 mptcp_pm_data_reset(msk);
3171 mptcp_ca_reset(sk);
3172 msk->bytes_acked = 0;
3173 msk->bytes_received = 0;
3174 msk->bytes_sent = 0;
3175 msk->bytes_retrans = 0;
3176 msk->rcvspace_init = 0;
3177
3178 WRITE_ONCE(sk->sk_shutdown, 0);
3179 sk_error_report(sk);
3180 return 0;
3181 }
3182
3183 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock *sk)3184 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3185 {
3186 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3187
3188 return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3189 }
3190
mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)3191 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3192 {
3193 const struct ipv6_pinfo *np = inet6_sk(sk);
3194 struct ipv6_txoptions *opt;
3195 struct ipv6_pinfo *newnp;
3196
3197 newnp = inet6_sk(newsk);
3198
3199 rcu_read_lock();
3200 opt = rcu_dereference(np->opt);
3201 if (opt) {
3202 opt = ipv6_dup_options(newsk, opt);
3203 if (!opt)
3204 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3205 }
3206 RCU_INIT_POINTER(newnp->opt, opt);
3207 rcu_read_unlock();
3208 }
3209 #endif
3210
mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)3211 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3212 {
3213 struct ip_options_rcu *inet_opt, *newopt = NULL;
3214 const struct inet_sock *inet = inet_sk(sk);
3215 struct inet_sock *newinet;
3216
3217 newinet = inet_sk(newsk);
3218
3219 rcu_read_lock();
3220 inet_opt = rcu_dereference(inet->inet_opt);
3221 if (inet_opt) {
3222 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3223 inet_opt->opt.optlen, GFP_ATOMIC);
3224 if (newopt)
3225 memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3226 inet_opt->opt.optlen);
3227 else
3228 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3229 }
3230 RCU_INIT_POINTER(newinet->inet_opt, newopt);
3231 rcu_read_unlock();
3232 }
3233
mptcp_sk_clone_init(const struct sock *sk, const struct mptcp_options_received *mp_opt, struct sock *ssk, struct request_sock *req)3234 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3235 const struct mptcp_options_received *mp_opt,
3236 struct sock *ssk,
3237 struct request_sock *req)
3238 {
3239 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3240 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3241 struct mptcp_subflow_context *subflow;
3242 struct mptcp_sock *msk;
3243
3244 if (!nsk)
3245 return NULL;
3246
3247 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3248 if (nsk->sk_family == AF_INET6)
3249 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3250 #endif
3251
3252 __mptcp_init_sock(nsk);
3253
3254 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3255 if (nsk->sk_family == AF_INET6)
3256 mptcp_copy_ip6_options(nsk, sk);
3257 else
3258 #endif
3259 mptcp_copy_ip_options(nsk, sk);
3260
3261 msk = mptcp_sk(nsk);
3262 msk->local_key = subflow_req->local_key;
3263 msk->token = subflow_req->token;
3264 msk->in_accept_queue = 1;
3265 WRITE_ONCE(msk->fully_established, false);
3266 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3267 WRITE_ONCE(msk->csum_enabled, true);
3268
3269 msk->write_seq = subflow_req->idsn + 1;
3270 msk->snd_nxt = msk->write_seq;
3271 msk->snd_una = msk->write_seq;
3272 msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd;
3273 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3274 mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3275
3276 /* passive msk is created after the first/MPC subflow */
3277 msk->subflow_id = 2;
3278
3279 sock_reset_flag(nsk, SOCK_RCU_FREE);
3280 security_inet_csk_clone(nsk, req);
3281
3282 /* this can't race with mptcp_close(), as the msk is
3283 * not yet exposted to user-space
3284 */
3285 mptcp_set_state(nsk, TCP_ESTABLISHED);
3286
3287 /* The msk maintain a ref to each subflow in the connections list */
3288 WRITE_ONCE(msk->first, ssk);
3289 subflow = mptcp_subflow_ctx(ssk);
3290 list_add(&subflow->node, &msk->conn_list);
3291 sock_hold(ssk);
3292
3293 /* new mpc subflow takes ownership of the newly
3294 * created mptcp socket
3295 */
3296 mptcp_token_accept(subflow_req, msk);
3297
3298 /* set msk addresses early to ensure mptcp_pm_get_local_id()
3299 * uses the correct data
3300 */
3301 mptcp_copy_inaddrs(nsk, ssk);
3302 __mptcp_propagate_sndbuf(nsk, ssk);
3303
3304 mptcp_rcv_space_init(msk, ssk);
3305
3306 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3307 __mptcp_subflow_fully_established(msk, subflow, mp_opt);
3308 bh_unlock_sock(nsk);
3309
3310 /* note: the newly allocated socket refcount is 2 now */
3311 return nsk;
3312 }
3313
mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)3314 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3315 {
3316 const struct tcp_sock *tp = tcp_sk(ssk);
3317
3318 msk->rcvspace_init = 1;
3319 msk->rcvq_space.copied = 0;
3320 msk->rcvq_space.rtt_us = 0;
3321
3322 msk->rcvq_space.time = tp->tcp_mstamp;
3323
3324 /* initial rcv_space offering made to peer */
3325 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3326 TCP_INIT_CWND * tp->advmss);
3327 if (msk->rcvq_space.space == 0)
3328 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3329 }
3330
mptcp_accept(struct sock *ssk, int flags, int *err, bool kern)3331 static struct sock *mptcp_accept(struct sock *ssk, int flags, int *err,
3332 bool kern)
3333 {
3334 struct sock *newsk;
3335
3336 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk));
3337 newsk = inet_csk_accept(ssk, flags, err, kern);
3338 if (!newsk)
3339 return NULL;
3340
3341 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk));
3342 if (sk_is_mptcp(newsk)) {
3343 struct mptcp_subflow_context *subflow;
3344 struct sock *new_mptcp_sock;
3345
3346 subflow = mptcp_subflow_ctx(newsk);
3347 new_mptcp_sock = subflow->conn;
3348
3349 /* is_mptcp should be false if subflow->conn is missing, see
3350 * subflow_syn_recv_sock()
3351 */
3352 if (WARN_ON_ONCE(!new_mptcp_sock)) {
3353 tcp_sk(newsk)->is_mptcp = 0;
3354 goto out;
3355 }
3356
3357 newsk = new_mptcp_sock;
3358 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3359 } else {
3360 MPTCP_INC_STATS(sock_net(ssk),
3361 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3362 }
3363
3364 out:
3365 newsk->sk_kern_sock = kern;
3366 return newsk;
3367 }
3368
mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)3369 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3370 {
3371 struct mptcp_subflow_context *subflow, *tmp;
3372 struct sock *sk = (struct sock *)msk;
3373
3374 __mptcp_clear_xmit(sk);
3375
3376 /* join list will be eventually flushed (with rst) at sock lock release time */
3377 mptcp_for_each_subflow_safe(msk, subflow, tmp)
3378 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3379
3380 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3381 mptcp_data_lock(sk);
3382 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3383 __skb_queue_purge(&sk->sk_receive_queue);
3384 skb_rbtree_purge(&msk->out_of_order_queue);
3385 mptcp_data_unlock(sk);
3386
3387 /* move all the rx fwd alloc into the sk_mem_reclaim_final in
3388 * inet_sock_destruct() will dispose it
3389 */
3390 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3391 WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3392 mptcp_token_destroy(msk);
3393 mptcp_pm_free_anno_list(msk);
3394 mptcp_free_local_addr_list(msk);
3395 }
3396
mptcp_destroy(struct sock *sk)3397 static void mptcp_destroy(struct sock *sk)
3398 {
3399 struct mptcp_sock *msk = mptcp_sk(sk);
3400
3401 /* allow the following to close even the initial subflow */
3402 msk->free_first = 1;
3403 mptcp_destroy_common(msk, 0);
3404 sk_sockets_allocated_dec(sk);
3405 }
3406
__mptcp_data_acked(struct sock *sk)3407 void __mptcp_data_acked(struct sock *sk)
3408 {
3409 if (!sock_owned_by_user(sk))
3410 __mptcp_clean_una(sk);
3411 else
3412 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3413
3414 if (mptcp_pending_data_fin_ack(sk))
3415 mptcp_schedule_work(sk);
3416 }
3417
__mptcp_check_push(struct sock *sk, struct sock *ssk)3418 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3419 {
3420 if (!mptcp_send_head(sk))
3421 return;
3422
3423 if (!sock_owned_by_user(sk))
3424 __mptcp_subflow_push_pending(sk, ssk, false);
3425 else
3426 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3427 }
3428
3429 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3430 BIT(MPTCP_RETRANSMIT) | \
3431 BIT(MPTCP_FLUSH_JOIN_LIST))
3432
3433 /* processes deferred events and flush wmem */
3434 static void mptcp_release_cb(struct sock *sk)
3435 __must_hold(&sk->sk_lock.slock)
3436 {
3437 struct mptcp_sock *msk = mptcp_sk(sk);
3438
3439 for (;;) {
3440 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3441 struct list_head join_list;
3442
3443 if (!flags)
3444 break;
3445
3446 INIT_LIST_HEAD(&join_list);
3447 list_splice_init(&msk->join_list, &join_list);
3448
3449 /* the following actions acquire the subflow socket lock
3450 *
3451 * 1) can't be invoked in atomic scope
3452 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3453 * datapath acquires the msk socket spinlock while helding
3454 * the subflow socket lock
3455 */
3456 msk->cb_flags &= ~flags;
3457 spin_unlock_bh(&sk->sk_lock.slock);
3458
3459 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3460 __mptcp_flush_join_list(sk, &join_list);
3461 if (flags & BIT(MPTCP_PUSH_PENDING))
3462 __mptcp_push_pending(sk, 0);
3463 if (flags & BIT(MPTCP_RETRANSMIT))
3464 __mptcp_retrans(sk);
3465
3466 cond_resched();
3467 spin_lock_bh(&sk->sk_lock.slock);
3468 }
3469
3470 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3471 __mptcp_clean_una_wakeup(sk);
3472 if (unlikely(msk->cb_flags)) {
3473 /* be sure to sync the msk state before taking actions
3474 * depending on sk_state (MPTCP_ERROR_REPORT)
3475 * On sk release avoid actions depending on the first subflow
3476 */
3477 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3478 __mptcp_sync_state(sk, msk->pending_state);
3479 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3480 __mptcp_error_report(sk);
3481 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3482 __mptcp_sync_sndbuf(sk);
3483 }
3484
3485 __mptcp_update_rmem(sk);
3486 }
3487
3488 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3489 * TCP can't schedule delack timer before the subflow is fully established.
3490 * MPTCP uses the delack timer to do 3rd ack retransmissions
3491 */
schedule_3rdack_retransmission(struct sock *ssk)3492 static void schedule_3rdack_retransmission(struct sock *ssk)
3493 {
3494 struct inet_connection_sock *icsk = inet_csk(ssk);
3495 struct tcp_sock *tp = tcp_sk(ssk);
3496 unsigned long timeout;
3497
3498 if (mptcp_subflow_ctx(ssk)->fully_established)
3499 return;
3500
3501 /* reschedule with a timeout above RTT, as we must look only for drop */
3502 if (tp->srtt_us)
3503 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3504 else
3505 timeout = TCP_TIMEOUT_INIT;
3506 timeout += jiffies;
3507
3508 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3509 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3510 icsk->icsk_ack.timeout = timeout;
3511 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3512 }
3513
mptcp_subflow_process_delegated(struct sock *ssk, long status)3514 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3515 {
3516 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3517 struct sock *sk = subflow->conn;
3518
3519 if (status & BIT(MPTCP_DELEGATE_SEND)) {
3520 mptcp_data_lock(sk);
3521 if (!sock_owned_by_user(sk))
3522 __mptcp_subflow_push_pending(sk, ssk, true);
3523 else
3524 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3525 mptcp_data_unlock(sk);
3526 }
3527 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3528 mptcp_data_lock(sk);
3529 if (!sock_owned_by_user(sk))
3530 __mptcp_sync_sndbuf(sk);
3531 else
3532 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3533 mptcp_data_unlock(sk);
3534 }
3535 if (status & BIT(MPTCP_DELEGATE_ACK))
3536 schedule_3rdack_retransmission(ssk);
3537 }
3538
mptcp_hash(struct sock *sk)3539 static int mptcp_hash(struct sock *sk)
3540 {
3541 /* should never be called,
3542 * we hash the TCP subflows not the master socket
3543 */
3544 WARN_ON_ONCE(1);
3545 return 0;
3546 }
3547
mptcp_unhash(struct sock *sk)3548 static void mptcp_unhash(struct sock *sk)
3549 {
3550 /* called from sk_common_release(), but nothing to do here */
3551 }
3552
mptcp_get_port(struct sock *sk, unsigned short snum)3553 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3554 {
3555 struct mptcp_sock *msk = mptcp_sk(sk);
3556
3557 pr_debug("msk=%p, ssk=%p", msk, msk->first);
3558 if (WARN_ON_ONCE(!msk->first))
3559 return -EINVAL;
3560
3561 return inet_csk_get_port(msk->first, snum);
3562 }
3563
mptcp_finish_connect(struct sock *ssk)3564 void mptcp_finish_connect(struct sock *ssk)
3565 {
3566 struct mptcp_subflow_context *subflow;
3567 struct mptcp_sock *msk;
3568 struct sock *sk;
3569
3570 subflow = mptcp_subflow_ctx(ssk);
3571 sk = subflow->conn;
3572 msk = mptcp_sk(sk);
3573
3574 pr_debug("msk=%p, token=%u", sk, subflow->token);
3575
3576 subflow->map_seq = subflow->iasn;
3577 subflow->map_subflow_seq = 1;
3578
3579 /* the socket is not connected yet, no msk/subflow ops can access/race
3580 * accessing the field below
3581 */
3582 WRITE_ONCE(msk->local_key, subflow->local_key);
3583
3584 mptcp_pm_new_connection(msk, ssk, 0);
3585 }
3586
mptcp_sock_graft(struct sock *sk, struct socket *parent)3587 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3588 {
3589 write_lock_bh(&sk->sk_callback_lock);
3590 rcu_assign_pointer(sk->sk_wq, &parent->wq);
3591 sk_set_socket(sk, parent);
3592 sk->sk_uid = SOCK_INODE(parent)->i_uid;
3593 write_unlock_bh(&sk->sk_callback_lock);
3594 }
3595
mptcp_finish_join(struct sock *ssk)3596 bool mptcp_finish_join(struct sock *ssk)
3597 {
3598 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3599 struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3600 struct sock *parent = (void *)msk;
3601 bool ret = true;
3602
3603 pr_debug("msk=%p, subflow=%p", msk, subflow);
3604
3605 /* mptcp socket already closing? */
3606 if (!mptcp_is_fully_established(parent)) {
3607 subflow->reset_reason = MPTCP_RST_EMPTCP;
3608 return false;
3609 }
3610
3611 /* active subflow, already present inside the conn_list */
3612 if (!list_empty(&subflow->node)) {
3613 mptcp_subflow_joined(msk, ssk);
3614 mptcp_propagate_sndbuf(parent, ssk);
3615 return true;
3616 }
3617
3618 if (!mptcp_pm_allow_new_subflow(msk))
3619 goto err_prohibited;
3620
3621 /* If we can't acquire msk socket lock here, let the release callback
3622 * handle it
3623 */
3624 mptcp_data_lock(parent);
3625 if (!sock_owned_by_user(parent)) {
3626 ret = __mptcp_finish_join(msk, ssk);
3627 if (ret) {
3628 sock_hold(ssk);
3629 list_add_tail(&subflow->node, &msk->conn_list);
3630 }
3631 } else {
3632 sock_hold(ssk);
3633 list_add_tail(&subflow->node, &msk->join_list);
3634 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3635 }
3636 mptcp_data_unlock(parent);
3637
3638 if (!ret) {
3639 err_prohibited:
3640 subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3641 return false;
3642 }
3643
3644 return true;
3645 }
3646
mptcp_shutdown(struct sock *sk, int how)3647 static void mptcp_shutdown(struct sock *sk, int how)
3648 {
3649 pr_debug("sk=%p, how=%d", sk, how);
3650
3651 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3652 __mptcp_wr_shutdown(sk);
3653 }
3654
mptcp_forward_alloc_get(const struct sock *sk)3655 static int mptcp_forward_alloc_get(const struct sock *sk)
3656 {
3657 return READ_ONCE(sk->sk_forward_alloc) +
3658 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3659 }
3660
mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)3661 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3662 {
3663 const struct sock *sk = (void *)msk;
3664 u64 delta;
3665
3666 if (sk->sk_state == TCP_LISTEN)
3667 return -EINVAL;
3668
3669 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3670 return 0;
3671
3672 delta = msk->write_seq - v;
3673 if (__mptcp_check_fallback(msk) && msk->first) {
3674 struct tcp_sock *tp = tcp_sk(msk->first);
3675
3676 /* the first subflow is disconnected after close - see
3677 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3678 * so ignore that status, too.
3679 */
3680 if (!((1 << msk->first->sk_state) &
3681 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3682 delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3683 }
3684 if (delta > INT_MAX)
3685 delta = INT_MAX;
3686
3687 return (int)delta;
3688 }
3689
mptcp_ioctl(struct sock *sk, int cmd, int *karg)3690 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3691 {
3692 struct mptcp_sock *msk = mptcp_sk(sk);
3693 bool slow;
3694
3695 switch (cmd) {
3696 case SIOCINQ:
3697 if (sk->sk_state == TCP_LISTEN)
3698 return -EINVAL;
3699
3700 lock_sock(sk);
3701 __mptcp_move_skbs(msk);
3702 *karg = mptcp_inq_hint(sk);
3703 release_sock(sk);
3704 break;
3705 case SIOCOUTQ:
3706 slow = lock_sock_fast(sk);
3707 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3708 unlock_sock_fast(sk, slow);
3709 break;
3710 case SIOCOUTQNSD:
3711 slow = lock_sock_fast(sk);
3712 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3713 unlock_sock_fast(sk, slow);
3714 break;
3715 default:
3716 return -ENOIOCTLCMD;
3717 }
3718
3719 return 0;
3720 }
3721
mptcp_subflow_early_fallback(struct mptcp_sock *msk, struct mptcp_subflow_context *subflow)3722 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3723 struct mptcp_subflow_context *subflow)
3724 {
3725 subflow->request_mptcp = 0;
3726 __mptcp_do_fallback(msk);
3727 }
3728
mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)3729 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3730 {
3731 struct mptcp_subflow_context *subflow;
3732 struct mptcp_sock *msk = mptcp_sk(sk);
3733 int err = -EINVAL;
3734 struct sock *ssk;
3735
3736 ssk = __mptcp_nmpc_sk(msk);
3737 if (IS_ERR(ssk))
3738 return PTR_ERR(ssk);
3739
3740 mptcp_set_state(sk, TCP_SYN_SENT);
3741 subflow = mptcp_subflow_ctx(ssk);
3742 #ifdef CONFIG_TCP_MD5SIG
3743 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3744 * TCP option space.
3745 */
3746 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3747 mptcp_subflow_early_fallback(msk, subflow);
3748 #endif
3749 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3750 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3751 mptcp_subflow_early_fallback(msk, subflow);
3752 }
3753 if (likely(!__mptcp_check_fallback(msk)))
3754 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3755
3756 /* if reaching here via the fastopen/sendmsg path, the caller already
3757 * acquired the subflow socket lock, too.
3758 */
3759 if (!msk->fastopening)
3760 lock_sock(ssk);
3761
3762 /* the following mirrors closely a very small chunk of code from
3763 * __inet_stream_connect()
3764 */
3765 if (ssk->sk_state != TCP_CLOSE)
3766 goto out;
3767
3768 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3769 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3770 if (err)
3771 goto out;
3772 }
3773
3774 err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3775 if (err < 0)
3776 goto out;
3777
3778 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3779
3780 out:
3781 if (!msk->fastopening)
3782 release_sock(ssk);
3783
3784 /* on successful connect, the msk state will be moved to established by
3785 * subflow_finish_connect()
3786 */
3787 if (unlikely(err)) {
3788 /* avoid leaving a dangling token in an unconnected socket */
3789 mptcp_token_destroy(msk);
3790 mptcp_set_state(sk, TCP_CLOSE);
3791 return err;
3792 }
3793
3794 mptcp_copy_inaddrs(sk, ssk);
3795 return 0;
3796 }
3797
3798 static struct proto mptcp_prot = {
3799 .name = "MPTCP",
3800 .owner = THIS_MODULE,
3801 .init = mptcp_init_sock,
3802 .connect = mptcp_connect,
3803 .disconnect = mptcp_disconnect,
3804 .close = mptcp_close,
3805 .accept = mptcp_accept,
3806 .setsockopt = mptcp_setsockopt,
3807 .getsockopt = mptcp_getsockopt,
3808 .shutdown = mptcp_shutdown,
3809 .destroy = mptcp_destroy,
3810 .sendmsg = mptcp_sendmsg,
3811 .ioctl = mptcp_ioctl,
3812 .recvmsg = mptcp_recvmsg,
3813 .release_cb = mptcp_release_cb,
3814 .hash = mptcp_hash,
3815 .unhash = mptcp_unhash,
3816 .get_port = mptcp_get_port,
3817 .forward_alloc_get = mptcp_forward_alloc_get,
3818 .sockets_allocated = &mptcp_sockets_allocated,
3819
3820 .memory_allocated = &tcp_memory_allocated,
3821 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3822
3823 .memory_pressure = &tcp_memory_pressure,
3824 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3825 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3826 .sysctl_mem = sysctl_tcp_mem,
3827 .obj_size = sizeof(struct mptcp_sock),
3828 .slab_flags = SLAB_TYPESAFE_BY_RCU,
3829 .no_autobind = true,
3830 };
3831
mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)3832 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3833 {
3834 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3835 struct sock *ssk, *sk = sock->sk;
3836 int err = -EINVAL;
3837
3838 lock_sock(sk);
3839 ssk = __mptcp_nmpc_sk(msk);
3840 if (IS_ERR(ssk)) {
3841 err = PTR_ERR(ssk);
3842 goto unlock;
3843 }
3844
3845 if (sk->sk_family == AF_INET)
3846 err = inet_bind_sk(ssk, uaddr, addr_len);
3847 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3848 else if (sk->sk_family == AF_INET6)
3849 err = inet6_bind_sk(ssk, uaddr, addr_len);
3850 #endif
3851 if (!err)
3852 mptcp_copy_inaddrs(sk, ssk);
3853
3854 unlock:
3855 release_sock(sk);
3856 return err;
3857 }
3858
mptcp_listen(struct socket *sock, int backlog)3859 static int mptcp_listen(struct socket *sock, int backlog)
3860 {
3861 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3862 struct sock *sk = sock->sk;
3863 struct sock *ssk;
3864 int err;
3865
3866 pr_debug("msk=%p", msk);
3867
3868 lock_sock(sk);
3869
3870 err = -EINVAL;
3871 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3872 goto unlock;
3873
3874 ssk = __mptcp_nmpc_sk(msk);
3875 if (IS_ERR(ssk)) {
3876 err = PTR_ERR(ssk);
3877 goto unlock;
3878 }
3879
3880 mptcp_set_state(sk, TCP_LISTEN);
3881 sock_set_flag(sk, SOCK_RCU_FREE);
3882
3883 lock_sock(ssk);
3884 err = __inet_listen_sk(ssk, backlog);
3885 release_sock(ssk);
3886 mptcp_set_state(sk, inet_sk_state_load(ssk));
3887
3888 if (!err) {
3889 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3890 mptcp_copy_inaddrs(sk, ssk);
3891 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3892 }
3893
3894 unlock:
3895 release_sock(sk);
3896 return err;
3897 }
3898
mptcp_stream_accept(struct socket *sock, struct socket *newsock, int flags, bool kern)3899 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3900 int flags, bool kern)
3901 {
3902 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3903 struct sock *ssk, *newsk;
3904 int err;
3905
3906 pr_debug("msk=%p", msk);
3907
3908 /* Buggy applications can call accept on socket states other then LISTEN
3909 * but no need to allocate the first subflow just to error out.
3910 */
3911 ssk = READ_ONCE(msk->first);
3912 if (!ssk)
3913 return -EINVAL;
3914
3915 newsk = mptcp_accept(ssk, flags, &err, kern);
3916 if (!newsk)
3917 return err;
3918
3919 lock_sock(newsk);
3920
3921 __inet_accept(sock, newsock, newsk);
3922 if (!mptcp_is_tcpsk(newsock->sk)) {
3923 struct mptcp_sock *msk = mptcp_sk(newsk);
3924 struct mptcp_subflow_context *subflow;
3925
3926 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3927 msk->in_accept_queue = 0;
3928
3929 /* set ssk->sk_socket of accept()ed flows to mptcp socket.
3930 * This is needed so NOSPACE flag can be set from tcp stack.
3931 */
3932 mptcp_for_each_subflow(msk, subflow) {
3933 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3934
3935 if (!ssk->sk_socket)
3936 mptcp_sock_graft(ssk, newsock);
3937 }
3938
3939 /* Do late cleanup for the first subflow as necessary. Also
3940 * deal with bad peers not doing a complete shutdown.
3941 */
3942 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3943 __mptcp_close_ssk(newsk, msk->first,
3944 mptcp_subflow_ctx(msk->first), 0);
3945 if (unlikely(list_is_singular(&msk->conn_list)))
3946 mptcp_set_state(newsk, TCP_CLOSE);
3947 }
3948 }
3949 release_sock(newsk);
3950
3951 return 0;
3952 }
3953
mptcp_check_writeable(struct mptcp_sock *msk)3954 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3955 {
3956 struct sock *sk = (struct sock *)msk;
3957
3958 if (sk_stream_is_writeable(sk))
3959 return EPOLLOUT | EPOLLWRNORM;
3960
3961 mptcp_set_nospace(sk);
3962 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3963 if (sk_stream_is_writeable(sk))
3964 return EPOLLOUT | EPOLLWRNORM;
3965
3966 return 0;
3967 }
3968
mptcp_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait)3969 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3970 struct poll_table_struct *wait)
3971 {
3972 struct sock *sk = sock->sk;
3973 struct mptcp_sock *msk;
3974 __poll_t mask = 0;
3975 u8 shutdown;
3976 int state;
3977
3978 msk = mptcp_sk(sk);
3979 sock_poll_wait(file, sock, wait);
3980
3981 state = inet_sk_state_load(sk);
3982 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3983 if (state == TCP_LISTEN) {
3984 struct sock *ssk = READ_ONCE(msk->first);
3985
3986 if (WARN_ON_ONCE(!ssk))
3987 return 0;
3988
3989 return inet_csk_listen_poll(ssk);
3990 }
3991
3992 shutdown = READ_ONCE(sk->sk_shutdown);
3993 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3994 mask |= EPOLLHUP;
3995 if (shutdown & RCV_SHUTDOWN)
3996 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3997
3998 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3999 mask |= mptcp_check_readable(msk);
4000 if (shutdown & SEND_SHUTDOWN)
4001 mask |= EPOLLOUT | EPOLLWRNORM;
4002 else
4003 mask |= mptcp_check_writeable(msk);
4004 } else if (state == TCP_SYN_SENT &&
4005 inet_test_bit(DEFER_CONNECT, sk)) {
4006 /* cf tcp_poll() note about TFO */
4007 mask |= EPOLLOUT | EPOLLWRNORM;
4008 }
4009
4010 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4011 smp_rmb();
4012 if (READ_ONCE(sk->sk_err))
4013 mask |= EPOLLERR;
4014
4015 return mask;
4016 }
4017
4018 static const struct proto_ops mptcp_stream_ops = {
4019 .family = PF_INET,
4020 .owner = THIS_MODULE,
4021 .release = inet_release,
4022 .bind = mptcp_bind,
4023 .connect = inet_stream_connect,
4024 .socketpair = sock_no_socketpair,
4025 .accept = mptcp_stream_accept,
4026 .getname = inet_getname,
4027 .poll = mptcp_poll,
4028 .ioctl = inet_ioctl,
4029 .gettstamp = sock_gettstamp,
4030 .listen = mptcp_listen,
4031 .shutdown = inet_shutdown,
4032 .setsockopt = sock_common_setsockopt,
4033 .getsockopt = sock_common_getsockopt,
4034 .sendmsg = inet_sendmsg,
4035 .recvmsg = inet_recvmsg,
4036 .mmap = sock_no_mmap,
4037 };
4038
4039 static struct inet_protosw mptcp_protosw = {
4040 .type = SOCK_STREAM,
4041 .protocol = IPPROTO_MPTCP,
4042 .prot = &mptcp_prot,
4043 .ops = &mptcp_stream_ops,
4044 .flags = INET_PROTOSW_ICSK,
4045 };
4046
mptcp_napi_poll(struct napi_struct *napi, int budget)4047 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4048 {
4049 struct mptcp_delegated_action *delegated;
4050 struct mptcp_subflow_context *subflow;
4051 int work_done = 0;
4052
4053 delegated = container_of(napi, struct mptcp_delegated_action, napi);
4054 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4055 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4056
4057 bh_lock_sock_nested(ssk);
4058 if (!sock_owned_by_user(ssk)) {
4059 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4060 } else {
4061 /* tcp_release_cb_override already processed
4062 * the action or will do at next release_sock().
4063 * In both case must dequeue the subflow here - on the same
4064 * CPU that scheduled it.
4065 */
4066 smp_wmb();
4067 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4068 }
4069 bh_unlock_sock(ssk);
4070 sock_put(ssk);
4071
4072 if (++work_done == budget)
4073 return budget;
4074 }
4075
4076 /* always provide a 0 'work_done' argument, so that napi_complete_done
4077 * will not try accessing the NULL napi->dev ptr
4078 */
4079 napi_complete_done(napi, 0);
4080 return work_done;
4081 }
4082
mptcp_proto_init(void)4083 void __init mptcp_proto_init(void)
4084 {
4085 struct mptcp_delegated_action *delegated;
4086 int cpu;
4087
4088 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4089
4090 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4091 panic("Failed to allocate MPTCP pcpu counter\n");
4092
4093 init_dummy_netdev(&mptcp_napi_dev);
4094 for_each_possible_cpu(cpu) {
4095 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4096 INIT_LIST_HEAD(&delegated->head);
4097 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4098 mptcp_napi_poll);
4099 napi_enable(&delegated->napi);
4100 }
4101
4102 mptcp_subflow_init();
4103 mptcp_pm_init();
4104 mptcp_sched_init();
4105 mptcp_token_init();
4106
4107 if (proto_register(&mptcp_prot, 1) != 0)
4108 panic("Failed to register MPTCP proto.\n");
4109
4110 inet_register_protosw(&mptcp_protosw);
4111
4112 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4113 }
4114
4115 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4116 static const struct proto_ops mptcp_v6_stream_ops = {
4117 .family = PF_INET6,
4118 .owner = THIS_MODULE,
4119 .release = inet6_release,
4120 .bind = mptcp_bind,
4121 .connect = inet_stream_connect,
4122 .socketpair = sock_no_socketpair,
4123 .accept = mptcp_stream_accept,
4124 .getname = inet6_getname,
4125 .poll = mptcp_poll,
4126 .ioctl = inet6_ioctl,
4127 .gettstamp = sock_gettstamp,
4128 .listen = mptcp_listen,
4129 .shutdown = inet_shutdown,
4130 .setsockopt = sock_common_setsockopt,
4131 .getsockopt = sock_common_getsockopt,
4132 .sendmsg = inet6_sendmsg,
4133 .recvmsg = inet6_recvmsg,
4134 .mmap = sock_no_mmap,
4135 #ifdef CONFIG_COMPAT
4136 .compat_ioctl = inet6_compat_ioctl,
4137 #endif
4138 };
4139
4140 static struct proto mptcp_v6_prot;
4141
4142 static struct inet_protosw mptcp_v6_protosw = {
4143 .type = SOCK_STREAM,
4144 .protocol = IPPROTO_MPTCP,
4145 .prot = &mptcp_v6_prot,
4146 .ops = &mptcp_v6_stream_ops,
4147 .flags = INET_PROTOSW_ICSK,
4148 };
4149
mptcp_proto_v6_init(void)4150 int __init mptcp_proto_v6_init(void)
4151 {
4152 int err;
4153
4154 mptcp_v6_prot = mptcp_prot;
4155 strcpy(mptcp_v6_prot.name, "MPTCPv6");
4156 mptcp_v6_prot.slab = NULL;
4157 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4158 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4159
4160 err = proto_register(&mptcp_v6_prot, 1);
4161 if (err)
4162 return err;
4163
4164 err = inet6_register_protosw(&mptcp_v6_protosw);
4165 if (err)
4166 proto_unregister(&mptcp_v6_prot);
4167
4168 return err;
4169 }
4170 #endif
4171