1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67
68 #include "internal.h"
69 #include "swap.h"
70
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73
74 #ifdef CONFIG_HYPERHOLD_FILE_LRU
75 #include <linux/memcg_policy.h>
76 #endif
77 #ifdef CONFIG_RECLAIM_ACCT
78 #include <linux/reclaim_acct.h>
79 #endif
80
81 #ifdef ARCH_HAS_PREFETCHW
82 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
83 do { \
84 if ((_folio)->lru.prev != _base) { \
85 struct folio *prev; \
86 \
87 prev = lru_to_folio(&(_folio->lru)); \
88 prefetchw(&prev->_field); \
89 } \
90 } while (0)
91 #else
92 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
93 #endif
94
95 #ifdef CONFIG_HYPERHOLD_FILE_LRU
96 unsigned int enough_inactive_file = 1;
97 #endif
98
99 /*
100 * From 0 .. 200. Higher means more swappy.
101 */
102 int vm_swappiness = 60;
103
104 LIST_HEAD(shrinker_list);
105 DECLARE_RWSEM(shrinker_rwsem);
106
107 #ifdef CONFIG_MEMCG
108 static int shrinker_nr_max;
109
110 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
shrinker_map_size(int nr_items)111 static inline int shrinker_map_size(int nr_items)
112 {
113 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
114 }
115
shrinker_defer_size(int nr_items)116 static inline int shrinker_defer_size(int nr_items)
117 {
118 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
119 }
120
shrinker_info_protected(struct mem_cgroup *memcg, int nid)121 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
122 int nid)
123 {
124 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
125 lockdep_is_held(&shrinker_rwsem));
126 }
127
expand_one_shrinker_info(struct mem_cgroup *memcg, int map_size, int defer_size, int old_map_size, int old_defer_size, int new_nr_max)128 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
129 int map_size, int defer_size,
130 int old_map_size, int old_defer_size,
131 int new_nr_max)
132 {
133 struct shrinker_info *new, *old;
134 struct mem_cgroup_per_node *pn;
135 int nid;
136 int size = map_size + defer_size;
137
138 for_each_node(nid) {
139 pn = memcg->nodeinfo[nid];
140 old = shrinker_info_protected(memcg, nid);
141 /* Not yet online memcg */
142 if (!old)
143 return 0;
144
145 /* Already expanded this shrinker_info */
146 if (new_nr_max <= old->map_nr_max)
147 continue;
148
149 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
150 if (!new)
151 return -ENOMEM;
152
153 new->nr_deferred = (atomic_long_t *)(new + 1);
154 new->map = (void *)new->nr_deferred + defer_size;
155 new->map_nr_max = new_nr_max;
156
157 /* map: set all old bits, clear all new bits */
158 memset(new->map, (int)0xff, old_map_size);
159 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
160 /* nr_deferred: copy old values, clear all new values */
161 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
162 memset((void *)new->nr_deferred + old_defer_size, 0,
163 defer_size - old_defer_size);
164
165 rcu_assign_pointer(pn->shrinker_info, new);
166 kvfree_rcu(old, rcu);
167 }
168
169 return 0;
170 }
171
free_shrinker_info(struct mem_cgroup *memcg)172 void free_shrinker_info(struct mem_cgroup *memcg)
173 {
174 struct mem_cgroup_per_node *pn;
175 struct shrinker_info *info;
176 int nid;
177
178 for_each_node(nid) {
179 pn = memcg->nodeinfo[nid];
180 info = rcu_dereference_protected(pn->shrinker_info, true);
181 kvfree(info);
182 rcu_assign_pointer(pn->shrinker_info, NULL);
183 }
184 }
185
alloc_shrinker_info(struct mem_cgroup *memcg)186 int alloc_shrinker_info(struct mem_cgroup *memcg)
187 {
188 struct shrinker_info *info;
189 int nid, size, ret = 0;
190 int map_size, defer_size = 0;
191
192 down_write(&shrinker_rwsem);
193 map_size = shrinker_map_size(shrinker_nr_max);
194 defer_size = shrinker_defer_size(shrinker_nr_max);
195 size = map_size + defer_size;
196 for_each_node(nid) {
197 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
198 if (!info) {
199 free_shrinker_info(memcg);
200 ret = -ENOMEM;
201 break;
202 }
203 info->nr_deferred = (atomic_long_t *)(info + 1);
204 info->map = (void *)info->nr_deferred + defer_size;
205 info->map_nr_max = shrinker_nr_max;
206 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
207 }
208 up_write(&shrinker_rwsem);
209
210 return ret;
211 }
212
expand_shrinker_info(int new_id)213 static int expand_shrinker_info(int new_id)
214 {
215 int ret = 0;
216 int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
217 int map_size, defer_size = 0;
218 int old_map_size, old_defer_size = 0;
219 struct mem_cgroup *memcg;
220
221 if (!root_mem_cgroup)
222 goto out;
223
224 lockdep_assert_held(&shrinker_rwsem);
225
226 map_size = shrinker_map_size(new_nr_max);
227 defer_size = shrinker_defer_size(new_nr_max);
228 old_map_size = shrinker_map_size(shrinker_nr_max);
229 old_defer_size = shrinker_defer_size(shrinker_nr_max);
230
231 memcg = mem_cgroup_iter(NULL, NULL, NULL);
232 do {
233 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
234 old_map_size, old_defer_size,
235 new_nr_max);
236 if (ret) {
237 mem_cgroup_iter_break(NULL, memcg);
238 goto out;
239 }
240 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
241 out:
242 if (!ret)
243 shrinker_nr_max = new_nr_max;
244
245 return ret;
246 }
247
set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)248 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
249 {
250 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
251 struct shrinker_info *info;
252
253 rcu_read_lock();
254 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
255 if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
256 /* Pairs with smp mb in shrink_slab() */
257 smp_mb__before_atomic();
258 set_bit(shrinker_id, info->map);
259 }
260 rcu_read_unlock();
261 }
262 }
263
264 static DEFINE_IDR(shrinker_idr);
265
prealloc_memcg_shrinker(struct shrinker *shrinker)266 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
267 {
268 int id, ret = -ENOMEM;
269
270 if (mem_cgroup_disabled())
271 return -ENOSYS;
272
273 down_write(&shrinker_rwsem);
274 /* This may call shrinker, so it must use down_read_trylock() */
275 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
276 if (id < 0)
277 goto unlock;
278
279 if (id >= shrinker_nr_max) {
280 if (expand_shrinker_info(id)) {
281 idr_remove(&shrinker_idr, id);
282 goto unlock;
283 }
284 }
285 shrinker->id = id;
286 ret = 0;
287 unlock:
288 up_write(&shrinker_rwsem);
289 return ret;
290 }
291
unregister_memcg_shrinker(struct shrinker *shrinker)292 static void unregister_memcg_shrinker(struct shrinker *shrinker)
293 {
294 int id = shrinker->id;
295
296 BUG_ON(id < 0);
297
298 lockdep_assert_held(&shrinker_rwsem);
299
300 idr_remove(&shrinker_idr, id);
301 }
302
xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, struct mem_cgroup *memcg)303 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
304 struct mem_cgroup *memcg)
305 {
306 struct shrinker_info *info;
307
308 info = shrinker_info_protected(memcg, nid);
309 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
310 }
311
add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, struct mem_cgroup *memcg)312 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
313 struct mem_cgroup *memcg)
314 {
315 struct shrinker_info *info;
316
317 info = shrinker_info_protected(memcg, nid);
318 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
319 }
320
reparent_shrinker_deferred(struct mem_cgroup *memcg)321 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
322 {
323 int i, nid;
324 long nr;
325 struct mem_cgroup *parent;
326 struct shrinker_info *child_info, *parent_info;
327
328 parent = parent_mem_cgroup(memcg);
329 if (!parent)
330 parent = root_mem_cgroup;
331
332 /* Prevent from concurrent shrinker_info expand */
333 down_read(&shrinker_rwsem);
334 for_each_node(nid) {
335 child_info = shrinker_info_protected(memcg, nid);
336 parent_info = shrinker_info_protected(parent, nid);
337 for (i = 0; i < child_info->map_nr_max; i++) {
338 nr = atomic_long_read(&child_info->nr_deferred[i]);
339 atomic_long_add(nr, &parent_info->nr_deferred[i]);
340 }
341 }
342 up_read(&shrinker_rwsem);
343 }
344
345 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control *sc)346 bool cgroup_reclaim(struct scan_control *sc)
347 {
348 return sc->target_mem_cgroup;
349 }
350
351 /*
352 * Returns true for reclaim on the root cgroup. This is true for direct
353 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
354 */
root_reclaim(struct scan_control *sc)355 static bool root_reclaim(struct scan_control *sc)
356 {
357 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
358 }
359
360 /**
361 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
362 * @sc: scan_control in question
363 *
364 * The normal page dirty throttling mechanism in balance_dirty_pages() is
365 * completely broken with the legacy memcg and direct stalling in
366 * shrink_folio_list() is used for throttling instead, which lacks all the
367 * niceties such as fairness, adaptive pausing, bandwidth proportional
368 * allocation and configurability.
369 *
370 * This function tests whether the vmscan currently in progress can assume
371 * that the normal dirty throttling mechanism is operational.
372 */
writeback_throttling_sane(struct scan_control *sc)373 bool writeback_throttling_sane(struct scan_control *sc)
374 {
375 if (!cgroup_reclaim(sc))
376 return true;
377 #ifdef CONFIG_CGROUP_WRITEBACK
378 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
379 return true;
380 #endif
381 return false;
382 }
383 #else
prealloc_memcg_shrinker(struct shrinker *shrinker)384 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
385 {
386 return -ENOSYS;
387 }
388
unregister_memcg_shrinker(struct shrinker *shrinker)389 static void unregister_memcg_shrinker(struct shrinker *shrinker)
390 {
391 }
392
xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, struct mem_cgroup *memcg)393 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
394 struct mem_cgroup *memcg)
395 {
396 return 0;
397 }
398
add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, struct mem_cgroup *memcg)399 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
400 struct mem_cgroup *memcg)
401 {
402 return 0;
403 }
404
cgroup_reclaim(struct scan_control *sc)405 bool cgroup_reclaim(struct scan_control *sc)
406 {
407 return false;
408 }
409
root_reclaim(struct scan_control *sc)410 static bool root_reclaim(struct scan_control *sc)
411 {
412 return true;
413 }
414
writeback_throttling_sane(struct scan_control *sc)415 bool writeback_throttling_sane(struct scan_control *sc)
416 {
417 return true;
418 }
419 #endif
420
set_task_reclaim_state(struct task_struct *task, struct reclaim_state *rs)421 static void set_task_reclaim_state(struct task_struct *task,
422 struct reclaim_state *rs)
423 {
424 /* Check for an overwrite */
425 WARN_ON_ONCE(rs && task->reclaim_state);
426
427 /* Check for the nulling of an already-nulled member */
428 WARN_ON_ONCE(!rs && !task->reclaim_state);
429
430 task->reclaim_state = rs;
431 }
432
433 /*
434 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
435 * scan_control->nr_reclaimed.
436 */
flush_reclaim_state(struct scan_control *sc)437 static void flush_reclaim_state(struct scan_control *sc)
438 {
439 /*
440 * Currently, reclaim_state->reclaimed includes three types of pages
441 * freed outside of vmscan:
442 * (1) Slab pages.
443 * (2) Clean file pages from pruned inodes (on highmem systems).
444 * (3) XFS freed buffer pages.
445 *
446 * For all of these cases, we cannot universally link the pages to a
447 * single memcg. For example, a memcg-aware shrinker can free one object
448 * charged to the target memcg, causing an entire page to be freed.
449 * If we count the entire page as reclaimed from the memcg, we end up
450 * overestimating the reclaimed amount (potentially under-reclaiming).
451 *
452 * Only count such pages for global reclaim to prevent under-reclaiming
453 * from the target memcg; preventing unnecessary retries during memcg
454 * charging and false positives from proactive reclaim.
455 *
456 * For uncommon cases where the freed pages were actually mostly
457 * charged to the target memcg, we end up underestimating the reclaimed
458 * amount. This should be fine. The freed pages will be uncharged
459 * anyway, even if they are not counted here properly, and we will be
460 * able to make forward progress in charging (which is usually in a
461 * retry loop).
462 *
463 * We can go one step further, and report the uncharged objcg pages in
464 * memcg reclaim, to make reporting more accurate and reduce
465 * underestimation, but it's probably not worth the complexity for now.
466 */
467 if (current->reclaim_state && root_reclaim(sc)) {
468 sc->nr_reclaimed += current->reclaim_state->reclaimed;
469 current->reclaim_state->reclaimed = 0;
470 }
471 }
472
xchg_nr_deferred(struct shrinker *shrinker, struct shrink_control *sc)473 static long xchg_nr_deferred(struct shrinker *shrinker,
474 struct shrink_control *sc)
475 {
476 int nid = sc->nid;
477
478 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
479 nid = 0;
480
481 if (sc->memcg &&
482 (shrinker->flags & SHRINKER_MEMCG_AWARE))
483 return xchg_nr_deferred_memcg(nid, shrinker,
484 sc->memcg);
485
486 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
487 }
488
489
add_nr_deferred(long nr, struct shrinker *shrinker, struct shrink_control *sc)490 static long add_nr_deferred(long nr, struct shrinker *shrinker,
491 struct shrink_control *sc)
492 {
493 int nid = sc->nid;
494
495 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
496 nid = 0;
497
498 if (sc->memcg &&
499 (shrinker->flags & SHRINKER_MEMCG_AWARE))
500 return add_nr_deferred_memcg(nr, nid, shrinker,
501 sc->memcg);
502
503 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
504 }
505
can_demote(int nid, struct scan_control *sc)506 static bool can_demote(int nid, struct scan_control *sc)
507 {
508 if (!numa_demotion_enabled)
509 return false;
510 if (sc && sc->no_demotion)
511 return false;
512 if (next_demotion_node(nid) == NUMA_NO_NODE)
513 return false;
514
515 return true;
516 }
517
can_reclaim_anon_pages(struct mem_cgroup *memcg, int nid, struct scan_control *sc)518 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
519 int nid,
520 struct scan_control *sc)
521 {
522 if (memcg == NULL) {
523 /*
524 * For non-memcg reclaim, is there
525 * space in any swap device?
526 */
527 if (get_nr_swap_pages() > 0)
528 return true;
529 } else {
530 /* Is the memcg below its swap limit? */
531 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
532 return true;
533 }
534
535 /*
536 * The page can not be swapped.
537 *
538 * Can it be reclaimed from this node via demotion?
539 */
540 return can_demote(nid, sc);
541 }
542
543 /*
544 * This misses isolated folios which are not accounted for to save counters.
545 * As the data only determines if reclaim or compaction continues, it is
546 * not expected that isolated folios will be a dominating factor.
547 */
zone_reclaimable_pages(struct zone *zone)548 unsigned long zone_reclaimable_pages(struct zone *zone)
549 {
550 unsigned long nr;
551
552 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
553 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
554 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
555 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
556 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
557
558 return nr;
559 }
560
561 /**
562 * lruvec_lru_size - Returns the number of pages on the given LRU list.
563 * @lruvec: lru vector
564 * @lru: lru to use
565 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
566 */
lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)567 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
568 int zone_idx)
569 {
570 unsigned long size = 0;
571 int zid;
572
573 #ifdef CONFIG_HYPERHOLD_FILE_LRU
574 if (!mem_cgroup_disabled() && is_node_lruvec(lruvec)) {
575 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
576 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
577
578 if (!managed_zone(zone))
579 continue;
580
581 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
582 }
583
584 return size;
585 }
586 #endif
587
588 for (zid = 0; zid <= zone_idx; zid++) {
589 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
590
591 if (!managed_zone(zone))
592 continue;
593
594 if (!mem_cgroup_disabled())
595 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
596 else
597 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
598 }
599 return size;
600 }
601
602 /*
603 * Add a shrinker callback to be called from the vm.
604 */
__prealloc_shrinker(struct shrinker *shrinker)605 static int __prealloc_shrinker(struct shrinker *shrinker)
606 {
607 unsigned int size;
608 int err;
609
610 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
611 err = prealloc_memcg_shrinker(shrinker);
612 if (err != -ENOSYS)
613 return err;
614
615 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
616 }
617
618 size = sizeof(*shrinker->nr_deferred);
619 if (shrinker->flags & SHRINKER_NUMA_AWARE)
620 size *= nr_node_ids;
621
622 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
623 if (!shrinker->nr_deferred)
624 return -ENOMEM;
625
626 return 0;
627 }
628
629 #ifdef CONFIG_SHRINKER_DEBUG
prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)630 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
631 {
632 va_list ap;
633 int err;
634
635 va_start(ap, fmt);
636 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
637 va_end(ap);
638 if (!shrinker->name)
639 return -ENOMEM;
640
641 err = __prealloc_shrinker(shrinker);
642 if (err) {
643 kfree_const(shrinker->name);
644 shrinker->name = NULL;
645 }
646
647 return err;
648 }
649 #else
prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)650 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
651 {
652 return __prealloc_shrinker(shrinker);
653 }
654 #endif
655
free_prealloced_shrinker(struct shrinker *shrinker)656 void free_prealloced_shrinker(struct shrinker *shrinker)
657 {
658 #ifdef CONFIG_SHRINKER_DEBUG
659 kfree_const(shrinker->name);
660 shrinker->name = NULL;
661 #endif
662 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
663 down_write(&shrinker_rwsem);
664 unregister_memcg_shrinker(shrinker);
665 up_write(&shrinker_rwsem);
666 return;
667 }
668
669 kfree(shrinker->nr_deferred);
670 shrinker->nr_deferred = NULL;
671 }
672
register_shrinker_prepared(struct shrinker *shrinker)673 void register_shrinker_prepared(struct shrinker *shrinker)
674 {
675 down_write(&shrinker_rwsem);
676 list_add_tail(&shrinker->list, &shrinker_list);
677 shrinker->flags |= SHRINKER_REGISTERED;
678 shrinker_debugfs_add(shrinker);
679 up_write(&shrinker_rwsem);
680 }
681
__register_shrinker(struct shrinker *shrinker)682 static int __register_shrinker(struct shrinker *shrinker)
683 {
684 int err = __prealloc_shrinker(shrinker);
685
686 if (err)
687 return err;
688 register_shrinker_prepared(shrinker);
689 return 0;
690 }
691
692 #ifdef CONFIG_SHRINKER_DEBUG
register_shrinker(struct shrinker *shrinker, const char *fmt, ...)693 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
694 {
695 va_list ap;
696 int err;
697
698 va_start(ap, fmt);
699 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
700 va_end(ap);
701 if (!shrinker->name)
702 return -ENOMEM;
703
704 err = __register_shrinker(shrinker);
705 if (err) {
706 kfree_const(shrinker->name);
707 shrinker->name = NULL;
708 }
709 return err;
710 }
711 #else
register_shrinker(struct shrinker *shrinker, const char *fmt, ...)712 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
713 {
714 return __register_shrinker(shrinker);
715 }
716 #endif
717 EXPORT_SYMBOL(register_shrinker);
718
719 /*
720 * Remove one
721 */
unregister_shrinker(struct shrinker *shrinker)722 void unregister_shrinker(struct shrinker *shrinker)
723 {
724 struct dentry *debugfs_entry;
725 int debugfs_id;
726
727 if (!(shrinker->flags & SHRINKER_REGISTERED))
728 return;
729
730 down_write(&shrinker_rwsem);
731 list_del(&shrinker->list);
732 shrinker->flags &= ~SHRINKER_REGISTERED;
733 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
734 unregister_memcg_shrinker(shrinker);
735 debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id);
736 up_write(&shrinker_rwsem);
737
738 shrinker_debugfs_remove(debugfs_entry, debugfs_id);
739
740 kfree(shrinker->nr_deferred);
741 shrinker->nr_deferred = NULL;
742 }
743 EXPORT_SYMBOL(unregister_shrinker);
744
745 /**
746 * synchronize_shrinkers - Wait for all running shrinkers to complete.
747 *
748 * This is equivalent to calling unregister_shrink() and register_shrinker(),
749 * but atomically and with less overhead. This is useful to guarantee that all
750 * shrinker invocations have seen an update, before freeing memory, similar to
751 * rcu.
752 */
synchronize_shrinkers(void)753 void synchronize_shrinkers(void)
754 {
755 down_write(&shrinker_rwsem);
756 up_write(&shrinker_rwsem);
757 }
758 EXPORT_SYMBOL(synchronize_shrinkers);
759
760 #define SHRINK_BATCH 128
761
do_shrink_slab(struct shrink_control *shrinkctl, struct shrinker *shrinker, int priority)762 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
763 struct shrinker *shrinker, int priority)
764 {
765 unsigned long freed = 0;
766 unsigned long long delta;
767 long total_scan;
768 long freeable;
769 long nr;
770 long new_nr;
771 long batch_size = shrinker->batch ? shrinker->batch
772 : SHRINK_BATCH;
773 long scanned = 0, next_deferred;
774
775 freeable = shrinker->count_objects(shrinker, shrinkctl);
776 if (freeable == 0 || freeable == SHRINK_EMPTY)
777 return freeable;
778
779 /*
780 * copy the current shrinker scan count into a local variable
781 * and zero it so that other concurrent shrinker invocations
782 * don't also do this scanning work.
783 */
784 nr = xchg_nr_deferred(shrinker, shrinkctl);
785
786 if (shrinker->seeks) {
787 delta = freeable >> priority;
788 delta *= 4;
789 do_div(delta, shrinker->seeks);
790 } else {
791 /*
792 * These objects don't require any IO to create. Trim
793 * them aggressively under memory pressure to keep
794 * them from causing refetches in the IO caches.
795 */
796 delta = freeable / 2;
797 }
798
799 total_scan = nr >> priority;
800 total_scan += delta;
801 total_scan = min(total_scan, (2 * freeable));
802
803 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
804 freeable, delta, total_scan, priority);
805
806 /*
807 * Normally, we should not scan less than batch_size objects in one
808 * pass to avoid too frequent shrinker calls, but if the slab has less
809 * than batch_size objects in total and we are really tight on memory,
810 * we will try to reclaim all available objects, otherwise we can end
811 * up failing allocations although there are plenty of reclaimable
812 * objects spread over several slabs with usage less than the
813 * batch_size.
814 *
815 * We detect the "tight on memory" situations by looking at the total
816 * number of objects we want to scan (total_scan). If it is greater
817 * than the total number of objects on slab (freeable), we must be
818 * scanning at high prio and therefore should try to reclaim as much as
819 * possible.
820 */
821 while (total_scan >= batch_size ||
822 total_scan >= freeable) {
823 unsigned long ret;
824 unsigned long nr_to_scan = min(batch_size, total_scan);
825
826 shrinkctl->nr_to_scan = nr_to_scan;
827 shrinkctl->nr_scanned = nr_to_scan;
828 ret = shrinker->scan_objects(shrinker, shrinkctl);
829 if (ret == SHRINK_STOP)
830 break;
831 freed += ret;
832
833 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
834 total_scan -= shrinkctl->nr_scanned;
835 scanned += shrinkctl->nr_scanned;
836
837 cond_resched();
838 }
839
840 /*
841 * The deferred work is increased by any new work (delta) that wasn't
842 * done, decreased by old deferred work that was done now.
843 *
844 * And it is capped to two times of the freeable items.
845 */
846 next_deferred = max_t(long, (nr + delta - scanned), 0);
847 next_deferred = min(next_deferred, (2 * freeable));
848
849 /*
850 * move the unused scan count back into the shrinker in a
851 * manner that handles concurrent updates.
852 */
853 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
854
855 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
856 return freed;
857 }
858
859 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, int priority)860 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
861 struct mem_cgroup *memcg, int priority)
862 {
863 struct shrinker_info *info;
864 unsigned long ret, freed = 0;
865 int i;
866
867 if (!mem_cgroup_online(memcg))
868 return 0;
869
870 if (!down_read_trylock(&shrinker_rwsem))
871 return 0;
872
873 info = shrinker_info_protected(memcg, nid);
874 if (unlikely(!info))
875 goto unlock;
876
877 for_each_set_bit(i, info->map, info->map_nr_max) {
878 struct shrink_control sc = {
879 .gfp_mask = gfp_mask,
880 .nid = nid,
881 .memcg = memcg,
882 };
883 struct shrinker *shrinker;
884
885 shrinker = idr_find(&shrinker_idr, i);
886 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
887 if (!shrinker)
888 clear_bit(i, info->map);
889 continue;
890 }
891
892 /* Call non-slab shrinkers even though kmem is disabled */
893 if (!memcg_kmem_online() &&
894 !(shrinker->flags & SHRINKER_NONSLAB))
895 continue;
896
897 ret = do_shrink_slab(&sc, shrinker, priority);
898 if (ret == SHRINK_EMPTY) {
899 clear_bit(i, info->map);
900 /*
901 * After the shrinker reported that it had no objects to
902 * free, but before we cleared the corresponding bit in
903 * the memcg shrinker map, a new object might have been
904 * added. To make sure, we have the bit set in this
905 * case, we invoke the shrinker one more time and reset
906 * the bit if it reports that it is not empty anymore.
907 * The memory barrier here pairs with the barrier in
908 * set_shrinker_bit():
909 *
910 * list_lru_add() shrink_slab_memcg()
911 * list_add_tail() clear_bit()
912 * <MB> <MB>
913 * set_bit() do_shrink_slab()
914 */
915 smp_mb__after_atomic();
916 ret = do_shrink_slab(&sc, shrinker, priority);
917 if (ret == SHRINK_EMPTY)
918 ret = 0;
919 else
920 set_shrinker_bit(memcg, nid, i);
921 }
922 freed += ret;
923
924 if (rwsem_is_contended(&shrinker_rwsem)) {
925 freed = freed ? : 1;
926 break;
927 }
928 }
929 unlock:
930 up_read(&shrinker_rwsem);
931 return freed;
932 }
933 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, int priority)934 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
935 struct mem_cgroup *memcg, int priority)
936 {
937 return 0;
938 }
939 #endif /* CONFIG_MEMCG */
940
941 /**
942 * shrink_slab - shrink slab caches
943 * @gfp_mask: allocation context
944 * @nid: node whose slab caches to target
945 * @memcg: memory cgroup whose slab caches to target
946 * @priority: the reclaim priority
947 *
948 * Call the shrink functions to age shrinkable caches.
949 *
950 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
951 * unaware shrinkers will receive a node id of 0 instead.
952 *
953 * @memcg specifies the memory cgroup to target. Unaware shrinkers
954 * are called only if it is the root cgroup.
955 *
956 * @priority is sc->priority, we take the number of objects and >> by priority
957 * in order to get the scan target.
958 *
959 * Returns the number of reclaimed slab objects.
960 */
shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, int priority)961 unsigned long shrink_slab(gfp_t gfp_mask, int nid,
962 struct mem_cgroup *memcg,
963 int priority)
964 {
965 unsigned long ret, freed = 0;
966 struct shrinker *shrinker;
967
968 /*
969 * The root memcg might be allocated even though memcg is disabled
970 * via "cgroup_disable=memory" boot parameter. This could make
971 * mem_cgroup_is_root() return false, then just run memcg slab
972 * shrink, but skip global shrink. This may result in premature
973 * oom.
974 */
975 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
976 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
977
978 if (!down_read_trylock(&shrinker_rwsem))
979 goto out;
980
981 list_for_each_entry(shrinker, &shrinker_list, list) {
982 struct shrink_control sc = {
983 .gfp_mask = gfp_mask,
984 .nid = nid,
985 .memcg = memcg,
986 };
987
988 ret = do_shrink_slab(&sc, shrinker, priority);
989 if (ret == SHRINK_EMPTY)
990 ret = 0;
991 freed += ret;
992 /*
993 * Bail out if someone want to register a new shrinker to
994 * prevent the registration from being stalled for long periods
995 * by parallel ongoing shrinking.
996 */
997 if (rwsem_is_contended(&shrinker_rwsem)) {
998 freed = freed ? : 1;
999 break;
1000 }
1001 }
1002
1003 up_read(&shrinker_rwsem);
1004 out:
1005 cond_resched();
1006 return freed;
1007 }
1008
drop_slab_node(int nid)1009 static unsigned long drop_slab_node(int nid)
1010 {
1011 unsigned long freed = 0;
1012 struct mem_cgroup *memcg = NULL;
1013
1014 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1015 do {
1016 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1017 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1018
1019 return freed;
1020 }
1021
drop_slab(void)1022 void drop_slab(void)
1023 {
1024 int nid;
1025 int shift = 0;
1026 unsigned long freed;
1027
1028 do {
1029 freed = 0;
1030 for_each_online_node(nid) {
1031 if (fatal_signal_pending(current))
1032 return;
1033
1034 freed += drop_slab_node(nid);
1035 }
1036 } while ((freed >> shift++) > 1);
1037 }
1038
reclaimer_offset(void)1039 static int reclaimer_offset(void)
1040 {
1041 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1042 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1043 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1044 PGSCAN_DIRECT - PGSCAN_KSWAPD);
1045 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1046 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1047 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1048 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1049
1050 if (current_is_kswapd())
1051 return 0;
1052 if (current_is_khugepaged())
1053 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1054 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1055 }
1056
is_page_cache_freeable(struct folio *folio)1057 static inline int is_page_cache_freeable(struct folio *folio)
1058 {
1059 /*
1060 * A freeable page cache folio is referenced only by the caller
1061 * that isolated the folio, the page cache and optional filesystem
1062 * private data at folio->private.
1063 */
1064 return folio_ref_count(folio) - folio_test_private(folio) ==
1065 1 + folio_nr_pages(folio);
1066 }
1067
1068 /*
1069 * We detected a synchronous write error writing a folio out. Probably
1070 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1071 * fsync(), msync() or close().
1072 *
1073 * The tricky part is that after writepage we cannot touch the mapping: nothing
1074 * prevents it from being freed up. But we have a ref on the folio and once
1075 * that folio is locked, the mapping is pinned.
1076 *
1077 * We're allowed to run sleeping folio_lock() here because we know the caller has
1078 * __GFP_FS.
1079 */
handle_write_error(struct address_space *mapping, struct folio *folio, int error)1080 static void handle_write_error(struct address_space *mapping,
1081 struct folio *folio, int error)
1082 {
1083 folio_lock(folio);
1084 if (folio_mapping(folio) == mapping)
1085 mapping_set_error(mapping, error);
1086 folio_unlock(folio);
1087 }
1088
skip_throttle_noprogress(pg_data_t *pgdat)1089 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1090 {
1091 int reclaimable = 0, write_pending = 0;
1092 int i;
1093
1094 /*
1095 * If kswapd is disabled, reschedule if necessary but do not
1096 * throttle as the system is likely near OOM.
1097 */
1098 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1099 return true;
1100
1101 /*
1102 * If there are a lot of dirty/writeback folios then do not
1103 * throttle as throttling will occur when the folios cycle
1104 * towards the end of the LRU if still under writeback.
1105 */
1106 for (i = 0; i < MAX_NR_ZONES; i++) {
1107 struct zone *zone = pgdat->node_zones + i;
1108
1109 if (!managed_zone(zone))
1110 continue;
1111
1112 reclaimable += zone_reclaimable_pages(zone);
1113 write_pending += zone_page_state_snapshot(zone,
1114 NR_ZONE_WRITE_PENDING);
1115 }
1116 if (2 * write_pending <= reclaimable)
1117 return true;
1118
1119 return false;
1120 }
1121
reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)1122 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1123 {
1124 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1125 long timeout, ret;
1126 DEFINE_WAIT(wait);
1127
1128 /*
1129 * Do not throttle user workers, kthreads other than kswapd or
1130 * workqueues. They may be required for reclaim to make
1131 * forward progress (e.g. journalling workqueues or kthreads).
1132 */
1133 if (!current_is_kswapd() &&
1134 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
1135 cond_resched();
1136 return;
1137 }
1138
1139 /*
1140 * These figures are pulled out of thin air.
1141 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1142 * parallel reclaimers which is a short-lived event so the timeout is
1143 * short. Failing to make progress or waiting on writeback are
1144 * potentially long-lived events so use a longer timeout. This is shaky
1145 * logic as a failure to make progress could be due to anything from
1146 * writeback to a slow device to excessive referenced folios at the tail
1147 * of the inactive LRU.
1148 */
1149 switch(reason) {
1150 case VMSCAN_THROTTLE_WRITEBACK:
1151 timeout = HZ/10;
1152
1153 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1154 WRITE_ONCE(pgdat->nr_reclaim_start,
1155 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1156 }
1157
1158 break;
1159 case VMSCAN_THROTTLE_CONGESTED:
1160 fallthrough;
1161 case VMSCAN_THROTTLE_NOPROGRESS:
1162 if (skip_throttle_noprogress(pgdat)) {
1163 cond_resched();
1164 return;
1165 }
1166
1167 timeout = 1;
1168
1169 break;
1170 case VMSCAN_THROTTLE_ISOLATED:
1171 timeout = HZ/50;
1172 break;
1173 default:
1174 WARN_ON_ONCE(1);
1175 timeout = HZ;
1176 break;
1177 }
1178
1179 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1180 ret = schedule_timeout(timeout);
1181 finish_wait(wqh, &wait);
1182
1183 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1184 atomic_dec(&pgdat->nr_writeback_throttled);
1185
1186 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1187 jiffies_to_usecs(timeout - ret),
1188 reason);
1189 }
1190
1191 /*
1192 * Account for folios written if tasks are throttled waiting on dirty
1193 * folios to clean. If enough folios have been cleaned since throttling
1194 * started then wakeup the throttled tasks.
1195 */
__acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, int nr_throttled)1196 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1197 int nr_throttled)
1198 {
1199 unsigned long nr_written;
1200
1201 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1202
1203 /*
1204 * This is an inaccurate read as the per-cpu deltas may not
1205 * be synchronised. However, given that the system is
1206 * writeback throttled, it is not worth taking the penalty
1207 * of getting an accurate count. At worst, the throttle
1208 * timeout guarantees forward progress.
1209 */
1210 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1211 READ_ONCE(pgdat->nr_reclaim_start);
1212
1213 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1214 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1215 }
1216
1217 /* possible outcome of pageout() */
1218 typedef enum {
1219 /* failed to write folio out, folio is locked */
1220 PAGE_KEEP,
1221 /* move folio to the active list, folio is locked */
1222 PAGE_ACTIVATE,
1223 /* folio has been sent to the disk successfully, folio is unlocked */
1224 PAGE_SUCCESS,
1225 /* folio is clean and locked */
1226 PAGE_CLEAN,
1227 } pageout_t;
1228
1229 /*
1230 * pageout is called by shrink_folio_list() for each dirty folio.
1231 * Calls ->writepage().
1232 */
pageout(struct folio *folio, struct address_space *mapping, struct swap_iocb **plug)1233 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1234 struct swap_iocb **plug)
1235 {
1236 /*
1237 * If the folio is dirty, only perform writeback if that write
1238 * will be non-blocking. To prevent this allocation from being
1239 * stalled by pagecache activity. But note that there may be
1240 * stalls if we need to run get_block(). We could test
1241 * PagePrivate for that.
1242 *
1243 * If this process is currently in __generic_file_write_iter() against
1244 * this folio's queue, we can perform writeback even if that
1245 * will block.
1246 *
1247 * If the folio is swapcache, write it back even if that would
1248 * block, for some throttling. This happens by accident, because
1249 * swap_backing_dev_info is bust: it doesn't reflect the
1250 * congestion state of the swapdevs. Easy to fix, if needed.
1251 */
1252 if (!is_page_cache_freeable(folio))
1253 return PAGE_KEEP;
1254 if (!mapping) {
1255 /*
1256 * Some data journaling orphaned folios can have
1257 * folio->mapping == NULL while being dirty with clean buffers.
1258 */
1259 if (folio_test_private(folio)) {
1260 if (try_to_free_buffers(folio)) {
1261 folio_clear_dirty(folio);
1262 pr_info("%s: orphaned folio\n", __func__);
1263 return PAGE_CLEAN;
1264 }
1265 }
1266 return PAGE_KEEP;
1267 }
1268 if (mapping->a_ops->writepage == NULL)
1269 return PAGE_ACTIVATE;
1270
1271 if (folio_clear_dirty_for_io(folio)) {
1272 int res;
1273 struct writeback_control wbc = {
1274 .sync_mode = WB_SYNC_NONE,
1275 .nr_to_write = SWAP_CLUSTER_MAX,
1276 .range_start = 0,
1277 .range_end = LLONG_MAX,
1278 .for_reclaim = 1,
1279 .swap_plug = plug,
1280 };
1281
1282 folio_set_reclaim(folio);
1283 res = mapping->a_ops->writepage(&folio->page, &wbc);
1284 if (res < 0)
1285 handle_write_error(mapping, folio, res);
1286 if (res == AOP_WRITEPAGE_ACTIVATE) {
1287 folio_clear_reclaim(folio);
1288 return PAGE_ACTIVATE;
1289 }
1290
1291 if (!folio_test_writeback(folio)) {
1292 /* synchronous write or broken a_ops? */
1293 folio_clear_reclaim(folio);
1294 }
1295 trace_mm_vmscan_write_folio(folio);
1296 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1297 return PAGE_SUCCESS;
1298 }
1299
1300 return PAGE_CLEAN;
1301 }
1302
1303 /*
1304 * Same as remove_mapping, but if the folio is removed from the mapping, it
1305 * gets returned with a refcount of 0.
1306 */
__remove_mapping(struct address_space *mapping, struct folio *folio, bool reclaimed, struct mem_cgroup *target_memcg)1307 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1308 bool reclaimed, struct mem_cgroup *target_memcg)
1309 {
1310 int refcount;
1311 void *shadow = NULL;
1312
1313 BUG_ON(!folio_test_locked(folio));
1314 BUG_ON(mapping != folio_mapping(folio));
1315
1316 if (!folio_test_swapcache(folio))
1317 spin_lock(&mapping->host->i_lock);
1318 xa_lock_irq(&mapping->i_pages);
1319 /*
1320 * The non racy check for a busy folio.
1321 *
1322 * Must be careful with the order of the tests. When someone has
1323 * a ref to the folio, it may be possible that they dirty it then
1324 * drop the reference. So if the dirty flag is tested before the
1325 * refcount here, then the following race may occur:
1326 *
1327 * get_user_pages(&page);
1328 * [user mapping goes away]
1329 * write_to(page);
1330 * !folio_test_dirty(folio) [good]
1331 * folio_set_dirty(folio);
1332 * folio_put(folio);
1333 * !refcount(folio) [good, discard it]
1334 *
1335 * [oops, our write_to data is lost]
1336 *
1337 * Reversing the order of the tests ensures such a situation cannot
1338 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1339 * load is not satisfied before that of folio->_refcount.
1340 *
1341 * Note that if the dirty flag is always set via folio_mark_dirty,
1342 * and thus under the i_pages lock, then this ordering is not required.
1343 */
1344 refcount = 1 + folio_nr_pages(folio);
1345 if (!folio_ref_freeze(folio, refcount))
1346 goto cannot_free;
1347 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1348 if (unlikely(folio_test_dirty(folio))) {
1349 folio_ref_unfreeze(folio, refcount);
1350 goto cannot_free;
1351 }
1352
1353 if (folio_test_swapcache(folio)) {
1354 swp_entry_t swap = folio->swap;
1355
1356 if (reclaimed && !mapping_exiting(mapping))
1357 shadow = workingset_eviction(folio, target_memcg);
1358 __delete_from_swap_cache(folio, swap, shadow);
1359 mem_cgroup_swapout(folio, swap);
1360 xa_unlock_irq(&mapping->i_pages);
1361 put_swap_folio(folio, swap);
1362 } else {
1363 void (*free_folio)(struct folio *);
1364
1365 free_folio = mapping->a_ops->free_folio;
1366 /*
1367 * Remember a shadow entry for reclaimed file cache in
1368 * order to detect refaults, thus thrashing, later on.
1369 *
1370 * But don't store shadows in an address space that is
1371 * already exiting. This is not just an optimization,
1372 * inode reclaim needs to empty out the radix tree or
1373 * the nodes are lost. Don't plant shadows behind its
1374 * back.
1375 *
1376 * We also don't store shadows for DAX mappings because the
1377 * only page cache folios found in these are zero pages
1378 * covering holes, and because we don't want to mix DAX
1379 * exceptional entries and shadow exceptional entries in the
1380 * same address_space.
1381 */
1382 if (reclaimed && folio_is_file_lru(folio) &&
1383 !mapping_exiting(mapping) && !dax_mapping(mapping))
1384 shadow = workingset_eviction(folio, target_memcg);
1385 __filemap_remove_folio(folio, shadow);
1386 xa_unlock_irq(&mapping->i_pages);
1387 if (mapping_shrinkable(mapping))
1388 inode_add_lru(mapping->host);
1389 spin_unlock(&mapping->host->i_lock);
1390
1391 if (free_folio)
1392 free_folio(folio);
1393 }
1394
1395 return 1;
1396
1397 cannot_free:
1398 xa_unlock_irq(&mapping->i_pages);
1399 if (!folio_test_swapcache(folio))
1400 spin_unlock(&mapping->host->i_lock);
1401 return 0;
1402 }
1403
1404 /**
1405 * remove_mapping() - Attempt to remove a folio from its mapping.
1406 * @mapping: The address space.
1407 * @folio: The folio to remove.
1408 *
1409 * If the folio is dirty, under writeback or if someone else has a ref
1410 * on it, removal will fail.
1411 * Return: The number of pages removed from the mapping. 0 if the folio
1412 * could not be removed.
1413 * Context: The caller should have a single refcount on the folio and
1414 * hold its lock.
1415 */
remove_mapping(struct address_space *mapping, struct folio *folio)1416 long remove_mapping(struct address_space *mapping, struct folio *folio)
1417 {
1418 if (__remove_mapping(mapping, folio, false, NULL)) {
1419 /*
1420 * Unfreezing the refcount with 1 effectively
1421 * drops the pagecache ref for us without requiring another
1422 * atomic operation.
1423 */
1424 folio_ref_unfreeze(folio, 1);
1425 return folio_nr_pages(folio);
1426 }
1427 return 0;
1428 }
1429
1430 /**
1431 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1432 * @folio: Folio to be returned to an LRU list.
1433 *
1434 * Add previously isolated @folio to appropriate LRU list.
1435 * The folio may still be unevictable for other reasons.
1436 *
1437 * Context: lru_lock must not be held, interrupts must be enabled.
1438 */
folio_putback_lru(struct folio *folio)1439 void folio_putback_lru(struct folio *folio)
1440 {
1441 folio_add_lru(folio);
1442 folio_put(folio); /* drop ref from isolate */
1443 }
1444
1445 enum folio_references {
1446 FOLIOREF_RECLAIM,
1447 FOLIOREF_RECLAIM_CLEAN,
1448 FOLIOREF_RECLAIM_PURGEABLE,
1449 FOLIOREF_KEEP,
1450 FOLIOREF_ACTIVATE,
1451 };
1452
folio_check_references(struct folio *folio, struct scan_control *sc)1453 static enum folio_references folio_check_references(struct folio *folio,
1454 struct scan_control *sc)
1455 {
1456 int referenced_ptes, referenced_folio;
1457 unsigned long vm_flags;
1458
1459 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1460 &vm_flags);
1461 referenced_folio = folio_test_clear_referenced(folio);
1462
1463 /*
1464 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1465 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1466 */
1467 if (vm_flags & VM_LOCKED)
1468 return FOLIOREF_ACTIVATE;
1469
1470
1471 /* rmap lock contention: rotate */
1472 if (referenced_ptes == -1)
1473 return FOLIOREF_KEEP;
1474
1475 #ifdef CONFIG_MEM_PURGEABLE
1476 if (vm_flags & VM_PURGEABLE)
1477 return FOLIOREF_RECLAIM_PURGEABLE;
1478 #endif
1479
1480 if (referenced_ptes) {
1481 /*
1482 * All mapped folios start out with page table
1483 * references from the instantiating fault, so we need
1484 * to look twice if a mapped file/anon folio is used more
1485 * than once.
1486 *
1487 * Mark it and spare it for another trip around the
1488 * inactive list. Another page table reference will
1489 * lead to its activation.
1490 *
1491 * Note: the mark is set for activated folios as well
1492 * so that recently deactivated but used folios are
1493 * quickly recovered.
1494 */
1495 folio_set_referenced(folio);
1496
1497 if (referenced_folio || referenced_ptes > 1)
1498 return FOLIOREF_ACTIVATE;
1499
1500 /*
1501 * Activate file-backed executable folios after first usage.
1502 */
1503 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1504 return FOLIOREF_ACTIVATE;
1505
1506 return FOLIOREF_KEEP;
1507 }
1508
1509 /* Reclaim if clean, defer dirty folios to writeback */
1510 if (referenced_folio && folio_is_file_lru(folio))
1511 return FOLIOREF_RECLAIM_CLEAN;
1512
1513 return FOLIOREF_RECLAIM;
1514 }
1515
1516 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio *folio, bool *dirty, bool *writeback)1517 static void folio_check_dirty_writeback(struct folio *folio,
1518 bool *dirty, bool *writeback)
1519 {
1520 struct address_space *mapping;
1521
1522 /*
1523 * Anonymous folios are not handled by flushers and must be written
1524 * from reclaim context. Do not stall reclaim based on them.
1525 * MADV_FREE anonymous folios are put into inactive file list too.
1526 * They could be mistakenly treated as file lru. So further anon
1527 * test is needed.
1528 */
1529 if (!folio_is_file_lru(folio) ||
1530 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1531 *dirty = false;
1532 *writeback = false;
1533 return;
1534 }
1535
1536 /* By default assume that the folio flags are accurate */
1537 *dirty = folio_test_dirty(folio);
1538 *writeback = folio_test_writeback(folio);
1539
1540 /* Verify dirty/writeback state if the filesystem supports it */
1541 if (!folio_test_private(folio))
1542 return;
1543
1544 mapping = folio_mapping(folio);
1545 if (mapping && mapping->a_ops->is_dirty_writeback)
1546 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1547 }
1548
alloc_demote_folio(struct folio *src, unsigned long private)1549 static struct folio *alloc_demote_folio(struct folio *src,
1550 unsigned long private)
1551 {
1552 struct folio *dst;
1553 nodemask_t *allowed_mask;
1554 struct migration_target_control *mtc;
1555
1556 mtc = (struct migration_target_control *)private;
1557
1558 allowed_mask = mtc->nmask;
1559 /*
1560 * make sure we allocate from the target node first also trying to
1561 * demote or reclaim pages from the target node via kswapd if we are
1562 * low on free memory on target node. If we don't do this and if
1563 * we have free memory on the slower(lower) memtier, we would start
1564 * allocating pages from slower(lower) memory tiers without even forcing
1565 * a demotion of cold pages from the target memtier. This can result
1566 * in the kernel placing hot pages in slower(lower) memory tiers.
1567 */
1568 mtc->nmask = NULL;
1569 mtc->gfp_mask |= __GFP_THISNODE;
1570 dst = alloc_migration_target(src, (unsigned long)mtc);
1571 if (dst)
1572 return dst;
1573
1574 mtc->gfp_mask &= ~__GFP_THISNODE;
1575 mtc->nmask = allowed_mask;
1576
1577 return alloc_migration_target(src, (unsigned long)mtc);
1578 }
1579
1580 /*
1581 * Take folios on @demote_folios and attempt to demote them to another node.
1582 * Folios which are not demoted are left on @demote_folios.
1583 */
demote_folio_list(struct list_head *demote_folios, struct pglist_data *pgdat)1584 static unsigned int demote_folio_list(struct list_head *demote_folios,
1585 struct pglist_data *pgdat)
1586 {
1587 int target_nid = next_demotion_node(pgdat->node_id);
1588 unsigned int nr_succeeded;
1589 nodemask_t allowed_mask;
1590
1591 struct migration_target_control mtc = {
1592 /*
1593 * Allocate from 'node', or fail quickly and quietly.
1594 * When this happens, 'page' will likely just be discarded
1595 * instead of migrated.
1596 */
1597 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1598 __GFP_NOMEMALLOC | GFP_NOWAIT,
1599 .nid = target_nid,
1600 .nmask = &allowed_mask
1601 };
1602
1603 if (list_empty(demote_folios))
1604 return 0;
1605
1606 if (target_nid == NUMA_NO_NODE)
1607 return 0;
1608
1609 node_get_allowed_targets(pgdat, &allowed_mask);
1610
1611 /* Demotion ignores all cpuset and mempolicy settings */
1612 migrate_pages(demote_folios, alloc_demote_folio, NULL,
1613 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1614 &nr_succeeded);
1615
1616 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1617
1618 return nr_succeeded;
1619 }
1620
may_enter_fs(struct folio *folio, gfp_t gfp_mask)1621 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1622 {
1623 if (gfp_mask & __GFP_FS)
1624 return true;
1625 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1626 return false;
1627 /*
1628 * We can "enter_fs" for swap-cache with only __GFP_IO
1629 * providing this isn't SWP_FS_OPS.
1630 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1631 * but that will never affect SWP_FS_OPS, so the data_race
1632 * is safe.
1633 */
1634 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1635 }
1636
1637 /*
1638 * shrink_folio_list() returns the number of reclaimed pages
1639 */
shrink_folio_list(struct list_head *folio_list, struct pglist_data *pgdat, struct scan_control *sc, struct reclaim_stat *stat, bool ignore_references)1640 unsigned int shrink_folio_list(struct list_head *folio_list,
1641 struct pglist_data *pgdat, struct scan_control *sc,
1642 struct reclaim_stat *stat, bool ignore_references)
1643 {
1644 LIST_HEAD(ret_folios);
1645 LIST_HEAD(free_folios);
1646 LIST_HEAD(demote_folios);
1647 unsigned int nr_reclaimed = 0;
1648 unsigned int pgactivate = 0;
1649 bool do_demote_pass;
1650 struct swap_iocb *plug = NULL;
1651
1652 memset(stat, 0, sizeof(*stat));
1653 cond_resched();
1654 do_demote_pass = can_demote(pgdat->node_id, sc);
1655
1656 retry:
1657 while (!list_empty(folio_list)) {
1658 struct address_space *mapping;
1659 struct folio *folio;
1660 enum folio_references references = FOLIOREF_RECLAIM;
1661 bool dirty, writeback;
1662 unsigned int nr_pages;
1663
1664 cond_resched();
1665
1666 folio = lru_to_folio(folio_list);
1667 list_del(&folio->lru);
1668
1669 if (!folio_trylock(folio))
1670 goto keep;
1671
1672 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1673
1674 nr_pages = folio_nr_pages(folio);
1675
1676 /* Account the number of base pages */
1677 sc->nr_scanned += nr_pages;
1678
1679 if (unlikely(!folio_evictable(folio)))
1680 goto activate_locked;
1681
1682 if (!sc->may_unmap && folio_mapped(folio))
1683 goto keep_locked;
1684
1685 /* folio_update_gen() tried to promote this page? */
1686 if (lru_gen_enabled() && !ignore_references &&
1687 folio_mapped(folio) && folio_test_referenced(folio))
1688 goto keep_locked;
1689
1690 /*
1691 * The number of dirty pages determines if a node is marked
1692 * reclaim_congested. kswapd will stall and start writing
1693 * folios if the tail of the LRU is all dirty unqueued folios.
1694 */
1695 folio_check_dirty_writeback(folio, &dirty, &writeback);
1696 if (dirty || writeback)
1697 stat->nr_dirty += nr_pages;
1698
1699 if (dirty && !writeback)
1700 stat->nr_unqueued_dirty += nr_pages;
1701
1702 /*
1703 * Treat this folio as congested if folios are cycling
1704 * through the LRU so quickly that the folios marked
1705 * for immediate reclaim are making it to the end of
1706 * the LRU a second time.
1707 */
1708 if (writeback && folio_test_reclaim(folio))
1709 stat->nr_congested += nr_pages;
1710
1711 /*
1712 * If a folio at the tail of the LRU is under writeback, there
1713 * are three cases to consider.
1714 *
1715 * 1) If reclaim is encountering an excessive number
1716 * of folios under writeback and this folio has both
1717 * the writeback and reclaim flags set, then it
1718 * indicates that folios are being queued for I/O but
1719 * are being recycled through the LRU before the I/O
1720 * can complete. Waiting on the folio itself risks an
1721 * indefinite stall if it is impossible to writeback
1722 * the folio due to I/O error or disconnected storage
1723 * so instead note that the LRU is being scanned too
1724 * quickly and the caller can stall after the folio
1725 * list has been processed.
1726 *
1727 * 2) Global or new memcg reclaim encounters a folio that is
1728 * not marked for immediate reclaim, or the caller does not
1729 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1730 * not to fs). In this case mark the folio for immediate
1731 * reclaim and continue scanning.
1732 *
1733 * Require may_enter_fs() because we would wait on fs, which
1734 * may not have submitted I/O yet. And the loop driver might
1735 * enter reclaim, and deadlock if it waits on a folio for
1736 * which it is needed to do the write (loop masks off
1737 * __GFP_IO|__GFP_FS for this reason); but more thought
1738 * would probably show more reasons.
1739 *
1740 * 3) Legacy memcg encounters a folio that already has the
1741 * reclaim flag set. memcg does not have any dirty folio
1742 * throttling so we could easily OOM just because too many
1743 * folios are in writeback and there is nothing else to
1744 * reclaim. Wait for the writeback to complete.
1745 *
1746 * In cases 1) and 2) we activate the folios to get them out of
1747 * the way while we continue scanning for clean folios on the
1748 * inactive list and refilling from the active list. The
1749 * observation here is that waiting for disk writes is more
1750 * expensive than potentially causing reloads down the line.
1751 * Since they're marked for immediate reclaim, they won't put
1752 * memory pressure on the cache working set any longer than it
1753 * takes to write them to disk.
1754 */
1755 if (folio_test_writeback(folio)) {
1756 /* Case 1 above */
1757 if (current_is_kswapd() &&
1758 folio_test_reclaim(folio) &&
1759 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1760 stat->nr_immediate += nr_pages;
1761 goto activate_locked;
1762
1763 /* Case 2 above */
1764 } else if (writeback_throttling_sane(sc) ||
1765 !folio_test_reclaim(folio) ||
1766 !may_enter_fs(folio, sc->gfp_mask)) {
1767 /*
1768 * This is slightly racy -
1769 * folio_end_writeback() might have
1770 * just cleared the reclaim flag, then
1771 * setting the reclaim flag here ends up
1772 * interpreted as the readahead flag - but
1773 * that does not matter enough to care.
1774 * What we do want is for this folio to
1775 * have the reclaim flag set next time
1776 * memcg reclaim reaches the tests above,
1777 * so it will then wait for writeback to
1778 * avoid OOM; and it's also appropriate
1779 * in global reclaim.
1780 */
1781 folio_set_reclaim(folio);
1782 stat->nr_writeback += nr_pages;
1783 goto activate_locked;
1784
1785 /* Case 3 above */
1786 } else {
1787 folio_unlock(folio);
1788 folio_wait_writeback(folio);
1789 /* then go back and try same folio again */
1790 list_add_tail(&folio->lru, folio_list);
1791 continue;
1792 }
1793 }
1794
1795 if (!ignore_references)
1796 references = folio_check_references(folio, sc);
1797
1798 switch (references) {
1799 case FOLIOREF_ACTIVATE:
1800 goto activate_locked;
1801 case FOLIOREF_KEEP:
1802 stat->nr_ref_keep += nr_pages;
1803 goto keep_locked;
1804 case FOLIOREF_RECLAIM:
1805 case FOLIOREF_RECLAIM_CLEAN:
1806 case FOLIOREF_RECLAIM_PURGEABLE:
1807 ; /* try to reclaim the folio below */
1808 }
1809
1810 /*
1811 * Before reclaiming the folio, try to relocate
1812 * its contents to another node.
1813 */
1814 if (do_demote_pass &&
1815 (thp_migration_supported() || !folio_test_large(folio))) {
1816 list_add(&folio->lru, &demote_folios);
1817 folio_unlock(folio);
1818 continue;
1819 }
1820
1821 /*
1822 * Anonymous process memory has backing store?
1823 * Try to allocate it some swap space here.
1824 * Lazyfree folio could be freed directly
1825 */
1826 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1827 if (!folio_test_swapcache(folio) && references != FOLIOREF_RECLAIM_PURGEABLE) {
1828 if (!(sc->gfp_mask & __GFP_IO))
1829 goto keep_locked;
1830 if (folio_maybe_dma_pinned(folio))
1831 goto keep_locked;
1832 if (folio_test_large(folio)) {
1833 /* cannot split folio, skip it */
1834 if (!can_split_folio(folio, NULL))
1835 goto activate_locked;
1836 /*
1837 * Split folios without a PMD map right
1838 * away. Chances are some or all of the
1839 * tail pages can be freed without IO.
1840 */
1841 if (!folio_entire_mapcount(folio) &&
1842 split_folio_to_list(folio,
1843 folio_list))
1844 goto activate_locked;
1845 }
1846 if (!add_to_swap(folio)) {
1847 if (!folio_test_large(folio))
1848 goto activate_locked_split;
1849 /* Fallback to swap normal pages */
1850 if (split_folio_to_list(folio,
1851 folio_list))
1852 goto activate_locked;
1853 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1854 count_vm_event(THP_SWPOUT_FALLBACK);
1855 #endif
1856 if (!add_to_swap(folio))
1857 goto activate_locked_split;
1858 }
1859 }
1860 } else if (folio_test_swapbacked(folio) &&
1861 folio_test_large(folio)) {
1862 /* Split shmem folio */
1863 if (split_folio_to_list(folio, folio_list))
1864 goto keep_locked;
1865 }
1866
1867 /*
1868 * If the folio was split above, the tail pages will make
1869 * their own pass through this function and be accounted
1870 * then.
1871 */
1872 if ((nr_pages > 1) && !folio_test_large(folio)) {
1873 sc->nr_scanned -= (nr_pages - 1);
1874 nr_pages = 1;
1875 }
1876
1877 /*
1878 * The folio is mapped into the page tables of one or more
1879 * processes. Try to unmap it here.
1880 */
1881 if (folio_mapped(folio)) {
1882 enum ttu_flags flags = TTU_BATCH_FLUSH;
1883 bool was_swapbacked = folio_test_swapbacked(folio);
1884
1885 if (folio_test_pmd_mappable(folio))
1886 flags |= TTU_SPLIT_HUGE_PMD;
1887
1888 try_to_unmap(folio, flags);
1889 if (folio_mapped(folio)) {
1890 stat->nr_unmap_fail += nr_pages;
1891 if (!was_swapbacked &&
1892 folio_test_swapbacked(folio))
1893 stat->nr_lazyfree_fail += nr_pages;
1894 goto activate_locked;
1895 }
1896 }
1897
1898 /*
1899 * Folio is unmapped now so it cannot be newly pinned anymore.
1900 * No point in trying to reclaim folio if it is pinned.
1901 * Furthermore we don't want to reclaim underlying fs metadata
1902 * if the folio is pinned and thus potentially modified by the
1903 * pinning process as that may upset the filesystem.
1904 */
1905 if (folio_maybe_dma_pinned(folio))
1906 goto activate_locked;
1907
1908 mapping = folio_mapping(folio);
1909 if (folio_test_dirty(folio) && references != FOLIOREF_RECLAIM_PURGEABLE) {
1910 /*
1911 * Only kswapd can writeback filesystem folios
1912 * to avoid risk of stack overflow. But avoid
1913 * injecting inefficient single-folio I/O into
1914 * flusher writeback as much as possible: only
1915 * write folios when we've encountered many
1916 * dirty folios, and when we've already scanned
1917 * the rest of the LRU for clean folios and see
1918 * the same dirty folios again (with the reclaim
1919 * flag set).
1920 */
1921 if (folio_is_file_lru(folio) &&
1922 (!current_is_kswapd() ||
1923 !folio_test_reclaim(folio) ||
1924 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1925 /*
1926 * Immediately reclaim when written back.
1927 * Similar in principle to folio_deactivate()
1928 * except we already have the folio isolated
1929 * and know it's dirty
1930 */
1931 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1932 nr_pages);
1933 folio_set_reclaim(folio);
1934
1935 goto activate_locked;
1936 }
1937
1938 if (references == FOLIOREF_RECLAIM_CLEAN)
1939 goto keep_locked;
1940 if (!may_enter_fs(folio, sc->gfp_mask))
1941 goto keep_locked;
1942 if (!sc->may_writepage)
1943 goto keep_locked;
1944
1945 /*
1946 * Folio is dirty. Flush the TLB if a writable entry
1947 * potentially exists to avoid CPU writes after I/O
1948 * starts and then write it out here.
1949 */
1950 try_to_unmap_flush_dirty();
1951 switch (pageout(folio, mapping, &plug)) {
1952 case PAGE_KEEP:
1953 goto keep_locked;
1954 case PAGE_ACTIVATE:
1955 goto activate_locked;
1956 case PAGE_SUCCESS:
1957 stat->nr_pageout += nr_pages;
1958
1959 if (folio_test_writeback(folio))
1960 goto keep;
1961 if (folio_test_dirty(folio))
1962 goto keep;
1963
1964 /*
1965 * A synchronous write - probably a ramdisk. Go
1966 * ahead and try to reclaim the folio.
1967 */
1968 if (!folio_trylock(folio))
1969 goto keep;
1970 if (folio_test_dirty(folio) ||
1971 folio_test_writeback(folio))
1972 goto keep_locked;
1973 mapping = folio_mapping(folio);
1974 fallthrough;
1975 case PAGE_CLEAN:
1976 ; /* try to free the folio below */
1977 }
1978 }
1979
1980 /*
1981 * If the folio has buffers, try to free the buffer
1982 * mappings associated with this folio. If we succeed
1983 * we try to free the folio as well.
1984 *
1985 * We do this even if the folio is dirty.
1986 * filemap_release_folio() does not perform I/O, but it
1987 * is possible for a folio to have the dirty flag set,
1988 * but it is actually clean (all its buffers are clean).
1989 * This happens if the buffers were written out directly,
1990 * with submit_bh(). ext3 will do this, as well as
1991 * the blockdev mapping. filemap_release_folio() will
1992 * discover that cleanness and will drop the buffers
1993 * and mark the folio clean - it can be freed.
1994 *
1995 * Rarely, folios can have buffers and no ->mapping.
1996 * These are the folios which were not successfully
1997 * invalidated in truncate_cleanup_folio(). We try to
1998 * drop those buffers here and if that worked, and the
1999 * folio is no longer mapped into process address space
2000 * (refcount == 1) it can be freed. Otherwise, leave
2001 * the folio on the LRU so it is swappable.
2002 */
2003 if (folio_needs_release(folio)) {
2004 if (!filemap_release_folio(folio, sc->gfp_mask))
2005 goto activate_locked;
2006 if (!mapping && folio_ref_count(folio) == 1) {
2007 folio_unlock(folio);
2008 if (folio_put_testzero(folio))
2009 goto free_it;
2010 else {
2011 /*
2012 * rare race with speculative reference.
2013 * the speculative reference will free
2014 * this folio shortly, so we may
2015 * increment nr_reclaimed here (and
2016 * leave it off the LRU).
2017 */
2018 nr_reclaimed += nr_pages;
2019 continue;
2020 }
2021 }
2022 }
2023
2024 if (folio_test_anon(folio) && (!folio_test_swapbacked(folio) || references == FOLIOREF_RECLAIM_PURGEABLE)) {
2025 /* follow __remove_mapping for reference */
2026 if (!folio_ref_freeze(folio, 1))
2027 goto keep_locked;
2028
2029 /*
2030 * The folio has only one reference left, which is
2031 * from the isolation. After the caller puts the
2032 * folio back on the lru and drops the reference, the
2033 * folio will be freed anyway. It doesn't matter
2034 * which lru it goes on. So we don't bother checking
2035 * the dirty flag here.
2036 */
2037 count_vm_events(PGLAZYFREED, nr_pages);
2038 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2039 } else if (!mapping || !__remove_mapping(mapping, folio, true,
2040 sc->target_mem_cgroup))
2041 goto keep_locked;
2042
2043 folio_unlock(folio);
2044 free_it:
2045 /*
2046 * Folio may get swapped out as a whole, need to account
2047 * all pages in it.
2048 */
2049 nr_reclaimed += nr_pages;
2050
2051 /*
2052 * Is there need to periodically free_folio_list? It would
2053 * appear not as the counts should be low
2054 */
2055 if (unlikely(folio_test_large(folio)))
2056 destroy_large_folio(folio);
2057 else
2058 list_add(&folio->lru, &free_folios);
2059 continue;
2060
2061 activate_locked_split:
2062 /*
2063 * The tail pages that are failed to add into swap cache
2064 * reach here. Fixup nr_scanned and nr_pages.
2065 */
2066 if (nr_pages > 1) {
2067 sc->nr_scanned -= (nr_pages - 1);
2068 nr_pages = 1;
2069 }
2070 activate_locked:
2071 /* Not a candidate for swapping, so reclaim swap space. */
2072 if (folio_test_swapcache(folio) &&
2073 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2074 folio_free_swap(folio);
2075 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2076 if (!folio_test_mlocked(folio)) {
2077 int type = folio_is_file_lru(folio);
2078 folio_set_active(folio);
2079 stat->nr_activate[type] += nr_pages;
2080 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2081 }
2082 keep_locked:
2083 folio_unlock(folio);
2084 keep:
2085 list_add(&folio->lru, &ret_folios);
2086 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2087 folio_test_unevictable(folio), folio);
2088 }
2089 /* 'folio_list' is always empty here */
2090
2091 /* Migrate folios selected for demotion */
2092 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2093 /* Folios that could not be demoted are still in @demote_folios */
2094 if (!list_empty(&demote_folios)) {
2095 /* Folios which weren't demoted go back on @folio_list */
2096 list_splice_init(&demote_folios, folio_list);
2097
2098 /*
2099 * goto retry to reclaim the undemoted folios in folio_list if
2100 * desired.
2101 *
2102 * Reclaiming directly from top tier nodes is not often desired
2103 * due to it breaking the LRU ordering: in general memory
2104 * should be reclaimed from lower tier nodes and demoted from
2105 * top tier nodes.
2106 *
2107 * However, disabling reclaim from top tier nodes entirely
2108 * would cause ooms in edge scenarios where lower tier memory
2109 * is unreclaimable for whatever reason, eg memory being
2110 * mlocked or too hot to reclaim. We can disable reclaim
2111 * from top tier nodes in proactive reclaim though as that is
2112 * not real memory pressure.
2113 */
2114 if (!sc->proactive) {
2115 do_demote_pass = false;
2116 goto retry;
2117 }
2118 }
2119
2120 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2121
2122 mem_cgroup_uncharge_list(&free_folios);
2123 try_to_unmap_flush();
2124 free_unref_page_list(&free_folios);
2125
2126 list_splice(&ret_folios, folio_list);
2127 count_vm_events(PGACTIVATE, pgactivate);
2128
2129 if (plug)
2130 swap_write_unplug(plug);
2131 return nr_reclaimed;
2132 }
2133
reclaim_clean_pages_from_list(struct zone *zone, struct list_head *folio_list)2134 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2135 struct list_head *folio_list)
2136 {
2137 struct scan_control sc = {
2138 .gfp_mask = GFP_KERNEL,
2139 .may_unmap = 1,
2140 };
2141 struct reclaim_stat stat;
2142 unsigned int nr_reclaimed;
2143 struct folio *folio, *next;
2144 LIST_HEAD(clean_folios);
2145 unsigned int noreclaim_flag;
2146
2147 list_for_each_entry_safe(folio, next, folio_list, lru) {
2148 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2149 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2150 !folio_test_unevictable(folio)) {
2151 folio_clear_active(folio);
2152 list_move(&folio->lru, &clean_folios);
2153 }
2154 }
2155
2156 /*
2157 * We should be safe here since we are only dealing with file pages and
2158 * we are not kswapd and therefore cannot write dirty file pages. But
2159 * call memalloc_noreclaim_save() anyway, just in case these conditions
2160 * change in the future.
2161 */
2162 noreclaim_flag = memalloc_noreclaim_save();
2163 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2164 &stat, true);
2165 memalloc_noreclaim_restore(noreclaim_flag);
2166
2167 list_splice(&clean_folios, folio_list);
2168 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2169 -(long)nr_reclaimed);
2170 /*
2171 * Since lazyfree pages are isolated from file LRU from the beginning,
2172 * they will rotate back to anonymous LRU in the end if it failed to
2173 * discard so isolated count will be mismatched.
2174 * Compensate the isolated count for both LRU lists.
2175 */
2176 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2177 stat.nr_lazyfree_fail);
2178 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2179 -(long)stat.nr_lazyfree_fail);
2180 return nr_reclaimed;
2181 }
2182
2183 /*
2184 * Update LRU sizes after isolating pages. The LRU size updates must
2185 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2186 */
update_lru_sizes(struct lruvec *lruvec, enum lru_list lru, unsigned long *nr_zone_taken)2187 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2188 enum lru_list lru, unsigned long *nr_zone_taken)
2189 {
2190 int zid;
2191
2192 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2193 if (!nr_zone_taken[zid])
2194 continue;
2195
2196 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2197 }
2198
2199 }
2200
2201 #ifdef CONFIG_CMA
2202 /*
2203 * It is waste of effort to scan and reclaim CMA pages if it is not available
2204 * for current allocation context. Kswapd can not be enrolled as it can not
2205 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
2206 */
skip_cma(struct folio *folio, struct scan_control *sc)2207 static bool skip_cma(struct folio *folio, struct scan_control *sc)
2208 {
2209 return !current_is_kswapd() &&
2210 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
2211 get_pageblock_migratetype(&folio->page) == MIGRATE_CMA;
2212 }
2213 #else
skip_cma(struct folio *folio, struct scan_control *sc)2214 static bool skip_cma(struct folio *folio, struct scan_control *sc)
2215 {
2216 return false;
2217 }
2218 #endif
2219
2220 /*
2221 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2222 *
2223 * lruvec->lru_lock is heavily contended. Some of the functions that
2224 * shrink the lists perform better by taking out a batch of pages
2225 * and working on them outside the LRU lock.
2226 *
2227 * For pagecache intensive workloads, this function is the hottest
2228 * spot in the kernel (apart from copy_*_user functions).
2229 *
2230 * Lru_lock must be held before calling this function.
2231 *
2232 * @nr_to_scan: The number of eligible pages to look through on the list.
2233 * @lruvec: The LRU vector to pull pages from.
2234 * @dst: The temp list to put pages on to.
2235 * @nr_scanned: The number of pages that were scanned.
2236 * @sc: The scan_control struct for this reclaim session
2237 * @lru: LRU list id for isolating
2238 *
2239 * returns how many pages were moved onto *@dst.
2240 */
isolate_lru_folios(unsigned long nr_to_scan, struct lruvec *lruvec, struct list_head *dst, unsigned long *nr_scanned, struct scan_control *sc, enum lru_list lru)2241 unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2242 struct lruvec *lruvec, struct list_head *dst,
2243 unsigned long *nr_scanned, struct scan_control *sc,
2244 enum lru_list lru)
2245 {
2246 struct list_head *src = &lruvec->lists[lru];
2247 unsigned long nr_taken = 0;
2248 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2249 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2250 unsigned long skipped = 0;
2251 unsigned long scan, total_scan, nr_pages;
2252 LIST_HEAD(folios_skipped);
2253
2254 total_scan = 0;
2255 scan = 0;
2256 while (scan < nr_to_scan && !list_empty(src)) {
2257 struct list_head *move_to = src;
2258 struct folio *folio;
2259
2260 folio = lru_to_folio(src);
2261 prefetchw_prev_lru_folio(folio, src, flags);
2262
2263 nr_pages = folio_nr_pages(folio);
2264 total_scan += nr_pages;
2265
2266 if (folio_zonenum(folio) > sc->reclaim_idx ||
2267 skip_cma(folio, sc)) {
2268 nr_skipped[folio_zonenum(folio)] += nr_pages;
2269 move_to = &folios_skipped;
2270 goto move;
2271 }
2272
2273 /*
2274 * Do not count skipped folios because that makes the function
2275 * return with no isolated folios if the LRU mostly contains
2276 * ineligible folios. This causes the VM to not reclaim any
2277 * folios, triggering a premature OOM.
2278 * Account all pages in a folio.
2279 */
2280 scan += nr_pages;
2281
2282 if (!folio_test_lru(folio))
2283 goto move;
2284 if (!sc->may_unmap && folio_mapped(folio))
2285 goto move;
2286
2287 /*
2288 * Be careful not to clear the lru flag until after we're
2289 * sure the folio is not being freed elsewhere -- the
2290 * folio release code relies on it.
2291 */
2292 if (unlikely(!folio_try_get(folio)))
2293 goto move;
2294
2295 if (!folio_test_clear_lru(folio)) {
2296 /* Another thread is already isolating this folio */
2297 folio_put(folio);
2298 goto move;
2299 }
2300
2301 nr_taken += nr_pages;
2302 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2303 move_to = dst;
2304 move:
2305 list_move(&folio->lru, move_to);
2306 }
2307
2308 /*
2309 * Splice any skipped folios to the start of the LRU list. Note that
2310 * this disrupts the LRU order when reclaiming for lower zones but
2311 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2312 * scanning would soon rescan the same folios to skip and waste lots
2313 * of cpu cycles.
2314 */
2315 if (!list_empty(&folios_skipped)) {
2316 int zid;
2317
2318 list_splice(&folios_skipped, src);
2319 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2320 if (!nr_skipped[zid])
2321 continue;
2322
2323 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2324 skipped += nr_skipped[zid];
2325 }
2326 }
2327 *nr_scanned = total_scan;
2328 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2329 total_scan, skipped, nr_taken,
2330 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2331 update_lru_sizes(lruvec, lru, nr_zone_taken);
2332 return nr_taken;
2333 }
2334
2335 /**
2336 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2337 * @folio: Folio to isolate from its LRU list.
2338 *
2339 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2340 * corresponding to whatever LRU list the folio was on.
2341 *
2342 * The folio will have its LRU flag cleared. If it was found on the
2343 * active list, it will have the Active flag set. If it was found on the
2344 * unevictable list, it will have the Unevictable flag set. These flags
2345 * may need to be cleared by the caller before letting the page go.
2346 *
2347 * Context:
2348 *
2349 * (1) Must be called with an elevated refcount on the folio. This is a
2350 * fundamental difference from isolate_lru_folios() (which is called
2351 * without a stable reference).
2352 * (2) The lru_lock must not be held.
2353 * (3) Interrupts must be enabled.
2354 *
2355 * Return: true if the folio was removed from an LRU list.
2356 * false if the folio was not on an LRU list.
2357 */
folio_isolate_lru(struct folio *folio)2358 bool folio_isolate_lru(struct folio *folio)
2359 {
2360 bool ret = false;
2361
2362 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2363
2364 if (folio_test_clear_lru(folio)) {
2365 struct lruvec *lruvec;
2366
2367 folio_get(folio);
2368 lruvec = folio_lruvec_lock_irq(folio);
2369 lruvec_del_folio(lruvec, folio);
2370 unlock_page_lruvec_irq(lruvec);
2371 ret = true;
2372 }
2373
2374 return ret;
2375 }
2376
2377 /*
2378 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2379 * then get rescheduled. When there are massive number of tasks doing page
2380 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2381 * the LRU list will go small and be scanned faster than necessary, leading to
2382 * unnecessary swapping, thrashing and OOM.
2383 */
too_many_isolated(struct pglist_data *pgdat, int file, struct scan_control *sc)2384 static int too_many_isolated(struct pglist_data *pgdat, int file,
2385 struct scan_control *sc)
2386 {
2387 unsigned long inactive, isolated;
2388 bool too_many;
2389
2390 if (current_is_kswapd())
2391 return 0;
2392
2393 if (!writeback_throttling_sane(sc))
2394 return 0;
2395
2396 if (file) {
2397 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2398 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2399 } else {
2400 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2401 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2402 }
2403
2404 /*
2405 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2406 * won't get blocked by normal direct-reclaimers, forming a circular
2407 * deadlock.
2408 */
2409 if (gfp_has_io_fs(sc->gfp_mask))
2410 inactive >>= 3;
2411
2412 too_many = isolated > inactive;
2413
2414 /* Wake up tasks throttled due to too_many_isolated. */
2415 if (!too_many)
2416 wake_throttle_isolated(pgdat);
2417
2418 return too_many;
2419 }
2420
2421 /*
2422 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2423 * On return, @list is reused as a list of folios to be freed by the caller.
2424 *
2425 * Returns the number of pages moved to the given lruvec.
2426 */
move_folios_to_lru(struct lruvec *lruvec, struct list_head *list)2427 unsigned int move_folios_to_lru(struct lruvec *lruvec,
2428 struct list_head *list)
2429 {
2430 int nr_pages, nr_moved = 0;
2431 LIST_HEAD(folios_to_free);
2432 #ifdef CONFIG_HYPERHOLD_FILE_LRU
2433 bool prot;
2434 bool file;
2435 #endif
2436
2437 while (!list_empty(list)) {
2438 struct folio *folio = lru_to_folio(list);
2439
2440 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2441 list_del(&folio->lru);
2442 if (unlikely(!folio_evictable(folio))) {
2443 spin_unlock_irq(&lruvec->lru_lock);
2444 folio_putback_lru(folio);
2445 spin_lock_irq(&lruvec->lru_lock);
2446 continue;
2447 }
2448
2449 /*
2450 * The folio_set_lru needs to be kept here for list integrity.
2451 * Otherwise:
2452 * #0 move_folios_to_lru #1 release_pages
2453 * if (!folio_put_testzero())
2454 * if (folio_put_testzero())
2455 * !lru //skip lru_lock
2456 * folio_set_lru()
2457 * list_add(&folio->lru,)
2458 * list_add(&folio->lru,)
2459 */
2460 folio_set_lru(folio);
2461
2462 if (unlikely(folio_put_testzero(folio))) {
2463 __folio_clear_lru_flags(folio);
2464
2465 if (unlikely(folio_test_large(folio))) {
2466 spin_unlock_irq(&lruvec->lru_lock);
2467 destroy_large_folio(folio);
2468 spin_lock_irq(&lruvec->lru_lock);
2469 } else
2470 list_add(&folio->lru, &folios_to_free);
2471
2472 continue;
2473 }
2474
2475 /*
2476 * All pages were isolated from the same lruvec (and isolation
2477 * inhibits memcg migration).
2478 */
2479 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2480 lruvec_add_folio(lruvec, folio);
2481 nr_pages = folio_nr_pages(folio);
2482 nr_moved += nr_pages;
2483 #ifdef CONFIG_HYPERHOLD_FILE_LRU
2484 if (folio_test_active(folio)) {
2485 prot = is_prot_page(folio_page(folio, 0));
2486 file = page_is_file_lru(folio_page(folio, 0));
2487 if (!prot && file) {
2488 lruvec = folio_lruvec(folio);
2489 workingset_age_nonresident(lruvec,
2490 nr_pages);
2491 } else {
2492 workingset_age_nonresident(lruvec,
2493 nr_pages);
2494 }
2495 }
2496 #else
2497 if (folio_test_active(folio))
2498 workingset_age_nonresident(lruvec, nr_pages);
2499 #endif
2500 }
2501
2502 /*
2503 * To save our caller's stack, now use input list for pages to free.
2504 */
2505 list_splice(&folios_to_free, list);
2506
2507 return nr_moved;
2508 }
2509
2510 /*
2511 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2512 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2513 * we should not throttle. Otherwise it is safe to do so.
2514 */
current_may_throttle(void)2515 int current_may_throttle(void)
2516 {
2517 return !(current->flags & PF_LOCAL_THROTTLE);
2518 }
2519
2520 /*
2521 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2522 * of reclaimed pages
2523 */
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, struct scan_control *sc, enum lru_list lru)2524 unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2525 struct lruvec *lruvec, struct scan_control *sc,
2526 enum lru_list lru)
2527 {
2528 LIST_HEAD(folio_list);
2529 unsigned long nr_scanned;
2530 unsigned int nr_reclaimed = 0;
2531 unsigned long nr_taken;
2532 struct reclaim_stat stat;
2533 bool file = is_file_lru(lru);
2534 enum vm_event_item item;
2535 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2536 bool stalled = false;
2537
2538 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2539 if (stalled)
2540 return 0;
2541
2542 #ifdef CONFIG_HYPERHOLD_FILE_LRU
2543 sc->isolate_count++;
2544 #endif
2545 /* wait a bit for the reclaimer. */
2546 stalled = true;
2547 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2548
2549 /* We are about to die and free our memory. Return now. */
2550 if (fatal_signal_pending(current))
2551 return SWAP_CLUSTER_MAX;
2552 }
2553
2554 lru_add_drain();
2555
2556 spin_lock_irq(&lruvec->lru_lock);
2557
2558 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2559 &nr_scanned, sc, lru);
2560
2561 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2562 item = PGSCAN_KSWAPD + reclaimer_offset();
2563 if (!cgroup_reclaim(sc))
2564 __count_vm_events(item, nr_scanned);
2565 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2566 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2567
2568 spin_unlock_irq(&lruvec->lru_lock);
2569
2570 if (nr_taken == 0)
2571 return 0;
2572
2573 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2574
2575 spin_lock_irq(&lruvec->lru_lock);
2576 move_folios_to_lru(lruvec, &folio_list);
2577
2578 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2579 item = PGSTEAL_KSWAPD + reclaimer_offset();
2580 if (!cgroup_reclaim(sc))
2581 __count_vm_events(item, nr_reclaimed);
2582 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2583 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2584 spin_unlock_irq(&lruvec->lru_lock);
2585
2586 #ifdef CONFIG_HYPERHOLD_FILE_LRU
2587 if (file)
2588 lru_note_cost(node_lruvec(pgdat), file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2589 else
2590 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2591 #else
2592 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2593 #endif
2594 mem_cgroup_uncharge_list(&folio_list);
2595 free_unref_page_list(&folio_list);
2596
2597 /*
2598 * If dirty folios are scanned that are not queued for IO, it
2599 * implies that flushers are not doing their job. This can
2600 * happen when memory pressure pushes dirty folios to the end of
2601 * the LRU before the dirty limits are breached and the dirty
2602 * data has expired. It can also happen when the proportion of
2603 * dirty folios grows not through writes but through memory
2604 * pressure reclaiming all the clean cache. And in some cases,
2605 * the flushers simply cannot keep up with the allocation
2606 * rate. Nudge the flusher threads in case they are asleep.
2607 */
2608 if (stat.nr_unqueued_dirty == nr_taken) {
2609 wakeup_flusher_threads(WB_REASON_VMSCAN);
2610 /*
2611 * For cgroupv1 dirty throttling is achieved by waking up
2612 * the kernel flusher here and later waiting on folios
2613 * which are in writeback to finish (see shrink_folio_list()).
2614 *
2615 * Flusher may not be able to issue writeback quickly
2616 * enough for cgroupv1 writeback throttling to work
2617 * on a large system.
2618 */
2619 if (!writeback_throttling_sane(sc))
2620 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2621 }
2622
2623 sc->nr.dirty += stat.nr_dirty;
2624 sc->nr.congested += stat.nr_congested;
2625 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2626 sc->nr.writeback += stat.nr_writeback;
2627 sc->nr.immediate += stat.nr_immediate;
2628 sc->nr.taken += nr_taken;
2629 if (file)
2630 sc->nr.file_taken += nr_taken;
2631
2632 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2633 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2634 return nr_reclaimed;
2635 }
2636
2637 /*
2638 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2639 *
2640 * We move them the other way if the folio is referenced by one or more
2641 * processes.
2642 *
2643 * If the folios are mostly unmapped, the processing is fast and it is
2644 * appropriate to hold lru_lock across the whole operation. But if
2645 * the folios are mapped, the processing is slow (folio_referenced()), so
2646 * we should drop lru_lock around each folio. It's impossible to balance
2647 * this, so instead we remove the folios from the LRU while processing them.
2648 * It is safe to rely on the active flag against the non-LRU folios in here
2649 * because nobody will play with that bit on a non-LRU folio.
2650 *
2651 * The downside is that we have to touch folio->_refcount against each folio.
2652 * But we had to alter folio->flags anyway.
2653 */
shrink_active_list(unsigned long nr_to_scan, struct lruvec *lruvec, struct scan_control *sc, enum lru_list lru)2654 void shrink_active_list(unsigned long nr_to_scan,
2655 struct lruvec *lruvec,
2656 struct scan_control *sc,
2657 enum lru_list lru)
2658 {
2659 unsigned long nr_taken;
2660 unsigned long nr_scanned;
2661 unsigned long vm_flags;
2662 LIST_HEAD(l_hold); /* The folios which were snipped off */
2663 LIST_HEAD(l_active);
2664 LIST_HEAD(l_inactive);
2665 unsigned nr_deactivate, nr_activate;
2666 unsigned nr_rotated = 0;
2667 int file = is_file_lru(lru);
2668 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2669
2670 lru_add_drain();
2671
2672 spin_lock_irq(&lruvec->lru_lock);
2673
2674 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2675 &nr_scanned, sc, lru);
2676
2677 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2678
2679 if (!cgroup_reclaim(sc))
2680 __count_vm_events(PGREFILL, nr_scanned);
2681 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2682
2683 spin_unlock_irq(&lruvec->lru_lock);
2684
2685 while (!list_empty(&l_hold)) {
2686 struct folio *folio;
2687
2688 cond_resched();
2689 folio = lru_to_folio(&l_hold);
2690 list_del(&folio->lru);
2691
2692 if (unlikely(!folio_evictable(folio))) {
2693 folio_putback_lru(folio);
2694 continue;
2695 }
2696
2697 if (unlikely(buffer_heads_over_limit)) {
2698 if (folio_needs_release(folio) &&
2699 folio_trylock(folio)) {
2700 filemap_release_folio(folio, 0);
2701 folio_unlock(folio);
2702 }
2703 }
2704
2705 /* Referenced or rmap lock contention: rotate */
2706 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2707 &vm_flags) != 0) {
2708 /*
2709 * Identify referenced, file-backed active folios and
2710 * give them one more trip around the active list. So
2711 * that executable code get better chances to stay in
2712 * memory under moderate memory pressure. Anon folios
2713 * are not likely to be evicted by use-once streaming
2714 * IO, plus JVM can create lots of anon VM_EXEC folios,
2715 * so we ignore them here.
2716 */
2717 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2718 nr_rotated += folio_nr_pages(folio);
2719 list_add(&folio->lru, &l_active);
2720 continue;
2721 }
2722 }
2723
2724 folio_clear_active(folio); /* we are de-activating */
2725 folio_set_workingset(folio);
2726 list_add(&folio->lru, &l_inactive);
2727 }
2728
2729 /*
2730 * Move folios back to the lru list.
2731 */
2732 spin_lock_irq(&lruvec->lru_lock);
2733
2734 nr_activate = move_folios_to_lru(lruvec, &l_active);
2735 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2736 /* Keep all free folios in l_active list */
2737 list_splice(&l_inactive, &l_active);
2738
2739 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2740 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2741
2742 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2743 spin_unlock_irq(&lruvec->lru_lock);
2744
2745 if (nr_rotated)
2746 lru_note_cost(lruvec, file, 0, nr_rotated);
2747 mem_cgroup_uncharge_list(&l_active);
2748 free_unref_page_list(&l_active);
2749 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2750 nr_deactivate, nr_rotated, sc->priority, file);
2751 }
2752
reclaim_folio_list(struct list_head *folio_list, struct pglist_data *pgdat)2753 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2754 struct pglist_data *pgdat)
2755 {
2756 struct reclaim_stat dummy_stat;
2757 unsigned int nr_reclaimed;
2758 struct folio *folio;
2759 struct scan_control sc = {
2760 .gfp_mask = GFP_KERNEL,
2761 .may_writepage = 1,
2762 .may_unmap = 1,
2763 .may_swap = 1,
2764 .no_demotion = 1,
2765 };
2766
2767 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2768 while (!list_empty(folio_list)) {
2769 folio = lru_to_folio(folio_list);
2770 list_del(&folio->lru);
2771 folio_putback_lru(folio);
2772 }
2773
2774 return nr_reclaimed;
2775 }
2776
reclaim_pages(struct list_head *folio_list)2777 unsigned long reclaim_pages(struct list_head *folio_list)
2778 {
2779 int nid;
2780 unsigned int nr_reclaimed = 0;
2781 LIST_HEAD(node_folio_list);
2782 unsigned int noreclaim_flag;
2783
2784 if (list_empty(folio_list))
2785 return nr_reclaimed;
2786
2787 noreclaim_flag = memalloc_noreclaim_save();
2788
2789 nid = folio_nid(lru_to_folio(folio_list));
2790 do {
2791 struct folio *folio = lru_to_folio(folio_list);
2792
2793 if (nid == folio_nid(folio)) {
2794 folio_clear_active(folio);
2795 list_move(&folio->lru, &node_folio_list);
2796 continue;
2797 }
2798
2799 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2800 nid = folio_nid(lru_to_folio(folio_list));
2801 } while (!list_empty(folio_list));
2802
2803 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2804
2805 memalloc_noreclaim_restore(noreclaim_flag);
2806
2807 return nr_reclaimed;
2808 }
2809
shrink_list(enum lru_list lru, unsigned long nr_to_scan, struct lruvec *lruvec, struct scan_control *sc)2810 unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2811 struct lruvec *lruvec, struct scan_control *sc)
2812 {
2813 if (is_active_lru(lru)) {
2814 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2815 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2816 else
2817 sc->skipped_deactivate = 1;
2818 return 0;
2819 }
2820
2821 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2822 }
2823
2824 /*
2825 * The inactive anon list should be small enough that the VM never has
2826 * to do too much work.
2827 *
2828 * The inactive file list should be small enough to leave most memory
2829 * to the established workingset on the scan-resistant active list,
2830 * but large enough to avoid thrashing the aggregate readahead window.
2831 *
2832 * Both inactive lists should also be large enough that each inactive
2833 * folio has a chance to be referenced again before it is reclaimed.
2834 *
2835 * If that fails and refaulting is observed, the inactive list grows.
2836 *
2837 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2838 * on this LRU, maintained by the pageout code. An inactive_ratio
2839 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2840 *
2841 * total target max
2842 * memory ratio inactive
2843 * -------------------------------------
2844 * 10MB 1 5MB
2845 * 100MB 1 50MB
2846 * 1GB 3 250MB
2847 * 10GB 10 0.9GB
2848 * 100GB 31 3GB
2849 * 1TB 101 10GB
2850 * 10TB 320 32GB
2851 */
inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)2852 bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2853 {
2854 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2855 unsigned long inactive, active;
2856 unsigned long inactive_ratio;
2857 unsigned long gb;
2858
2859 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2860 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2861
2862 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2863 if (gb)
2864 inactive_ratio = int_sqrt(10 * gb);
2865 else
2866 inactive_ratio = 1;
2867
2868 return inactive * inactive_ratio < active;
2869 }
2870
prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)2871 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2872 {
2873 unsigned long file;
2874 struct lruvec *target_lruvec;
2875
2876 if (lru_gen_enabled())
2877 return;
2878
2879 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2880
2881 /*
2882 * Flush the memory cgroup stats, so that we read accurate per-memcg
2883 * lruvec stats for heuristics.
2884 */
2885 mem_cgroup_flush_stats();
2886
2887 /*
2888 * Determine the scan balance between anon and file LRUs.
2889 */
2890 spin_lock_irq(&target_lruvec->lru_lock);
2891 sc->anon_cost = target_lruvec->anon_cost;
2892 sc->file_cost = target_lruvec->file_cost;
2893 spin_unlock_irq(&target_lruvec->lru_lock);
2894
2895 /*
2896 * Target desirable inactive:active list ratios for the anon
2897 * and file LRU lists.
2898 */
2899 if (!sc->force_deactivate) {
2900 unsigned long refaults;
2901
2902 /*
2903 * When refaults are being observed, it means a new
2904 * workingset is being established. Deactivate to get
2905 * rid of any stale active pages quickly.
2906 */
2907 refaults = lruvec_page_state(target_lruvec,
2908 WORKINGSET_ACTIVATE_ANON);
2909 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2910 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2911 sc->may_deactivate |= DEACTIVATE_ANON;
2912 else
2913 sc->may_deactivate &= ~DEACTIVATE_ANON;
2914
2915 refaults = lruvec_page_state(target_lruvec,
2916 WORKINGSET_ACTIVATE_FILE);
2917 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2918 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2919 sc->may_deactivate |= DEACTIVATE_FILE;
2920 else
2921 sc->may_deactivate &= ~DEACTIVATE_FILE;
2922 } else
2923 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2924
2925 /*
2926 * If we have plenty of inactive file pages that aren't
2927 * thrashing, try to reclaim those first before touching
2928 * anonymous pages.
2929 */
2930 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2931 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2932 sc->cache_trim_mode = 1;
2933 else
2934 sc->cache_trim_mode = 0;
2935
2936 /*
2937 * Prevent the reclaimer from falling into the cache trap: as
2938 * cache pages start out inactive, every cache fault will tip
2939 * the scan balance towards the file LRU. And as the file LRU
2940 * shrinks, so does the window for rotation from references.
2941 * This means we have a runaway feedback loop where a tiny
2942 * thrashing file LRU becomes infinitely more attractive than
2943 * anon pages. Try to detect this based on file LRU size.
2944 */
2945 if (!cgroup_reclaim(sc)) {
2946 unsigned long total_high_wmark = 0;
2947 unsigned long free, anon;
2948 int z;
2949
2950 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2951 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2952 node_page_state(pgdat, NR_INACTIVE_FILE);
2953
2954 for (z = 0; z < MAX_NR_ZONES; z++) {
2955 struct zone *zone = &pgdat->node_zones[z];
2956
2957 if (!managed_zone(zone))
2958 continue;
2959
2960 total_high_wmark += high_wmark_pages(zone);
2961 }
2962
2963 /*
2964 * Consider anon: if that's low too, this isn't a
2965 * runaway file reclaim problem, but rather just
2966 * extreme pressure. Reclaim as per usual then.
2967 */
2968 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2969
2970 sc->file_is_tiny =
2971 file + free <= total_high_wmark &&
2972 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2973 anon >> sc->priority;
2974 }
2975 }
2976
2977 /*
2978 * Determine how aggressively the anon and file LRU lists should be
2979 * scanned.
2980 *
2981 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2982 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2983 */
get_scan_count(struct lruvec *lruvec, struct scan_control *sc, unsigned long *nr)2984 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2985 unsigned long *nr)
2986 {
2987 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2988 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2989 unsigned long anon_cost, file_cost, total_cost;
2990 int swappiness = mem_cgroup_swappiness(memcg);
2991 u64 fraction[ANON_AND_FILE];
2992 u64 denominator = 0; /* gcc */
2993 enum scan_balance scan_balance;
2994 unsigned long ap, fp;
2995 enum lru_list lru;
2996
2997 /* If we have no swap space, do not bother scanning anon folios. */
2998 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2999 scan_balance = SCAN_FILE;
3000 goto out;
3001 }
3002
3003 /*
3004 * Global reclaim will swap to prevent OOM even with no
3005 * swappiness, but memcg users want to use this knob to
3006 * disable swapping for individual groups completely when
3007 * using the memory controller's swap limit feature would be
3008 * too expensive.
3009 */
3010 if (cgroup_reclaim(sc) && !swappiness) {
3011 scan_balance = SCAN_FILE;
3012 goto out;
3013 }
3014
3015 /*
3016 * Do not apply any pressure balancing cleverness when the
3017 * system is close to OOM, scan both anon and file equally
3018 * (unless the swappiness setting disagrees with swapping).
3019 */
3020 if (!sc->priority && swappiness) {
3021 scan_balance = SCAN_EQUAL;
3022 goto out;
3023 }
3024
3025 /*
3026 * If the system is almost out of file pages, force-scan anon.
3027 */
3028 if (sc->file_is_tiny) {
3029 scan_balance = SCAN_ANON;
3030 goto out;
3031 }
3032
3033 /*
3034 * If there is enough inactive page cache, we do not reclaim
3035 * anything from the anonymous working right now.
3036 */
3037 if (sc->cache_trim_mode) {
3038 scan_balance = SCAN_FILE;
3039 goto out;
3040 }
3041
3042 scan_balance = SCAN_FRACT;
3043 /*
3044 * Calculate the pressure balance between anon and file pages.
3045 *
3046 * The amount of pressure we put on each LRU is inversely
3047 * proportional to the cost of reclaiming each list, as
3048 * determined by the share of pages that are refaulting, times
3049 * the relative IO cost of bringing back a swapped out
3050 * anonymous page vs reloading a filesystem page (swappiness).
3051 *
3052 * Although we limit that influence to ensure no list gets
3053 * left behind completely: at least a third of the pressure is
3054 * applied, before swappiness.
3055 *
3056 * With swappiness at 100, anon and file have equal IO cost.
3057 */
3058 total_cost = sc->anon_cost + sc->file_cost;
3059 anon_cost = total_cost + sc->anon_cost;
3060 file_cost = total_cost + sc->file_cost;
3061 total_cost = anon_cost + file_cost;
3062
3063 ap = swappiness * (total_cost + 1);
3064 ap /= anon_cost + 1;
3065
3066 fp = (200 - swappiness) * (total_cost + 1);
3067 fp /= file_cost + 1;
3068
3069 fraction[0] = ap;
3070 fraction[1] = fp;
3071 denominator = ap + fp;
3072 out:
3073 for_each_evictable_lru(lru) {
3074 int file = is_file_lru(lru);
3075 unsigned long lruvec_size;
3076 unsigned long low, min;
3077 unsigned long scan;
3078
3079 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3080 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3081 &min, &low);
3082
3083 if (min || low) {
3084 /*
3085 * Scale a cgroup's reclaim pressure by proportioning
3086 * its current usage to its memory.low or memory.min
3087 * setting.
3088 *
3089 * This is important, as otherwise scanning aggression
3090 * becomes extremely binary -- from nothing as we
3091 * approach the memory protection threshold, to totally
3092 * nominal as we exceed it. This results in requiring
3093 * setting extremely liberal protection thresholds. It
3094 * also means we simply get no protection at all if we
3095 * set it too low, which is not ideal.
3096 *
3097 * If there is any protection in place, we reduce scan
3098 * pressure by how much of the total memory used is
3099 * within protection thresholds.
3100 *
3101 * There is one special case: in the first reclaim pass,
3102 * we skip over all groups that are within their low
3103 * protection. If that fails to reclaim enough pages to
3104 * satisfy the reclaim goal, we come back and override
3105 * the best-effort low protection. However, we still
3106 * ideally want to honor how well-behaved groups are in
3107 * that case instead of simply punishing them all
3108 * equally. As such, we reclaim them based on how much
3109 * memory they are using, reducing the scan pressure
3110 * again by how much of the total memory used is under
3111 * hard protection.
3112 */
3113 unsigned long cgroup_size = mem_cgroup_size(memcg);
3114 unsigned long protection;
3115
3116 /* memory.low scaling, make sure we retry before OOM */
3117 if (!sc->memcg_low_reclaim && low > min) {
3118 protection = low;
3119 sc->memcg_low_skipped = 1;
3120 } else {
3121 protection = min;
3122 }
3123
3124 /* Avoid TOCTOU with earlier protection check */
3125 cgroup_size = max(cgroup_size, protection);
3126
3127 scan = lruvec_size - lruvec_size * protection /
3128 (cgroup_size + 1);
3129
3130 /*
3131 * Minimally target SWAP_CLUSTER_MAX pages to keep
3132 * reclaim moving forwards, avoiding decrementing
3133 * sc->priority further than desirable.
3134 */
3135 scan = max(scan, SWAP_CLUSTER_MAX);
3136 } else {
3137 scan = lruvec_size;
3138 }
3139
3140 scan >>= sc->priority;
3141
3142 /*
3143 * If the cgroup's already been deleted, make sure to
3144 * scrape out the remaining cache.
3145 */
3146 if (!scan && !mem_cgroup_online(memcg))
3147 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3148
3149 switch (scan_balance) {
3150 case SCAN_EQUAL:
3151 /* Scan lists relative to size */
3152 break;
3153 case SCAN_FRACT:
3154 /*
3155 * Scan types proportional to swappiness and
3156 * their relative recent reclaim efficiency.
3157 * Make sure we don't miss the last page on
3158 * the offlined memory cgroups because of a
3159 * round-off error.
3160 */
3161 scan = mem_cgroup_online(memcg) ?
3162 div64_u64(scan * fraction[file], denominator) :
3163 DIV64_U64_ROUND_UP(scan * fraction[file],
3164 denominator);
3165 break;
3166 case SCAN_FILE:
3167 case SCAN_ANON:
3168 /* Scan one type exclusively */
3169 if ((scan_balance == SCAN_FILE) != file)
3170 scan = 0;
3171 break;
3172 default:
3173 /* Look ma, no brain */
3174 BUG();
3175 }
3176
3177 nr[lru] = scan;
3178 }
3179 }
3180
3181 /*
3182 * Anonymous LRU management is a waste if there is
3183 * ultimately no way to reclaim the memory.
3184 */
can_age_anon_pages(struct pglist_data *pgdat, struct scan_control *sc)3185 static bool can_age_anon_pages(struct pglist_data *pgdat,
3186 struct scan_control *sc)
3187 {
3188 /* Aging the anon LRU is valuable if swap is present: */
3189 if (total_swap_pages > 0)
3190 return true;
3191
3192 /* Also valuable if anon pages can be demoted: */
3193 return can_demote(pgdat->node_id, sc);
3194 }
3195
3196 #ifdef CONFIG_LRU_GEN
3197
3198 #ifdef CONFIG_LRU_GEN_ENABLED
3199 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3200 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3201 #else
3202 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3203 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3204 #endif
3205
should_walk_mmu(void)3206 static bool should_walk_mmu(void)
3207 {
3208 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
3209 }
3210
should_clear_pmd_young(void)3211 static bool should_clear_pmd_young(void)
3212 {
3213 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
3214 }
3215
3216 /******************************************************************************
3217 * shorthand helpers
3218 ******************************************************************************/
3219
3220 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3221
3222 #define DEFINE_MAX_SEQ(lruvec) \
3223 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3224
3225 #define DEFINE_MIN_SEQ(lruvec) \
3226 unsigned long min_seq[ANON_AND_FILE] = { \
3227 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3228 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3229 }
3230
3231 #define for_each_gen_type_zone(gen, type, zone) \
3232 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3233 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3234 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3235
3236 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
3237 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
3238
get_lruvec(struct mem_cgroup *memcg, int nid)3239 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3240 {
3241 struct pglist_data *pgdat = NODE_DATA(nid);
3242
3243 #ifdef CONFIG_MEMCG
3244 if (memcg) {
3245 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3246
3247 /* see the comment in mem_cgroup_lruvec() */
3248 if (!lruvec->pgdat)
3249 lruvec->pgdat = pgdat;
3250
3251 return lruvec;
3252 }
3253 #endif
3254 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3255
3256 return &pgdat->__lruvec;
3257 }
3258
get_swappiness(struct lruvec *lruvec, struct scan_control *sc)3259 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3260 {
3261 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3262 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3263
3264 if (!sc->may_swap)
3265 return 0;
3266
3267 if (!can_demote(pgdat->node_id, sc) &&
3268 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3269 return 0;
3270
3271 return mem_cgroup_swappiness(memcg);
3272 }
3273
get_nr_gens(struct lruvec *lruvec, int type)3274 static int get_nr_gens(struct lruvec *lruvec, int type)
3275 {
3276 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3277 }
3278
seq_is_valid(struct lruvec *lruvec)3279 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3280 {
3281 /* see the comment on lru_gen_folio */
3282 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3283 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3284 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3285 }
3286
3287 /******************************************************************************
3288 * Bloom filters
3289 ******************************************************************************/
3290
3291 /*
3292 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3293 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3294 * bits in a bitmap, k is the number of hash functions and n is the number of
3295 * inserted items.
3296 *
3297 * Page table walkers use one of the two filters to reduce their search space.
3298 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3299 * aging uses the double-buffering technique to flip to the other filter each
3300 * time it produces a new generation. For non-leaf entries that have enough
3301 * leaf entries, the aging carries them over to the next generation in
3302 * walk_pmd_range(); the eviction also report them when walking the rmap
3303 * in lru_gen_look_around().
3304 *
3305 * For future optimizations:
3306 * 1. It's not necessary to keep both filters all the time. The spare one can be
3307 * freed after the RCU grace period and reallocated if needed again.
3308 * 2. And when reallocating, it's worth scaling its size according to the number
3309 * of inserted entries in the other filter, to reduce the memory overhead on
3310 * small systems and false positives on large systems.
3311 * 3. Jenkins' hash function is an alternative to Knuth's.
3312 */
3313 #define BLOOM_FILTER_SHIFT 15
3314
filter_gen_from_seq(unsigned long seq)3315 static inline int filter_gen_from_seq(unsigned long seq)
3316 {
3317 return seq % NR_BLOOM_FILTERS;
3318 }
3319
get_item_key(void *item, int *key)3320 static void get_item_key(void *item, int *key)
3321 {
3322 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3323
3324 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3325
3326 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3327 key[1] = hash >> BLOOM_FILTER_SHIFT;
3328 }
3329
test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)3330 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3331 {
3332 int key[2];
3333 unsigned long *filter;
3334 int gen = filter_gen_from_seq(seq);
3335
3336 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3337 if (!filter)
3338 return true;
3339
3340 get_item_key(item, key);
3341
3342 return test_bit(key[0], filter) && test_bit(key[1], filter);
3343 }
3344
update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)3345 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3346 {
3347 int key[2];
3348 unsigned long *filter;
3349 int gen = filter_gen_from_seq(seq);
3350
3351 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3352 if (!filter)
3353 return;
3354
3355 get_item_key(item, key);
3356
3357 if (!test_bit(key[0], filter))
3358 set_bit(key[0], filter);
3359 if (!test_bit(key[1], filter))
3360 set_bit(key[1], filter);
3361 }
3362
reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)3363 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3364 {
3365 unsigned long *filter;
3366 int gen = filter_gen_from_seq(seq);
3367
3368 filter = lruvec->mm_state.filters[gen];
3369 if (filter) {
3370 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3371 return;
3372 }
3373
3374 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3375 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3376 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3377 }
3378
3379 /******************************************************************************
3380 * mm_struct list
3381 ******************************************************************************/
3382
get_mm_list(struct mem_cgroup *memcg)3383 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3384 {
3385 static struct lru_gen_mm_list mm_list = {
3386 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3387 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3388 };
3389
3390 #ifdef CONFIG_MEMCG
3391 if (memcg)
3392 return &memcg->mm_list;
3393 #endif
3394 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3395
3396 return &mm_list;
3397 }
3398
lru_gen_add_mm(struct mm_struct *mm)3399 void lru_gen_add_mm(struct mm_struct *mm)
3400 {
3401 int nid;
3402 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3403 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3404
3405 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3406 #ifdef CONFIG_MEMCG
3407 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3408 mm->lru_gen.memcg = memcg;
3409 #endif
3410 spin_lock(&mm_list->lock);
3411
3412 for_each_node_state(nid, N_MEMORY) {
3413 struct lruvec *lruvec = get_lruvec(memcg, nid);
3414
3415 /* the first addition since the last iteration */
3416 if (lruvec->mm_state.tail == &mm_list->fifo)
3417 lruvec->mm_state.tail = &mm->lru_gen.list;
3418 }
3419
3420 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3421
3422 spin_unlock(&mm_list->lock);
3423 }
3424
lru_gen_del_mm(struct mm_struct *mm)3425 void lru_gen_del_mm(struct mm_struct *mm)
3426 {
3427 int nid;
3428 struct lru_gen_mm_list *mm_list;
3429 struct mem_cgroup *memcg = NULL;
3430
3431 if (list_empty(&mm->lru_gen.list))
3432 return;
3433
3434 #ifdef CONFIG_MEMCG
3435 memcg = mm->lru_gen.memcg;
3436 #endif
3437 mm_list = get_mm_list(memcg);
3438
3439 spin_lock(&mm_list->lock);
3440
3441 for_each_node(nid) {
3442 struct lruvec *lruvec = get_lruvec(memcg, nid);
3443
3444 /* where the current iteration continues after */
3445 if (lruvec->mm_state.head == &mm->lru_gen.list)
3446 lruvec->mm_state.head = lruvec->mm_state.head->prev;
3447
3448 /* where the last iteration ended before */
3449 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3450 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3451 }
3452
3453 list_del_init(&mm->lru_gen.list);
3454
3455 spin_unlock(&mm_list->lock);
3456
3457 #ifdef CONFIG_MEMCG
3458 mem_cgroup_put(mm->lru_gen.memcg);
3459 mm->lru_gen.memcg = NULL;
3460 #endif
3461 }
3462
3463 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct *mm)3464 void lru_gen_migrate_mm(struct mm_struct *mm)
3465 {
3466 struct mem_cgroup *memcg;
3467 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3468
3469 VM_WARN_ON_ONCE(task->mm != mm);
3470 lockdep_assert_held(&task->alloc_lock);
3471
3472 /* for mm_update_next_owner() */
3473 if (mem_cgroup_disabled())
3474 return;
3475
3476 /* migration can happen before addition */
3477 if (!mm->lru_gen.memcg)
3478 return;
3479
3480 rcu_read_lock();
3481 memcg = mem_cgroup_from_task(task);
3482 rcu_read_unlock();
3483 if (memcg == mm->lru_gen.memcg)
3484 return;
3485
3486 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3487
3488 lru_gen_del_mm(mm);
3489 lru_gen_add_mm(mm);
3490 }
3491 #endif
3492
reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)3493 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3494 {
3495 int i;
3496 int hist;
3497
3498 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3499
3500 if (walk) {
3501 hist = lru_hist_from_seq(walk->max_seq);
3502
3503 for (i = 0; i < NR_MM_STATS; i++) {
3504 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3505 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3506 walk->mm_stats[i] = 0;
3507 }
3508 }
3509
3510 if (NR_HIST_GENS > 1 && last) {
3511 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3512
3513 for (i = 0; i < NR_MM_STATS; i++)
3514 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3515 }
3516 }
3517
should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)3518 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3519 {
3520 int type;
3521 unsigned long size = 0;
3522 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3523 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3524
3525 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3526 return true;
3527
3528 clear_bit(key, &mm->lru_gen.bitmap);
3529
3530 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3531 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3532 get_mm_counter(mm, MM_ANONPAGES) +
3533 get_mm_counter(mm, MM_SHMEMPAGES);
3534 }
3535
3536 if (size < MIN_LRU_BATCH)
3537 return true;
3538
3539 return !mmget_not_zero(mm);
3540 }
3541
iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, struct mm_struct **iter)3542 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3543 struct mm_struct **iter)
3544 {
3545 bool first = false;
3546 bool last = false;
3547 struct mm_struct *mm = NULL;
3548 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3549 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3550 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3551
3552 /*
3553 * mm_state->seq is incremented after each iteration of mm_list. There
3554 * are three interesting cases for this page table walker:
3555 * 1. It tries to start a new iteration with a stale max_seq: there is
3556 * nothing left to do.
3557 * 2. It started the next iteration: it needs to reset the Bloom filter
3558 * so that a fresh set of PTE tables can be recorded.
3559 * 3. It ended the current iteration: it needs to reset the mm stats
3560 * counters and tell its caller to increment max_seq.
3561 */
3562 spin_lock(&mm_list->lock);
3563
3564 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3565
3566 if (walk->max_seq <= mm_state->seq)
3567 goto done;
3568
3569 if (!mm_state->head)
3570 mm_state->head = &mm_list->fifo;
3571
3572 if (mm_state->head == &mm_list->fifo)
3573 first = true;
3574
3575 do {
3576 mm_state->head = mm_state->head->next;
3577 if (mm_state->head == &mm_list->fifo) {
3578 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3579 last = true;
3580 break;
3581 }
3582
3583 /* force scan for those added after the last iteration */
3584 if (!mm_state->tail || mm_state->tail == mm_state->head) {
3585 mm_state->tail = mm_state->head->next;
3586 walk->force_scan = true;
3587 }
3588
3589 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3590 if (should_skip_mm(mm, walk))
3591 mm = NULL;
3592 } while (!mm);
3593 done:
3594 if (*iter || last)
3595 reset_mm_stats(lruvec, walk, last);
3596
3597 spin_unlock(&mm_list->lock);
3598
3599 if (mm && first)
3600 reset_bloom_filter(lruvec, walk->max_seq + 1);
3601
3602 if (*iter)
3603 mmput_async(*iter);
3604
3605 *iter = mm;
3606
3607 return last;
3608 }
3609
iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)3610 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3611 {
3612 bool success = false;
3613 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3614 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3615 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3616
3617 spin_lock(&mm_list->lock);
3618
3619 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3620
3621 if (max_seq > mm_state->seq) {
3622 mm_state->head = NULL;
3623 mm_state->tail = NULL;
3624 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3625 reset_mm_stats(lruvec, NULL, true);
3626 success = true;
3627 }
3628
3629 spin_unlock(&mm_list->lock);
3630
3631 return success;
3632 }
3633
3634 /******************************************************************************
3635 * PID controller
3636 ******************************************************************************/
3637
3638 /*
3639 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3640 *
3641 * The P term is refaulted/(evicted+protected) from a tier in the generation
3642 * currently being evicted; the I term is the exponential moving average of the
3643 * P term over the generations previously evicted, using the smoothing factor
3644 * 1/2; the D term isn't supported.
3645 *
3646 * The setpoint (SP) is always the first tier of one type; the process variable
3647 * (PV) is either any tier of the other type or any other tier of the same
3648 * type.
3649 *
3650 * The error is the difference between the SP and the PV; the correction is to
3651 * turn off protection when SP>PV or turn on protection when SP<PV.
3652 *
3653 * For future optimizations:
3654 * 1. The D term may discount the other two terms over time so that long-lived
3655 * generations can resist stale information.
3656 */
3657 struct ctrl_pos {
3658 unsigned long refaulted;
3659 unsigned long total;
3660 int gain;
3661 };
3662
read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, struct ctrl_pos *pos)3663 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3664 struct ctrl_pos *pos)
3665 {
3666 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3667 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3668
3669 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3670 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3671 pos->total = lrugen->avg_total[type][tier] +
3672 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3673 if (tier)
3674 pos->total += lrugen->protected[hist][type][tier - 1];
3675 pos->gain = gain;
3676 }
3677
reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)3678 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3679 {
3680 int hist, tier;
3681 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3682 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3683 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3684
3685 lockdep_assert_held(&lruvec->lru_lock);
3686
3687 if (!carryover && !clear)
3688 return;
3689
3690 hist = lru_hist_from_seq(seq);
3691
3692 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3693 if (carryover) {
3694 unsigned long sum;
3695
3696 sum = lrugen->avg_refaulted[type][tier] +
3697 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3698 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3699
3700 sum = lrugen->avg_total[type][tier] +
3701 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3702 if (tier)
3703 sum += lrugen->protected[hist][type][tier - 1];
3704 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3705 }
3706
3707 if (clear) {
3708 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3709 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3710 if (tier)
3711 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3712 }
3713 }
3714 }
3715
positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)3716 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3717 {
3718 /*
3719 * Return true if the PV has a limited number of refaults or a lower
3720 * refaulted/total than the SP.
3721 */
3722 return pv->refaulted < MIN_LRU_BATCH ||
3723 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3724 (sp->refaulted + 1) * pv->total * pv->gain;
3725 }
3726
3727 /******************************************************************************
3728 * the aging
3729 ******************************************************************************/
3730
3731 /* promote pages accessed through page tables */
folio_update_gen(struct folio *folio, int gen)3732 static int folio_update_gen(struct folio *folio, int gen)
3733 {
3734 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3735
3736 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3737 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3738
3739 do {
3740 /* lru_gen_del_folio() has isolated this page? */
3741 if (!(old_flags & LRU_GEN_MASK)) {
3742 /* for shrink_folio_list() */
3743 new_flags = old_flags | BIT(PG_referenced);
3744 continue;
3745 }
3746
3747 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3748 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3749 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3750
3751 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3752 }
3753
3754 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)3755 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3756 {
3757 int type = folio_is_file_lru(folio);
3758 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3759 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3760 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3761
3762 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3763
3764 do {
3765 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3766 /* folio_update_gen() has promoted this page? */
3767 if (new_gen >= 0 && new_gen != old_gen)
3768 return new_gen;
3769
3770 new_gen = (old_gen + 1) % MAX_NR_GENS;
3771
3772 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3773 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3774 /* for folio_end_writeback() */
3775 if (reclaiming)
3776 new_flags |= BIT(PG_reclaim);
3777 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3778
3779 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3780
3781 return new_gen;
3782 }
3783
update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, int old_gen, int new_gen)3784 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3785 int old_gen, int new_gen)
3786 {
3787 int type = folio_is_file_lru(folio);
3788 int zone = folio_zonenum(folio);
3789 int delta = folio_nr_pages(folio);
3790
3791 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3792 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3793
3794 walk->batched++;
3795
3796 walk->nr_pages[old_gen][type][zone] -= delta;
3797 walk->nr_pages[new_gen][type][zone] += delta;
3798 }
3799
reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)3800 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3801 {
3802 int gen, type, zone;
3803 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3804
3805 walk->batched = 0;
3806
3807 for_each_gen_type_zone(gen, type, zone) {
3808 enum lru_list lru = type * LRU_INACTIVE_FILE;
3809 int delta = walk->nr_pages[gen][type][zone];
3810
3811 if (!delta)
3812 continue;
3813
3814 walk->nr_pages[gen][type][zone] = 0;
3815 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3816 lrugen->nr_pages[gen][type][zone] + delta);
3817
3818 if (lru_gen_is_active(lruvec, gen))
3819 lru += LRU_ACTIVE;
3820 __update_lru_size(lruvec, lru, zone, delta);
3821 }
3822 }
3823
should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)3824 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3825 {
3826 struct address_space *mapping;
3827 struct vm_area_struct *vma = args->vma;
3828 struct lru_gen_mm_walk *walk = args->private;
3829
3830 if (!vma_is_accessible(vma))
3831 return true;
3832
3833 if (is_vm_hugetlb_page(vma))
3834 return true;
3835
3836 if (!vma_has_recency(vma))
3837 return true;
3838
3839 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3840 return true;
3841
3842 if (vma == get_gate_vma(vma->vm_mm))
3843 return true;
3844
3845 if (vma_is_anonymous(vma))
3846 return !walk->can_swap;
3847
3848 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3849 return true;
3850
3851 mapping = vma->vm_file->f_mapping;
3852 if (mapping_unevictable(mapping))
3853 return true;
3854
3855 if (shmem_mapping(mapping))
3856 return !walk->can_swap;
3857
3858 /* to exclude special mappings like dax, etc. */
3859 return !mapping->a_ops->read_folio;
3860 }
3861
3862 /*
3863 * Some userspace memory allocators map many single-page VMAs. Instead of
3864 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3865 * table to reduce zigzags and improve cache performance.
3866 */
get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, unsigned long *vm_start, unsigned long *vm_end)3867 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3868 unsigned long *vm_start, unsigned long *vm_end)
3869 {
3870 unsigned long start = round_up(*vm_end, size);
3871 unsigned long end = (start | ~mask) + 1;
3872 VMA_ITERATOR(vmi, args->mm, start);
3873
3874 VM_WARN_ON_ONCE(mask & size);
3875 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3876
3877 for_each_vma(vmi, args->vma) {
3878 if (end && end <= args->vma->vm_start)
3879 return false;
3880
3881 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3882 continue;
3883
3884 *vm_start = max(start, args->vma->vm_start);
3885 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3886
3887 return true;
3888 }
3889
3890 return false;
3891 }
3892
get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)3893 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3894 {
3895 unsigned long pfn = pte_pfn(pte);
3896
3897 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3898
3899 if (!pte_present(pte) || is_zero_pfn(pfn))
3900 return -1;
3901
3902 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3903 return -1;
3904
3905 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3906 return -1;
3907
3908 return pfn;
3909 }
3910
3911 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)3912 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3913 {
3914 unsigned long pfn = pmd_pfn(pmd);
3915
3916 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3917
3918 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3919 return -1;
3920
3921 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3922 return -1;
3923
3924 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3925 return -1;
3926
3927 return pfn;
3928 }
3929 #endif
3930
get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, struct pglist_data *pgdat, bool can_swap)3931 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3932 struct pglist_data *pgdat, bool can_swap)
3933 {
3934 struct folio *folio;
3935
3936 /* try to avoid unnecessary memory loads */
3937 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3938 return NULL;
3939
3940 folio = pfn_folio(pfn);
3941 if (folio_nid(folio) != pgdat->node_id)
3942 return NULL;
3943
3944 if (folio_memcg_rcu(folio) != memcg)
3945 return NULL;
3946
3947 /* file VMAs can contain anon pages from COW */
3948 if (!folio_is_file_lru(folio) && !can_swap)
3949 return NULL;
3950
3951 return folio;
3952 }
3953
suitable_to_scan(int total, int young)3954 static bool suitable_to_scan(int total, int young)
3955 {
3956 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3957
3958 /* suitable if the average number of young PTEs per cacheline is >=1 */
3959 return young * n >= total;
3960 }
3961
walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, struct mm_walk *args)3962 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3963 struct mm_walk *args)
3964 {
3965 int i;
3966 pte_t *pte;
3967 spinlock_t *ptl;
3968 unsigned long addr;
3969 int total = 0;
3970 int young = 0;
3971 struct lru_gen_mm_walk *walk = args->private;
3972 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3973 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3974 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3975
3976 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3977 if (!pte)
3978 return false;
3979 if (!spin_trylock(ptl)) {
3980 pte_unmap(pte);
3981 return false;
3982 }
3983
3984 arch_enter_lazy_mmu_mode();
3985 restart:
3986 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3987 unsigned long pfn;
3988 struct folio *folio;
3989 pte_t ptent = ptep_get(pte + i);
3990
3991 total++;
3992 walk->mm_stats[MM_LEAF_TOTAL]++;
3993
3994 pfn = get_pte_pfn(ptent, args->vma, addr);
3995 if (pfn == -1)
3996 continue;
3997
3998 if (!pte_young(ptent)) {
3999 walk->mm_stats[MM_LEAF_OLD]++;
4000 continue;
4001 }
4002
4003 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4004 if (!folio)
4005 continue;
4006
4007 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
4008 VM_WARN_ON_ONCE(true);
4009
4010 young++;
4011 walk->mm_stats[MM_LEAF_YOUNG]++;
4012
4013 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4014 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4015 !folio_test_swapcache(folio)))
4016 folio_mark_dirty(folio);
4017
4018 old_gen = folio_update_gen(folio, new_gen);
4019 if (old_gen >= 0 && old_gen != new_gen)
4020 update_batch_size(walk, folio, old_gen, new_gen);
4021 }
4022
4023 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4024 goto restart;
4025
4026 arch_leave_lazy_mmu_mode();
4027 pte_unmap_unlock(pte, ptl);
4028
4029 return suitable_to_scan(total, young);
4030 }
4031
4032 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, struct mm_walk *args, unsigned long *bitmap, unsigned long *first)4033 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4034 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4035 {
4036 int i;
4037 pmd_t *pmd;
4038 spinlock_t *ptl;
4039 struct lru_gen_mm_walk *walk = args->private;
4040 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4041 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4042 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4043
4044 VM_WARN_ON_ONCE(pud_leaf(*pud));
4045
4046 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4047 if (*first == -1) {
4048 *first = addr;
4049 bitmap_zero(bitmap, MIN_LRU_BATCH);
4050 return;
4051 }
4052
4053 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4054 if (i && i <= MIN_LRU_BATCH) {
4055 __set_bit(i - 1, bitmap);
4056 return;
4057 }
4058
4059 pmd = pmd_offset(pud, *first);
4060
4061 ptl = pmd_lockptr(args->mm, pmd);
4062 if (!spin_trylock(ptl))
4063 goto done;
4064
4065 arch_enter_lazy_mmu_mode();
4066
4067 do {
4068 unsigned long pfn;
4069 struct folio *folio;
4070
4071 /* don't round down the first address */
4072 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4073
4074 pfn = get_pmd_pfn(pmd[i], vma, addr);
4075 if (pfn == -1)
4076 goto next;
4077
4078 if (!pmd_trans_huge(pmd[i])) {
4079 if (should_clear_pmd_young())
4080 pmdp_test_and_clear_young(vma, addr, pmd + i);
4081 goto next;
4082 }
4083
4084 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4085 if (!folio)
4086 goto next;
4087
4088 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4089 goto next;
4090
4091 walk->mm_stats[MM_LEAF_YOUNG]++;
4092
4093 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4094 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4095 !folio_test_swapcache(folio)))
4096 folio_mark_dirty(folio);
4097
4098 old_gen = folio_update_gen(folio, new_gen);
4099 if (old_gen >= 0 && old_gen != new_gen)
4100 update_batch_size(walk, folio, old_gen, new_gen);
4101 next:
4102 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4103 } while (i <= MIN_LRU_BATCH);
4104
4105 arch_leave_lazy_mmu_mode();
4106 spin_unlock(ptl);
4107 done:
4108 *first = -1;
4109 }
4110 #else
walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, struct mm_walk *args, unsigned long *bitmap, unsigned long *first)4111 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4112 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4113 {
4114 }
4115 #endif
4116
walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, struct mm_walk *args)4117 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4118 struct mm_walk *args)
4119 {
4120 int i;
4121 pmd_t *pmd;
4122 unsigned long next;
4123 unsigned long addr;
4124 struct vm_area_struct *vma;
4125 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
4126 unsigned long first = -1;
4127 struct lru_gen_mm_walk *walk = args->private;
4128
4129 VM_WARN_ON_ONCE(pud_leaf(*pud));
4130
4131 /*
4132 * Finish an entire PMD in two passes: the first only reaches to PTE
4133 * tables to avoid taking the PMD lock; the second, if necessary, takes
4134 * the PMD lock to clear the accessed bit in PMD entries.
4135 */
4136 pmd = pmd_offset(pud, start & PUD_MASK);
4137 restart:
4138 /* walk_pte_range() may call get_next_vma() */
4139 vma = args->vma;
4140 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4141 pmd_t val = pmdp_get_lockless(pmd + i);
4142
4143 next = pmd_addr_end(addr, end);
4144
4145 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4146 walk->mm_stats[MM_LEAF_TOTAL]++;
4147 continue;
4148 }
4149
4150 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4151 if (pmd_trans_huge(val)) {
4152 unsigned long pfn = pmd_pfn(val);
4153 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4154
4155 walk->mm_stats[MM_LEAF_TOTAL]++;
4156
4157 if (!pmd_young(val)) {
4158 walk->mm_stats[MM_LEAF_OLD]++;
4159 continue;
4160 }
4161
4162 /* try to avoid unnecessary memory loads */
4163 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4164 continue;
4165
4166 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4167 continue;
4168 }
4169 #endif
4170 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4171
4172 if (should_clear_pmd_young()) {
4173 if (!pmd_young(val))
4174 continue;
4175
4176 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4177 }
4178
4179 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4180 continue;
4181
4182 walk->mm_stats[MM_NONLEAF_FOUND]++;
4183
4184 if (!walk_pte_range(&val, addr, next, args))
4185 continue;
4186
4187 walk->mm_stats[MM_NONLEAF_ADDED]++;
4188
4189 /* carry over to the next generation */
4190 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4191 }
4192
4193 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4194
4195 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4196 goto restart;
4197 }
4198
walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, struct mm_walk *args)4199 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4200 struct mm_walk *args)
4201 {
4202 int i;
4203 pud_t *pud;
4204 unsigned long addr;
4205 unsigned long next;
4206 struct lru_gen_mm_walk *walk = args->private;
4207
4208 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4209
4210 pud = pud_offset(p4d, start & P4D_MASK);
4211 restart:
4212 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4213 pud_t val = READ_ONCE(pud[i]);
4214
4215 next = pud_addr_end(addr, end);
4216
4217 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4218 continue;
4219
4220 walk_pmd_range(&val, addr, next, args);
4221
4222 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4223 end = (addr | ~PUD_MASK) + 1;
4224 goto done;
4225 }
4226 }
4227
4228 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4229 goto restart;
4230
4231 end = round_up(end, P4D_SIZE);
4232 done:
4233 if (!end || !args->vma)
4234 return 1;
4235
4236 walk->next_addr = max(end, args->vma->vm_start);
4237
4238 return -EAGAIN;
4239 }
4240
walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)4241 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4242 {
4243 static const struct mm_walk_ops mm_walk_ops = {
4244 .test_walk = should_skip_vma,
4245 .p4d_entry = walk_pud_range,
4246 .walk_lock = PGWALK_RDLOCK,
4247 };
4248
4249 int err;
4250 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4251
4252 walk->next_addr = FIRST_USER_ADDRESS;
4253
4254 do {
4255 DEFINE_MAX_SEQ(lruvec);
4256
4257 err = -EBUSY;
4258
4259 /* another thread might have called inc_max_seq() */
4260 if (walk->max_seq != max_seq)
4261 break;
4262
4263 /* folio_update_gen() requires stable folio_memcg() */
4264 if (!mem_cgroup_trylock_pages(memcg))
4265 break;
4266
4267 /* the caller might be holding the lock for write */
4268 if (mmap_read_trylock(mm)) {
4269 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4270
4271 mmap_read_unlock(mm);
4272 }
4273
4274 mem_cgroup_unlock_pages();
4275
4276 if (walk->batched) {
4277 spin_lock_irq(&lruvec->lru_lock);
4278 reset_batch_size(lruvec, walk);
4279 spin_unlock_irq(&lruvec->lru_lock);
4280 }
4281
4282 cond_resched();
4283 } while (err == -EAGAIN);
4284 }
4285
set_mm_walk(struct pglist_data *pgdat, bool force_alloc)4286 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4287 {
4288 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4289
4290 if (pgdat && current_is_kswapd()) {
4291 VM_WARN_ON_ONCE(walk);
4292
4293 walk = &pgdat->mm_walk;
4294 } else if (!walk && force_alloc) {
4295 VM_WARN_ON_ONCE(current_is_kswapd());
4296
4297 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4298 }
4299
4300 current->reclaim_state->mm_walk = walk;
4301
4302 return walk;
4303 }
4304
clear_mm_walk(void)4305 static void clear_mm_walk(void)
4306 {
4307 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4308
4309 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4310 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4311
4312 current->reclaim_state->mm_walk = NULL;
4313
4314 if (!current_is_kswapd())
4315 kfree(walk);
4316 }
4317
inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)4318 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4319 {
4320 int zone;
4321 int remaining = MAX_LRU_BATCH;
4322 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4323 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4324
4325 if (type == LRU_GEN_ANON && !can_swap)
4326 goto done;
4327
4328 /* prevent cold/hot inversion if force_scan is true */
4329 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4330 struct list_head *head = &lrugen->folios[old_gen][type][zone];
4331
4332 while (!list_empty(head)) {
4333 struct folio *folio = lru_to_folio(head);
4334
4335 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4336 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4337 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4338 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4339
4340 new_gen = folio_inc_gen(lruvec, folio, false);
4341 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4342
4343 if (!--remaining)
4344 return false;
4345 }
4346 }
4347 done:
4348 reset_ctrl_pos(lruvec, type, true);
4349 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4350
4351 return true;
4352 }
4353
try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)4354 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4355 {
4356 int gen, type, zone;
4357 bool success = false;
4358 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4359 DEFINE_MIN_SEQ(lruvec);
4360
4361 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4362
4363 /* find the oldest populated generation */
4364 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4365 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4366 gen = lru_gen_from_seq(min_seq[type]);
4367
4368 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4369 if (!list_empty(&lrugen->folios[gen][type][zone]))
4370 goto next;
4371 }
4372
4373 min_seq[type]++;
4374 }
4375 next:
4376 ;
4377 }
4378
4379 /* see the comment on lru_gen_folio */
4380 if (can_swap) {
4381 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4382 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4383 }
4384
4385 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4386 if (min_seq[type] == lrugen->min_seq[type])
4387 continue;
4388
4389 reset_ctrl_pos(lruvec, type, true);
4390 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4391 success = true;
4392 }
4393
4394 return success;
4395 }
4396
inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)4397 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4398 {
4399 int prev, next;
4400 int type, zone;
4401 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4402 restart:
4403 spin_lock_irq(&lruvec->lru_lock);
4404
4405 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4406
4407 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4408 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4409 continue;
4410
4411 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4412
4413 if (inc_min_seq(lruvec, type, can_swap))
4414 continue;
4415
4416 spin_unlock_irq(&lruvec->lru_lock);
4417 cond_resched();
4418 goto restart;
4419 }
4420
4421 /*
4422 * Update the active/inactive LRU sizes for compatibility. Both sides of
4423 * the current max_seq need to be covered, since max_seq+1 can overlap
4424 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4425 * overlap, cold/hot inversion happens.
4426 */
4427 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4428 next = lru_gen_from_seq(lrugen->max_seq + 1);
4429
4430 for (type = 0; type < ANON_AND_FILE; type++) {
4431 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4432 enum lru_list lru = type * LRU_INACTIVE_FILE;
4433 long delta = lrugen->nr_pages[prev][type][zone] -
4434 lrugen->nr_pages[next][type][zone];
4435
4436 if (!delta)
4437 continue;
4438
4439 __update_lru_size(lruvec, lru, zone, delta);
4440 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4441 }
4442 }
4443
4444 for (type = 0; type < ANON_AND_FILE; type++)
4445 reset_ctrl_pos(lruvec, type, false);
4446
4447 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4448 /* make sure preceding modifications appear */
4449 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4450
4451 spin_unlock_irq(&lruvec->lru_lock);
4452 }
4453
try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, struct scan_control *sc, bool can_swap, bool force_scan)4454 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4455 struct scan_control *sc, bool can_swap, bool force_scan)
4456 {
4457 bool success;
4458 struct lru_gen_mm_walk *walk;
4459 struct mm_struct *mm = NULL;
4460 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4461
4462 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4463
4464 /* see the comment in iterate_mm_list() */
4465 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4466 success = false;
4467 goto done;
4468 }
4469
4470 /*
4471 * If the hardware doesn't automatically set the accessed bit, fallback
4472 * to lru_gen_look_around(), which only clears the accessed bit in a
4473 * handful of PTEs. Spreading the work out over a period of time usually
4474 * is less efficient, but it avoids bursty page faults.
4475 */
4476 if (!should_walk_mmu()) {
4477 success = iterate_mm_list_nowalk(lruvec, max_seq);
4478 goto done;
4479 }
4480
4481 walk = set_mm_walk(NULL, true);
4482 if (!walk) {
4483 success = iterate_mm_list_nowalk(lruvec, max_seq);
4484 goto done;
4485 }
4486
4487 walk->lruvec = lruvec;
4488 walk->max_seq = max_seq;
4489 walk->can_swap = can_swap;
4490 walk->force_scan = force_scan;
4491
4492 do {
4493 success = iterate_mm_list(lruvec, walk, &mm);
4494 if (mm)
4495 walk_mm(lruvec, mm, walk);
4496 } while (mm);
4497 done:
4498 if (success)
4499 inc_max_seq(lruvec, can_swap, force_scan);
4500
4501 return success;
4502 }
4503
4504 /******************************************************************************
4505 * working set protection
4506 ******************************************************************************/
4507
lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)4508 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4509 {
4510 int gen, type, zone;
4511 unsigned long total = 0;
4512 bool can_swap = get_swappiness(lruvec, sc);
4513 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4514 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4515 DEFINE_MAX_SEQ(lruvec);
4516 DEFINE_MIN_SEQ(lruvec);
4517
4518 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4519 unsigned long seq;
4520
4521 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4522 gen = lru_gen_from_seq(seq);
4523
4524 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4525 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4526 }
4527 }
4528
4529 /* whether the size is big enough to be helpful */
4530 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4531 }
4532
lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)4533 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4534 unsigned long min_ttl)
4535 {
4536 int gen;
4537 unsigned long birth;
4538 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4539 DEFINE_MIN_SEQ(lruvec);
4540
4541 /* see the comment on lru_gen_folio */
4542 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4543 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4544
4545 if (time_is_after_jiffies(birth + min_ttl))
4546 return false;
4547
4548 if (!lruvec_is_sizable(lruvec, sc))
4549 return false;
4550
4551 mem_cgroup_calculate_protection(NULL, memcg);
4552
4553 return !mem_cgroup_below_min(NULL, memcg);
4554 }
4555
4556 /* to protect the working set of the last N jiffies */
4557 static unsigned long lru_gen_min_ttl __read_mostly;
4558
lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)4559 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4560 {
4561 struct mem_cgroup *memcg;
4562 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4563
4564 VM_WARN_ON_ONCE(!current_is_kswapd());
4565
4566 /* check the order to exclude compaction-induced reclaim */
4567 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4568 return;
4569
4570 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4571 do {
4572 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4573
4574 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4575 mem_cgroup_iter_break(NULL, memcg);
4576 return;
4577 }
4578
4579 cond_resched();
4580 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4581
4582 /*
4583 * The main goal is to OOM kill if every generation from all memcgs is
4584 * younger than min_ttl. However, another possibility is all memcgs are
4585 * either too small or below min.
4586 */
4587 if (mutex_trylock(&oom_lock)) {
4588 struct oom_control oc = {
4589 .gfp_mask = sc->gfp_mask,
4590 };
4591
4592 out_of_memory(&oc);
4593
4594 mutex_unlock(&oom_lock);
4595 }
4596 }
4597
4598 /******************************************************************************
4599 * rmap/PT walk feedback
4600 ******************************************************************************/
4601
4602 /*
4603 * This function exploits spatial locality when shrink_folio_list() walks the
4604 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4605 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4606 * the PTE table to the Bloom filter. This forms a feedback loop between the
4607 * eviction and the aging.
4608 */
lru_gen_look_around(struct page_vma_mapped_walk *pvmw)4609 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4610 {
4611 int i;
4612 unsigned long start;
4613 unsigned long end;
4614 struct lru_gen_mm_walk *walk;
4615 int young = 0;
4616 pte_t *pte = pvmw->pte;
4617 unsigned long addr = pvmw->address;
4618 struct vm_area_struct *vma = pvmw->vma;
4619 struct folio *folio = pfn_folio(pvmw->pfn);
4620 bool can_swap = !folio_is_file_lru(folio);
4621 struct mem_cgroup *memcg = folio_memcg(folio);
4622 struct pglist_data *pgdat = folio_pgdat(folio);
4623 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4624 DEFINE_MAX_SEQ(lruvec);
4625 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4626
4627 lockdep_assert_held(pvmw->ptl);
4628 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4629
4630 if (spin_is_contended(pvmw->ptl))
4631 return;
4632
4633 /* exclude special VMAs containing anon pages from COW */
4634 if (vma->vm_flags & VM_SPECIAL)
4635 return;
4636
4637 /* avoid taking the LRU lock under the PTL when possible */
4638 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4639
4640 start = max(addr & PMD_MASK, vma->vm_start);
4641 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4642
4643 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4644 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4645 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4646 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4647 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4648 else {
4649 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4650 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4651 }
4652 }
4653
4654 /* folio_update_gen() requires stable folio_memcg() */
4655 if (!mem_cgroup_trylock_pages(memcg))
4656 return;
4657
4658 arch_enter_lazy_mmu_mode();
4659
4660 pte -= (addr - start) / PAGE_SIZE;
4661
4662 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4663 unsigned long pfn;
4664 pte_t ptent = ptep_get(pte + i);
4665
4666 pfn = get_pte_pfn(ptent, vma, addr);
4667 if (pfn == -1)
4668 continue;
4669
4670 if (!pte_young(ptent))
4671 continue;
4672
4673 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4674 if (!folio)
4675 continue;
4676
4677 if (!ptep_test_and_clear_young(vma, addr, pte + i))
4678 VM_WARN_ON_ONCE(true);
4679
4680 young++;
4681
4682 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4683 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4684 !folio_test_swapcache(folio)))
4685 folio_mark_dirty(folio);
4686
4687 if (walk) {
4688 old_gen = folio_update_gen(folio, new_gen);
4689 if (old_gen >= 0 && old_gen != new_gen)
4690 update_batch_size(walk, folio, old_gen, new_gen);
4691
4692 continue;
4693 }
4694
4695 old_gen = folio_lru_gen(folio);
4696 if (old_gen < 0)
4697 folio_set_referenced(folio);
4698 else if (old_gen != new_gen)
4699 folio_activate(folio);
4700 }
4701
4702 arch_leave_lazy_mmu_mode();
4703 mem_cgroup_unlock_pages();
4704
4705 /* feedback from rmap walkers to page table walkers */
4706 if (suitable_to_scan(i, young))
4707 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4708 }
4709
4710 /******************************************************************************
4711 * memcg LRU
4712 ******************************************************************************/
4713
4714 /* see the comment on MEMCG_NR_GENS */
4715 enum {
4716 MEMCG_LRU_NOP,
4717 MEMCG_LRU_HEAD,
4718 MEMCG_LRU_TAIL,
4719 MEMCG_LRU_OLD,
4720 MEMCG_LRU_YOUNG,
4721 };
4722
4723 #ifdef CONFIG_MEMCG
4724
lru_gen_memcg_seg(struct lruvec *lruvec)4725 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4726 {
4727 return READ_ONCE(lruvec->lrugen.seg);
4728 }
4729
lru_gen_rotate_memcg(struct lruvec *lruvec, int op)4730 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4731 {
4732 int seg;
4733 int old, new;
4734 unsigned long flags;
4735 int bin = get_random_u32_below(MEMCG_NR_BINS);
4736 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4737
4738 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4739
4740 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4741
4742 seg = 0;
4743 new = old = lruvec->lrugen.gen;
4744
4745 /* see the comment on MEMCG_NR_GENS */
4746 if (op == MEMCG_LRU_HEAD)
4747 seg = MEMCG_LRU_HEAD;
4748 else if (op == MEMCG_LRU_TAIL)
4749 seg = MEMCG_LRU_TAIL;
4750 else if (op == MEMCG_LRU_OLD)
4751 new = get_memcg_gen(pgdat->memcg_lru.seq);
4752 else if (op == MEMCG_LRU_YOUNG)
4753 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4754 else
4755 VM_WARN_ON_ONCE(true);
4756
4757 WRITE_ONCE(lruvec->lrugen.seg, seg);
4758 WRITE_ONCE(lruvec->lrugen.gen, new);
4759
4760 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4761
4762 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4763 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4764 else
4765 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4766
4767 pgdat->memcg_lru.nr_memcgs[old]--;
4768 pgdat->memcg_lru.nr_memcgs[new]++;
4769
4770 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4771 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4772
4773 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4774 }
4775
lru_gen_online_memcg(struct mem_cgroup *memcg)4776 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4777 {
4778 int gen;
4779 int nid;
4780 int bin = get_random_u32_below(MEMCG_NR_BINS);
4781
4782 for_each_node(nid) {
4783 struct pglist_data *pgdat = NODE_DATA(nid);
4784 struct lruvec *lruvec = get_lruvec(memcg, nid);
4785
4786 spin_lock_irq(&pgdat->memcg_lru.lock);
4787
4788 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4789
4790 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4791
4792 lruvec->lrugen.gen = gen;
4793
4794 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4795 pgdat->memcg_lru.nr_memcgs[gen]++;
4796
4797 spin_unlock_irq(&pgdat->memcg_lru.lock);
4798 }
4799 }
4800
lru_gen_offline_memcg(struct mem_cgroup *memcg)4801 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4802 {
4803 int nid;
4804
4805 for_each_node(nid) {
4806 struct lruvec *lruvec = get_lruvec(memcg, nid);
4807
4808 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4809 }
4810 }
4811
lru_gen_release_memcg(struct mem_cgroup *memcg)4812 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4813 {
4814 int gen;
4815 int nid;
4816
4817 for_each_node(nid) {
4818 struct pglist_data *pgdat = NODE_DATA(nid);
4819 struct lruvec *lruvec = get_lruvec(memcg, nid);
4820
4821 spin_lock_irq(&pgdat->memcg_lru.lock);
4822
4823 if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4824 goto unlock;
4825
4826 gen = lruvec->lrugen.gen;
4827
4828 hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4829 pgdat->memcg_lru.nr_memcgs[gen]--;
4830
4831 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4832 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4833 unlock:
4834 spin_unlock_irq(&pgdat->memcg_lru.lock);
4835 }
4836 }
4837
lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)4838 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4839 {
4840 struct lruvec *lruvec = get_lruvec(memcg, nid);
4841
4842 /* see the comment on MEMCG_NR_GENS */
4843 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4844 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4845 }
4846
4847 #else /* !CONFIG_MEMCG */
4848
lru_gen_memcg_seg(struct lruvec *lruvec)4849 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4850 {
4851 return 0;
4852 }
4853
4854 #endif
4855
4856 /******************************************************************************
4857 * the eviction
4858 ******************************************************************************/
4859
sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, int tier_idx)4860 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4861 int tier_idx)
4862 {
4863 bool success;
4864 int gen = folio_lru_gen(folio);
4865 int type = folio_is_file_lru(folio);
4866 int zone = folio_zonenum(folio);
4867 int delta = folio_nr_pages(folio);
4868 int refs = folio_lru_refs(folio);
4869 int tier = lru_tier_from_refs(refs);
4870 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4871
4872 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4873
4874 /* unevictable */
4875 if (!folio_evictable(folio)) {
4876 success = lru_gen_del_folio(lruvec, folio, true);
4877 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4878 folio_set_unevictable(folio);
4879 lruvec_add_folio(lruvec, folio);
4880 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4881 return true;
4882 }
4883
4884 /* dirty lazyfree */
4885 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4886 success = lru_gen_del_folio(lruvec, folio, true);
4887 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4888 folio_set_swapbacked(folio);
4889 lruvec_add_folio_tail(lruvec, folio);
4890 return true;
4891 }
4892
4893 /* promoted */
4894 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4895 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4896 return true;
4897 }
4898
4899 /* protected */
4900 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4901 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4902
4903 gen = folio_inc_gen(lruvec, folio, false);
4904 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4905
4906 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4907 lrugen->protected[hist][type][tier - 1] + delta);
4908 return true;
4909 }
4910
4911 /* ineligible */
4912 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) {
4913 gen = folio_inc_gen(lruvec, folio, false);
4914 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4915 return true;
4916 }
4917
4918 /* waiting for writeback */
4919 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4920 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4921 gen = folio_inc_gen(lruvec, folio, true);
4922 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4923 return true;
4924 }
4925
4926 return false;
4927 }
4928
isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)4929 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4930 {
4931 bool success;
4932
4933 /* swapping inhibited */
4934 if (!(sc->gfp_mask & __GFP_IO) &&
4935 (folio_test_dirty(folio) ||
4936 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4937 return false;
4938
4939 /* raced with release_pages() */
4940 if (!folio_try_get(folio))
4941 return false;
4942
4943 /* raced with another isolation */
4944 if (!folio_test_clear_lru(folio)) {
4945 folio_put(folio);
4946 return false;
4947 }
4948
4949 /* see the comment on MAX_NR_TIERS */
4950 if (!folio_test_referenced(folio))
4951 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4952
4953 /* for shrink_folio_list() */
4954 folio_clear_reclaim(folio);
4955 folio_clear_referenced(folio);
4956
4957 success = lru_gen_del_folio(lruvec, folio, true);
4958 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4959
4960 return true;
4961 }
4962
scan_folios(struct lruvec *lruvec, struct scan_control *sc, int type, int tier, struct list_head *list)4963 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4964 int type, int tier, struct list_head *list)
4965 {
4966 int i;
4967 int gen;
4968 enum vm_event_item item;
4969 int sorted = 0;
4970 int scanned = 0;
4971 int isolated = 0;
4972 int remaining = MAX_LRU_BATCH;
4973 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4974 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4975
4976 VM_WARN_ON_ONCE(!list_empty(list));
4977
4978 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4979 return 0;
4980
4981 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4982
4983 for (i = MAX_NR_ZONES; i > 0; i--) {
4984 LIST_HEAD(moved);
4985 int skipped = 0;
4986 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4987 struct list_head *head = &lrugen->folios[gen][type][zone];
4988
4989 while (!list_empty(head)) {
4990 struct folio *folio = lru_to_folio(head);
4991 int delta = folio_nr_pages(folio);
4992
4993 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4994 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4995 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4996 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4997
4998 scanned += delta;
4999
5000 if (sort_folio(lruvec, folio, sc, tier))
5001 sorted += delta;
5002 else if (isolate_folio(lruvec, folio, sc)) {
5003 list_add(&folio->lru, list);
5004 isolated += delta;
5005 } else {
5006 list_move(&folio->lru, &moved);
5007 skipped += delta;
5008 }
5009
5010 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
5011 break;
5012 }
5013
5014 if (skipped) {
5015 list_splice(&moved, head);
5016 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5017 }
5018
5019 if (!remaining || isolated >= MIN_LRU_BATCH)
5020 break;
5021 }
5022
5023 item = PGSCAN_KSWAPD + reclaimer_offset();
5024 if (!cgroup_reclaim(sc)) {
5025 __count_vm_events(item, isolated);
5026 __count_vm_events(PGREFILL, sorted);
5027 }
5028 __count_memcg_events(memcg, item, isolated);
5029 __count_memcg_events(memcg, PGREFILL, sorted);
5030 __count_vm_events(PGSCAN_ANON + type, isolated);
5031
5032 /*
5033 * There might not be eligible folios due to reclaim_idx. Check the
5034 * remaining to prevent livelock if it's not making progress.
5035 */
5036 return isolated || !remaining ? scanned : 0;
5037 }
5038
get_tier_idx(struct lruvec *lruvec, int type)5039 static int get_tier_idx(struct lruvec *lruvec, int type)
5040 {
5041 int tier;
5042 struct ctrl_pos sp, pv;
5043
5044 /*
5045 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5046 * This value is chosen because any other tier would have at least twice
5047 * as many refaults as the first tier.
5048 */
5049 read_ctrl_pos(lruvec, type, 0, 1, &sp);
5050 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5051 read_ctrl_pos(lruvec, type, tier, 2, &pv);
5052 if (!positive_ctrl_err(&sp, &pv))
5053 break;
5054 }
5055
5056 return tier - 1;
5057 }
5058
get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)5059 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5060 {
5061 int type, tier;
5062 struct ctrl_pos sp, pv;
5063 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5064
5065 /*
5066 * Compare the first tier of anon with that of file to determine which
5067 * type to scan. Also need to compare other tiers of the selected type
5068 * with the first tier of the other type to determine the last tier (of
5069 * the selected type) to evict.
5070 */
5071 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5072 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5073 type = positive_ctrl_err(&sp, &pv);
5074
5075 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5076 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5077 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5078 if (!positive_ctrl_err(&sp, &pv))
5079 break;
5080 }
5081
5082 *tier_idx = tier - 1;
5083
5084 return type;
5085 }
5086
isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, int *type_scanned, struct list_head *list)5087 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5088 int *type_scanned, struct list_head *list)
5089 {
5090 int i;
5091 int type;
5092 int scanned;
5093 int tier = -1;
5094 DEFINE_MIN_SEQ(lruvec);
5095
5096 /*
5097 * Try to make the obvious choice first. When anon and file are both
5098 * available from the same generation, interpret swappiness 1 as file
5099 * first and 200 as anon first.
5100 */
5101 if (!swappiness)
5102 type = LRU_GEN_FILE;
5103 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5104 type = LRU_GEN_ANON;
5105 else if (swappiness == 1)
5106 type = LRU_GEN_FILE;
5107 else if (swappiness == 200)
5108 type = LRU_GEN_ANON;
5109 else
5110 type = get_type_to_scan(lruvec, swappiness, &tier);
5111
5112 for (i = !swappiness; i < ANON_AND_FILE; i++) {
5113 if (tier < 0)
5114 tier = get_tier_idx(lruvec, type);
5115
5116 scanned = scan_folios(lruvec, sc, type, tier, list);
5117 if (scanned)
5118 break;
5119
5120 type = !type;
5121 tier = -1;
5122 }
5123
5124 *type_scanned = type;
5125
5126 return scanned;
5127 }
5128
evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)5129 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5130 {
5131 int type;
5132 int scanned;
5133 int reclaimed;
5134 LIST_HEAD(list);
5135 LIST_HEAD(clean);
5136 struct folio *folio;
5137 struct folio *next;
5138 enum vm_event_item item;
5139 struct reclaim_stat stat;
5140 struct lru_gen_mm_walk *walk;
5141 bool skip_retry = false;
5142 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5143 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5144
5145 spin_lock_irq(&lruvec->lru_lock);
5146
5147 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5148
5149 scanned += try_to_inc_min_seq(lruvec, swappiness);
5150
5151 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5152 scanned = 0;
5153
5154 spin_unlock_irq(&lruvec->lru_lock);
5155
5156 if (list_empty(&list))
5157 return scanned;
5158 retry:
5159 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5160 sc->nr_reclaimed += reclaimed;
5161
5162 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5163 if (!folio_evictable(folio)) {
5164 list_del(&folio->lru);
5165 folio_putback_lru(folio);
5166 continue;
5167 }
5168
5169 if (folio_test_reclaim(folio) &&
5170 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5171 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5172 if (folio_test_workingset(folio))
5173 folio_set_referenced(folio);
5174 continue;
5175 }
5176
5177 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5178 folio_mapped(folio) || folio_test_locked(folio) ||
5179 folio_test_dirty(folio) || folio_test_writeback(folio)) {
5180 /* don't add rejected folios to the oldest generation */
5181 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5182 BIT(PG_active));
5183 continue;
5184 }
5185
5186 /* retry folios that may have missed folio_rotate_reclaimable() */
5187 list_move(&folio->lru, &clean);
5188 sc->nr_scanned -= folio_nr_pages(folio);
5189 }
5190
5191 spin_lock_irq(&lruvec->lru_lock);
5192
5193 move_folios_to_lru(lruvec, &list);
5194
5195 walk = current->reclaim_state->mm_walk;
5196 if (walk && walk->batched)
5197 reset_batch_size(lruvec, walk);
5198
5199 item = PGSTEAL_KSWAPD + reclaimer_offset();
5200 if (!cgroup_reclaim(sc))
5201 __count_vm_events(item, reclaimed);
5202 __count_memcg_events(memcg, item, reclaimed);
5203 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5204
5205 spin_unlock_irq(&lruvec->lru_lock);
5206
5207 mem_cgroup_uncharge_list(&list);
5208 free_unref_page_list(&list);
5209
5210 INIT_LIST_HEAD(&list);
5211 list_splice_init(&clean, &list);
5212
5213 if (!list_empty(&list)) {
5214 skip_retry = true;
5215 goto retry;
5216 }
5217
5218 return scanned;
5219 }
5220
should_run_aging(struct lruvec *lruvec, unsigned long max_seq, struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)5221 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5222 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5223 {
5224 int gen, type, zone;
5225 unsigned long old = 0;
5226 unsigned long young = 0;
5227 unsigned long total = 0;
5228 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5229 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5230 DEFINE_MIN_SEQ(lruvec);
5231
5232 /* whether this lruvec is completely out of cold folios */
5233 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5234 *nr_to_scan = 0;
5235 return true;
5236 }
5237
5238 for (type = !can_swap; type < ANON_AND_FILE; type++) {
5239 unsigned long seq;
5240
5241 for (seq = min_seq[type]; seq <= max_seq; seq++) {
5242 unsigned long size = 0;
5243
5244 gen = lru_gen_from_seq(seq);
5245
5246 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5247 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5248
5249 total += size;
5250 if (seq == max_seq)
5251 young += size;
5252 else if (seq + MIN_NR_GENS == max_seq)
5253 old += size;
5254 }
5255 }
5256
5257 /* try to scrape all its memory if this memcg was deleted */
5258 if (!mem_cgroup_online(memcg)) {
5259 *nr_to_scan = total;
5260 return false;
5261 }
5262
5263 *nr_to_scan = total >> sc->priority;
5264
5265 /*
5266 * The aging tries to be lazy to reduce the overhead, while the eviction
5267 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5268 * ideal number of generations is MIN_NR_GENS+1.
5269 */
5270 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5271 return false;
5272
5273 /*
5274 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5275 * of the total number of pages for each generation. A reasonable range
5276 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5277 * aging cares about the upper bound of hot pages, while the eviction
5278 * cares about the lower bound of cold pages.
5279 */
5280 if (young * MIN_NR_GENS > total)
5281 return true;
5282 if (old * (MIN_NR_GENS + 2) < total)
5283 return true;
5284
5285 return false;
5286 }
5287
5288 /*
5289 * For future optimizations:
5290 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5291 * reclaim.
5292 */
get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)5293 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5294 {
5295 unsigned long nr_to_scan;
5296 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5297 DEFINE_MAX_SEQ(lruvec);
5298
5299 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5300 return -1;
5301
5302 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5303 return nr_to_scan;
5304
5305 /* skip the aging path at the default priority */
5306 if (sc->priority == DEF_PRIORITY)
5307 return nr_to_scan;
5308
5309 /* skip this lruvec as it's low on cold folios */
5310 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5311 }
5312
should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)5313 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
5314 {
5315 int i;
5316 enum zone_watermarks mark;
5317
5318 /* don't abort memcg reclaim to ensure fairness */
5319 if (!root_reclaim(sc))
5320 return false;
5321
5322 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
5323 return true;
5324
5325 /* check the order to exclude compaction-induced reclaim */
5326 if (!current_is_kswapd() || sc->order)
5327 return false;
5328
5329 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
5330 WMARK_PROMO : WMARK_HIGH;
5331
5332 for (i = 0; i <= sc->reclaim_idx; i++) {
5333 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5334 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
5335
5336 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
5337 return false;
5338 }
5339
5340 /* kswapd should abort if all eligible zones are safe */
5341 return true;
5342 }
5343
try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)5344 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5345 {
5346 long nr_to_scan;
5347 unsigned long scanned = 0;
5348 int swappiness = get_swappiness(lruvec, sc);
5349
5350 /* clean file folios are more likely to exist */
5351 if (swappiness && !(sc->gfp_mask & __GFP_IO))
5352 swappiness = 1;
5353
5354 while (true) {
5355 int delta;
5356
5357 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5358 if (nr_to_scan <= 0)
5359 break;
5360
5361 delta = evict_folios(lruvec, sc, swappiness);
5362 if (!delta)
5363 break;
5364
5365 scanned += delta;
5366 if (scanned >= nr_to_scan)
5367 break;
5368
5369 if (should_abort_scan(lruvec, sc))
5370 break;
5371
5372 cond_resched();
5373 }
5374
5375 /* whether this lruvec should be rotated */
5376 return nr_to_scan < 0;
5377 }
5378
shrink_one(struct lruvec *lruvec, struct scan_control *sc)5379 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5380 {
5381 bool success;
5382 unsigned long scanned = sc->nr_scanned;
5383 unsigned long reclaimed = sc->nr_reclaimed;
5384 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5385 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5386
5387 mem_cgroup_calculate_protection(NULL, memcg);
5388
5389 if (mem_cgroup_below_min(NULL, memcg))
5390 return MEMCG_LRU_YOUNG;
5391
5392 if (mem_cgroup_below_low(NULL, memcg)) {
5393 /* see the comment on MEMCG_NR_GENS */
5394 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL)
5395 return MEMCG_LRU_TAIL;
5396
5397 memcg_memory_event(memcg, MEMCG_LOW);
5398 }
5399
5400 success = try_to_shrink_lruvec(lruvec, sc);
5401
5402 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5403
5404 if (!sc->proactive)
5405 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5406 sc->nr_reclaimed - reclaimed);
5407
5408 flush_reclaim_state(sc);
5409
5410 if (success && mem_cgroup_online(memcg))
5411 return MEMCG_LRU_YOUNG;
5412
5413 if (!success && lruvec_is_sizable(lruvec, sc))
5414 return 0;
5415
5416 /* one retry if offlined or too small */
5417 return lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL ?
5418 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5419 }
5420
5421 #ifdef CONFIG_MEMCG
5422
shrink_many(struct pglist_data *pgdat, struct scan_control *sc)5423 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5424 {
5425 int op;
5426 int gen;
5427 int bin;
5428 int first_bin;
5429 struct lruvec *lruvec;
5430 struct lru_gen_folio *lrugen;
5431 struct mem_cgroup *memcg;
5432 struct hlist_nulls_node *pos;
5433
5434 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5435 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5436 restart:
5437 op = 0;
5438 memcg = NULL;
5439
5440 rcu_read_lock();
5441
5442 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5443 if (op) {
5444 lru_gen_rotate_memcg(lruvec, op);
5445 op = 0;
5446 }
5447
5448 mem_cgroup_put(memcg);
5449 memcg = NULL;
5450
5451 if (gen != READ_ONCE(lrugen->gen))
5452 continue;
5453
5454 lruvec = container_of(lrugen, struct lruvec, lrugen);
5455 memcg = lruvec_memcg(lruvec);
5456
5457 if (!mem_cgroup_tryget(memcg)) {
5458 lru_gen_release_memcg(memcg);
5459 memcg = NULL;
5460 continue;
5461 }
5462
5463 rcu_read_unlock();
5464
5465 op = shrink_one(lruvec, sc);
5466
5467 rcu_read_lock();
5468
5469 if (should_abort_scan(lruvec, sc))
5470 break;
5471 }
5472
5473 rcu_read_unlock();
5474
5475 if (op)
5476 lru_gen_rotate_memcg(lruvec, op);
5477
5478 mem_cgroup_put(memcg);
5479
5480 if (!is_a_nulls(pos))
5481 return;
5482
5483 /* restart if raced with lru_gen_rotate_memcg() */
5484 if (gen != get_nulls_value(pos))
5485 goto restart;
5486
5487 /* try the rest of the bins of the current generation */
5488 bin = get_memcg_bin(bin + 1);
5489 if (bin != first_bin)
5490 goto restart;
5491 }
5492
5493 #ifndef CONFIG_HYPERHOLD_FILE_LRU
lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)5494 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5495 {
5496 struct blk_plug plug;
5497
5498 VM_WARN_ON_ONCE(root_reclaim(sc));
5499 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5500
5501 lru_add_drain();
5502
5503 blk_start_plug(&plug);
5504
5505 set_mm_walk(NULL, sc->proactive);
5506
5507 if (try_to_shrink_lruvec(lruvec, sc))
5508 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5509
5510 clear_mm_walk();
5511
5512 blk_finish_plug(&plug);
5513 }
5514 #endif
5515
5516 #else /* !CONFIG_MEMCG */
5517
shrink_many(struct pglist_data *pgdat, struct scan_control *sc)5518 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5519 {
5520 BUILD_BUG();
5521 }
5522
5523 #ifndef CONFIG_HYPERHOLD_FILE_LRU
lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)5524 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5525 {
5526 BUILD_BUG();
5527 }
5528 #endif
5529
5530 #endif
5531
set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)5532 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5533 {
5534 int priority;
5535 unsigned long reclaimable;
5536 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5537
5538 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5539 return;
5540 /*
5541 * Determine the initial priority based on
5542 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
5543 * where reclaimed_to_scanned_ratio = inactive / total.
5544 */
5545 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5546 if (get_swappiness(lruvec, sc))
5547 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5548
5549 /* round down reclaimable and round up sc->nr_to_reclaim */
5550 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5551
5552 sc->priority = clamp(priority, 0, DEF_PRIORITY);
5553 }
5554
lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)5555 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5556 {
5557 struct blk_plug plug;
5558 unsigned long reclaimed = sc->nr_reclaimed;
5559
5560 VM_WARN_ON_ONCE(!root_reclaim(sc));
5561
5562 /*
5563 * Unmapped clean folios are already prioritized. Scanning for more of
5564 * them is likely futile and can cause high reclaim latency when there
5565 * is a large number of memcgs.
5566 */
5567 if (!sc->may_writepage || !sc->may_unmap)
5568 goto done;
5569
5570 lru_add_drain();
5571
5572 blk_start_plug(&plug);
5573
5574 set_mm_walk(pgdat, sc->proactive);
5575
5576 set_initial_priority(pgdat, sc);
5577
5578 if (current_is_kswapd())
5579 sc->nr_reclaimed = 0;
5580
5581 if (mem_cgroup_disabled())
5582 shrink_one(&pgdat->__lruvec, sc);
5583 else
5584 shrink_many(pgdat, sc);
5585
5586 if (current_is_kswapd())
5587 sc->nr_reclaimed += reclaimed;
5588
5589 clear_mm_walk();
5590
5591 blk_finish_plug(&plug);
5592 done:
5593 /* kswapd should never fail */
5594 pgdat->kswapd_failures = 0;
5595 }
5596
5597 /******************************************************************************
5598 * state change
5599 ******************************************************************************/
5600
state_is_valid(struct lruvec *lruvec)5601 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5602 {
5603 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5604
5605 if (lrugen->enabled) {
5606 enum lru_list lru;
5607
5608 for_each_evictable_lru(lru) {
5609 if (!list_empty(&lruvec->lists[lru]))
5610 return false;
5611 }
5612 } else {
5613 int gen, type, zone;
5614
5615 for_each_gen_type_zone(gen, type, zone) {
5616 if (!list_empty(&lrugen->folios[gen][type][zone]))
5617 return false;
5618 }
5619 }
5620
5621 return true;
5622 }
5623
fill_evictable(struct lruvec *lruvec)5624 static bool fill_evictable(struct lruvec *lruvec)
5625 {
5626 enum lru_list lru;
5627 int remaining = MAX_LRU_BATCH;
5628
5629 for_each_evictable_lru(lru) {
5630 int type = is_file_lru(lru);
5631 bool active = is_active_lru(lru);
5632 struct list_head *head = &lruvec->lists[lru];
5633
5634 while (!list_empty(head)) {
5635 bool success;
5636 struct folio *folio = lru_to_folio(head);
5637
5638 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5639 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5640 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5641 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5642
5643 lruvec_del_folio(lruvec, folio);
5644 success = lru_gen_add_folio(lruvec, folio, false);
5645 VM_WARN_ON_ONCE(!success);
5646
5647 if (!--remaining)
5648 return false;
5649 }
5650 }
5651
5652 return true;
5653 }
5654
drain_evictable(struct lruvec *lruvec)5655 static bool drain_evictable(struct lruvec *lruvec)
5656 {
5657 int gen, type, zone;
5658 int remaining = MAX_LRU_BATCH;
5659
5660 for_each_gen_type_zone(gen, type, zone) {
5661 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5662
5663 while (!list_empty(head)) {
5664 bool success;
5665 struct folio *folio = lru_to_folio(head);
5666
5667 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5668 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5669 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5670 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5671
5672 success = lru_gen_del_folio(lruvec, folio, false);
5673 VM_WARN_ON_ONCE(!success);
5674 lruvec_add_folio(lruvec, folio);
5675
5676 if (!--remaining)
5677 return false;
5678 }
5679 }
5680
5681 return true;
5682 }
5683
lru_gen_change_state(bool enabled)5684 static void lru_gen_change_state(bool enabled)
5685 {
5686 static DEFINE_MUTEX(state_mutex);
5687
5688 struct mem_cgroup *memcg;
5689
5690 cgroup_lock();
5691 cpus_read_lock();
5692 get_online_mems();
5693 mutex_lock(&state_mutex);
5694
5695 if (enabled == lru_gen_enabled())
5696 goto unlock;
5697
5698 if (enabled)
5699 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5700 else
5701 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5702
5703 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5704 do {
5705 int nid;
5706
5707 for_each_node(nid) {
5708 struct lruvec *lruvec = get_lruvec(memcg, nid);
5709
5710 spin_lock_irq(&lruvec->lru_lock);
5711
5712 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5713 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5714
5715 lruvec->lrugen.enabled = enabled;
5716
5717 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5718 spin_unlock_irq(&lruvec->lru_lock);
5719 cond_resched();
5720 spin_lock_irq(&lruvec->lru_lock);
5721 }
5722
5723 spin_unlock_irq(&lruvec->lru_lock);
5724 }
5725
5726 cond_resched();
5727 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5728 unlock:
5729 mutex_unlock(&state_mutex);
5730 put_online_mems();
5731 cpus_read_unlock();
5732 cgroup_unlock();
5733 }
5734
5735 /******************************************************************************
5736 * sysfs interface
5737 ******************************************************************************/
5738
min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)5739 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5740 {
5741 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5742 }
5743
5744 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t len)5745 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5746 const char *buf, size_t len)
5747 {
5748 unsigned int msecs;
5749
5750 if (kstrtouint(buf, 0, &msecs))
5751 return -EINVAL;
5752
5753 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5754
5755 return len;
5756 }
5757
5758 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5759
enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)5760 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5761 {
5762 unsigned int caps = 0;
5763
5764 if (get_cap(LRU_GEN_CORE))
5765 caps |= BIT(LRU_GEN_CORE);
5766
5767 if (should_walk_mmu())
5768 caps |= BIT(LRU_GEN_MM_WALK);
5769
5770 if (should_clear_pmd_young())
5771 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5772
5773 return sysfs_emit(buf, "0x%04x\n", caps);
5774 }
5775
5776 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t len)5777 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5778 const char *buf, size_t len)
5779 {
5780 int i;
5781 unsigned int caps;
5782
5783 if (tolower(*buf) == 'n')
5784 caps = 0;
5785 else if (tolower(*buf) == 'y')
5786 caps = -1;
5787 else if (kstrtouint(buf, 0, &caps))
5788 return -EINVAL;
5789
5790 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5791 bool enabled = caps & BIT(i);
5792
5793 if (i == LRU_GEN_CORE)
5794 lru_gen_change_state(enabled);
5795 else if (enabled)
5796 static_branch_enable(&lru_gen_caps[i]);
5797 else
5798 static_branch_disable(&lru_gen_caps[i]);
5799 }
5800
5801 return len;
5802 }
5803
5804 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5805
5806 static struct attribute *lru_gen_attrs[] = {
5807 &lru_gen_min_ttl_attr.attr,
5808 &lru_gen_enabled_attr.attr,
5809 NULL
5810 };
5811
5812 static const struct attribute_group lru_gen_attr_group = {
5813 .name = "lru_gen",
5814 .attrs = lru_gen_attrs,
5815 };
5816
5817 /******************************************************************************
5818 * debugfs interface
5819 ******************************************************************************/
5820
lru_gen_seq_start(struct seq_file *m, loff_t *pos)5821 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5822 {
5823 struct mem_cgroup *memcg;
5824 loff_t nr_to_skip = *pos;
5825
5826 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5827 if (!m->private)
5828 return ERR_PTR(-ENOMEM);
5829
5830 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5831 do {
5832 int nid;
5833
5834 for_each_node_state(nid, N_MEMORY) {
5835 if (!nr_to_skip--)
5836 return get_lruvec(memcg, nid);
5837 }
5838 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5839
5840 return NULL;
5841 }
5842
lru_gen_seq_stop(struct seq_file *m, void *v)5843 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5844 {
5845 if (!IS_ERR_OR_NULL(v))
5846 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5847
5848 kvfree(m->private);
5849 m->private = NULL;
5850 }
5851
lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)5852 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5853 {
5854 int nid = lruvec_pgdat(v)->node_id;
5855 struct mem_cgroup *memcg = lruvec_memcg(v);
5856
5857 ++*pos;
5858
5859 nid = next_memory_node(nid);
5860 if (nid == MAX_NUMNODES) {
5861 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5862 if (!memcg)
5863 return NULL;
5864
5865 nid = first_memory_node;
5866 }
5867
5868 return get_lruvec(memcg, nid);
5869 }
5870
lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq, unsigned long seq)5871 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5872 unsigned long max_seq, unsigned long *min_seq,
5873 unsigned long seq)
5874 {
5875 int i;
5876 int type, tier;
5877 int hist = lru_hist_from_seq(seq);
5878 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5879
5880 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5881 seq_printf(m, " %10d", tier);
5882 for (type = 0; type < ANON_AND_FILE; type++) {
5883 const char *s = " ";
5884 unsigned long n[3] = {};
5885
5886 if (seq == max_seq) {
5887 s = "RT ";
5888 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5889 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5890 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5891 s = "rep";
5892 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5893 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5894 if (tier)
5895 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5896 }
5897
5898 for (i = 0; i < 3; i++)
5899 seq_printf(m, " %10lu%c", n[i], s[i]);
5900 }
5901 seq_putc(m, '\n');
5902 }
5903
5904 seq_puts(m, " ");
5905 for (i = 0; i < NR_MM_STATS; i++) {
5906 const char *s = " ";
5907 unsigned long n = 0;
5908
5909 if (seq == max_seq && NR_HIST_GENS == 1) {
5910 s = "LOYNFA";
5911 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5912 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5913 s = "loynfa";
5914 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5915 }
5916
5917 seq_printf(m, " %10lu%c", n, s[i]);
5918 }
5919 seq_putc(m, '\n');
5920 }
5921
5922 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file *m, void *v)5923 static int lru_gen_seq_show(struct seq_file *m, void *v)
5924 {
5925 unsigned long seq;
5926 bool full = !debugfs_real_fops(m->file)->write;
5927 struct lruvec *lruvec = v;
5928 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5929 int nid = lruvec_pgdat(lruvec)->node_id;
5930 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5931 DEFINE_MAX_SEQ(lruvec);
5932 DEFINE_MIN_SEQ(lruvec);
5933
5934 if (nid == first_memory_node) {
5935 const char *path = memcg ? m->private : "";
5936
5937 #ifdef CONFIG_MEMCG
5938 if (memcg)
5939 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5940 #endif
5941 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5942 }
5943
5944 seq_printf(m, " node %5d\n", nid);
5945
5946 if (!full)
5947 seq = min_seq[LRU_GEN_ANON];
5948 else if (max_seq >= MAX_NR_GENS)
5949 seq = max_seq - MAX_NR_GENS + 1;
5950 else
5951 seq = 0;
5952
5953 for (; seq <= max_seq; seq++) {
5954 int type, zone;
5955 int gen = lru_gen_from_seq(seq);
5956 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5957
5958 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5959
5960 for (type = 0; type < ANON_AND_FILE; type++) {
5961 unsigned long size = 0;
5962 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5963
5964 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5965 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5966
5967 seq_printf(m, " %10lu%c", size, mark);
5968 }
5969
5970 seq_putc(m, '\n');
5971
5972 if (full)
5973 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5974 }
5975
5976 return 0;
5977 }
5978
5979 static const struct seq_operations lru_gen_seq_ops = {
5980 .start = lru_gen_seq_start,
5981 .stop = lru_gen_seq_stop,
5982 .next = lru_gen_seq_next,
5983 .show = lru_gen_seq_show,
5984 };
5985
run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, bool can_swap, bool force_scan)5986 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5987 bool can_swap, bool force_scan)
5988 {
5989 DEFINE_MAX_SEQ(lruvec);
5990 DEFINE_MIN_SEQ(lruvec);
5991
5992 if (seq < max_seq)
5993 return 0;
5994
5995 if (seq > max_seq)
5996 return -EINVAL;
5997
5998 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5999 return -ERANGE;
6000
6001 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
6002
6003 return 0;
6004 }
6005
run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, int swappiness, unsigned long nr_to_reclaim)6006 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
6007 int swappiness, unsigned long nr_to_reclaim)
6008 {
6009 DEFINE_MAX_SEQ(lruvec);
6010
6011 if (seq + MIN_NR_GENS > max_seq)
6012 return -EINVAL;
6013
6014 sc->nr_reclaimed = 0;
6015
6016 while (!signal_pending(current)) {
6017 DEFINE_MIN_SEQ(lruvec);
6018
6019 if (seq < min_seq[!swappiness])
6020 return 0;
6021
6022 if (sc->nr_reclaimed >= nr_to_reclaim)
6023 return 0;
6024
6025 if (!evict_folios(lruvec, sc, swappiness))
6026 return 0;
6027
6028 cond_resched();
6029 }
6030
6031 return -EINTR;
6032 }
6033
run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, struct scan_control *sc, int swappiness, unsigned long opt)6034 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
6035 struct scan_control *sc, int swappiness, unsigned long opt)
6036 {
6037 struct lruvec *lruvec;
6038 int err = -EINVAL;
6039 struct mem_cgroup *memcg = NULL;
6040
6041 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
6042 return -EINVAL;
6043
6044 if (!mem_cgroup_disabled()) {
6045 rcu_read_lock();
6046
6047 memcg = mem_cgroup_from_id(memcg_id);
6048 if (!mem_cgroup_tryget(memcg))
6049 memcg = NULL;
6050
6051 rcu_read_unlock();
6052
6053 if (!memcg)
6054 return -EINVAL;
6055 }
6056
6057 if (memcg_id != mem_cgroup_id(memcg))
6058 goto done;
6059
6060 lruvec = get_lruvec(memcg, nid);
6061
6062 if (swappiness < 0)
6063 swappiness = get_swappiness(lruvec, sc);
6064 else if (swappiness > 200)
6065 goto done;
6066
6067 switch (cmd) {
6068 case '+':
6069 err = run_aging(lruvec, seq, sc, swappiness, opt);
6070 break;
6071 case '-':
6072 err = run_eviction(lruvec, seq, sc, swappiness, opt);
6073 break;
6074 }
6075 done:
6076 mem_cgroup_put(memcg);
6077
6078 return err;
6079 }
6080
6081 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file *file, const char __user *src, size_t len, loff_t *pos)6082 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6083 size_t len, loff_t *pos)
6084 {
6085 void *buf;
6086 char *cur, *next;
6087 unsigned int flags;
6088 struct blk_plug plug;
6089 int err = -EINVAL;
6090 struct scan_control sc = {
6091 .may_writepage = true,
6092 .may_unmap = true,
6093 .may_swap = true,
6094 .reclaim_idx = MAX_NR_ZONES - 1,
6095 .gfp_mask = GFP_KERNEL,
6096 };
6097
6098 buf = kvmalloc(len + 1, GFP_KERNEL);
6099 if (!buf)
6100 return -ENOMEM;
6101
6102 if (copy_from_user(buf, src, len)) {
6103 kvfree(buf);
6104 return -EFAULT;
6105 }
6106
6107 set_task_reclaim_state(current, &sc.reclaim_state);
6108 flags = memalloc_noreclaim_save();
6109 blk_start_plug(&plug);
6110 if (!set_mm_walk(NULL, true)) {
6111 err = -ENOMEM;
6112 goto done;
6113 }
6114
6115 next = buf;
6116 next[len] = '\0';
6117
6118 while ((cur = strsep(&next, ",;\n"))) {
6119 int n;
6120 int end;
6121 char cmd;
6122 unsigned int memcg_id;
6123 unsigned int nid;
6124 unsigned long seq;
6125 unsigned int swappiness = -1;
6126 unsigned long opt = -1;
6127
6128 cur = skip_spaces(cur);
6129 if (!*cur)
6130 continue;
6131
6132 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6133 &seq, &end, &swappiness, &end, &opt, &end);
6134 if (n < 4 || cur[end]) {
6135 err = -EINVAL;
6136 break;
6137 }
6138
6139 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6140 if (err)
6141 break;
6142 }
6143 done:
6144 clear_mm_walk();
6145 blk_finish_plug(&plug);
6146 memalloc_noreclaim_restore(flags);
6147 set_task_reclaim_state(current, NULL);
6148
6149 kvfree(buf);
6150
6151 return err ? : len;
6152 }
6153
lru_gen_seq_open(struct inode *inode, struct file *file)6154 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6155 {
6156 return seq_open(file, &lru_gen_seq_ops);
6157 }
6158
6159 static const struct file_operations lru_gen_rw_fops = {
6160 .open = lru_gen_seq_open,
6161 .read = seq_read,
6162 .write = lru_gen_seq_write,
6163 .llseek = seq_lseek,
6164 .release = seq_release,
6165 };
6166
6167 static const struct file_operations lru_gen_ro_fops = {
6168 .open = lru_gen_seq_open,
6169 .read = seq_read,
6170 .llseek = seq_lseek,
6171 .release = seq_release,
6172 };
6173
6174 /******************************************************************************
6175 * initialization
6176 ******************************************************************************/
6177
lru_gen_init_lruvec(struct lruvec *lruvec)6178 void lru_gen_init_lruvec(struct lruvec *lruvec)
6179 {
6180 int i;
6181 int gen, type, zone;
6182 struct lru_gen_folio *lrugen = &lruvec->lrugen;
6183
6184 lrugen->max_seq = MIN_NR_GENS + 1;
6185 lrugen->enabled = lru_gen_enabled();
6186
6187 for (i = 0; i <= MIN_NR_GENS + 1; i++)
6188 lrugen->timestamps[i] = jiffies;
6189
6190 for_each_gen_type_zone(gen, type, zone)
6191 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6192
6193 lruvec->mm_state.seq = MIN_NR_GENS;
6194 }
6195
6196 #ifdef CONFIG_MEMCG
6197
lru_gen_init_pgdat(struct pglist_data *pgdat)6198 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6199 {
6200 int i, j;
6201
6202 spin_lock_init(&pgdat->memcg_lru.lock);
6203
6204 for (i = 0; i < MEMCG_NR_GENS; i++) {
6205 for (j = 0; j < MEMCG_NR_BINS; j++)
6206 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6207 }
6208 }
6209
lru_gen_init_memcg(struct mem_cgroup *memcg)6210 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6211 {
6212 INIT_LIST_HEAD(&memcg->mm_list.fifo);
6213 spin_lock_init(&memcg->mm_list.lock);
6214 }
6215
lru_gen_exit_memcg(struct mem_cgroup *memcg)6216 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6217 {
6218 int i;
6219 int nid;
6220
6221 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6222
6223 for_each_node(nid) {
6224 struct lruvec *lruvec = get_lruvec(memcg, nid);
6225
6226 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6227 sizeof(lruvec->lrugen.nr_pages)));
6228
6229 lruvec->lrugen.list.next = LIST_POISON1;
6230
6231 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6232 bitmap_free(lruvec->mm_state.filters[i]);
6233 lruvec->mm_state.filters[i] = NULL;
6234 }
6235 }
6236 }
6237
6238 #endif /* CONFIG_MEMCG */
6239
init_lru_gen(void)6240 static int __init init_lru_gen(void)
6241 {
6242 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6243 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6244
6245 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6246 pr_err("lru_gen: failed to create sysfs group\n");
6247
6248 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6249 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6250
6251 return 0;
6252 };
6253 late_initcall(init_lru_gen);
6254
6255 #else /* !CONFIG_LRU_GEN */
6256
lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)6257 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6258 {
6259 }
6260
lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)6261 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6262 {
6263 }
6264
lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)6265 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6266 {
6267 }
6268
6269 #endif /* CONFIG_LRU_GEN */
6270
shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)6271 void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6272 {
6273 unsigned long nr[NR_LRU_LISTS];
6274 unsigned long targets[NR_LRU_LISTS];
6275 unsigned long nr_to_scan;
6276 enum lru_list lru;
6277 unsigned long nr_reclaimed = 0;
6278 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6279 bool proportional_reclaim;
6280 struct blk_plug plug;
6281
6282 if (lru_gen_enabled() && !root_reclaim(sc)) {
6283 lru_gen_shrink_lruvec(lruvec, sc);
6284 return;
6285 }
6286
6287 get_scan_count(lruvec, sc, nr);
6288
6289 /* Record the original scan target for proportional adjustments later */
6290 memcpy(targets, nr, sizeof(nr));
6291
6292 /*
6293 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6294 * event that can occur when there is little memory pressure e.g.
6295 * multiple streaming readers/writers. Hence, we do not abort scanning
6296 * when the requested number of pages are reclaimed when scanning at
6297 * DEF_PRIORITY on the assumption that the fact we are direct
6298 * reclaiming implies that kswapd is not keeping up and it is best to
6299 * do a batch of work at once. For memcg reclaim one check is made to
6300 * abort proportional reclaim if either the file or anon lru has already
6301 * dropped to zero at the first pass.
6302 */
6303 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6304 sc->priority == DEF_PRIORITY);
6305
6306 blk_start_plug(&plug);
6307 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6308 nr[LRU_INACTIVE_FILE]) {
6309 unsigned long nr_anon, nr_file, percentage;
6310 unsigned long nr_scanned;
6311
6312 for_each_evictable_lru(lru) {
6313 if (nr[lru]) {
6314 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6315 nr[lru] -= nr_to_scan;
6316
6317 nr_reclaimed += shrink_list(lru, nr_to_scan,
6318 lruvec, sc);
6319 }
6320 }
6321
6322 cond_resched();
6323
6324 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6325 continue;
6326
6327 /*
6328 * For kswapd and memcg, reclaim at least the number of pages
6329 * requested. Ensure that the anon and file LRUs are scanned
6330 * proportionally what was requested by get_scan_count(). We
6331 * stop reclaiming one LRU and reduce the amount scanning
6332 * proportional to the original scan target.
6333 */
6334 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6335 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6336
6337 /*
6338 * It's just vindictive to attack the larger once the smaller
6339 * has gone to zero. And given the way we stop scanning the
6340 * smaller below, this makes sure that we only make one nudge
6341 * towards proportionality once we've got nr_to_reclaim.
6342 */
6343 if (!nr_file || !nr_anon)
6344 break;
6345
6346 if (nr_file > nr_anon) {
6347 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6348 targets[LRU_ACTIVE_ANON] + 1;
6349 lru = LRU_BASE;
6350 percentage = nr_anon * 100 / scan_target;
6351 } else {
6352 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6353 targets[LRU_ACTIVE_FILE] + 1;
6354 lru = LRU_FILE;
6355 percentage = nr_file * 100 / scan_target;
6356 }
6357
6358 /* Stop scanning the smaller of the LRU */
6359 nr[lru] = 0;
6360 nr[lru + LRU_ACTIVE] = 0;
6361
6362 /*
6363 * Recalculate the other LRU scan count based on its original
6364 * scan target and the percentage scanning already complete
6365 */
6366 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6367 nr_scanned = targets[lru] - nr[lru];
6368 nr[lru] = targets[lru] * (100 - percentage) / 100;
6369 nr[lru] -= min(nr[lru], nr_scanned);
6370
6371 lru += LRU_ACTIVE;
6372 nr_scanned = targets[lru] - nr[lru];
6373 nr[lru] = targets[lru] * (100 - percentage) / 100;
6374 nr[lru] -= min(nr[lru], nr_scanned);
6375 }
6376 blk_finish_plug(&plug);
6377 sc->nr_reclaimed += nr_reclaimed;
6378
6379 /*
6380 * Even if we did not try to evict anon pages at all, we want to
6381 * rebalance the anon lru active/inactive ratio.
6382 */
6383 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6384 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6385 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6386 sc, LRU_ACTIVE_ANON);
6387 }
6388
6389 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control *sc)6390 static bool in_reclaim_compaction(struct scan_control *sc)
6391 {
6392 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6393 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6394 sc->priority < DEF_PRIORITY - 2))
6395 return true;
6396
6397 return false;
6398 }
6399
6400 /*
6401 * Reclaim/compaction is used for high-order allocation requests. It reclaims
6402 * order-0 pages before compacting the zone. should_continue_reclaim() returns
6403 * true if more pages should be reclaimed such that when the page allocator
6404 * calls try_to_compact_pages() that it will have enough free pages to succeed.
6405 * It will give up earlier than that if there is difficulty reclaiming pages.
6406 */
should_continue_reclaim(struct pglist_data *pgdat, unsigned long nr_reclaimed, struct scan_control *sc)6407 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6408 unsigned long nr_reclaimed,
6409 struct scan_control *sc)
6410 {
6411 unsigned long pages_for_compaction;
6412 unsigned long inactive_lru_pages;
6413 int z;
6414
6415 /* If not in reclaim/compaction mode, stop */
6416 if (!in_reclaim_compaction(sc))
6417 return false;
6418
6419 /*
6420 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6421 * number of pages that were scanned. This will return to the caller
6422 * with the risk reclaim/compaction and the resulting allocation attempt
6423 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6424 * allocations through requiring that the full LRU list has been scanned
6425 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6426 * scan, but that approximation was wrong, and there were corner cases
6427 * where always a non-zero amount of pages were scanned.
6428 */
6429 if (!nr_reclaimed)
6430 return false;
6431
6432 /* If compaction would go ahead or the allocation would succeed, stop */
6433 for (z = 0; z <= sc->reclaim_idx; z++) {
6434 struct zone *zone = &pgdat->node_zones[z];
6435 if (!managed_zone(zone))
6436 continue;
6437
6438 /* Allocation can already succeed, nothing to do */
6439 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6440 sc->reclaim_idx, 0))
6441 return false;
6442
6443 if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
6444 return false;
6445 }
6446
6447 /*
6448 * If we have not reclaimed enough pages for compaction and the
6449 * inactive lists are large enough, continue reclaiming
6450 */
6451 pages_for_compaction = compact_gap(sc->order);
6452 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6453 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6454 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6455
6456 return inactive_lru_pages > pages_for_compaction;
6457 }
6458
6459 #ifndef CONFIG_HYPERHOLD_FILE_LRU
shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)6460 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6461 {
6462 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6463 struct mem_cgroup *memcg;
6464
6465 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6466 do {
6467 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6468 unsigned long reclaimed;
6469 unsigned long scanned;
6470
6471 /*
6472 * This loop can become CPU-bound when target memcgs
6473 * aren't eligible for reclaim - either because they
6474 * don't have any reclaimable pages, or because their
6475 * memory is explicitly protected. Avoid soft lockups.
6476 */
6477 cond_resched();
6478
6479 mem_cgroup_calculate_protection(target_memcg, memcg);
6480
6481 if (mem_cgroup_below_min(target_memcg, memcg)) {
6482 /*
6483 * Hard protection.
6484 * If there is no reclaimable memory, OOM.
6485 */
6486 continue;
6487 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
6488 /*
6489 * Soft protection.
6490 * Respect the protection only as long as
6491 * there is an unprotected supply
6492 * of reclaimable memory from other cgroups.
6493 */
6494 if (!sc->memcg_low_reclaim) {
6495 sc->memcg_low_skipped = 1;
6496 continue;
6497 }
6498 memcg_memory_event(memcg, MEMCG_LOW);
6499 }
6500
6501 reclaimed = sc->nr_reclaimed;
6502 scanned = sc->nr_scanned;
6503
6504 shrink_lruvec(lruvec, sc);
6505
6506 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6507 sc->priority);
6508
6509 /* Record the group's reclaim efficiency */
6510 if (!sc->proactive)
6511 vmpressure(sc->gfp_mask, memcg, false,
6512 sc->nr_scanned - scanned,
6513 sc->nr_reclaimed - reclaimed);
6514
6515 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6516 }
6517
shrink_node(pg_data_t *pgdat, struct scan_control *sc)6518 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6519 {
6520 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6521 struct lruvec *target_lruvec;
6522 bool reclaimable = false;
6523
6524 if (lru_gen_enabled() && root_reclaim(sc)) {
6525 lru_gen_shrink_node(pgdat, sc);
6526 return;
6527 }
6528
6529 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6530
6531 again:
6532 memset(&sc->nr, 0, sizeof(sc->nr));
6533
6534 nr_reclaimed = sc->nr_reclaimed;
6535 nr_scanned = sc->nr_scanned;
6536
6537 prepare_scan_count(pgdat, sc);
6538
6539 shrink_node_memcgs(pgdat, sc);
6540
6541 flush_reclaim_state(sc);
6542
6543 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6544
6545 /* Record the subtree's reclaim efficiency */
6546 if (!sc->proactive)
6547 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6548 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6549
6550 if (nr_node_reclaimed)
6551 reclaimable = true;
6552
6553 if (current_is_kswapd()) {
6554 /*
6555 * If reclaim is isolating dirty pages under writeback,
6556 * it implies that the long-lived page allocation rate
6557 * is exceeding the page laundering rate. Either the
6558 * global limits are not being effective at throttling
6559 * processes due to the page distribution throughout
6560 * zones or there is heavy usage of a slow backing
6561 * device. The only option is to throttle from reclaim
6562 * context which is not ideal as there is no guarantee
6563 * the dirtying process is throttled in the same way
6564 * balance_dirty_pages() manages.
6565 *
6566 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6567 * count the number of pages under pages flagged for
6568 * immediate reclaim and stall if any are encountered
6569 * in the nr_immediate check below.
6570 */
6571 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6572 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6573
6574 /* Allow kswapd to start writing pages during reclaim.*/
6575 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6576 set_bit(PGDAT_DIRTY, &pgdat->flags);
6577
6578 /*
6579 * If kswapd scans pages marked for immediate
6580 * reclaim and under writeback (nr_immediate), it
6581 * implies that pages are cycling through the LRU
6582 * faster than they are written so forcibly stall
6583 * until some pages complete writeback.
6584 */
6585 if (sc->nr.immediate)
6586 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6587 }
6588
6589 /*
6590 * Tag a node/memcg as congested if all the dirty pages were marked
6591 * for writeback and immediate reclaim (counted in nr.congested).
6592 *
6593 * Legacy memcg will stall in page writeback so avoid forcibly
6594 * stalling in reclaim_throttle().
6595 */
6596 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6597 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6598 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6599
6600 if (current_is_kswapd())
6601 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6602 }
6603
6604 /*
6605 * Stall direct reclaim for IO completions if the lruvec is
6606 * node is congested. Allow kswapd to continue until it
6607 * starts encountering unqueued dirty pages or cycling through
6608 * the LRU too quickly.
6609 */
6610 if (!current_is_kswapd() && current_may_throttle() &&
6611 !sc->hibernation_mode &&
6612 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6613 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6614 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6615
6616 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6617 goto again;
6618
6619 /*
6620 * Kswapd gives up on balancing particular nodes after too
6621 * many failures to reclaim anything from them and goes to
6622 * sleep. On reclaim progress, reset the failure counter. A
6623 * successful direct reclaim run will revive a dormant kswapd.
6624 */
6625 if (reclaimable)
6626 pgdat->kswapd_failures = 0;
6627 }
6628 #endif
6629
6630 /*
6631 * Returns true if compaction should go ahead for a costly-order request, or
6632 * the allocation would already succeed without compaction. Return false if we
6633 * should reclaim first.
6634 */
compaction_ready(struct zone *zone, struct scan_control *sc)6635 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6636 {
6637 unsigned long watermark;
6638
6639 /* Allocation can already succeed, nothing to do */
6640 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6641 sc->reclaim_idx, 0))
6642 return true;
6643
6644 /* Compaction cannot yet proceed. Do reclaim. */
6645 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6646 return false;
6647
6648 /*
6649 * Compaction is already possible, but it takes time to run and there
6650 * are potentially other callers using the pages just freed. So proceed
6651 * with reclaim to make a buffer of free pages available to give
6652 * compaction a reasonable chance of completing and allocating the page.
6653 * Note that we won't actually reclaim the whole buffer in one attempt
6654 * as the target watermark in should_continue_reclaim() is lower. But if
6655 * we are already above the high+gap watermark, don't reclaim at all.
6656 */
6657 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6658
6659 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6660 }
6661
consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)6662 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6663 {
6664 /*
6665 * If reclaim is making progress greater than 12% efficiency then
6666 * wake all the NOPROGRESS throttled tasks.
6667 */
6668 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6669 wait_queue_head_t *wqh;
6670
6671 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6672 if (waitqueue_active(wqh))
6673 wake_up(wqh);
6674
6675 return;
6676 }
6677
6678 /*
6679 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6680 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6681 * under writeback and marked for immediate reclaim at the tail of the
6682 * LRU.
6683 */
6684 if (current_is_kswapd() || cgroup_reclaim(sc))
6685 return;
6686
6687 /* Throttle if making no progress at high prioities. */
6688 if (sc->priority == 1 && !sc->nr_reclaimed)
6689 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6690 }
6691
6692 /*
6693 * This is the direct reclaim path, for page-allocating processes. We only
6694 * try to reclaim pages from zones which will satisfy the caller's allocation
6695 * request.
6696 *
6697 * If a zone is deemed to be full of pinned pages then just give it a light
6698 * scan then give up on it.
6699 */
shrink_zones(struct zonelist *zonelist, struct scan_control *sc)6700 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6701 {
6702 struct zoneref *z;
6703 struct zone *zone;
6704 unsigned long nr_soft_reclaimed;
6705 unsigned long nr_soft_scanned;
6706 gfp_t orig_mask;
6707 pg_data_t *last_pgdat = NULL;
6708 pg_data_t *first_pgdat = NULL;
6709
6710 /*
6711 * If the number of buffer_heads in the machine exceeds the maximum
6712 * allowed level, force direct reclaim to scan the highmem zone as
6713 * highmem pages could be pinning lowmem pages storing buffer_heads
6714 */
6715 orig_mask = sc->gfp_mask;
6716 if (buffer_heads_over_limit) {
6717 sc->gfp_mask |= __GFP_HIGHMEM;
6718 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6719 }
6720
6721 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6722 sc->reclaim_idx, sc->nodemask) {
6723 /*
6724 * Take care memory controller reclaiming has small influence
6725 * to global LRU.
6726 */
6727 if (!cgroup_reclaim(sc)) {
6728 if (!cpuset_zone_allowed(zone,
6729 GFP_KERNEL | __GFP_HARDWALL))
6730 continue;
6731
6732 /*
6733 * If we already have plenty of memory free for
6734 * compaction in this zone, don't free any more.
6735 * Even though compaction is invoked for any
6736 * non-zero order, only frequent costly order
6737 * reclamation is disruptive enough to become a
6738 * noticeable problem, like transparent huge
6739 * page allocations.
6740 */
6741 if (IS_ENABLED(CONFIG_COMPACTION) &&
6742 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6743 compaction_ready(zone, sc)) {
6744 sc->compaction_ready = true;
6745 continue;
6746 }
6747
6748 /*
6749 * Shrink each node in the zonelist once. If the
6750 * zonelist is ordered by zone (not the default) then a
6751 * node may be shrunk multiple times but in that case
6752 * the user prefers lower zones being preserved.
6753 */
6754 if (zone->zone_pgdat == last_pgdat)
6755 continue;
6756
6757 /*
6758 * This steals pages from memory cgroups over softlimit
6759 * and returns the number of reclaimed pages and
6760 * scanned pages. This works for global memory pressure
6761 * and balancing, not for a memcg's limit.
6762 */
6763 nr_soft_scanned = 0;
6764 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6765 sc->order, sc->gfp_mask,
6766 &nr_soft_scanned);
6767 sc->nr_reclaimed += nr_soft_reclaimed;
6768 sc->nr_scanned += nr_soft_scanned;
6769 /* need some check for avoid more shrink_zone() */
6770 }
6771
6772 if (!first_pgdat)
6773 first_pgdat = zone->zone_pgdat;
6774
6775 /* See comment about same check for global reclaim above */
6776 if (zone->zone_pgdat == last_pgdat)
6777 continue;
6778 last_pgdat = zone->zone_pgdat;
6779 #ifdef CONFIG_HYPERHOLD_FILE_LRU
6780 shrink_node_hyperhold(zone->zone_pgdat, sc);
6781 #else
6782 shrink_node(zone->zone_pgdat, sc);
6783 #endif
6784 }
6785
6786 if (first_pgdat)
6787 consider_reclaim_throttle(first_pgdat, sc);
6788
6789 /*
6790 * Restore to original mask to avoid the impact on the caller if we
6791 * promoted it to __GFP_HIGHMEM.
6792 */
6793 sc->gfp_mask = orig_mask;
6794 }
6795
snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)6796 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6797 {
6798 struct lruvec *target_lruvec;
6799 unsigned long refaults;
6800 #ifdef CONFIG_HYPERHOLD_FILE_LRU
6801 struct lruvec *lruvec;
6802 #endif
6803
6804 if (lru_gen_enabled())
6805 return;
6806
6807 #ifdef CONFIG_HYPERHOLD_FILE_LRU
6808 lruvec = node_lruvec(pgdat);
6809 lruvec->refaults[0] = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE_ANON); /* modified */
6810 lruvec->refaults[1] = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE_FILE); /* modified */
6811 #endif
6812
6813 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6814 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6815 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6816 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6817 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6818 }
6819
6820 /*
6821 * This is the main entry point to direct page reclaim.
6822 *
6823 * If a full scan of the inactive list fails to free enough memory then we
6824 * are "out of memory" and something needs to be killed.
6825 *
6826 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6827 * high - the zone may be full of dirty or under-writeback pages, which this
6828 * caller can't do much about. We kick the writeback threads and take explicit
6829 * naps in the hope that some of these pages can be written. But if the
6830 * allocating task holds filesystem locks which prevent writeout this might not
6831 * work, and the allocation attempt will fail.
6832 *
6833 * returns: 0, if no pages reclaimed
6834 * else, the number of pages reclaimed
6835 */
do_try_to_free_pages(struct zonelist *zonelist, struct scan_control *sc)6836 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6837 struct scan_control *sc)
6838 {
6839 int initial_priority = sc->priority;
6840 pg_data_t *last_pgdat;
6841 struct zoneref *z;
6842 struct zone *zone;
6843 retry:
6844 delayacct_freepages_start();
6845
6846 if (!cgroup_reclaim(sc))
6847 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6848
6849 do {
6850 if (!sc->proactive)
6851 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6852 sc->priority);
6853 sc->nr_scanned = 0;
6854 shrink_zones(zonelist, sc);
6855
6856 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6857 break;
6858
6859 if (sc->compaction_ready)
6860 break;
6861
6862 /*
6863 * If we're getting trouble reclaiming, start doing
6864 * writepage even in laptop mode.
6865 */
6866 if (sc->priority < DEF_PRIORITY - 2)
6867 sc->may_writepage = 1;
6868 } while (--sc->priority >= 0);
6869
6870 last_pgdat = NULL;
6871 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6872 sc->nodemask) {
6873 if (zone->zone_pgdat == last_pgdat)
6874 continue;
6875 last_pgdat = zone->zone_pgdat;
6876
6877 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6878
6879 if (cgroup_reclaim(sc)) {
6880 struct lruvec *lruvec;
6881
6882 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6883 zone->zone_pgdat);
6884 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6885 }
6886 }
6887
6888 delayacct_freepages_end();
6889
6890 if (sc->nr_reclaimed)
6891 return sc->nr_reclaimed;
6892
6893 /* Aborted reclaim to try compaction? don't OOM, then */
6894 if (sc->compaction_ready)
6895 return 1;
6896
6897 /*
6898 * We make inactive:active ratio decisions based on the node's
6899 * composition of memory, but a restrictive reclaim_idx or a
6900 * memory.low cgroup setting can exempt large amounts of
6901 * memory from reclaim. Neither of which are very common, so
6902 * instead of doing costly eligibility calculations of the
6903 * entire cgroup subtree up front, we assume the estimates are
6904 * good, and retry with forcible deactivation if that fails.
6905 */
6906 if (sc->skipped_deactivate) {
6907 sc->priority = initial_priority;
6908 sc->force_deactivate = 1;
6909 sc->skipped_deactivate = 0;
6910 goto retry;
6911 }
6912
6913 /* Untapped cgroup reserves? Don't OOM, retry. */
6914 if (sc->memcg_low_skipped) {
6915 sc->priority = initial_priority;
6916 sc->force_deactivate = 0;
6917 sc->memcg_low_reclaim = 1;
6918 sc->memcg_low_skipped = 0;
6919 goto retry;
6920 }
6921
6922 return 0;
6923 }
6924
allow_direct_reclaim(pg_data_t *pgdat)6925 static bool allow_direct_reclaim(pg_data_t *pgdat)
6926 {
6927 struct zone *zone;
6928 unsigned long pfmemalloc_reserve = 0;
6929 unsigned long free_pages = 0;
6930 int i;
6931 bool wmark_ok;
6932
6933 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6934 return true;
6935
6936 for (i = 0; i <= ZONE_NORMAL; i++) {
6937 zone = &pgdat->node_zones[i];
6938 if (!managed_zone(zone))
6939 continue;
6940
6941 if (!zone_reclaimable_pages(zone))
6942 continue;
6943
6944 pfmemalloc_reserve += min_wmark_pages(zone);
6945 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6946 }
6947
6948 /* If there are no reserves (unexpected config) then do not throttle */
6949 if (!pfmemalloc_reserve)
6950 return true;
6951
6952 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6953
6954 /* kswapd must be awake if processes are being throttled */
6955 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6956 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6957 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6958
6959 wake_up_interruptible(&pgdat->kswapd_wait);
6960 }
6961
6962 return wmark_ok;
6963 }
6964
6965 /*
6966 * Throttle direct reclaimers if backing storage is backed by the network
6967 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6968 * depleted. kswapd will continue to make progress and wake the processes
6969 * when the low watermark is reached.
6970 *
6971 * Returns true if a fatal signal was delivered during throttling. If this
6972 * happens, the page allocator should not consider triggering the OOM killer.
6973 */
throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, nodemask_t *nodemask)6974 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6975 nodemask_t *nodemask)
6976 {
6977 struct zoneref *z;
6978 struct zone *zone;
6979 pg_data_t *pgdat = NULL;
6980
6981 /*
6982 * Kernel threads should not be throttled as they may be indirectly
6983 * responsible for cleaning pages necessary for reclaim to make forward
6984 * progress. kjournald for example may enter direct reclaim while
6985 * committing a transaction where throttling it could forcing other
6986 * processes to block on log_wait_commit().
6987 */
6988 if (current->flags & PF_KTHREAD)
6989 goto out;
6990
6991 /*
6992 * If a fatal signal is pending, this process should not throttle.
6993 * It should return quickly so it can exit and free its memory
6994 */
6995 if (fatal_signal_pending(current))
6996 goto out;
6997
6998 /*
6999 * Check if the pfmemalloc reserves are ok by finding the first node
7000 * with a usable ZONE_NORMAL or lower zone. The expectation is that
7001 * GFP_KERNEL will be required for allocating network buffers when
7002 * swapping over the network so ZONE_HIGHMEM is unusable.
7003 *
7004 * Throttling is based on the first usable node and throttled processes
7005 * wait on a queue until kswapd makes progress and wakes them. There
7006 * is an affinity then between processes waking up and where reclaim
7007 * progress has been made assuming the process wakes on the same node.
7008 * More importantly, processes running on remote nodes will not compete
7009 * for remote pfmemalloc reserves and processes on different nodes
7010 * should make reasonable progress.
7011 */
7012 for_each_zone_zonelist_nodemask(zone, z, zonelist,
7013 gfp_zone(gfp_mask), nodemask) {
7014 if (zone_idx(zone) > ZONE_NORMAL)
7015 continue;
7016
7017 /* Throttle based on the first usable node */
7018 pgdat = zone->zone_pgdat;
7019 if (allow_direct_reclaim(pgdat))
7020 goto out;
7021 break;
7022 }
7023
7024 /* If no zone was usable by the allocation flags then do not throttle */
7025 if (!pgdat)
7026 goto out;
7027
7028 /* Account for the throttling */
7029 count_vm_event(PGSCAN_DIRECT_THROTTLE);
7030
7031 /*
7032 * If the caller cannot enter the filesystem, it's possible that it
7033 * is due to the caller holding an FS lock or performing a journal
7034 * transaction in the case of a filesystem like ext[3|4]. In this case,
7035 * it is not safe to block on pfmemalloc_wait as kswapd could be
7036 * blocked waiting on the same lock. Instead, throttle for up to a
7037 * second before continuing.
7038 */
7039 if (!(gfp_mask & __GFP_FS))
7040 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
7041 allow_direct_reclaim(pgdat), HZ);
7042 else
7043 /* Throttle until kswapd wakes the process */
7044 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
7045 allow_direct_reclaim(pgdat));
7046
7047 if (fatal_signal_pending(current))
7048 return true;
7049
7050 out:
7051 return false;
7052 }
7053
try_to_free_pages(struct zonelist *zonelist, int order, gfp_t gfp_mask, nodemask_t *nodemask)7054 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
7055 gfp_t gfp_mask, nodemask_t *nodemask)
7056 {
7057 unsigned long nr_reclaimed;
7058 struct scan_control sc = {
7059 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7060 .gfp_mask = current_gfp_context(gfp_mask),
7061 .reclaim_idx = gfp_zone(gfp_mask),
7062 .order = order,
7063 .nodemask = nodemask,
7064 .priority = DEF_PRIORITY,
7065 .may_writepage = !laptop_mode,
7066 .may_unmap = 1,
7067 .may_swap = 1,
7068 };
7069
7070 /*
7071 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7072 * Confirm they are large enough for max values.
7073 */
7074 BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7075 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7076 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7077
7078 /*
7079 * Do not enter reclaim if fatal signal was delivered while throttled.
7080 * 1 is returned so that the page allocator does not OOM kill at this
7081 * point.
7082 */
7083 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7084 return 1;
7085
7086 set_task_reclaim_state(current, &sc.reclaim_state);
7087 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7088
7089 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7090
7091 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7092 set_task_reclaim_state(current, NULL);
7093
7094 return nr_reclaimed;
7095 }
7096
7097 #ifdef CONFIG_MEMCG
7098
7099 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup *memcg, gfp_t gfp_mask, bool noswap, pg_data_t *pgdat, unsigned long *nr_scanned)7100 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7101 gfp_t gfp_mask, bool noswap,
7102 pg_data_t *pgdat,
7103 unsigned long *nr_scanned)
7104 {
7105 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7106 struct scan_control sc = {
7107 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7108 .target_mem_cgroup = memcg,
7109 .may_writepage = !laptop_mode,
7110 .may_unmap = 1,
7111 .reclaim_idx = MAX_NR_ZONES - 1,
7112 .may_swap = !noswap,
7113 };
7114 #ifdef CONFIG_HYPERHOLD_FILE_LRU
7115 unsigned long nr[NR_LRU_LISTS];
7116 #endif
7117
7118 WARN_ON_ONCE(!current->reclaim_state);
7119
7120 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7121 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7122
7123 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7124 sc.gfp_mask);
7125
7126 /*
7127 * NOTE: Although we can get the priority field, using it
7128 * here is not a good idea, since it limits the pages we can scan.
7129 * if we don't reclaim here, the shrink_node from balance_pgdat
7130 * will pick up pages from other mem cgroup's as well. We hack
7131 * the priority and make it zero.
7132 */
7133 #ifdef CONFIG_HYPERHOLD_FILE_LRU
7134 nr[LRU_ACTIVE_ANON] = lruvec_lru_size(lruvec,
7135 LRU_ACTIVE_ANON, MAX_NR_ZONES);
7136 nr[LRU_INACTIVE_ANON] = lruvec_lru_size(lruvec,
7137 LRU_INACTIVE_ANON, MAX_NR_ZONES);
7138 nr[LRU_ACTIVE_FILE] = 0;
7139 nr[LRU_INACTIVE_FILE] = 0;
7140 shrink_anon_memcg(pgdat, memcg, &sc, nr);
7141 #else
7142 shrink_lruvec(lruvec, &sc);
7143 #endif
7144
7145 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7146
7147 *nr_scanned = sc.nr_scanned;
7148
7149 return sc.nr_reclaimed;
7150 }
7151
try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, unsigned long nr_pages, gfp_t gfp_mask, unsigned int reclaim_options)7152 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7153 unsigned long nr_pages,
7154 gfp_t gfp_mask,
7155 unsigned int reclaim_options)
7156 {
7157 unsigned long nr_reclaimed;
7158 unsigned int noreclaim_flag;
7159 struct scan_control sc = {
7160 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7161 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7162 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7163 .reclaim_idx = MAX_NR_ZONES - 1,
7164 .target_mem_cgroup = memcg,
7165 .priority = DEF_PRIORITY,
7166 .may_writepage = !laptop_mode,
7167 .may_unmap = 1,
7168 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7169 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7170 };
7171 /*
7172 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7173 * equal pressure on all the nodes. This is based on the assumption that
7174 * the reclaim does not bail out early.
7175 */
7176 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7177
7178 set_task_reclaim_state(current, &sc.reclaim_state);
7179 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7180 noreclaim_flag = memalloc_noreclaim_save();
7181
7182 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7183
7184 memalloc_noreclaim_restore(noreclaim_flag);
7185 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7186 set_task_reclaim_state(current, NULL);
7187
7188 return nr_reclaimed;
7189 }
7190 #endif
7191
kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)7192 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7193 {
7194 struct mem_cgroup *memcg;
7195 struct lruvec *lruvec;
7196
7197 if (lru_gen_enabled()) {
7198 lru_gen_age_node(pgdat, sc);
7199 return;
7200 }
7201
7202 if (!can_age_anon_pages(pgdat, sc))
7203 return;
7204
7205 lruvec = mem_cgroup_lruvec(NULL, pgdat);
7206 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7207 return;
7208
7209 memcg = mem_cgroup_iter(NULL, NULL, NULL);
7210 do {
7211 lruvec = mem_cgroup_lruvec(memcg, pgdat);
7212 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7213 sc, LRU_ACTIVE_ANON);
7214 memcg = mem_cgroup_iter(NULL, memcg, NULL);
7215 } while (memcg);
7216 }
7217
pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)7218 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7219 {
7220 int i;
7221 struct zone *zone;
7222
7223 /*
7224 * Check for watermark boosts top-down as the higher zones
7225 * are more likely to be boosted. Both watermarks and boosts
7226 * should not be checked at the same time as reclaim would
7227 * start prematurely when there is no boosting and a lower
7228 * zone is balanced.
7229 */
7230 for (i = highest_zoneidx; i >= 0; i--) {
7231 zone = pgdat->node_zones + i;
7232 if (!managed_zone(zone))
7233 continue;
7234
7235 if (zone->watermark_boost)
7236 return true;
7237 }
7238
7239 return false;
7240 }
7241
7242 /*
7243 * Returns true if there is an eligible zone balanced for the request order
7244 * and highest_zoneidx
7245 */
pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)7246 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7247 {
7248 int i;
7249 unsigned long mark = -1;
7250 struct zone *zone;
7251
7252 /*
7253 * Check watermarks bottom-up as lower zones are more likely to
7254 * meet watermarks.
7255 */
7256 for (i = 0; i <= highest_zoneidx; i++) {
7257 zone = pgdat->node_zones + i;
7258
7259 if (!managed_zone(zone))
7260 continue;
7261
7262 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7263 mark = wmark_pages(zone, WMARK_PROMO);
7264 else
7265 mark = high_wmark_pages(zone);
7266 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7267 return true;
7268 }
7269
7270 /*
7271 * If a node has no managed zone within highest_zoneidx, it does not
7272 * need balancing by definition. This can happen if a zone-restricted
7273 * allocation tries to wake a remote kswapd.
7274 */
7275 if (mark == -1)
7276 return true;
7277
7278 return false;
7279 }
7280
7281 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t *pgdat)7282 static void clear_pgdat_congested(pg_data_t *pgdat)
7283 {
7284 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7285
7286 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
7287 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
7288 clear_bit(PGDAT_DIRTY, &pgdat->flags);
7289 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7290 }
7291
7292 /*
7293 * Prepare kswapd for sleeping. This verifies that there are no processes
7294 * waiting in throttle_direct_reclaim() and that watermarks have been met.
7295 *
7296 * Returns true if kswapd is ready to sleep
7297 */
prepare_kswapd_sleep(pg_data_t *pgdat, int order, int highest_zoneidx)7298 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7299 int highest_zoneidx)
7300 {
7301 /*
7302 * The throttled processes are normally woken up in balance_pgdat() as
7303 * soon as allow_direct_reclaim() is true. But there is a potential
7304 * race between when kswapd checks the watermarks and a process gets
7305 * throttled. There is also a potential race if processes get
7306 * throttled, kswapd wakes, a large process exits thereby balancing the
7307 * zones, which causes kswapd to exit balance_pgdat() before reaching
7308 * the wake up checks. If kswapd is going to sleep, no process should
7309 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7310 * the wake up is premature, processes will wake kswapd and get
7311 * throttled again. The difference from wake ups in balance_pgdat() is
7312 * that here we are under prepare_to_wait().
7313 */
7314 if (waitqueue_active(&pgdat->pfmemalloc_wait))
7315 wake_up_all(&pgdat->pfmemalloc_wait);
7316
7317 /* Hopeless node, leave it to direct reclaim */
7318 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7319 return true;
7320
7321 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7322 clear_pgdat_congested(pgdat);
7323 return true;
7324 }
7325
7326 return false;
7327 }
7328
7329 /*
7330 * kswapd shrinks a node of pages that are at or below the highest usable
7331 * zone that is currently unbalanced.
7332 *
7333 * Returns true if kswapd scanned at least the requested number of pages to
7334 * reclaim or if the lack of progress was due to pages under writeback.
7335 * This is used to determine if the scanning priority needs to be raised.
7336 */
kswapd_shrink_node(pg_data_t *pgdat, struct scan_control *sc)7337 static bool kswapd_shrink_node(pg_data_t *pgdat,
7338 struct scan_control *sc)
7339 {
7340 struct zone *zone;
7341 int z;
7342
7343 /* Reclaim a number of pages proportional to the number of zones */
7344 sc->nr_to_reclaim = 0;
7345 for (z = 0; z <= sc->reclaim_idx; z++) {
7346 zone = pgdat->node_zones + z;
7347 if (!managed_zone(zone))
7348 continue;
7349
7350 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7351 }
7352
7353 /*
7354 * Historically care was taken to put equal pressure on all zones but
7355 * now pressure is applied based on node LRU order.
7356 */
7357 #ifdef CONFIG_HYPERHOLD_FILE_LRU
7358 shrink_node_hyperhold(pgdat, sc);
7359 #else
7360 shrink_node(pgdat, sc);
7361 #endif
7362
7363 /*
7364 * Fragmentation may mean that the system cannot be rebalanced for
7365 * high-order allocations. If twice the allocation size has been
7366 * reclaimed then recheck watermarks only at order-0 to prevent
7367 * excessive reclaim. Assume that a process requested a high-order
7368 * can direct reclaim/compact.
7369 */
7370 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7371 sc->order = 0;
7372
7373 return sc->nr_scanned >= sc->nr_to_reclaim;
7374 }
7375
7376 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7377 static inline void
update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)7378 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7379 {
7380 int i;
7381 struct zone *zone;
7382
7383 for (i = 0; i <= highest_zoneidx; i++) {
7384 zone = pgdat->node_zones + i;
7385
7386 if (!managed_zone(zone))
7387 continue;
7388
7389 if (active)
7390 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7391 else
7392 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7393 }
7394 }
7395
7396 static inline void
set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)7397 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7398 {
7399 update_reclaim_active(pgdat, highest_zoneidx, true);
7400 }
7401
7402 static inline void
clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)7403 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7404 {
7405 update_reclaim_active(pgdat, highest_zoneidx, false);
7406 }
7407
7408 /*
7409 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7410 * that are eligible for use by the caller until at least one zone is
7411 * balanced.
7412 *
7413 * Returns the order kswapd finished reclaiming at.
7414 *
7415 * kswapd scans the zones in the highmem->normal->dma direction. It skips
7416 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7417 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7418 * or lower is eligible for reclaim until at least one usable zone is
7419 * balanced.
7420 */
balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)7421 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7422 {
7423 int i;
7424 unsigned long nr_soft_reclaimed;
7425 unsigned long nr_soft_scanned;
7426 unsigned long pflags;
7427 unsigned long nr_boost_reclaim;
7428 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7429 bool boosted;
7430 struct zone *zone;
7431 struct scan_control sc = {
7432 .gfp_mask = GFP_KERNEL,
7433 .order = order,
7434 .may_unmap = 1,
7435 };
7436
7437 set_task_reclaim_state(current, &sc.reclaim_state);
7438 psi_memstall_enter(&pflags);
7439 __fs_reclaim_acquire(_THIS_IP_);
7440
7441 count_vm_event(PAGEOUTRUN);
7442
7443 /*
7444 * Account for the reclaim boost. Note that the zone boost is left in
7445 * place so that parallel allocations that are near the watermark will
7446 * stall or direct reclaim until kswapd is finished.
7447 */
7448 nr_boost_reclaim = 0;
7449 for (i = 0; i <= highest_zoneidx; i++) {
7450 zone = pgdat->node_zones + i;
7451 if (!managed_zone(zone))
7452 continue;
7453
7454 nr_boost_reclaim += zone->watermark_boost;
7455 zone_boosts[i] = zone->watermark_boost;
7456 }
7457 boosted = nr_boost_reclaim;
7458
7459 restart:
7460 set_reclaim_active(pgdat, highest_zoneidx);
7461 sc.priority = DEF_PRIORITY;
7462 do {
7463 unsigned long nr_reclaimed = sc.nr_reclaimed;
7464 bool raise_priority = true;
7465 bool balanced;
7466 bool ret;
7467
7468 sc.reclaim_idx = highest_zoneidx;
7469
7470 /*
7471 * If the number of buffer_heads exceeds the maximum allowed
7472 * then consider reclaiming from all zones. This has a dual
7473 * purpose -- on 64-bit systems it is expected that
7474 * buffer_heads are stripped during active rotation. On 32-bit
7475 * systems, highmem pages can pin lowmem memory and shrinking
7476 * buffers can relieve lowmem pressure. Reclaim may still not
7477 * go ahead if all eligible zones for the original allocation
7478 * request are balanced to avoid excessive reclaim from kswapd.
7479 */
7480 if (buffer_heads_over_limit) {
7481 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7482 zone = pgdat->node_zones + i;
7483 if (!managed_zone(zone))
7484 continue;
7485
7486 sc.reclaim_idx = i;
7487 break;
7488 }
7489 }
7490
7491 /*
7492 * If the pgdat is imbalanced then ignore boosting and preserve
7493 * the watermarks for a later time and restart. Note that the
7494 * zone watermarks will be still reset at the end of balancing
7495 * on the grounds that the normal reclaim should be enough to
7496 * re-evaluate if boosting is required when kswapd next wakes.
7497 */
7498 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7499 if (!balanced && nr_boost_reclaim) {
7500 nr_boost_reclaim = 0;
7501 goto restart;
7502 }
7503
7504 /*
7505 * If boosting is not active then only reclaim if there are no
7506 * eligible zones. Note that sc.reclaim_idx is not used as
7507 * buffer_heads_over_limit may have adjusted it.
7508 */
7509 if (!nr_boost_reclaim && balanced)
7510 goto out;
7511
7512 /* Limit the priority of boosting to avoid reclaim writeback */
7513 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7514 raise_priority = false;
7515
7516 /*
7517 * Do not writeback or swap pages for boosted reclaim. The
7518 * intent is to relieve pressure not issue sub-optimal IO
7519 * from reclaim context. If no pages are reclaimed, the
7520 * reclaim will be aborted.
7521 */
7522 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7523 sc.may_swap = !nr_boost_reclaim;
7524
7525 /*
7526 * Do some background aging, to give pages a chance to be
7527 * referenced before reclaiming. All pages are rotated
7528 * regardless of classzone as this is about consistent aging.
7529 */
7530 kswapd_age_node(pgdat, &sc);
7531
7532 /*
7533 * If we're getting trouble reclaiming, start doing writepage
7534 * even in laptop mode.
7535 */
7536 if (sc.priority < DEF_PRIORITY - 2)
7537 sc.may_writepage = 1;
7538
7539 /* Call soft limit reclaim before calling shrink_node. */
7540 sc.nr_scanned = 0;
7541 nr_soft_scanned = 0;
7542 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7543 sc.gfp_mask, &nr_soft_scanned);
7544 sc.nr_reclaimed += nr_soft_reclaimed;
7545
7546 /*
7547 * There should be no need to raise the scanning priority if
7548 * enough pages are already being scanned that that high
7549 * watermark would be met at 100% efficiency.
7550 */
7551 if (kswapd_shrink_node(pgdat, &sc))
7552 raise_priority = false;
7553
7554 /*
7555 * If the low watermark is met there is no need for processes
7556 * to be throttled on pfmemalloc_wait as they should not be
7557 * able to safely make forward progress. Wake them
7558 */
7559 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7560 allow_direct_reclaim(pgdat))
7561 wake_up_all(&pgdat->pfmemalloc_wait);
7562
7563 /* Check if kswapd should be suspending */
7564 __fs_reclaim_release(_THIS_IP_);
7565 ret = try_to_freeze();
7566 __fs_reclaim_acquire(_THIS_IP_);
7567 if (ret || kthread_should_stop())
7568 break;
7569
7570 /*
7571 * Raise priority if scanning rate is too low or there was no
7572 * progress in reclaiming pages
7573 */
7574 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7575 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7576
7577 /*
7578 * If reclaim made no progress for a boost, stop reclaim as
7579 * IO cannot be queued and it could be an infinite loop in
7580 * extreme circumstances.
7581 */
7582 if (nr_boost_reclaim && !nr_reclaimed)
7583 break;
7584
7585 if (raise_priority || !nr_reclaimed)
7586 sc.priority--;
7587 } while (sc.priority >= 1);
7588
7589 if (!sc.nr_reclaimed)
7590 pgdat->kswapd_failures++;
7591
7592 out:
7593 clear_reclaim_active(pgdat, highest_zoneidx);
7594
7595 /* If reclaim was boosted, account for the reclaim done in this pass */
7596 if (boosted) {
7597 unsigned long flags;
7598
7599 for (i = 0; i <= highest_zoneidx; i++) {
7600 if (!zone_boosts[i])
7601 continue;
7602
7603 /* Increments are under the zone lock */
7604 zone = pgdat->node_zones + i;
7605 spin_lock_irqsave(&zone->lock, flags);
7606 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7607 spin_unlock_irqrestore(&zone->lock, flags);
7608 }
7609
7610 /*
7611 * As there is now likely space, wakeup kcompact to defragment
7612 * pageblocks.
7613 */
7614 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7615 }
7616
7617 snapshot_refaults(NULL, pgdat);
7618 __fs_reclaim_release(_THIS_IP_);
7619 psi_memstall_leave(&pflags);
7620 set_task_reclaim_state(current, NULL);
7621
7622 /*
7623 * Return the order kswapd stopped reclaiming at as
7624 * prepare_kswapd_sleep() takes it into account. If another caller
7625 * entered the allocator slow path while kswapd was awake, order will
7626 * remain at the higher level.
7627 */
7628 return sc.order;
7629 }
7630
7631 /*
7632 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7633 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7634 * not a valid index then either kswapd runs for first time or kswapd couldn't
7635 * sleep after previous reclaim attempt (node is still unbalanced). In that
7636 * case return the zone index of the previous kswapd reclaim cycle.
7637 */
kswapd_highest_zoneidx(pg_data_t *pgdat, enum zone_type prev_highest_zoneidx)7638 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7639 enum zone_type prev_highest_zoneidx)
7640 {
7641 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7642
7643 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7644 }
7645
kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, unsigned int highest_zoneidx)7646 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7647 unsigned int highest_zoneidx)
7648 {
7649 long remaining = 0;
7650 DEFINE_WAIT(wait);
7651
7652 if (freezing(current) || kthread_should_stop())
7653 return;
7654
7655 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7656
7657 /*
7658 * Try to sleep for a short interval. Note that kcompactd will only be
7659 * woken if it is possible to sleep for a short interval. This is
7660 * deliberate on the assumption that if reclaim cannot keep an
7661 * eligible zone balanced that it's also unlikely that compaction will
7662 * succeed.
7663 */
7664 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7665 /*
7666 * Compaction records what page blocks it recently failed to
7667 * isolate pages from and skips them in the future scanning.
7668 * When kswapd is going to sleep, it is reasonable to assume
7669 * that pages and compaction may succeed so reset the cache.
7670 */
7671 reset_isolation_suitable(pgdat);
7672
7673 /*
7674 * We have freed the memory, now we should compact it to make
7675 * allocation of the requested order possible.
7676 */
7677 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7678
7679 remaining = schedule_timeout(HZ/10);
7680
7681 /*
7682 * If woken prematurely then reset kswapd_highest_zoneidx and
7683 * order. The values will either be from a wakeup request or
7684 * the previous request that slept prematurely.
7685 */
7686 if (remaining) {
7687 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7688 kswapd_highest_zoneidx(pgdat,
7689 highest_zoneidx));
7690
7691 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7692 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7693 }
7694
7695 finish_wait(&pgdat->kswapd_wait, &wait);
7696 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7697 }
7698
7699 /*
7700 * After a short sleep, check if it was a premature sleep. If not, then
7701 * go fully to sleep until explicitly woken up.
7702 */
7703 if (!remaining &&
7704 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7705 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7706
7707 /*
7708 * vmstat counters are not perfectly accurate and the estimated
7709 * value for counters such as NR_FREE_PAGES can deviate from the
7710 * true value by nr_online_cpus * threshold. To avoid the zone
7711 * watermarks being breached while under pressure, we reduce the
7712 * per-cpu vmstat threshold while kswapd is awake and restore
7713 * them before going back to sleep.
7714 */
7715 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7716
7717 if (!kthread_should_stop())
7718 schedule();
7719
7720 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7721 } else {
7722 if (remaining)
7723 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7724 else
7725 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7726 }
7727 finish_wait(&pgdat->kswapd_wait, &wait);
7728 }
7729
7730 /*
7731 * The background pageout daemon, started as a kernel thread
7732 * from the init process.
7733 *
7734 * This basically trickles out pages so that we have _some_
7735 * free memory available even if there is no other activity
7736 * that frees anything up. This is needed for things like routing
7737 * etc, where we otherwise might have all activity going on in
7738 * asynchronous contexts that cannot page things out.
7739 *
7740 * If there are applications that are active memory-allocators
7741 * (most normal use), this basically shouldn't matter.
7742 */
kswapd(void *p)7743 static int kswapd(void *p)
7744 {
7745 unsigned int alloc_order, reclaim_order;
7746 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7747 pg_data_t *pgdat = (pg_data_t *)p;
7748 struct task_struct *tsk = current;
7749 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7750
7751 if (!cpumask_empty(cpumask))
7752 set_cpus_allowed_ptr(tsk, cpumask);
7753
7754 /*
7755 * Tell the memory management that we're a "memory allocator",
7756 * and that if we need more memory we should get access to it
7757 * regardless (see "__alloc_pages()"). "kswapd" should
7758 * never get caught in the normal page freeing logic.
7759 *
7760 * (Kswapd normally doesn't need memory anyway, but sometimes
7761 * you need a small amount of memory in order to be able to
7762 * page out something else, and this flag essentially protects
7763 * us from recursively trying to free more memory as we're
7764 * trying to free the first piece of memory in the first place).
7765 */
7766 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7767 set_freezable();
7768
7769 WRITE_ONCE(pgdat->kswapd_order, 0);
7770 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7771 atomic_set(&pgdat->nr_writeback_throttled, 0);
7772 for ( ; ; ) {
7773 bool ret;
7774
7775 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7776 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7777 highest_zoneidx);
7778
7779 kswapd_try_sleep:
7780 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7781 highest_zoneidx);
7782
7783 /* Read the new order and highest_zoneidx */
7784 alloc_order = READ_ONCE(pgdat->kswapd_order);
7785 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7786 highest_zoneidx);
7787 WRITE_ONCE(pgdat->kswapd_order, 0);
7788 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7789
7790 ret = try_to_freeze();
7791 if (kthread_should_stop())
7792 break;
7793
7794 /*
7795 * We can speed up thawing tasks if we don't call balance_pgdat
7796 * after returning from the refrigerator
7797 */
7798 if (ret)
7799 continue;
7800
7801 /*
7802 * Reclaim begins at the requested order but if a high-order
7803 * reclaim fails then kswapd falls back to reclaiming for
7804 * order-0. If that happens, kswapd will consider sleeping
7805 * for the order it finished reclaiming at (reclaim_order)
7806 * but kcompactd is woken to compact for the original
7807 * request (alloc_order).
7808 */
7809 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7810 alloc_order);
7811 #ifdef CONFIG_MEMORY_MONITOR
7812 kswapd_monitor_wake_up_queue();
7813 #endif
7814 reclaim_order = balance_pgdat(pgdat, alloc_order,
7815 highest_zoneidx);
7816 if (reclaim_order < alloc_order)
7817 goto kswapd_try_sleep;
7818 }
7819
7820 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7821
7822 return 0;
7823 }
7824
7825 /*
7826 * A zone is low on free memory or too fragmented for high-order memory. If
7827 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7828 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7829 * has failed or is not needed, still wake up kcompactd if only compaction is
7830 * needed.
7831 */
wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, enum zone_type highest_zoneidx)7832 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7833 enum zone_type highest_zoneidx)
7834 {
7835 pg_data_t *pgdat;
7836 enum zone_type curr_idx;
7837
7838 if (!managed_zone(zone))
7839 return;
7840
7841 if (!cpuset_zone_allowed(zone, gfp_flags))
7842 return;
7843
7844 pgdat = zone->zone_pgdat;
7845 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7846
7847 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7848 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7849
7850 if (READ_ONCE(pgdat->kswapd_order) < order)
7851 WRITE_ONCE(pgdat->kswapd_order, order);
7852
7853 if (!waitqueue_active(&pgdat->kswapd_wait))
7854 return;
7855
7856 /* Hopeless node, leave it to direct reclaim if possible */
7857 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7858 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7859 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7860 /*
7861 * There may be plenty of free memory available, but it's too
7862 * fragmented for high-order allocations. Wake up kcompactd
7863 * and rely on compaction_suitable() to determine if it's
7864 * needed. If it fails, it will defer subsequent attempts to
7865 * ratelimit its work.
7866 */
7867 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7868 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7869 return;
7870 }
7871
7872 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7873 gfp_flags);
7874 wake_up_interruptible(&pgdat->kswapd_wait);
7875 }
7876
7877 #ifdef CONFIG_HIBERNATION
7878 /*
7879 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7880 * freed pages.
7881 *
7882 * Rather than trying to age LRUs the aim is to preserve the overall
7883 * LRU order by reclaiming preferentially
7884 * inactive > active > active referenced > active mapped
7885 */
shrink_all_memory(unsigned long nr_to_reclaim)7886 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7887 {
7888 struct scan_control sc = {
7889 .nr_to_reclaim = nr_to_reclaim,
7890 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7891 .reclaim_idx = MAX_NR_ZONES - 1,
7892 .priority = DEF_PRIORITY,
7893 .may_writepage = 1,
7894 .may_unmap = 1,
7895 .may_swap = 1,
7896 .hibernation_mode = 1,
7897 };
7898 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7899 unsigned long nr_reclaimed;
7900 unsigned int noreclaim_flag;
7901
7902 fs_reclaim_acquire(sc.gfp_mask);
7903 noreclaim_flag = memalloc_noreclaim_save();
7904 set_task_reclaim_state(current, &sc.reclaim_state);
7905
7906 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7907
7908 set_task_reclaim_state(current, NULL);
7909 memalloc_noreclaim_restore(noreclaim_flag);
7910 fs_reclaim_release(sc.gfp_mask);
7911
7912 return nr_reclaimed;
7913 }
7914 #endif /* CONFIG_HIBERNATION */
7915
7916 /*
7917 * This kswapd start function will be called by init and node-hot-add.
7918 */
kswapd_run(int nid)7919 void __meminit kswapd_run(int nid)
7920 {
7921 pg_data_t *pgdat = NODE_DATA(nid);
7922
7923 pgdat_kswapd_lock(pgdat);
7924 if (!pgdat->kswapd) {
7925 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7926 if (IS_ERR(pgdat->kswapd)) {
7927 /* failure at boot is fatal */
7928 BUG_ON(system_state < SYSTEM_RUNNING);
7929 pr_err("Failed to start kswapd on node %d\n", nid);
7930 pgdat->kswapd = NULL;
7931 }
7932 }
7933 pgdat_kswapd_unlock(pgdat);
7934 }
7935
7936 /*
7937 * Called by memory hotplug when all memory in a node is offlined. Caller must
7938 * be holding mem_hotplug_begin/done().
7939 */
kswapd_stop(int nid)7940 void __meminit kswapd_stop(int nid)
7941 {
7942 pg_data_t *pgdat = NODE_DATA(nid);
7943 struct task_struct *kswapd;
7944
7945 pgdat_kswapd_lock(pgdat);
7946 kswapd = pgdat->kswapd;
7947 if (kswapd) {
7948 kthread_stop(kswapd);
7949 pgdat->kswapd = NULL;
7950 }
7951 pgdat_kswapd_unlock(pgdat);
7952 }
7953
7954 #ifdef CONFIG_MEM_PURGEABLE_DEBUG
7955 static void __init purgeable_debugfs_init(void);
7956 #endif
7957
kswapd_init(void)7958 static int __init kswapd_init(void)
7959 {
7960 int nid;
7961
7962 swap_setup();
7963 for_each_node_state(nid, N_MEMORY)
7964 kswapd_run(nid);
7965 #ifdef CONFIG_MEM_PURGEABLE_DEBUG
7966 purgeable_debugfs_init();
7967 #endif
7968 return 0;
7969 }
7970
7971 module_init(kswapd_init)
7972
7973 #ifdef CONFIG_NUMA
7974 /*
7975 * Node reclaim mode
7976 *
7977 * If non-zero call node_reclaim when the number of free pages falls below
7978 * the watermarks.
7979 */
7980 int node_reclaim_mode __read_mostly;
7981
7982 /*
7983 * Priority for NODE_RECLAIM. This determines the fraction of pages
7984 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7985 * a zone.
7986 */
7987 #define NODE_RECLAIM_PRIORITY 4
7988
7989 /*
7990 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7991 * occur.
7992 */
7993 int sysctl_min_unmapped_ratio = 1;
7994
7995 /*
7996 * If the number of slab pages in a zone grows beyond this percentage then
7997 * slab reclaim needs to occur.
7998 */
7999 int sysctl_min_slab_ratio = 5;
8000
node_unmapped_file_pages(struct pglist_data *pgdat)8001 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
8002 {
8003 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
8004 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
8005 node_page_state(pgdat, NR_ACTIVE_FILE);
8006
8007 /*
8008 * It's possible for there to be more file mapped pages than
8009 * accounted for by the pages on the file LRU lists because
8010 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
8011 */
8012 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
8013 }
8014
8015 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data *pgdat)8016 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
8017 {
8018 unsigned long nr_pagecache_reclaimable;
8019 unsigned long delta = 0;
8020
8021 /*
8022 * If RECLAIM_UNMAP is set, then all file pages are considered
8023 * potentially reclaimable. Otherwise, we have to worry about
8024 * pages like swapcache and node_unmapped_file_pages() provides
8025 * a better estimate
8026 */
8027 if (node_reclaim_mode & RECLAIM_UNMAP)
8028 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
8029 else
8030 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
8031
8032 /* If we can't clean pages, remove dirty pages from consideration */
8033 if (!(node_reclaim_mode & RECLAIM_WRITE))
8034 delta += node_page_state(pgdat, NR_FILE_DIRTY);
8035
8036 /* Watch for any possible underflows due to delta */
8037 if (unlikely(delta > nr_pagecache_reclaimable))
8038 delta = nr_pagecache_reclaimable;
8039
8040 return nr_pagecache_reclaimable - delta;
8041 }
8042
8043 /*
8044 * Try to free up some pages from this node through reclaim.
8045 */
__node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)8046 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8047 {
8048 /* Minimum pages needed in order to stay on node */
8049 const unsigned long nr_pages = 1 << order;
8050 struct task_struct *p = current;
8051 unsigned int noreclaim_flag;
8052 struct scan_control sc = {
8053 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
8054 .gfp_mask = current_gfp_context(gfp_mask),
8055 .order = order,
8056 .priority = NODE_RECLAIM_PRIORITY,
8057 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
8058 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
8059 .may_swap = 1,
8060 .reclaim_idx = gfp_zone(gfp_mask),
8061 };
8062 unsigned long pflags;
8063
8064 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
8065 sc.gfp_mask);
8066
8067 cond_resched();
8068 psi_memstall_enter(&pflags);
8069 fs_reclaim_acquire(sc.gfp_mask);
8070 /*
8071 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
8072 */
8073 noreclaim_flag = memalloc_noreclaim_save();
8074 set_task_reclaim_state(p, &sc.reclaim_state);
8075
8076 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
8077 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
8078 /*
8079 * Free memory by calling shrink node with increasing
8080 * priorities until we have enough memory freed.
8081 */
8082 do {
8083 #ifdef CONFIG_HYPERHOLD_FILE_LRU
8084 shrink_node_hyperhold(pgdat, &sc);
8085 #else
8086 shrink_node(pgdat, &sc);
8087 #endif
8088 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
8089 }
8090
8091 set_task_reclaim_state(p, NULL);
8092 memalloc_noreclaim_restore(noreclaim_flag);
8093 fs_reclaim_release(sc.gfp_mask);
8094 psi_memstall_leave(&pflags);
8095
8096 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
8097
8098 return sc.nr_reclaimed >= nr_pages;
8099 }
8100
node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)8101 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8102 {
8103 int ret;
8104
8105 /*
8106 * Node reclaim reclaims unmapped file backed pages and
8107 * slab pages if we are over the defined limits.
8108 *
8109 * A small portion of unmapped file backed pages is needed for
8110 * file I/O otherwise pages read by file I/O will be immediately
8111 * thrown out if the node is overallocated. So we do not reclaim
8112 * if less than a specified percentage of the node is used by
8113 * unmapped file backed pages.
8114 */
8115 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8116 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8117 pgdat->min_slab_pages)
8118 return NODE_RECLAIM_FULL;
8119
8120 /*
8121 * Do not scan if the allocation should not be delayed.
8122 */
8123 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8124 return NODE_RECLAIM_NOSCAN;
8125
8126 /*
8127 * Only run node reclaim on the local node or on nodes that do not
8128 * have associated processors. This will favor the local processor
8129 * over remote processors and spread off node memory allocations
8130 * as wide as possible.
8131 */
8132 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8133 return NODE_RECLAIM_NOSCAN;
8134
8135 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8136 return NODE_RECLAIM_NOSCAN;
8137
8138 ret = __node_reclaim(pgdat, gfp_mask, order);
8139 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8140
8141 if (!ret)
8142 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8143
8144 return ret;
8145 }
8146 #endif
8147
8148 /**
8149 * check_move_unevictable_folios - Move evictable folios to appropriate zone
8150 * lru list
8151 * @fbatch: Batch of lru folios to check.
8152 *
8153 * Checks folios for evictability, if an evictable folio is in the unevictable
8154 * lru list, moves it to the appropriate evictable lru list. This function
8155 * should be only used for lru folios.
8156 */
check_move_unevictable_folios(struct folio_batch *fbatch)8157 void check_move_unevictable_folios(struct folio_batch *fbatch)
8158 {
8159 struct lruvec *lruvec = NULL;
8160 int pgscanned = 0;
8161 int pgrescued = 0;
8162 int i;
8163
8164 for (i = 0; i < fbatch->nr; i++) {
8165 struct folio *folio = fbatch->folios[i];
8166 int nr_pages = folio_nr_pages(folio);
8167
8168 pgscanned += nr_pages;
8169
8170 /* block memcg migration while the folio moves between lrus */
8171 if (!folio_test_clear_lru(folio))
8172 continue;
8173
8174 lruvec = folio_lruvec_relock_irq(folio, lruvec);
8175 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8176 lruvec_del_folio(lruvec, folio);
8177 folio_clear_unevictable(folio);
8178 lruvec_add_folio(lruvec, folio);
8179 pgrescued += nr_pages;
8180 }
8181 folio_set_lru(folio);
8182 }
8183
8184 if (lruvec) {
8185 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8186 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8187 unlock_page_lruvec_irq(lruvec);
8188 } else if (pgscanned) {
8189 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8190 }
8191 }
8192 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8193
8194 #ifdef CONFIG_MEM_PURGEABLE_DEBUG
purgeable_node(pg_data_t *pgdata, struct scan_control *sc)8195 static unsigned long purgeable_node(pg_data_t *pgdata, struct scan_control *sc)
8196 {
8197 struct mem_cgroup *memcg = NULL;
8198 unsigned long nr = 0;
8199 #ifdef CONFIG_MEMCG
8200 while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)))
8201 #endif
8202 {
8203 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdata);
8204
8205 shrink_list(LRU_ACTIVE_PURGEABLE, -1, lruvec, sc);
8206 nr += shrink_list(LRU_INACTIVE_PURGEABLE, -1, lruvec, sc);
8207 }
8208
8209 pr_info("reclaim %lu purgeable pages.\n", nr);
8210
8211 return nr;
8212 }
8213
purgeable(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)8214 static int purgeable(struct ctl_table *table, int write, void *buffer,
8215 size_t *lenp, loff_t *ppos)
8216 {
8217 struct scan_control sc = {
8218 .gfp_mask = GFP_KERNEL,
8219 .order = 0,
8220 .priority = DEF_PRIORITY,
8221 .may_deactivate = DEACTIVATE_ANON,
8222 .may_writepage = 1,
8223 .may_unmap = 1,
8224 .may_swap = 1,
8225 .reclaim_idx = MAX_NR_ZONES - 1,
8226 };
8227 int nid = 0;
8228 const struct cred *cred = current_cred();
8229 if (!cred)
8230 return 0;
8231
8232 if (!uid_eq(cred->euid, GLOBAL_MEMMGR_UID) &&
8233 !uid_eq(cred->euid, GLOBAL_ROOT_UID)) {
8234 pr_err("no permission to shrink purgeable heap!\n");
8235 return -EINVAL;
8236 }
8237 for_each_node_state(nid, N_MEMORY)
8238 purgeable_node(NODE_DATA(nid), &sc);
8239 return 0;
8240 }
8241
8242 static struct ctl_table ker_tab[] = {
8243 {
8244 .procname = "purgeable",
8245 .mode = 0666,
8246 .proc_handler = purgeable,
8247 },
8248 {},
8249 };
8250
8251 static struct ctl_table_header *purgeable_header;
8252
purgeable_debugfs_init(void)8253 static void __init purgeable_debugfs_init(void)
8254 {
8255 purgeable_header = register_sysctl("kernel", ker_tab);
8256 if (!purgeable_header)
8257 pr_err("register purgeable sysctl table failed.\n");
8258 }
8259
purgeable_debugfs_exit(void)8260 static void __exit purgeable_debugfs_exit(void)
8261 {
8262 unregister_sysctl_table(purgeable_header);
8263 }
8264 #endif /* CONFIG_MEM_PURGEABLE_DEBUG */
8265