1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Workingset detection
4  *
5  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
6  */
7 
8 #include <linux/memcontrol.h>
9 #include <linux/mm_inline.h>
10 #include <linux/writeback.h>
11 #include <linux/shmem_fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/atomic.h>
14 #include <linux/module.h>
15 #include <linux/swap.h>
16 #include <linux/dax.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 
20 /*
21  *		Double CLOCK lists
22  *
23  * Per node, two clock lists are maintained for file pages: the
24  * inactive and the active list.  Freshly faulted pages start out at
25  * the head of the inactive list and page reclaim scans pages from the
26  * tail.  Pages that are accessed multiple times on the inactive list
27  * are promoted to the active list, to protect them from reclaim,
28  * whereas active pages are demoted to the inactive list when the
29  * active list grows too big.
30  *
31  *   fault ------------------------+
32  *                                 |
33  *              +--------------+   |            +-------------+
34  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
35  *              +--------------+                +-------------+    |
36  *                     |                                           |
37  *                     +-------------- promotion ------------------+
38  *
39  *
40  *		Access frequency and refault distance
41  *
42  * A workload is thrashing when its pages are frequently used but they
43  * are evicted from the inactive list every time before another access
44  * would have promoted them to the active list.
45  *
46  * In cases where the average access distance between thrashing pages
47  * is bigger than the size of memory there is nothing that can be
48  * done - the thrashing set could never fit into memory under any
49  * circumstance.
50  *
51  * However, the average access distance could be bigger than the
52  * inactive list, yet smaller than the size of memory.  In this case,
53  * the set could fit into memory if it weren't for the currently
54  * active pages - which may be used more, hopefully less frequently:
55  *
56  *      +-memory available to cache-+
57  *      |                           |
58  *      +-inactive------+-active----+
59  *  a b | c d e f g h i | J K L M N |
60  *      +---------------+-----------+
61  *
62  * It is prohibitively expensive to accurately track access frequency
63  * of pages.  But a reasonable approximation can be made to measure
64  * thrashing on the inactive list, after which refaulting pages can be
65  * activated optimistically to compete with the existing active pages.
66  *
67  * Approximating inactive page access frequency - Observations:
68  *
69  * 1. When a page is accessed for the first time, it is added to the
70  *    head of the inactive list, slides every existing inactive page
71  *    towards the tail by one slot, and pushes the current tail page
72  *    out of memory.
73  *
74  * 2. When a page is accessed for the second time, it is promoted to
75  *    the active list, shrinking the inactive list by one slot.  This
76  *    also slides all inactive pages that were faulted into the cache
77  *    more recently than the activated page towards the tail of the
78  *    inactive list.
79  *
80  * Thus:
81  *
82  * 1. The sum of evictions and activations between any two points in
83  *    time indicate the minimum number of inactive pages accessed in
84  *    between.
85  *
86  * 2. Moving one inactive page N page slots towards the tail of the
87  *    list requires at least N inactive page accesses.
88  *
89  * Combining these:
90  *
91  * 1. When a page is finally evicted from memory, the number of
92  *    inactive pages accessed while the page was in cache is at least
93  *    the number of page slots on the inactive list.
94  *
95  * 2. In addition, measuring the sum of evictions and activations (E)
96  *    at the time of a page's eviction, and comparing it to another
97  *    reading (R) at the time the page faults back into memory tells
98  *    the minimum number of accesses while the page was not cached.
99  *    This is called the refault distance.
100  *
101  * Because the first access of the page was the fault and the second
102  * access the refault, we combine the in-cache distance with the
103  * out-of-cache distance to get the complete minimum access distance
104  * of this page:
105  *
106  *      NR_inactive + (R - E)
107  *
108  * And knowing the minimum access distance of a page, we can easily
109  * tell if the page would be able to stay in cache assuming all page
110  * slots in the cache were available:
111  *
112  *   NR_inactive + (R - E) <= NR_inactive + NR_active
113  *
114  * If we have swap we should consider about NR_inactive_anon and
115  * NR_active_anon, so for page cache and anonymous respectively:
116  *
117  *   NR_inactive_file + (R - E) <= NR_inactive_file + NR_active_file
118  *   + NR_inactive_anon + NR_active_anon
119  *
120  *   NR_inactive_anon + (R - E) <= NR_inactive_anon + NR_active_anon
121  *   + NR_inactive_file + NR_active_file
122  *
123  * Which can be further simplified to:
124  *
125  *   (R - E) <= NR_active_file + NR_inactive_anon + NR_active_anon
126  *
127  *   (R - E) <= NR_active_anon + NR_inactive_file + NR_active_file
128  *
129  * Put into words, the refault distance (out-of-cache) can be seen as
130  * a deficit in inactive list space (in-cache).  If the inactive list
131  * had (R - E) more page slots, the page would not have been evicted
132  * in between accesses, but activated instead.  And on a full system,
133  * the only thing eating into inactive list space is active pages.
134  *
135  *
136  *		Refaulting inactive pages
137  *
138  * All that is known about the active list is that the pages have been
139  * accessed more than once in the past.  This means that at any given
140  * time there is actually a good chance that pages on the active list
141  * are no longer in active use.
142  *
143  * So when a refault distance of (R - E) is observed and there are at
144  * least (R - E) pages in the userspace workingset, the refaulting page
145  * is activated optimistically in the hope that (R - E) pages are actually
146  * used less frequently than the refaulting page - or even not used at
147  * all anymore.
148  *
149  * That means if inactive cache is refaulting with a suitable refault
150  * distance, we assume the cache workingset is transitioning and put
151  * pressure on the current workingset.
152  *
153  * If this is wrong and demotion kicks in, the pages which are truly
154  * used more frequently will be reactivated while the less frequently
155  * used once will be evicted from memory.
156  *
157  * But if this is right, the stale pages will be pushed out of memory
158  * and the used pages get to stay in cache.
159  *
160  *		Refaulting active pages
161  *
162  * If on the other hand the refaulting pages have recently been
163  * deactivated, it means that the active list is no longer protecting
164  * actively used cache from reclaim. The cache is NOT transitioning to
165  * a different workingset; the existing workingset is thrashing in the
166  * space allocated to the page cache.
167  *
168  *
169  *		Implementation
170  *
171  * For each node's LRU lists, a counter for inactive evictions and
172  * activations is maintained (node->nonresident_age).
173  *
174  * On eviction, a snapshot of this counter (along with some bits to
175  * identify the node) is stored in the now empty page cache
176  * slot of the evicted page.  This is called a shadow entry.
177  *
178  * On cache misses for which there are shadow entries, an eligible
179  * refault distance will immediately activate the refaulting page.
180  */
181 
182 #define WORKINGSET_SHIFT 1
183 #define EVICTION_SHIFT	((BITS_PER_LONG - BITS_PER_XA_VALUE) +	\
184 			 WORKINGSET_SHIFT + NODES_SHIFT + \
185 			 MEM_CGROUP_ID_SHIFT)
186 #define EVICTION_MASK	(~0UL >> EVICTION_SHIFT)
187 
188 /*
189  * Eviction timestamps need to be able to cover the full range of
190  * actionable refaults. However, bits are tight in the xarray
191  * entry, and after storing the identifier for the lruvec there might
192  * not be enough left to represent every single actionable refault. In
193  * that case, we have to sacrifice granularity for distance, and group
194  * evictions into coarser buckets by shaving off lower timestamp bits.
195  */
196 static unsigned int bucket_order __read_mostly;
197 
pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction, bool workingset)198 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
199 			 bool workingset)
200 {
201 	eviction &= EVICTION_MASK;
202 	eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
203 	eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
204 	eviction = (eviction << WORKINGSET_SHIFT) | workingset;
205 
206 	return xa_mk_value(eviction);
207 }
208 
unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat, unsigned long *evictionp, bool *workingsetp)209 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
210 			  unsigned long *evictionp, bool *workingsetp)
211 {
212 	unsigned long entry = xa_to_value(shadow);
213 	int memcgid, nid;
214 	bool workingset;
215 
216 	workingset = entry & ((1UL << WORKINGSET_SHIFT) - 1);
217 	entry >>= WORKINGSET_SHIFT;
218 	nid = entry & ((1UL << NODES_SHIFT) - 1);
219 	entry >>= NODES_SHIFT;
220 	memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
221 	entry >>= MEM_CGROUP_ID_SHIFT;
222 
223 	*memcgidp = memcgid;
224 	*pgdat = NODE_DATA(nid);
225 	*evictionp = entry;
226 	*workingsetp = workingset;
227 }
228 
229 #ifdef CONFIG_LRU_GEN
230 
lru_gen_eviction(struct folio *folio)231 static void *lru_gen_eviction(struct folio *folio)
232 {
233 	int hist;
234 	unsigned long token;
235 	unsigned long min_seq;
236 	struct lruvec *lruvec;
237 	struct lru_gen_folio *lrugen;
238 	int type = folio_is_file_lru(folio);
239 	int delta = folio_nr_pages(folio);
240 	int refs = folio_lru_refs(folio);
241 	int tier = lru_tier_from_refs(refs);
242 	struct mem_cgroup *memcg = folio_memcg(folio);
243 	struct pglist_data *pgdat = folio_pgdat(folio);
244 
245 	BUILD_BUG_ON(LRU_GEN_WIDTH + LRU_REFS_WIDTH > BITS_PER_LONG - EVICTION_SHIFT);
246 
247 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
248 	lrugen = &lruvec->lrugen;
249 	min_seq = READ_ONCE(lrugen->min_seq[type]);
250 	token = (min_seq << LRU_REFS_WIDTH) | max(refs - 1, 0);
251 
252 	hist = lru_hist_from_seq(min_seq);
253 	atomic_long_add(delta, &lrugen->evicted[hist][type][tier]);
254 
255 	return pack_shadow(mem_cgroup_id(memcg), pgdat, token, refs);
256 }
257 
258 /*
259  * Tests if the shadow entry is for a folio that was recently evicted.
260  * Fills in @lruvec, @token, @workingset with the values unpacked from shadow.
261  */
lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec, unsigned long *token, bool *workingset)262 static bool lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec,
263 				unsigned long *token, bool *workingset)
264 {
265 	int memcg_id;
266 	unsigned long min_seq;
267 	struct mem_cgroup *memcg;
268 	struct pglist_data *pgdat;
269 
270 	unpack_shadow(shadow, &memcg_id, &pgdat, token, workingset);
271 
272 	memcg = mem_cgroup_from_id(memcg_id);
273 	*lruvec = mem_cgroup_lruvec(memcg, pgdat);
274 
275 	min_seq = READ_ONCE((*lruvec)->lrugen.min_seq[file]);
276 	return (*token >> LRU_REFS_WIDTH) == (min_seq & (EVICTION_MASK >> LRU_REFS_WIDTH));
277 }
278 
lru_gen_refault(struct folio *folio, void *shadow)279 static void lru_gen_refault(struct folio *folio, void *shadow)
280 {
281 	bool recent;
282 	int hist, tier, refs;
283 	bool workingset;
284 	unsigned long token;
285 	struct lruvec *lruvec;
286 	struct lru_gen_folio *lrugen;
287 	int type = folio_is_file_lru(folio);
288 	int delta = folio_nr_pages(folio);
289 
290 	rcu_read_lock();
291 
292 	recent = lru_gen_test_recent(shadow, type, &lruvec, &token, &workingset);
293 	if (lruvec != folio_lruvec(folio))
294 		goto unlock;
295 
296 	mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + type, delta);
297 
298 	if (!recent)
299 		goto unlock;
300 
301 	lrugen = &lruvec->lrugen;
302 
303 	hist = lru_hist_from_seq(READ_ONCE(lrugen->min_seq[type]));
304 	/* see the comment in folio_lru_refs() */
305 	refs = (token & (BIT(LRU_REFS_WIDTH) - 1)) + workingset;
306 	tier = lru_tier_from_refs(refs);
307 
308 	atomic_long_add(delta, &lrugen->refaulted[hist][type][tier]);
309 	mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
310 
311 	/*
312 	 * Count the following two cases as stalls:
313 	 * 1. For pages accessed through page tables, hotter pages pushed out
314 	 *    hot pages which refaulted immediately.
315 	 * 2. For pages accessed multiple times through file descriptors,
316 	 *    they would have been protected by sort_folio().
317 	 */
318 	if (lru_gen_in_fault() || refs >= BIT(LRU_REFS_WIDTH) - 1) {
319 		set_mask_bits(&folio->flags, 0, LRU_REFS_MASK | BIT(PG_workingset));
320 		mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + type, delta);
321 	}
322 unlock:
323 	rcu_read_unlock();
324 }
325 
326 #else /* !CONFIG_LRU_GEN */
327 
lru_gen_eviction(struct folio *folio)328 static void *lru_gen_eviction(struct folio *folio)
329 {
330 	return NULL;
331 }
332 
lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec, unsigned long *token, bool *workingset)333 static bool lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec,
334 				unsigned long *token, bool *workingset)
335 {
336 	return false;
337 }
338 
lru_gen_refault(struct folio *folio, void *shadow)339 static void lru_gen_refault(struct folio *folio, void *shadow)
340 {
341 }
342 
343 #endif /* CONFIG_LRU_GEN */
344 
345 /**
346  * workingset_age_nonresident - age non-resident entries as LRU ages
347  * @lruvec: the lruvec that was aged
348  * @nr_pages: the number of pages to count
349  *
350  * As in-memory pages are aged, non-resident pages need to be aged as
351  * well, in order for the refault distances later on to be comparable
352  * to the in-memory dimensions. This function allows reclaim and LRU
353  * operations to drive the non-resident aging along in parallel.
354  */
workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)355 void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
356 {
357 	/*
358 	 * Reclaiming a cgroup means reclaiming all its children in a
359 	 * round-robin fashion. That means that each cgroup has an LRU
360 	 * order that is composed of the LRU orders of its child
361 	 * cgroups; and every page has an LRU position not just in the
362 	 * cgroup that owns it, but in all of that group's ancestors.
363 	 *
364 	 * So when the physical inactive list of a leaf cgroup ages,
365 	 * the virtual inactive lists of all its parents, including
366 	 * the root cgroup's, age as well.
367 	 */
368 	do {
369 		atomic_long_add(nr_pages, &lruvec->nonresident_age);
370 	} while ((lruvec = parent_lruvec(lruvec)));
371 }
372 
373 /**
374  * workingset_eviction - note the eviction of a folio from memory
375  * @target_memcg: the cgroup that is causing the reclaim
376  * @folio: the folio being evicted
377  *
378  * Return: a shadow entry to be stored in @folio->mapping->i_pages in place
379  * of the evicted @folio so that a later refault can be detected.
380  */
workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg)381 void *workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg)
382 {
383 	struct pglist_data *pgdat = folio_pgdat(folio);
384 	unsigned long eviction;
385 	struct lruvec *lruvec;
386 	int memcgid;
387 
388 	/* Folio is fully exclusive and pins folio's memory cgroup pointer */
389 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
390 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
391 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
392 
393 	if (lru_gen_enabled())
394 		return lru_gen_eviction(folio);
395 
396 	lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
397 	/* XXX: target_memcg can be NULL, go through lruvec */
398 	memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
399 	eviction = atomic_long_read(&lruvec->nonresident_age);
400 	eviction >>= bucket_order;
401 #ifdef CONFIG_HYPERHOLD_FILE_LRU
402 	if (!is_prot_page(folio_page(folio, 0)) && page_is_file_lru(folio_page(folio, 0))) {
403 		lruvec = folio_lruvec(folio);
404 		workingset_age_nonresident(lruvec, folio_nr_pages(folio));
405 	} else {
406 		workingset_age_nonresident(lruvec, folio_nr_pages(folio));
407 	}
408 #else
409 	workingset_age_nonresident(lruvec, folio_nr_pages(folio));
410 #endif
411 	return pack_shadow(memcgid, pgdat, eviction,
412 				folio_test_workingset(folio));
413 }
414 
415 /**
416  * workingset_test_recent - tests if the shadow entry is for a folio that was
417  * recently evicted. Also fills in @workingset with the value unpacked from
418  * shadow.
419  * @shadow: the shadow entry to be tested.
420  * @file: whether the corresponding folio is from the file lru.
421  * @workingset: where the workingset value unpacked from shadow should
422  * be stored.
423  *
424  * Return: true if the shadow is for a recently evicted folio; false otherwise.
425  */
workingset_test_recent(void *shadow, bool file, bool *workingset)426 bool workingset_test_recent(void *shadow, bool file, bool *workingset)
427 {
428 	struct mem_cgroup *eviction_memcg;
429 	struct lruvec *eviction_lruvec;
430 	unsigned long refault_distance;
431 	unsigned long workingset_size;
432 	unsigned long refault;
433 	int memcgid;
434 	struct pglist_data *pgdat;
435 	unsigned long eviction;
436 
437 	if (lru_gen_enabled())
438 		return lru_gen_test_recent(shadow, file, &eviction_lruvec, &eviction, workingset);
439 
440 	unpack_shadow(shadow, &memcgid, &pgdat, &eviction, workingset);
441 	eviction <<= bucket_order;
442 
443 	/*
444 	 * Look up the memcg associated with the stored ID. It might
445 	 * have been deleted since the folio's eviction.
446 	 *
447 	 * Note that in rare events the ID could have been recycled
448 	 * for a new cgroup that refaults a shared folio. This is
449 	 * impossible to tell from the available data. However, this
450 	 * should be a rare and limited disturbance, and activations
451 	 * are always speculative anyway. Ultimately, it's the aging
452 	 * algorithm's job to shake out the minimum access frequency
453 	 * for the active cache.
454 	 *
455 	 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
456 	 * would be better if the root_mem_cgroup existed in all
457 	 * configurations instead.
458 	 */
459 #ifdef CONFIG_HYPERHOLD_FILE_LRU
460 	if (memcgid != -1) {
461 		eviction_memcg = mem_cgroup_from_id(memcgid);
462 		if (!mem_cgroup_disabled() && !eviction_memcg)
463 			return false;
464 	}
465 #else
466 	eviction_memcg = mem_cgroup_from_id(memcgid);
467 	if (!mem_cgroup_disabled() && !eviction_memcg)
468 		return false;
469 #endif
470 
471 	eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
472 	refault = atomic_long_read(&eviction_lruvec->nonresident_age);
473 
474 	/*
475 	 * Calculate the refault distance
476 	 *
477 	 * The unsigned subtraction here gives an accurate distance
478 	 * across nonresident_age overflows in most cases. There is a
479 	 * special case: usually, shadow entries have a short lifetime
480 	 * and are either refaulted or reclaimed along with the inode
481 	 * before they get too old.  But it is not impossible for the
482 	 * nonresident_age to lap a shadow entry in the field, which
483 	 * can then result in a false small refault distance, leading
484 	 * to a false activation should this old entry actually
485 	 * refault again.  However, earlier kernels used to deactivate
486 	 * unconditionally with *every* reclaim invocation for the
487 	 * longest time, so the occasional inappropriate activation
488 	 * leading to pressure on the active list is not a problem.
489 	 */
490 	refault_distance = (refault - eviction) & EVICTION_MASK;
491 
492 	/*
493 	 * Compare the distance to the existing workingset size. We
494 	 * don't activate pages that couldn't stay resident even if
495 	 * all the memory was available to the workingset. Whether
496 	 * workingset competition needs to consider anon or not depends
497 	 * on having free swap space.
498 	 */
499 #ifdef CONFIG_HYPERHOLD_FILE_LRU
500 	workingset_size = lruvec_page_state(node_lruvec(pgdat), NR_ACTIVE_FILE);
501 #else
502 	workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
503 #endif
504 
505 	if (!file) {
506 #ifdef CONFIG_HYPERHOLD_FILE_LRU
507 		workingset_size += lruvec_page_state(node_lruvec(pgdat),
508 						     NR_INACTIVE_FILE);
509 #else
510 
511 		workingset_size += lruvec_page_state(eviction_lruvec,
512 						     NR_INACTIVE_FILE);
513 #endif
514 	}
515 	if (mem_cgroup_get_nr_swap_pages(eviction_memcg) > 0) {
516 		workingset_size += lruvec_page_state(eviction_lruvec,
517 						     NR_ACTIVE_ANON);
518 		if (file) {
519 			workingset_size += lruvec_page_state(eviction_lruvec,
520 						     NR_INACTIVE_ANON);
521 		}
522 	}
523 
524 	return refault_distance <= workingset_size;
525 }
526 
527 /**
528  * workingset_refault - Evaluate the refault of a previously evicted folio.
529  * @folio: The freshly allocated replacement folio.
530  * @shadow: Shadow entry of the evicted folio.
531  *
532  * Calculates and evaluates the refault distance of the previously
533  * evicted folio in the context of the node and the memcg whose memory
534  * pressure caused the eviction.
535  */
workingset_refault(struct folio *folio, void *shadow)536 void workingset_refault(struct folio *folio, void *shadow)
537 {
538 	bool file = folio_is_file_lru(folio);
539 	struct pglist_data *pgdat;
540 	struct mem_cgroup *memcg;
541 	struct lruvec *lruvec;
542 	bool workingset;
543 	long nr;
544 
545 	if (lru_gen_enabled()) {
546 		lru_gen_refault(folio, shadow);
547 		return;
548 	}
549 
550 	/* Flush stats (and potentially sleep) before holding RCU read lock */
551 	mem_cgroup_flush_stats_ratelimited();
552 
553 	rcu_read_lock();
554 
555 	/*
556 	 * The activation decision for this folio is made at the level
557 	 * where the eviction occurred, as that is where the LRU order
558 	 * during folio reclaim is being determined.
559 	 *
560 	 * However, the cgroup that will own the folio is the one that
561 	 * is actually experiencing the refault event.
562 	 */
563 	nr = folio_nr_pages(folio);
564 	memcg = folio_memcg(folio);
565 	pgdat = folio_pgdat(folio);
566 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
567 
568 #ifdef CONFIG_HYPERHOLD_FILE_LRU
569 	if (!is_prot_page(folio_page(folio, 0)) && file)
570 		mod_lruvec_state(node_lruvec(pgdat),
571 		    WORKINGSET_REFAULT_BASE + file, folio_nr_pages(folio));
572 	else
573 		mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file, nr);
574 #else
575 	mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file, nr);
576 #endif
577 
578 	if (!workingset_test_recent(shadow, file, &workingset))
579 		goto out;
580 
581 	folio_set_active(folio);
582 #ifdef CONFIG_HYPERHOLD_FILE_LRU
583 	if (!is_prot_page(folio_page(folio, 0)) && file) {
584 		workingset_age_nonresident(node_lruvec(pgdat),
585 					   folio_nr_pages(folio));
586 		mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, folio_nr_pages(folio));
587 	} else {
588 		workingset_age_nonresident(lruvec, nr);
589 		mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, nr);
590 	}
591 #else
592 	workingset_age_nonresident(lruvec, nr);
593 	mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, nr);
594 #endif
595 
596 	/* Folio was active prior to eviction */
597 	if (workingset) {
598 		folio_set_workingset(folio);
599 		/*
600 		 * XXX: Move to folio_add_lru() when it supports new vs
601 		 * putback
602 		 */
603 		lru_note_cost_refault(folio);
604 #ifdef CONFIG_HYPERHOLD_FILE_LRU
605 		if (!is_prot_page(folio_page(folio, 0)) && file)
606 			mod_lruvec_state(node_lruvec(pgdat), WORKINGSET_RESTORE_BASE + file, folio_nr_pages(folio));
607 		else
608 			mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file, nr);
609 #else
610 		mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file, nr);
611 #endif
612 	}
613 out:
614 	rcu_read_unlock();
615 }
616 
617 /**
618  * workingset_activation - note a page activation
619  * @folio: Folio that is being activated.
620  */
workingset_activation(struct folio *folio)621 void workingset_activation(struct folio *folio)
622 {
623 	struct mem_cgroup *memcg;
624 	struct lruvec *lruvec;
625 
626 	rcu_read_lock();
627 	/*
628 	 * Filter non-memcg pages here, e.g. unmap can call
629 	 * mark_page_accessed() on VDSO pages.
630 	 *
631 	 * XXX: See workingset_refault() - this should return
632 	 * root_mem_cgroup even for !CONFIG_MEMCG.
633 	 */
634 	memcg = folio_memcg_rcu(folio);
635 	if (!mem_cgroup_disabled() && !memcg)
636 		goto out;
637 #ifdef CONFIG_HYPERHOLD_FILE_LRU
638 	if (!is_prot_page(folio_page(folio, 0)) && page_is_file_lru(folio_page(folio, 0))) {
639 		lruvec = folio_lruvec(folio);
640 		workingset_age_nonresident(lruvec, folio_nr_pages(folio));
641 	} else {
642 		workingset_age_nonresident(folio_lruvec(folio), folio_nr_pages(folio));
643 	}
644 #else
645 	workingset_age_nonresident(folio_lruvec(folio), folio_nr_pages(folio));
646 #endif
647 out:
648 	rcu_read_unlock();
649 }
650 
651 /*
652  * Shadow entries reflect the share of the working set that does not
653  * fit into memory, so their number depends on the access pattern of
654  * the workload.  In most cases, they will refault or get reclaimed
655  * along with the inode, but a (malicious) workload that streams
656  * through files with a total size several times that of available
657  * memory, while preventing the inodes from being reclaimed, can
658  * create excessive amounts of shadow nodes.  To keep a lid on this,
659  * track shadow nodes and reclaim them when they grow way past the
660  * point where they would still be useful.
661  */
662 
663 struct list_lru shadow_nodes;
664 
workingset_update_node(struct xa_node *node)665 void workingset_update_node(struct xa_node *node)
666 {
667 	struct address_space *mapping;
668 
669 	/*
670 	 * Track non-empty nodes that contain only shadow entries;
671 	 * unlink those that contain pages or are being freed.
672 	 *
673 	 * Avoid acquiring the list_lru lock when the nodes are
674 	 * already where they should be. The list_empty() test is safe
675 	 * as node->private_list is protected by the i_pages lock.
676 	 */
677 	mapping = container_of(node->array, struct address_space, i_pages);
678 	lockdep_assert_held(&mapping->i_pages.xa_lock);
679 
680 	if (node->count && node->count == node->nr_values) {
681 		if (list_empty(&node->private_list)) {
682 			list_lru_add(&shadow_nodes, &node->private_list);
683 			__inc_lruvec_kmem_state(node, WORKINGSET_NODES);
684 		}
685 	} else {
686 		if (!list_empty(&node->private_list)) {
687 			list_lru_del(&shadow_nodes, &node->private_list);
688 			__dec_lruvec_kmem_state(node, WORKINGSET_NODES);
689 		}
690 	}
691 }
692 
count_shadow_nodes(struct shrinker *shrinker, struct shrink_control *sc)693 static unsigned long count_shadow_nodes(struct shrinker *shrinker,
694 					struct shrink_control *sc)
695 {
696 	unsigned long max_nodes;
697 	unsigned long nodes;
698 	unsigned long pages;
699 
700 	nodes = list_lru_shrink_count(&shadow_nodes, sc);
701 	if (!nodes)
702 		return SHRINK_EMPTY;
703 
704 	/*
705 	 * Approximate a reasonable limit for the nodes
706 	 * containing shadow entries. We don't need to keep more
707 	 * shadow entries than possible pages on the active list,
708 	 * since refault distances bigger than that are dismissed.
709 	 *
710 	 * The size of the active list converges toward 100% of
711 	 * overall page cache as memory grows, with only a tiny
712 	 * inactive list. Assume the total cache size for that.
713 	 *
714 	 * Nodes might be sparsely populated, with only one shadow
715 	 * entry in the extreme case. Obviously, we cannot keep one
716 	 * node for every eligible shadow entry, so compromise on a
717 	 * worst-case density of 1/8th. Below that, not all eligible
718 	 * refaults can be detected anymore.
719 	 *
720 	 * On 64-bit with 7 xa_nodes per page and 64 slots
721 	 * each, this will reclaim shadow entries when they consume
722 	 * ~1.8% of available memory:
723 	 *
724 	 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
725 	 */
726 #ifdef CONFIG_MEMCG
727 #ifndef CONFIG_HYPERHOLD_FILE_LRU
728 	if (sc->memcg) {
729 		struct lruvec *lruvec;
730 		int i;
731 
732 		mem_cgroup_flush_stats();
733 		lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
734 		for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
735 			pages += lruvec_page_state_local(lruvec,
736 							 NR_LRU_BASE + i);
737 		pages += lruvec_page_state_local(
738 			lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
739 		pages += lruvec_page_state_local(
740 			lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
741 	} else
742 #endif
743 #endif
744 		pages = node_present_pages(sc->nid);
745 
746 	max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
747 
748 	if (nodes <= max_nodes)
749 		return 0;
750 	return nodes - max_nodes;
751 }
752 
753 static enum lru_status shadow_lru_isolate(struct list_head *item,
754 					  struct list_lru_one *lru,
755 					  spinlock_t *lru_lock,
__must_holdnull756 					  void *arg) __must_hold(lru_lock)
757 {
758 	struct xa_node *node = container_of(item, struct xa_node, private_list);
759 	struct address_space *mapping;
760 	int ret;
761 
762 	/*
763 	 * Page cache insertions and deletions synchronously maintain
764 	 * the shadow node LRU under the i_pages lock and the
765 	 * lru_lock.  Because the page cache tree is emptied before
766 	 * the inode can be destroyed, holding the lru_lock pins any
767 	 * address_space that has nodes on the LRU.
768 	 *
769 	 * We can then safely transition to the i_pages lock to
770 	 * pin only the address_space of the particular node we want
771 	 * to reclaim, take the node off-LRU, and drop the lru_lock.
772 	 */
773 
774 	mapping = container_of(node->array, struct address_space, i_pages);
775 
776 	/* Coming from the list, invert the lock order */
777 	if (!xa_trylock(&mapping->i_pages)) {
778 		spin_unlock_irq(lru_lock);
779 		ret = LRU_RETRY;
780 		goto out;
781 	}
782 
783 	/* For page cache we need to hold i_lock */
784 	if (mapping->host != NULL) {
785 		if (!spin_trylock(&mapping->host->i_lock)) {
786 			xa_unlock(&mapping->i_pages);
787 			spin_unlock_irq(lru_lock);
788 			ret = LRU_RETRY;
789 			goto out;
790 		}
791 	}
792 
793 	list_lru_isolate(lru, item);
794 	__dec_lruvec_kmem_state(node, WORKINGSET_NODES);
795 
796 	spin_unlock(lru_lock);
797 
798 	/*
799 	 * The nodes should only contain one or more shadow entries,
800 	 * no pages, so we expect to be able to remove them all and
801 	 * delete and free the empty node afterwards.
802 	 */
803 	if (WARN_ON_ONCE(!node->nr_values))
804 		goto out_invalid;
805 	if (WARN_ON_ONCE(node->count != node->nr_values))
806 		goto out_invalid;
807 	xa_delete_node(node, workingset_update_node);
808 	__inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM);
809 
810 out_invalid:
811 	xa_unlock_irq(&mapping->i_pages);
812 	if (mapping->host != NULL) {
813 		if (mapping_shrinkable(mapping))
814 			inode_add_lru(mapping->host);
815 		spin_unlock(&mapping->host->i_lock);
816 	}
817 	ret = LRU_REMOVED_RETRY;
818 out:
819 	cond_resched();
820 	spin_lock_irq(lru_lock);
821 	return ret;
822 }
823 
scan_shadow_nodes(struct shrinker *shrinker, struct shrink_control *sc)824 static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
825 				       struct shrink_control *sc)
826 {
827 	/* list_lru lock nests inside the IRQ-safe i_pages lock */
828 	return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
829 					NULL);
830 }
831 
832 static struct shrinker workingset_shadow_shrinker = {
833 	.count_objects = count_shadow_nodes,
834 	.scan_objects = scan_shadow_nodes,
835 	.seeks = 0, /* ->count reports only fully expendable nodes */
836 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
837 };
838 
839 /*
840  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
841  * i_pages lock.
842  */
843 static struct lock_class_key shadow_nodes_key;
844 
workingset_init(void)845 static int __init workingset_init(void)
846 {
847 	unsigned int timestamp_bits;
848 	unsigned int max_order;
849 	int ret;
850 
851 	BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
852 	/*
853 	 * Calculate the eviction bucket size to cover the longest
854 	 * actionable refault distance, which is currently half of
855 	 * memory (totalram_pages/2). However, memory hotplug may add
856 	 * some more pages at runtime, so keep working with up to
857 	 * double the initial memory by using totalram_pages as-is.
858 	 */
859 	timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
860 	max_order = fls_long(totalram_pages() - 1);
861 	if (max_order > timestamp_bits)
862 		bucket_order = max_order - timestamp_bits;
863 	pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
864 	       timestamp_bits, max_order, bucket_order);
865 
866 	ret = prealloc_shrinker(&workingset_shadow_shrinker, "mm-shadow");
867 	if (ret)
868 		goto err;
869 	ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
870 			      &workingset_shadow_shrinker);
871 	if (ret)
872 		goto err_list_lru;
873 	register_shrinker_prepared(&workingset_shadow_shrinker);
874 	return 0;
875 err_list_lru:
876 	free_prealloced_shrinker(&workingset_shadow_shrinker);
877 err:
878 	return ret;
879 }
880 module_init(workingset_init);
881