1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include <linux/zswapd.h>
50 #include "internal.h"
51 #include "swap.h"
52
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56
57 static DEFINE_SPINLOCK(swap_lock);
58 static unsigned int nr_swapfiles;
59 atomic_long_t nr_swap_pages;
60 /*
61 * Some modules use swappable objects and may try to swap them out under
62 * memory pressure (via the shrinker). Before doing so, they may wish to
63 * check to see if any swap space is available.
64 */
65 EXPORT_SYMBOL_GPL(nr_swap_pages);
66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
67 long total_swap_pages;
68 static int least_priority = -1;
69 unsigned long swapfile_maximum_size;
70 #ifdef CONFIG_MIGRATION
71 bool swap_migration_ad_supported;
72 #endif /* CONFIG_MIGRATION */
73
74 static const char Bad_file[] = "Bad swap file entry ";
75 static const char Unused_file[] = "Unused swap file entry ";
76 static const char Bad_offset[] = "Bad swap offset entry ";
77 static const char Unused_offset[] = "Unused swap offset entry ";
78
79 /*
80 * all active swap_info_structs
81 * protected with swap_lock, and ordered by priority.
82 */
83 static PLIST_HEAD(swap_active_head);
84
85 /*
86 * all available (active, not full) swap_info_structs
87 * protected with swap_avail_lock, ordered by priority.
88 * This is used by folio_alloc_swap() instead of swap_active_head
89 * because swap_active_head includes all swap_info_structs,
90 * but folio_alloc_swap() doesn't need to look at full ones.
91 * This uses its own lock instead of swap_lock because when a
92 * swap_info_struct changes between not-full/full, it needs to
93 * add/remove itself to/from this list, but the swap_info_struct->lock
94 * is held and the locking order requires swap_lock to be taken
95 * before any swap_info_struct->lock.
96 */
97 static struct plist_head *swap_avail_heads;
98 static DEFINE_SPINLOCK(swap_avail_lock);
99
100 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
101
102 static DEFINE_MUTEX(swapon_mutex);
103
104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105 /* Activity counter to indicate that a swapon or swapoff has occurred */
106 static atomic_t proc_poll_event = ATOMIC_INIT(0);
107
108 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
109
swap_type_to_swap_info(int type)110 static struct swap_info_struct *swap_type_to_swap_info(int type)
111 {
112 if (type >= MAX_SWAPFILES)
113 return NULL;
114
115 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
116 }
117
swap_count(unsigned char ent)118 static inline unsigned char swap_count(unsigned char ent)
119 {
120 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
121 }
122
123 /* Reclaim the swap entry anyway if possible */
124 #define TTRS_ANYWAY 0x1
125 /*
126 * Reclaim the swap entry if there are no more mappings of the
127 * corresponding page
128 */
129 #define TTRS_UNMAPPED 0x2
130 /* Reclaim the swap entry if swap is getting full*/
131 #define TTRS_FULL 0x4
132
133 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset, unsigned long flags)134 static int __try_to_reclaim_swap(struct swap_info_struct *si,
135 unsigned long offset, unsigned long flags)
136 {
137 swp_entry_t entry = swp_entry(si->type, offset);
138 struct folio *folio;
139 int ret = 0;
140
141 folio = filemap_get_folio(swap_address_space(entry), offset);
142 if (IS_ERR(folio))
143 return 0;
144 /*
145 * When this function is called from scan_swap_map_slots() and it's
146 * called by vmscan.c at reclaiming folios. So we hold a folio lock
147 * here. We have to use trylock for avoiding deadlock. This is a special
148 * case and you should use folio_free_swap() with explicit folio_lock()
149 * in usual operations.
150 */
151 if (folio_trylock(folio)) {
152 if ((flags & TTRS_ANYWAY) ||
153 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
154 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
155 ret = folio_free_swap(folio);
156 folio_unlock(folio);
157 }
158 folio_put(folio);
159 return ret;
160 }
161
first_se(struct swap_info_struct *sis)162 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
163 {
164 struct rb_node *rb = rb_first(&sis->swap_extent_root);
165 return rb_entry(rb, struct swap_extent, rb_node);
166 }
167
next_se(struct swap_extent *se)168 static inline struct swap_extent *next_se(struct swap_extent *se)
169 {
170 struct rb_node *rb = rb_next(&se->rb_node);
171 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
172 }
173
174 /*
175 * swapon tell device that all the old swap contents can be discarded,
176 * to allow the swap device to optimize its wear-levelling.
177 */
discard_swap(struct swap_info_struct *si)178 static int discard_swap(struct swap_info_struct *si)
179 {
180 struct swap_extent *se;
181 sector_t start_block;
182 sector_t nr_blocks;
183 int err = 0;
184
185 /* Do not discard the swap header page! */
186 se = first_se(si);
187 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
188 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
189 if (nr_blocks) {
190 err = blkdev_issue_discard(si->bdev, start_block,
191 nr_blocks, GFP_KERNEL);
192 if (err)
193 return err;
194 cond_resched();
195 }
196
197 for (se = next_se(se); se; se = next_se(se)) {
198 start_block = se->start_block << (PAGE_SHIFT - 9);
199 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
200
201 err = blkdev_issue_discard(si->bdev, start_block,
202 nr_blocks, GFP_KERNEL);
203 if (err)
204 break;
205
206 cond_resched();
207 }
208 return err; /* That will often be -EOPNOTSUPP */
209 }
210
211 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)212 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
213 {
214 struct swap_extent *se;
215 struct rb_node *rb;
216
217 rb = sis->swap_extent_root.rb_node;
218 while (rb) {
219 se = rb_entry(rb, struct swap_extent, rb_node);
220 if (offset < se->start_page)
221 rb = rb->rb_left;
222 else if (offset >= se->start_page + se->nr_pages)
223 rb = rb->rb_right;
224 else
225 return se;
226 }
227 /* It *must* be present */
228 BUG();
229 }
230
swap_page_sector(struct page *page)231 sector_t swap_page_sector(struct page *page)
232 {
233 struct swap_info_struct *sis = page_swap_info(page);
234 struct swap_extent *se;
235 sector_t sector;
236 pgoff_t offset;
237
238 offset = __page_file_index(page);
239 se = offset_to_swap_extent(sis, offset);
240 sector = se->start_block + (offset - se->start_page);
241 return sector << (PAGE_SHIFT - 9);
242 }
243
244 /*
245 * swap allocation tell device that a cluster of swap can now be discarded,
246 * to allow the swap device to optimize its wear-levelling.
247 */
discard_swap_cluster(struct swap_info_struct *si, pgoff_t start_page, pgoff_t nr_pages)248 static void discard_swap_cluster(struct swap_info_struct *si,
249 pgoff_t start_page, pgoff_t nr_pages)
250 {
251 struct swap_extent *se = offset_to_swap_extent(si, start_page);
252
253 while (nr_pages) {
254 pgoff_t offset = start_page - se->start_page;
255 sector_t start_block = se->start_block + offset;
256 sector_t nr_blocks = se->nr_pages - offset;
257
258 if (nr_blocks > nr_pages)
259 nr_blocks = nr_pages;
260 start_page += nr_blocks;
261 nr_pages -= nr_blocks;
262
263 start_block <<= PAGE_SHIFT - 9;
264 nr_blocks <<= PAGE_SHIFT - 9;
265 if (blkdev_issue_discard(si->bdev, start_block,
266 nr_blocks, GFP_NOIO))
267 break;
268
269 se = next_se(se);
270 }
271 }
272
273 #ifdef CONFIG_THP_SWAP
274 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
275
276 #define swap_entry_size(size) (size)
277 #else
278 #define SWAPFILE_CLUSTER 256
279
280 /*
281 * Define swap_entry_size() as constant to let compiler to optimize
282 * out some code if !CONFIG_THP_SWAP
283 */
284 #define swap_entry_size(size) 1
285 #endif
286 #define LATENCY_LIMIT 256
287
cluster_set_flag(struct swap_cluster_info *info, unsigned int flag)288 static inline void cluster_set_flag(struct swap_cluster_info *info,
289 unsigned int flag)
290 {
291 info->flags = flag;
292 }
293
cluster_count(struct swap_cluster_info *info)294 static inline unsigned int cluster_count(struct swap_cluster_info *info)
295 {
296 return info->data;
297 }
298
cluster_set_count(struct swap_cluster_info *info, unsigned int c)299 static inline void cluster_set_count(struct swap_cluster_info *info,
300 unsigned int c)
301 {
302 info->data = c;
303 }
304
cluster_set_count_flag(struct swap_cluster_info *info, unsigned int c, unsigned int f)305 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
306 unsigned int c, unsigned int f)
307 {
308 info->flags = f;
309 info->data = c;
310 }
311
cluster_next(struct swap_cluster_info *info)312 static inline unsigned int cluster_next(struct swap_cluster_info *info)
313 {
314 return info->data;
315 }
316
cluster_set_next(struct swap_cluster_info *info, unsigned int n)317 static inline void cluster_set_next(struct swap_cluster_info *info,
318 unsigned int n)
319 {
320 info->data = n;
321 }
322
cluster_set_next_flag(struct swap_cluster_info *info, unsigned int n, unsigned int f)323 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
324 unsigned int n, unsigned int f)
325 {
326 info->flags = f;
327 info->data = n;
328 }
329
cluster_is_free(struct swap_cluster_info *info)330 static inline bool cluster_is_free(struct swap_cluster_info *info)
331 {
332 return info->flags & CLUSTER_FLAG_FREE;
333 }
334
cluster_is_null(struct swap_cluster_info *info)335 static inline bool cluster_is_null(struct swap_cluster_info *info)
336 {
337 return info->flags & CLUSTER_FLAG_NEXT_NULL;
338 }
339
cluster_set_null(struct swap_cluster_info *info)340 static inline void cluster_set_null(struct swap_cluster_info *info)
341 {
342 info->flags = CLUSTER_FLAG_NEXT_NULL;
343 info->data = 0;
344 }
345
cluster_is_huge(struct swap_cluster_info *info)346 static inline bool cluster_is_huge(struct swap_cluster_info *info)
347 {
348 if (IS_ENABLED(CONFIG_THP_SWAP))
349 return info->flags & CLUSTER_FLAG_HUGE;
350 return false;
351 }
352
cluster_clear_huge(struct swap_cluster_info *info)353 static inline void cluster_clear_huge(struct swap_cluster_info *info)
354 {
355 info->flags &= ~CLUSTER_FLAG_HUGE;
356 }
357
lock_cluster(struct swap_info_struct *si, unsigned long offset)358 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
359 unsigned long offset)
360 {
361 struct swap_cluster_info *ci;
362
363 ci = si->cluster_info;
364 if (ci) {
365 ci += offset / SWAPFILE_CLUSTER;
366 spin_lock(&ci->lock);
367 }
368 return ci;
369 }
370
unlock_cluster(struct swap_cluster_info *ci)371 static inline void unlock_cluster(struct swap_cluster_info *ci)
372 {
373 if (ci)
374 spin_unlock(&ci->lock);
375 }
376
377 /*
378 * Determine the locking method in use for this device. Return
379 * swap_cluster_info if SSD-style cluster-based locking is in place.
380 */
lock_cluster_or_swap_info( struct swap_info_struct *si, unsigned long offset)381 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
382 struct swap_info_struct *si, unsigned long offset)
383 {
384 struct swap_cluster_info *ci;
385
386 /* Try to use fine-grained SSD-style locking if available: */
387 ci = lock_cluster(si, offset);
388 /* Otherwise, fall back to traditional, coarse locking: */
389 if (!ci)
390 spin_lock(&si->lock);
391
392 return ci;
393 }
394
unlock_cluster_or_swap_info(struct swap_info_struct *si, struct swap_cluster_info *ci)395 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
396 struct swap_cluster_info *ci)
397 {
398 if (ci)
399 unlock_cluster(ci);
400 else
401 spin_unlock(&si->lock);
402 }
403
cluster_list_empty(struct swap_cluster_list *list)404 static inline bool cluster_list_empty(struct swap_cluster_list *list)
405 {
406 return cluster_is_null(&list->head);
407 }
408
cluster_list_first(struct swap_cluster_list *list)409 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
410 {
411 return cluster_next(&list->head);
412 }
413
cluster_list_init(struct swap_cluster_list *list)414 static void cluster_list_init(struct swap_cluster_list *list)
415 {
416 cluster_set_null(&list->head);
417 cluster_set_null(&list->tail);
418 }
419
cluster_list_add_tail(struct swap_cluster_list *list, struct swap_cluster_info *ci, unsigned int idx)420 static void cluster_list_add_tail(struct swap_cluster_list *list,
421 struct swap_cluster_info *ci,
422 unsigned int idx)
423 {
424 if (cluster_list_empty(list)) {
425 cluster_set_next_flag(&list->head, idx, 0);
426 cluster_set_next_flag(&list->tail, idx, 0);
427 } else {
428 struct swap_cluster_info *ci_tail;
429 unsigned int tail = cluster_next(&list->tail);
430
431 /*
432 * Nested cluster lock, but both cluster locks are
433 * only acquired when we held swap_info_struct->lock
434 */
435 ci_tail = ci + tail;
436 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
437 cluster_set_next(ci_tail, idx);
438 spin_unlock(&ci_tail->lock);
439 cluster_set_next_flag(&list->tail, idx, 0);
440 }
441 }
442
cluster_list_del_first(struct swap_cluster_list *list, struct swap_cluster_info *ci)443 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
444 struct swap_cluster_info *ci)
445 {
446 unsigned int idx;
447
448 idx = cluster_next(&list->head);
449 if (cluster_next(&list->tail) == idx) {
450 cluster_set_null(&list->head);
451 cluster_set_null(&list->tail);
452 } else
453 cluster_set_next_flag(&list->head,
454 cluster_next(&ci[idx]), 0);
455
456 return idx;
457 }
458
459 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct *si, unsigned int idx)460 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
461 unsigned int idx)
462 {
463 /*
464 * If scan_swap_map_slots() can't find a free cluster, it will check
465 * si->swap_map directly. To make sure the discarding cluster isn't
466 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
467 * It will be cleared after discard
468 */
469 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
470 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
471
472 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
473
474 schedule_work(&si->discard_work);
475 }
476
__free_cluster(struct swap_info_struct *si, unsigned long idx)477 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
478 {
479 struct swap_cluster_info *ci = si->cluster_info;
480
481 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
482 cluster_list_add_tail(&si->free_clusters, ci, idx);
483 }
484
485 /*
486 * Doing discard actually. After a cluster discard is finished, the cluster
487 * will be added to free cluster list. caller should hold si->lock.
488 */
swap_do_scheduled_discard(struct swap_info_struct *si)489 static void swap_do_scheduled_discard(struct swap_info_struct *si)
490 {
491 struct swap_cluster_info *info, *ci;
492 unsigned int idx;
493
494 info = si->cluster_info;
495
496 while (!cluster_list_empty(&si->discard_clusters)) {
497 idx = cluster_list_del_first(&si->discard_clusters, info);
498 spin_unlock(&si->lock);
499
500 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
501 SWAPFILE_CLUSTER);
502
503 spin_lock(&si->lock);
504 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
505 __free_cluster(si, idx);
506 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
507 0, SWAPFILE_CLUSTER);
508 unlock_cluster(ci);
509 }
510 }
511
swap_discard_work(struct work_struct *work)512 static void swap_discard_work(struct work_struct *work)
513 {
514 struct swap_info_struct *si;
515
516 si = container_of(work, struct swap_info_struct, discard_work);
517
518 spin_lock(&si->lock);
519 swap_do_scheduled_discard(si);
520 spin_unlock(&si->lock);
521 }
522
swap_users_ref_free(struct percpu_ref *ref)523 static void swap_users_ref_free(struct percpu_ref *ref)
524 {
525 struct swap_info_struct *si;
526
527 si = container_of(ref, struct swap_info_struct, users);
528 complete(&si->comp);
529 }
530
alloc_cluster(struct swap_info_struct *si, unsigned long idx)531 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533 struct swap_cluster_info *ci = si->cluster_info;
534
535 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
536 cluster_list_del_first(&si->free_clusters, ci);
537 cluster_set_count_flag(ci + idx, 0, 0);
538 }
539
free_cluster(struct swap_info_struct *si, unsigned long idx)540 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
541 {
542 struct swap_cluster_info *ci = si->cluster_info + idx;
543
544 VM_BUG_ON(cluster_count(ci) != 0);
545 /*
546 * If the swap is discardable, prepare discard the cluster
547 * instead of free it immediately. The cluster will be freed
548 * after discard.
549 */
550 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
551 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
552 swap_cluster_schedule_discard(si, idx);
553 return;
554 }
555
556 __free_cluster(si, idx);
557 }
558
559 /*
560 * The cluster corresponding to page_nr will be used. The cluster will be
561 * removed from free cluster list and its usage counter will be increased.
562 */
inc_cluster_info_page(struct swap_info_struct *p, struct swap_cluster_info *cluster_info, unsigned long page_nr)563 static void inc_cluster_info_page(struct swap_info_struct *p,
564 struct swap_cluster_info *cluster_info, unsigned long page_nr)
565 {
566 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
567
568 if (!cluster_info)
569 return;
570 if (cluster_is_free(&cluster_info[idx]))
571 alloc_cluster(p, idx);
572
573 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
574 cluster_set_count(&cluster_info[idx],
575 cluster_count(&cluster_info[idx]) + 1);
576 }
577
578 /*
579 * The cluster corresponding to page_nr decreases one usage. If the usage
580 * counter becomes 0, which means no page in the cluster is in using, we can
581 * optionally discard the cluster and add it to free cluster list.
582 */
dec_cluster_info_page(struct swap_info_struct *p, struct swap_cluster_info *cluster_info, unsigned long page_nr)583 static void dec_cluster_info_page(struct swap_info_struct *p,
584 struct swap_cluster_info *cluster_info, unsigned long page_nr)
585 {
586 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
587
588 if (!cluster_info)
589 return;
590
591 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
592 cluster_set_count(&cluster_info[idx],
593 cluster_count(&cluster_info[idx]) - 1);
594
595 if (cluster_count(&cluster_info[idx]) == 0)
596 free_cluster(p, idx);
597 }
598
599 /*
600 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
601 * cluster list. Avoiding such abuse to avoid list corruption.
602 */
603 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, unsigned long offset)604 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
605 unsigned long offset)
606 {
607 struct percpu_cluster *percpu_cluster;
608 bool conflict;
609
610 offset /= SWAPFILE_CLUSTER;
611 conflict = !cluster_list_empty(&si->free_clusters) &&
612 offset != cluster_list_first(&si->free_clusters) &&
613 cluster_is_free(&si->cluster_info[offset]);
614
615 if (!conflict)
616 return false;
617
618 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
619 cluster_set_null(&percpu_cluster->index);
620 return true;
621 }
622
623 /*
624 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
625 * might involve allocating a new cluster for current CPU too.
626 */
scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, unsigned long *offset, unsigned long *scan_base)627 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
628 unsigned long *offset, unsigned long *scan_base)
629 {
630 struct percpu_cluster *cluster;
631 struct swap_cluster_info *ci;
632 unsigned long tmp, max;
633
634 new_cluster:
635 cluster = this_cpu_ptr(si->percpu_cluster);
636 if (cluster_is_null(&cluster->index)) {
637 if (!cluster_list_empty(&si->free_clusters)) {
638 cluster->index = si->free_clusters.head;
639 cluster->next = cluster_next(&cluster->index) *
640 SWAPFILE_CLUSTER;
641 } else if (!cluster_list_empty(&si->discard_clusters)) {
642 /*
643 * we don't have free cluster but have some clusters in
644 * discarding, do discard now and reclaim them, then
645 * reread cluster_next_cpu since we dropped si->lock
646 */
647 swap_do_scheduled_discard(si);
648 *scan_base = this_cpu_read(*si->cluster_next_cpu);
649 *offset = *scan_base;
650 goto new_cluster;
651 } else
652 return false;
653 }
654
655 /*
656 * Other CPUs can use our cluster if they can't find a free cluster,
657 * check if there is still free entry in the cluster
658 */
659 tmp = cluster->next;
660 max = min_t(unsigned long, si->max,
661 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
662 if (tmp < max) {
663 ci = lock_cluster(si, tmp);
664 while (tmp < max) {
665 if (!si->swap_map[tmp])
666 break;
667 tmp++;
668 }
669 unlock_cluster(ci);
670 }
671 if (tmp >= max) {
672 cluster_set_null(&cluster->index);
673 goto new_cluster;
674 }
675 cluster->next = tmp + 1;
676 *offset = tmp;
677 *scan_base = tmp;
678 return true;
679 }
680
__del_from_avail_list(struct swap_info_struct *p)681 static void __del_from_avail_list(struct swap_info_struct *p)
682 {
683 int nid;
684
685 assert_spin_locked(&p->lock);
686 for_each_node(nid)
687 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
688 }
689
del_from_avail_list(struct swap_info_struct *p)690 static void del_from_avail_list(struct swap_info_struct *p)
691 {
692 spin_lock(&swap_avail_lock);
693 __del_from_avail_list(p);
694 spin_unlock(&swap_avail_lock);
695 }
696
swap_range_alloc(struct swap_info_struct *si, unsigned long offset, unsigned int nr_entries)697 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
698 unsigned int nr_entries)
699 {
700 unsigned int end = offset + nr_entries - 1;
701
702 if (offset == si->lowest_bit)
703 si->lowest_bit += nr_entries;
704 if (end == si->highest_bit)
705 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
706 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
707 if (si->inuse_pages == si->pages) {
708 si->lowest_bit = si->max;
709 si->highest_bit = 0;
710 del_from_avail_list(si);
711 }
712 }
713
add_to_avail_list(struct swap_info_struct *p)714 static void add_to_avail_list(struct swap_info_struct *p)
715 {
716 int nid;
717
718 spin_lock(&swap_avail_lock);
719 for_each_node(nid)
720 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
721 spin_unlock(&swap_avail_lock);
722 }
723
swap_range_free(struct swap_info_struct *si, unsigned long offset, unsigned int nr_entries)724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
725 unsigned int nr_entries)
726 {
727 unsigned long begin = offset;
728 unsigned long end = offset + nr_entries - 1;
729 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
730
731 if (offset < si->lowest_bit)
732 si->lowest_bit = offset;
733 if (end > si->highest_bit) {
734 bool was_full = !si->highest_bit;
735
736 WRITE_ONCE(si->highest_bit, end);
737 if (was_full && (si->flags & SWP_WRITEOK))
738 add_to_avail_list(si);
739 }
740 atomic_long_add(nr_entries, &nr_swap_pages);
741 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
742 if (si->flags & SWP_BLKDEV)
743 swap_slot_free_notify =
744 si->bdev->bd_disk->fops->swap_slot_free_notify;
745 else
746 swap_slot_free_notify = NULL;
747 while (offset <= end) {
748 arch_swap_invalidate_page(si->type, offset);
749 zswap_invalidate(si->type, offset);
750 if (swap_slot_free_notify)
751 swap_slot_free_notify(si->bdev, offset);
752 offset++;
753 }
754 clear_shadow_from_swap_cache(si->type, begin, end);
755 }
756
set_cluster_next(struct swap_info_struct *si, unsigned long next)757 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
758 {
759 unsigned long prev;
760
761 if (!(si->flags & SWP_SOLIDSTATE)) {
762 si->cluster_next = next;
763 return;
764 }
765
766 prev = this_cpu_read(*si->cluster_next_cpu);
767 /*
768 * Cross the swap address space size aligned trunk, choose
769 * another trunk randomly to avoid lock contention on swap
770 * address space if possible.
771 */
772 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
773 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
774 /* No free swap slots available */
775 if (si->highest_bit <= si->lowest_bit)
776 return;
777 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
778 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
779 next = max_t(unsigned int, next, si->lowest_bit);
780 }
781 this_cpu_write(*si->cluster_next_cpu, next);
782 }
783
swap_offset_available_and_locked(struct swap_info_struct *si, unsigned long offset)784 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
785 unsigned long offset)
786 {
787 if (data_race(!si->swap_map[offset])) {
788 spin_lock(&si->lock);
789 return true;
790 }
791
792 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
793 spin_lock(&si->lock);
794 return true;
795 }
796
797 return false;
798 }
799
scan_swap_map_slots(struct swap_info_struct *si, unsigned char usage, int nr, swp_entry_t slots[])800 static int scan_swap_map_slots(struct swap_info_struct *si,
801 unsigned char usage, int nr,
802 swp_entry_t slots[])
803 {
804 struct swap_cluster_info *ci;
805 unsigned long offset;
806 unsigned long scan_base;
807 unsigned long last_in_cluster = 0;
808 int latency_ration = LATENCY_LIMIT;
809 int n_ret = 0;
810 bool scanned_many = false;
811
812 /*
813 * We try to cluster swap pages by allocating them sequentially
814 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
815 * way, however, we resort to first-free allocation, starting
816 * a new cluster. This prevents us from scattering swap pages
817 * all over the entire swap partition, so that we reduce
818 * overall disk seek times between swap pages. -- sct
819 * But we do now try to find an empty cluster. -Andrea
820 * And we let swap pages go all over an SSD partition. Hugh
821 */
822
823 si->flags += SWP_SCANNING;
824 /*
825 * Use percpu scan base for SSD to reduce lock contention on
826 * cluster and swap cache. For HDD, sequential access is more
827 * important.
828 */
829 if (si->flags & SWP_SOLIDSTATE)
830 scan_base = this_cpu_read(*si->cluster_next_cpu);
831 else
832 scan_base = si->cluster_next;
833 offset = scan_base;
834
835 /* SSD algorithm */
836 if (si->cluster_info) {
837 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838 goto scan;
839 } else if (unlikely(!si->cluster_nr--)) {
840 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
841 si->cluster_nr = SWAPFILE_CLUSTER - 1;
842 goto checks;
843 }
844
845 spin_unlock(&si->lock);
846
847 /*
848 * If seek is expensive, start searching for new cluster from
849 * start of partition, to minimize the span of allocated swap.
850 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
851 * case, just handled by scan_swap_map_try_ssd_cluster() above.
852 */
853 scan_base = offset = si->lowest_bit;
854 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
855
856 /* Locate the first empty (unaligned) cluster */
857 for (; last_in_cluster <= si->highest_bit; offset++) {
858 if (si->swap_map[offset])
859 last_in_cluster = offset + SWAPFILE_CLUSTER;
860 else if (offset == last_in_cluster) {
861 spin_lock(&si->lock);
862 offset -= SWAPFILE_CLUSTER - 1;
863 si->cluster_next = offset;
864 si->cluster_nr = SWAPFILE_CLUSTER - 1;
865 goto checks;
866 }
867 if (unlikely(--latency_ration < 0)) {
868 cond_resched();
869 latency_ration = LATENCY_LIMIT;
870 }
871 }
872
873 offset = scan_base;
874 spin_lock(&si->lock);
875 si->cluster_nr = SWAPFILE_CLUSTER - 1;
876 }
877
878 checks:
879 if (si->cluster_info) {
880 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
881 /* take a break if we already got some slots */
882 if (n_ret)
883 goto done;
884 if (!scan_swap_map_try_ssd_cluster(si, &offset,
885 &scan_base))
886 goto scan;
887 }
888 }
889 if (!(si->flags & SWP_WRITEOK))
890 goto no_page;
891 if (!si->highest_bit)
892 goto no_page;
893 if (offset > si->highest_bit)
894 scan_base = offset = si->lowest_bit;
895
896 ci = lock_cluster(si, offset);
897 /* reuse swap entry of cache-only swap if not busy. */
898 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
899 int swap_was_freed;
900 unlock_cluster(ci);
901 spin_unlock(&si->lock);
902 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
903 spin_lock(&si->lock);
904 /* entry was freed successfully, try to use this again */
905 if (swap_was_freed)
906 goto checks;
907 goto scan; /* check next one */
908 }
909
910 if (si->swap_map[offset]) {
911 unlock_cluster(ci);
912 if (!n_ret)
913 goto scan;
914 else
915 goto done;
916 }
917 WRITE_ONCE(si->swap_map[offset], usage);
918 inc_cluster_info_page(si, si->cluster_info, offset);
919 unlock_cluster(ci);
920
921 swap_range_alloc(si, offset, 1);
922 slots[n_ret++] = swp_entry(si->type, offset);
923
924 /* got enough slots or reach max slots? */
925 if ((n_ret == nr) || (offset >= si->highest_bit))
926 goto done;
927
928 /* search for next available slot */
929
930 /* time to take a break? */
931 if (unlikely(--latency_ration < 0)) {
932 if (n_ret)
933 goto done;
934 spin_unlock(&si->lock);
935 cond_resched();
936 spin_lock(&si->lock);
937 latency_ration = LATENCY_LIMIT;
938 }
939
940 /* try to get more slots in cluster */
941 if (si->cluster_info) {
942 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
943 goto checks;
944 } else if (si->cluster_nr && !si->swap_map[++offset]) {
945 /* non-ssd case, still more slots in cluster? */
946 --si->cluster_nr;
947 goto checks;
948 }
949
950 /*
951 * Even if there's no free clusters available (fragmented),
952 * try to scan a little more quickly with lock held unless we
953 * have scanned too many slots already.
954 */
955 if (!scanned_many) {
956 unsigned long scan_limit;
957
958 if (offset < scan_base)
959 scan_limit = scan_base;
960 else
961 scan_limit = si->highest_bit;
962 for (; offset <= scan_limit && --latency_ration > 0;
963 offset++) {
964 if (!si->swap_map[offset])
965 goto checks;
966 }
967 }
968
969 done:
970 set_cluster_next(si, offset + 1);
971 si->flags -= SWP_SCANNING;
972 return n_ret;
973
974 scan:
975 spin_unlock(&si->lock);
976 while (++offset <= READ_ONCE(si->highest_bit)) {
977 if (unlikely(--latency_ration < 0)) {
978 cond_resched();
979 latency_ration = LATENCY_LIMIT;
980 scanned_many = true;
981 }
982 if (swap_offset_available_and_locked(si, offset))
983 goto checks;
984 }
985 offset = si->lowest_bit;
986 while (offset < scan_base) {
987 if (unlikely(--latency_ration < 0)) {
988 cond_resched();
989 latency_ration = LATENCY_LIMIT;
990 scanned_many = true;
991 }
992 if (swap_offset_available_and_locked(si, offset))
993 goto checks;
994 offset++;
995 }
996 spin_lock(&si->lock);
997
998 no_page:
999 si->flags -= SWP_SCANNING;
1000 return n_ret;
1001 }
1002
swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)1003 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1004 {
1005 unsigned long idx;
1006 struct swap_cluster_info *ci;
1007 unsigned long offset;
1008
1009 /*
1010 * Should not even be attempting cluster allocations when huge
1011 * page swap is disabled. Warn and fail the allocation.
1012 */
1013 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1014 VM_WARN_ON_ONCE(1);
1015 return 0;
1016 }
1017
1018 if (cluster_list_empty(&si->free_clusters))
1019 return 0;
1020
1021 idx = cluster_list_first(&si->free_clusters);
1022 offset = idx * SWAPFILE_CLUSTER;
1023 ci = lock_cluster(si, offset);
1024 alloc_cluster(si, idx);
1025 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1026
1027 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1028 unlock_cluster(ci);
1029 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1030 *slot = swp_entry(si->type, offset);
1031
1032 return 1;
1033 }
1034
swap_free_cluster(struct swap_info_struct *si, unsigned long idx)1035 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1036 {
1037 unsigned long offset = idx * SWAPFILE_CLUSTER;
1038 struct swap_cluster_info *ci;
1039
1040 ci = lock_cluster(si, offset);
1041 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1042 cluster_set_count_flag(ci, 0, 0);
1043 free_cluster(si, idx);
1044 unlock_cluster(ci);
1045 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1046 }
1047
get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)1048 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1049 {
1050 unsigned long size = swap_entry_size(entry_size);
1051 struct swap_info_struct *si, *next;
1052 long avail_pgs;
1053 int n_ret = 0;
1054 int node;
1055
1056 /* Only single cluster request supported */
1057 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1058
1059 spin_lock(&swap_avail_lock);
1060
1061 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1062 if (avail_pgs <= 0) {
1063 spin_unlock(&swap_avail_lock);
1064 goto noswap;
1065 }
1066
1067 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1068
1069 atomic_long_sub(n_goal * size, &nr_swap_pages);
1070
1071 start_over:
1072 node = numa_node_id();
1073 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1074 /* requeue si to after same-priority siblings */
1075 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1076 spin_unlock(&swap_avail_lock);
1077 spin_lock(&si->lock);
1078 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1079 spin_lock(&swap_avail_lock);
1080 if (plist_node_empty(&si->avail_lists[node])) {
1081 spin_unlock(&si->lock);
1082 goto nextsi;
1083 }
1084 WARN(!si->highest_bit,
1085 "swap_info %d in list but !highest_bit\n",
1086 si->type);
1087 WARN(!(si->flags & SWP_WRITEOK),
1088 "swap_info %d in list but !SWP_WRITEOK\n",
1089 si->type);
1090 __del_from_avail_list(si);
1091 spin_unlock(&si->lock);
1092 goto nextsi;
1093 }
1094 if (size == SWAPFILE_CLUSTER) {
1095 if (si->flags & SWP_BLKDEV)
1096 n_ret = swap_alloc_cluster(si, swp_entries);
1097 } else
1098 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1099 n_goal, swp_entries);
1100 spin_unlock(&si->lock);
1101 if (n_ret || size == SWAPFILE_CLUSTER)
1102 goto check_out;
1103 cond_resched();
1104
1105 spin_lock(&swap_avail_lock);
1106 nextsi:
1107 /*
1108 * if we got here, it's likely that si was almost full before,
1109 * and since scan_swap_map_slots() can drop the si->lock,
1110 * multiple callers probably all tried to get a page from the
1111 * same si and it filled up before we could get one; or, the si
1112 * filled up between us dropping swap_avail_lock and taking
1113 * si->lock. Since we dropped the swap_avail_lock, the
1114 * swap_avail_head list may have been modified; so if next is
1115 * still in the swap_avail_head list then try it, otherwise
1116 * start over if we have not gotten any slots.
1117 */
1118 if (plist_node_empty(&next->avail_lists[node]))
1119 goto start_over;
1120 }
1121
1122 spin_unlock(&swap_avail_lock);
1123
1124 check_out:
1125 if (n_ret < n_goal)
1126 atomic_long_add((long)(n_goal - n_ret) * size,
1127 &nr_swap_pages);
1128 noswap:
1129 return n_ret;
1130 }
1131
_swap_info_get(swp_entry_t entry)1132 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1133 {
1134 struct swap_info_struct *p;
1135 unsigned long offset;
1136
1137 if (!entry.val)
1138 goto out;
1139 p = swp_swap_info(entry);
1140 if (!p)
1141 goto bad_nofile;
1142 if (data_race(!(p->flags & SWP_USED)))
1143 goto bad_device;
1144 offset = swp_offset(entry);
1145 if (offset >= p->max)
1146 goto bad_offset;
1147 if (data_race(!p->swap_map[swp_offset(entry)]))
1148 goto bad_free;
1149 return p;
1150
1151 bad_free:
1152 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1153 goto out;
1154 bad_offset:
1155 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1156 goto out;
1157 bad_device:
1158 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1159 goto out;
1160 bad_nofile:
1161 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1162 out:
1163 return NULL;
1164 }
1165
swap_info_get_cont(swp_entry_t entry, struct swap_info_struct *q)1166 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1167 struct swap_info_struct *q)
1168 {
1169 struct swap_info_struct *p;
1170
1171 p = _swap_info_get(entry);
1172
1173 if (p != q) {
1174 if (q != NULL)
1175 spin_unlock(&q->lock);
1176 if (p != NULL)
1177 spin_lock(&p->lock);
1178 }
1179 return p;
1180 }
1181
__swap_entry_free_locked(struct swap_info_struct *p, unsigned long offset, unsigned char usage)1182 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1183 unsigned long offset,
1184 unsigned char usage)
1185 {
1186 unsigned char count;
1187 unsigned char has_cache;
1188
1189 count = p->swap_map[offset];
1190
1191 has_cache = count & SWAP_HAS_CACHE;
1192 count &= ~SWAP_HAS_CACHE;
1193
1194 if (usage == SWAP_HAS_CACHE) {
1195 VM_BUG_ON(!has_cache);
1196 has_cache = 0;
1197 } else if (count == SWAP_MAP_SHMEM) {
1198 /*
1199 * Or we could insist on shmem.c using a special
1200 * swap_shmem_free() and free_shmem_swap_and_cache()...
1201 */
1202 count = 0;
1203 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1204 if (count == COUNT_CONTINUED) {
1205 if (swap_count_continued(p, offset, count))
1206 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1207 else
1208 count = SWAP_MAP_MAX;
1209 } else
1210 count--;
1211 }
1212
1213 usage = count | has_cache;
1214 if (usage)
1215 WRITE_ONCE(p->swap_map[offset], usage);
1216 else
1217 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1218
1219 return usage;
1220 }
1221
1222 /*
1223 * When we get a swap entry, if there aren't some other ways to
1224 * prevent swapoff, such as the folio in swap cache is locked, page
1225 * table lock is held, etc., the swap entry may become invalid because
1226 * of swapoff. Then, we need to enclose all swap related functions
1227 * with get_swap_device() and put_swap_device(), unless the swap
1228 * functions call get/put_swap_device() by themselves.
1229 *
1230 * Note that when only holding the PTL, swapoff might succeed immediately
1231 * after freeing a swap entry. Therefore, immediately after
1232 * __swap_entry_free(), the swap info might become stale and should not
1233 * be touched without a prior get_swap_device().
1234 *
1235 * Check whether swap entry is valid in the swap device. If so,
1236 * return pointer to swap_info_struct, and keep the swap entry valid
1237 * via preventing the swap device from being swapoff, until
1238 * put_swap_device() is called. Otherwise return NULL.
1239 *
1240 * Notice that swapoff or swapoff+swapon can still happen before the
1241 * percpu_ref_tryget_live() in get_swap_device() or after the
1242 * percpu_ref_put() in put_swap_device() if there isn't any other way
1243 * to prevent swapoff. The caller must be prepared for that. For
1244 * example, the following situation is possible.
1245 *
1246 * CPU1 CPU2
1247 * do_swap_page()
1248 * ... swapoff+swapon
1249 * __read_swap_cache_async()
1250 * swapcache_prepare()
1251 * __swap_duplicate()
1252 * // check swap_map
1253 * // verify PTE not changed
1254 *
1255 * In __swap_duplicate(), the swap_map need to be checked before
1256 * changing partly because the specified swap entry may be for another
1257 * swap device which has been swapoff. And in do_swap_page(), after
1258 * the page is read from the swap device, the PTE is verified not
1259 * changed with the page table locked to check whether the swap device
1260 * has been swapoff or swapoff+swapon.
1261 */
get_swap_device(swp_entry_t entry)1262 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1263 {
1264 struct swap_info_struct *si;
1265 unsigned long offset;
1266
1267 if (!entry.val)
1268 goto out;
1269 si = swp_swap_info(entry);
1270 if (!si)
1271 goto bad_nofile;
1272 if (!percpu_ref_tryget_live(&si->users))
1273 goto out;
1274 /*
1275 * Guarantee the si->users are checked before accessing other
1276 * fields of swap_info_struct.
1277 *
1278 * Paired with the spin_unlock() after setup_swap_info() in
1279 * enable_swap_info().
1280 */
1281 smp_rmb();
1282 offset = swp_offset(entry);
1283 if (offset >= si->max)
1284 goto put_out;
1285
1286 return si;
1287 bad_nofile:
1288 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1289 out:
1290 return NULL;
1291 put_out:
1292 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1293 percpu_ref_put(&si->users);
1294 return NULL;
1295 }
1296
__swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)1297 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1298 swp_entry_t entry)
1299 {
1300 struct swap_cluster_info *ci;
1301 unsigned long offset = swp_offset(entry);
1302 unsigned char usage;
1303
1304 ci = lock_cluster_or_swap_info(p, offset);
1305 usage = __swap_entry_free_locked(p, offset, 1);
1306 unlock_cluster_or_swap_info(p, ci);
1307 if (!usage)
1308 free_swap_slot(entry);
1309
1310 return usage;
1311 }
1312
swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)1313 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1314 {
1315 struct swap_cluster_info *ci;
1316 unsigned long offset = swp_offset(entry);
1317 unsigned char count;
1318
1319 ci = lock_cluster(p, offset);
1320 count = p->swap_map[offset];
1321 VM_BUG_ON(count != SWAP_HAS_CACHE);
1322 p->swap_map[offset] = 0;
1323 dec_cluster_info_page(p, p->cluster_info, offset);
1324 unlock_cluster(ci);
1325
1326 mem_cgroup_uncharge_swap(entry, 1);
1327 swap_range_free(p, offset, 1);
1328 }
1329
1330 /*
1331 * Caller has made sure that the swap device corresponding to entry
1332 * is still around or has not been recycled.
1333 */
swap_free(swp_entry_t entry)1334 void swap_free(swp_entry_t entry)
1335 {
1336 struct swap_info_struct *p;
1337
1338 p = _swap_info_get(entry);
1339 if (p)
1340 __swap_entry_free(p, entry);
1341 }
1342
1343 /*
1344 * Called after dropping swapcache to decrease refcnt to swap entries.
1345 */
put_swap_folio(struct folio *folio, swp_entry_t entry)1346 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1347 {
1348 unsigned long offset = swp_offset(entry);
1349 unsigned long idx = offset / SWAPFILE_CLUSTER;
1350 struct swap_cluster_info *ci;
1351 struct swap_info_struct *si;
1352 unsigned char *map;
1353 unsigned int i, free_entries = 0;
1354 unsigned char val;
1355 int size = swap_entry_size(folio_nr_pages(folio));
1356
1357 si = _swap_info_get(entry);
1358 if (!si)
1359 return;
1360
1361 ci = lock_cluster_or_swap_info(si, offset);
1362 if (size == SWAPFILE_CLUSTER) {
1363 VM_BUG_ON(!cluster_is_huge(ci));
1364 map = si->swap_map + offset;
1365 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1366 val = map[i];
1367 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1368 if (val == SWAP_HAS_CACHE)
1369 free_entries++;
1370 }
1371 cluster_clear_huge(ci);
1372 if (free_entries == SWAPFILE_CLUSTER) {
1373 unlock_cluster_or_swap_info(si, ci);
1374 spin_lock(&si->lock);
1375 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1376 swap_free_cluster(si, idx);
1377 spin_unlock(&si->lock);
1378 return;
1379 }
1380 }
1381 for (i = 0; i < size; i++, entry.val++) {
1382 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1383 unlock_cluster_or_swap_info(si, ci);
1384 free_swap_slot(entry);
1385 if (i == size - 1)
1386 return;
1387 lock_cluster_or_swap_info(si, offset);
1388 }
1389 }
1390 unlock_cluster_or_swap_info(si, ci);
1391 }
1392
1393 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1394 int split_swap_cluster(swp_entry_t entry)
1395 {
1396 struct swap_info_struct *si;
1397 struct swap_cluster_info *ci;
1398 unsigned long offset = swp_offset(entry);
1399
1400 si = _swap_info_get(entry);
1401 if (!si)
1402 return -EBUSY;
1403 ci = lock_cluster(si, offset);
1404 cluster_clear_huge(ci);
1405 unlock_cluster(ci);
1406 return 0;
1407 }
1408 #endif
1409
swp_entry_cmp(const void *ent1, const void *ent2)1410 static int swp_entry_cmp(const void *ent1, const void *ent2)
1411 {
1412 const swp_entry_t *e1 = ent1, *e2 = ent2;
1413
1414 return (int)swp_type(*e1) - (int)swp_type(*e2);
1415 }
1416
swapcache_free_entries(swp_entry_t *entries, int n)1417 void swapcache_free_entries(swp_entry_t *entries, int n)
1418 {
1419 struct swap_info_struct *p, *prev;
1420 int i;
1421
1422 if (n <= 0)
1423 return;
1424
1425 prev = NULL;
1426 p = NULL;
1427
1428 /*
1429 * Sort swap entries by swap device, so each lock is only taken once.
1430 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1431 * so low that it isn't necessary to optimize further.
1432 */
1433 if (nr_swapfiles > 1)
1434 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1435 for (i = 0; i < n; ++i) {
1436 p = swap_info_get_cont(entries[i], prev);
1437 if (p)
1438 swap_entry_free(p, entries[i]);
1439 prev = p;
1440 }
1441 if (p)
1442 spin_unlock(&p->lock);
1443 }
1444
__swap_count(swp_entry_t entry)1445 int __swap_count(swp_entry_t entry)
1446 {
1447 struct swap_info_struct *si = swp_swap_info(entry);
1448 pgoff_t offset = swp_offset(entry);
1449
1450 return swap_count(si->swap_map[offset]);
1451 }
1452
1453 /*
1454 * How many references to @entry are currently swapped out?
1455 * This does not give an exact answer when swap count is continued,
1456 * but does include the high COUNT_CONTINUED flag to allow for that.
1457 */
swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)1458 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1459 {
1460 pgoff_t offset = swp_offset(entry);
1461 struct swap_cluster_info *ci;
1462 int count;
1463
1464 ci = lock_cluster_or_swap_info(si, offset);
1465 count = swap_count(si->swap_map[offset]);
1466 unlock_cluster_or_swap_info(si, ci);
1467 return count;
1468 }
1469
1470 /*
1471 * How many references to @entry are currently swapped out?
1472 * This considers COUNT_CONTINUED so it returns exact answer.
1473 */
swp_swapcount(swp_entry_t entry)1474 int swp_swapcount(swp_entry_t entry)
1475 {
1476 int count, tmp_count, n;
1477 struct swap_info_struct *p;
1478 struct swap_cluster_info *ci;
1479 struct page *page;
1480 pgoff_t offset;
1481 unsigned char *map;
1482
1483 p = _swap_info_get(entry);
1484 if (!p)
1485 return 0;
1486
1487 offset = swp_offset(entry);
1488
1489 ci = lock_cluster_or_swap_info(p, offset);
1490
1491 count = swap_count(p->swap_map[offset]);
1492 if (!(count & COUNT_CONTINUED))
1493 goto out;
1494
1495 count &= ~COUNT_CONTINUED;
1496 n = SWAP_MAP_MAX + 1;
1497
1498 page = vmalloc_to_page(p->swap_map + offset);
1499 offset &= ~PAGE_MASK;
1500 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1501
1502 do {
1503 page = list_next_entry(page, lru);
1504 map = kmap_atomic(page);
1505 tmp_count = map[offset];
1506 kunmap_atomic(map);
1507
1508 count += (tmp_count & ~COUNT_CONTINUED) * n;
1509 n *= (SWAP_CONT_MAX + 1);
1510 } while (tmp_count & COUNT_CONTINUED);
1511 out:
1512 unlock_cluster_or_swap_info(p, ci);
1513 return count;
1514 }
1515
swap_page_trans_huge_swapped(struct swap_info_struct *si, swp_entry_t entry)1516 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1517 swp_entry_t entry)
1518 {
1519 struct swap_cluster_info *ci;
1520 unsigned char *map = si->swap_map;
1521 unsigned long roffset = swp_offset(entry);
1522 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1523 int i;
1524 bool ret = false;
1525
1526 ci = lock_cluster_or_swap_info(si, offset);
1527 if (!ci || !cluster_is_huge(ci)) {
1528 if (swap_count(map[roffset]))
1529 ret = true;
1530 goto unlock_out;
1531 }
1532 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1533 if (swap_count(map[offset + i])) {
1534 ret = true;
1535 break;
1536 }
1537 }
1538 unlock_out:
1539 unlock_cluster_or_swap_info(si, ci);
1540 return ret;
1541 }
1542
folio_swapped(struct folio *folio)1543 static bool folio_swapped(struct folio *folio)
1544 {
1545 swp_entry_t entry = folio->swap;
1546 struct swap_info_struct *si = _swap_info_get(entry);
1547
1548 if (!si)
1549 return false;
1550
1551 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1552 return swap_swapcount(si, entry) != 0;
1553
1554 return swap_page_trans_huge_swapped(si, entry);
1555 }
1556
1557 /**
1558 * folio_free_swap() - Free the swap space used for this folio.
1559 * @folio: The folio to remove.
1560 *
1561 * If swap is getting full, or if there are no more mappings of this folio,
1562 * then call folio_free_swap to free its swap space.
1563 *
1564 * Return: true if we were able to release the swap space.
1565 */
folio_free_swap(struct folio *folio)1566 bool folio_free_swap(struct folio *folio)
1567 {
1568 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1569
1570 if (!folio_test_swapcache(folio))
1571 return false;
1572 if (folio_test_writeback(folio))
1573 return false;
1574 if (folio_swapped(folio))
1575 return false;
1576
1577 /*
1578 * Once hibernation has begun to create its image of memory,
1579 * there's a danger that one of the calls to folio_free_swap()
1580 * - most probably a call from __try_to_reclaim_swap() while
1581 * hibernation is allocating its own swap pages for the image,
1582 * but conceivably even a call from memory reclaim - will free
1583 * the swap from a folio which has already been recorded in the
1584 * image as a clean swapcache folio, and then reuse its swap for
1585 * another page of the image. On waking from hibernation, the
1586 * original folio might be freed under memory pressure, then
1587 * later read back in from swap, now with the wrong data.
1588 *
1589 * Hibernation suspends storage while it is writing the image
1590 * to disk so check that here.
1591 */
1592 if (pm_suspended_storage())
1593 return false;
1594
1595 delete_from_swap_cache(folio);
1596 folio_set_dirty(folio);
1597 return true;
1598 }
1599
1600 /*
1601 * Free the swap entry like above, but also try to
1602 * free the page cache entry if it is the last user.
1603 */
free_swap_and_cache(swp_entry_t entry)1604 int free_swap_and_cache(swp_entry_t entry)
1605 {
1606 struct swap_info_struct *p;
1607 unsigned char count;
1608
1609 if (non_swap_entry(entry))
1610 return 1;
1611
1612 p = get_swap_device(entry);
1613 if (p) {
1614 if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) {
1615 put_swap_device(p);
1616 return 0;
1617 }
1618
1619 count = __swap_entry_free(p, entry);
1620 if (count == SWAP_HAS_CACHE &&
1621 !swap_page_trans_huge_swapped(p, entry))
1622 __try_to_reclaim_swap(p, swp_offset(entry),
1623 TTRS_UNMAPPED | TTRS_FULL);
1624 put_swap_device(p);
1625 }
1626 return p != NULL;
1627 }
1628
1629 #ifdef CONFIG_HIBERNATION
1630
get_swap_page_of_type(int type)1631 swp_entry_t get_swap_page_of_type(int type)
1632 {
1633 struct swap_info_struct *si = swap_type_to_swap_info(type);
1634 swp_entry_t entry = {0};
1635
1636 if (!si)
1637 goto fail;
1638
1639 /* This is called for allocating swap entry, not cache */
1640 spin_lock(&si->lock);
1641 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1642 atomic_long_dec(&nr_swap_pages);
1643 spin_unlock(&si->lock);
1644 fail:
1645 return entry;
1646 }
1647
1648 /*
1649 * Find the swap type that corresponds to given device (if any).
1650 *
1651 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1652 * from 0, in which the swap header is expected to be located.
1653 *
1654 * This is needed for the suspend to disk (aka swsusp).
1655 */
swap_type_of(dev_t device, sector_t offset)1656 int swap_type_of(dev_t device, sector_t offset)
1657 {
1658 int type;
1659
1660 if (!device)
1661 return -1;
1662
1663 spin_lock(&swap_lock);
1664 for (type = 0; type < nr_swapfiles; type++) {
1665 struct swap_info_struct *sis = swap_info[type];
1666
1667 if (!(sis->flags & SWP_WRITEOK))
1668 continue;
1669
1670 if (device == sis->bdev->bd_dev) {
1671 struct swap_extent *se = first_se(sis);
1672
1673 if (se->start_block == offset) {
1674 spin_unlock(&swap_lock);
1675 return type;
1676 }
1677 }
1678 }
1679 spin_unlock(&swap_lock);
1680 return -ENODEV;
1681 }
1682
find_first_swap(dev_t *device)1683 int find_first_swap(dev_t *device)
1684 {
1685 int type;
1686
1687 spin_lock(&swap_lock);
1688 for (type = 0; type < nr_swapfiles; type++) {
1689 struct swap_info_struct *sis = swap_info[type];
1690
1691 if (!(sis->flags & SWP_WRITEOK))
1692 continue;
1693 *device = sis->bdev->bd_dev;
1694 spin_unlock(&swap_lock);
1695 return type;
1696 }
1697 spin_unlock(&swap_lock);
1698 return -ENODEV;
1699 }
1700
1701 /*
1702 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1703 * corresponding to given index in swap_info (swap type).
1704 */
swapdev_block(int type, pgoff_t offset)1705 sector_t swapdev_block(int type, pgoff_t offset)
1706 {
1707 struct swap_info_struct *si = swap_type_to_swap_info(type);
1708 struct swap_extent *se;
1709
1710 if (!si || !(si->flags & SWP_WRITEOK))
1711 return 0;
1712 se = offset_to_swap_extent(si, offset);
1713 return se->start_block + (offset - se->start_page);
1714 }
1715
1716 /*
1717 * Return either the total number of swap pages of given type, or the number
1718 * of free pages of that type (depending on @free)
1719 *
1720 * This is needed for software suspend
1721 */
count_swap_pages(int type, int free)1722 unsigned int count_swap_pages(int type, int free)
1723 {
1724 unsigned int n = 0;
1725
1726 spin_lock(&swap_lock);
1727 if ((unsigned int)type < nr_swapfiles) {
1728 struct swap_info_struct *sis = swap_info[type];
1729
1730 spin_lock(&sis->lock);
1731 if (sis->flags & SWP_WRITEOK) {
1732 n = sis->pages;
1733 if (free)
1734 n -= sis->inuse_pages;
1735 }
1736 spin_unlock(&sis->lock);
1737 }
1738 spin_unlock(&swap_lock);
1739 return n;
1740 }
1741 #endif /* CONFIG_HIBERNATION */
1742
pte_same_as_swp(pte_t pte, pte_t swp_pte)1743 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1744 {
1745 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1746 }
1747
1748 /*
1749 * No need to decide whether this PTE shares the swap entry with others,
1750 * just let do_wp_page work it out if a write is requested later - to
1751 * force COW, vm_page_prot omits write permission from any private vma.
1752 */
unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, swp_entry_t entry, struct folio *folio)1753 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1754 unsigned long addr, swp_entry_t entry, struct folio *folio)
1755 {
1756 struct page *page = folio_file_page(folio, swp_offset(entry));
1757 struct page *swapcache;
1758 spinlock_t *ptl;
1759 pte_t *pte, new_pte, old_pte;
1760 bool hwpoisoned = PageHWPoison(page);
1761 int ret = 1;
1762
1763 swapcache = page;
1764 page = ksm_might_need_to_copy(page, vma, addr);
1765 if (unlikely(!page))
1766 return -ENOMEM;
1767 else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1768 hwpoisoned = true;
1769
1770 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1771 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1772 swp_entry_to_pte(entry)))) {
1773 ret = 0;
1774 goto out;
1775 }
1776
1777 old_pte = ptep_get(pte);
1778
1779 if (unlikely(hwpoisoned || !PageUptodate(page))) {
1780 swp_entry_t swp_entry;
1781
1782 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1783 if (hwpoisoned) {
1784 swp_entry = make_hwpoison_entry(swapcache);
1785 page = swapcache;
1786 } else {
1787 swp_entry = make_poisoned_swp_entry();
1788 }
1789 new_pte = swp_entry_to_pte(swp_entry);
1790 ret = 0;
1791 goto setpte;
1792 }
1793
1794 /*
1795 * Some architectures may have to restore extra metadata to the page
1796 * when reading from swap. This metadata may be indexed by swap entry
1797 * so this must be called before swap_free().
1798 */
1799 arch_swap_restore(entry, page_folio(page));
1800
1801 /* See do_swap_page() */
1802 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1803 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1804
1805 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1806 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1807 get_page(page);
1808 if (page == swapcache) {
1809 rmap_t rmap_flags = RMAP_NONE;
1810
1811 /*
1812 * See do_swap_page(): PageWriteback() would be problematic.
1813 * However, we do a wait_on_page_writeback() just before this
1814 * call and have the page locked.
1815 */
1816 VM_BUG_ON_PAGE(PageWriteback(page), page);
1817 if (pte_swp_exclusive(old_pte))
1818 rmap_flags |= RMAP_EXCLUSIVE;
1819
1820 page_add_anon_rmap(page, vma, addr, rmap_flags);
1821 } else { /* ksm created a completely new copy */
1822 page_add_new_anon_rmap(page, vma, addr);
1823 lru_cache_add_inactive_or_unevictable(page, vma);
1824 }
1825 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1826 if (pte_swp_soft_dirty(old_pte))
1827 new_pte = pte_mksoft_dirty(new_pte);
1828 if (pte_swp_uffd_wp(old_pte))
1829 new_pte = pte_mkuffd_wp(new_pte);
1830 setpte:
1831 set_pte_at(vma->vm_mm, addr, pte, new_pte);
1832 swap_free(entry);
1833 out:
1834 if (pte)
1835 pte_unmap_unlock(pte, ptl);
1836 if (page != swapcache) {
1837 unlock_page(page);
1838 put_page(page);
1839 }
1840 return ret;
1841 }
1842
unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned int type)1843 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1844 unsigned long addr, unsigned long end,
1845 unsigned int type)
1846 {
1847 pte_t *pte = NULL;
1848 struct swap_info_struct *si;
1849
1850 si = swap_info[type];
1851 do {
1852 struct folio *folio;
1853 unsigned long offset;
1854 unsigned char swp_count;
1855 swp_entry_t entry;
1856 int ret;
1857 pte_t ptent;
1858
1859 if (!pte++) {
1860 pte = pte_offset_map(pmd, addr);
1861 if (!pte)
1862 break;
1863 }
1864
1865 ptent = ptep_get_lockless(pte);
1866
1867 if (!is_swap_pte(ptent))
1868 continue;
1869
1870 entry = pte_to_swp_entry(ptent);
1871 if (swp_type(entry) != type)
1872 continue;
1873
1874 offset = swp_offset(entry);
1875 pte_unmap(pte);
1876 pte = NULL;
1877
1878 folio = swap_cache_get_folio(entry, vma, addr);
1879 if (!folio) {
1880 struct page *page;
1881 struct vm_fault vmf = {
1882 .vma = vma,
1883 .address = addr,
1884 .real_address = addr,
1885 .pmd = pmd,
1886 };
1887
1888 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1889 &vmf);
1890 if (page)
1891 folio = page_folio(page);
1892 }
1893 if (!folio) {
1894 swp_count = READ_ONCE(si->swap_map[offset]);
1895 if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1896 continue;
1897 return -ENOMEM;
1898 }
1899
1900 folio_lock(folio);
1901 folio_wait_writeback(folio);
1902 ret = unuse_pte(vma, pmd, addr, entry, folio);
1903 if (ret < 0) {
1904 folio_unlock(folio);
1905 folio_put(folio);
1906 return ret;
1907 }
1908
1909 folio_free_swap(folio);
1910 folio_unlock(folio);
1911 folio_put(folio);
1912 } while (addr += PAGE_SIZE, addr != end);
1913
1914 if (pte)
1915 pte_unmap(pte);
1916 return 0;
1917 }
1918
unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, unsigned int type)1919 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1920 unsigned long addr, unsigned long end,
1921 unsigned int type)
1922 {
1923 pmd_t *pmd;
1924 unsigned long next;
1925 int ret;
1926
1927 pmd = pmd_offset(pud, addr);
1928 do {
1929 cond_resched();
1930 next = pmd_addr_end(addr, end);
1931 ret = unuse_pte_range(vma, pmd, addr, next, type);
1932 if (ret)
1933 return ret;
1934 } while (pmd++, addr = next, addr != end);
1935 return 0;
1936 }
1937
unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned int type)1938 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1939 unsigned long addr, unsigned long end,
1940 unsigned int type)
1941 {
1942 pud_t *pud;
1943 unsigned long next;
1944 int ret;
1945
1946 pud = pud_offset(p4d, addr);
1947 do {
1948 next = pud_addr_end(addr, end);
1949 if (pud_none_or_clear_bad(pud))
1950 continue;
1951 ret = unuse_pmd_range(vma, pud, addr, next, type);
1952 if (ret)
1953 return ret;
1954 } while (pud++, addr = next, addr != end);
1955 return 0;
1956 }
1957
unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned int type)1958 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1959 unsigned long addr, unsigned long end,
1960 unsigned int type)
1961 {
1962 p4d_t *p4d;
1963 unsigned long next;
1964 int ret;
1965
1966 p4d = p4d_offset(pgd, addr);
1967 do {
1968 next = p4d_addr_end(addr, end);
1969 if (p4d_none_or_clear_bad(p4d))
1970 continue;
1971 ret = unuse_pud_range(vma, p4d, addr, next, type);
1972 if (ret)
1973 return ret;
1974 } while (p4d++, addr = next, addr != end);
1975 return 0;
1976 }
1977
unuse_vma(struct vm_area_struct *vma, unsigned int type)1978 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1979 {
1980 pgd_t *pgd;
1981 unsigned long addr, end, next;
1982 int ret;
1983
1984 addr = vma->vm_start;
1985 end = vma->vm_end;
1986
1987 pgd = pgd_offset(vma->vm_mm, addr);
1988 do {
1989 next = pgd_addr_end(addr, end);
1990 if (pgd_none_or_clear_bad(pgd))
1991 continue;
1992 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1993 if (ret)
1994 return ret;
1995 } while (pgd++, addr = next, addr != end);
1996 return 0;
1997 }
1998
unuse_mm(struct mm_struct *mm, unsigned int type)1999 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2000 {
2001 struct vm_area_struct *vma;
2002 int ret = 0;
2003 VMA_ITERATOR(vmi, mm, 0);
2004
2005 mmap_read_lock(mm);
2006 for_each_vma(vmi, vma) {
2007 if (vma->anon_vma) {
2008 ret = unuse_vma(vma, type);
2009 if (ret)
2010 break;
2011 }
2012
2013 cond_resched();
2014 }
2015 mmap_read_unlock(mm);
2016 return ret;
2017 }
2018
2019 /*
2020 * Scan swap_map from current position to next entry still in use.
2021 * Return 0 if there are no inuse entries after prev till end of
2022 * the map.
2023 */
find_next_to_unuse(struct swap_info_struct *si, unsigned int prev)2024 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2025 unsigned int prev)
2026 {
2027 unsigned int i;
2028 unsigned char count;
2029
2030 /*
2031 * No need for swap_lock here: we're just looking
2032 * for whether an entry is in use, not modifying it; false
2033 * hits are okay, and sys_swapoff() has already prevented new
2034 * allocations from this area (while holding swap_lock).
2035 */
2036 for (i = prev + 1; i < si->max; i++) {
2037 count = READ_ONCE(si->swap_map[i]);
2038 if (count && swap_count(count) != SWAP_MAP_BAD)
2039 break;
2040 if ((i % LATENCY_LIMIT) == 0)
2041 cond_resched();
2042 }
2043
2044 if (i == si->max)
2045 i = 0;
2046
2047 return i;
2048 }
2049
try_to_unuse(unsigned int type)2050 static int try_to_unuse(unsigned int type)
2051 {
2052 struct mm_struct *prev_mm;
2053 struct mm_struct *mm;
2054 struct list_head *p;
2055 int retval = 0;
2056 struct swap_info_struct *si = swap_info[type];
2057 struct folio *folio;
2058 swp_entry_t entry;
2059 unsigned int i;
2060
2061 if (!READ_ONCE(si->inuse_pages))
2062 return 0;
2063
2064 retry:
2065 retval = shmem_unuse(type);
2066 if (retval)
2067 return retval;
2068
2069 prev_mm = &init_mm;
2070 mmget(prev_mm);
2071
2072 spin_lock(&mmlist_lock);
2073 p = &init_mm.mmlist;
2074 while (READ_ONCE(si->inuse_pages) &&
2075 !signal_pending(current) &&
2076 (p = p->next) != &init_mm.mmlist) {
2077
2078 mm = list_entry(p, struct mm_struct, mmlist);
2079 if (!mmget_not_zero(mm))
2080 continue;
2081 spin_unlock(&mmlist_lock);
2082 mmput(prev_mm);
2083 prev_mm = mm;
2084 retval = unuse_mm(mm, type);
2085 if (retval) {
2086 mmput(prev_mm);
2087 return retval;
2088 }
2089
2090 /*
2091 * Make sure that we aren't completely killing
2092 * interactive performance.
2093 */
2094 cond_resched();
2095 spin_lock(&mmlist_lock);
2096 }
2097 spin_unlock(&mmlist_lock);
2098
2099 mmput(prev_mm);
2100
2101 i = 0;
2102 while (READ_ONCE(si->inuse_pages) &&
2103 !signal_pending(current) &&
2104 (i = find_next_to_unuse(si, i)) != 0) {
2105
2106 entry = swp_entry(type, i);
2107 folio = filemap_get_folio(swap_address_space(entry), i);
2108 if (IS_ERR(folio))
2109 continue;
2110
2111 /*
2112 * It is conceivable that a racing task removed this folio from
2113 * swap cache just before we acquired the page lock. The folio
2114 * might even be back in swap cache on another swap area. But
2115 * that is okay, folio_free_swap() only removes stale folios.
2116 */
2117 folio_lock(folio);
2118 folio_wait_writeback(folio);
2119 folio_free_swap(folio);
2120 folio_unlock(folio);
2121 folio_put(folio);
2122 }
2123
2124 /*
2125 * Lets check again to see if there are still swap entries in the map.
2126 * If yes, we would need to do retry the unuse logic again.
2127 * Under global memory pressure, swap entries can be reinserted back
2128 * into process space after the mmlist loop above passes over them.
2129 *
2130 * Limit the number of retries? No: when mmget_not_zero()
2131 * above fails, that mm is likely to be freeing swap from
2132 * exit_mmap(), which proceeds at its own independent pace;
2133 * and even shmem_writepage() could have been preempted after
2134 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2135 * and robust (though cpu-intensive) just to keep retrying.
2136 */
2137 if (READ_ONCE(si->inuse_pages)) {
2138 if (!signal_pending(current))
2139 goto retry;
2140 return -EINTR;
2141 }
2142
2143 return 0;
2144 }
2145
2146 /*
2147 * After a successful try_to_unuse, if no swap is now in use, we know
2148 * we can empty the mmlist. swap_lock must be held on entry and exit.
2149 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2150 * added to the mmlist just after page_duplicate - before would be racy.
2151 */
drain_mmlist(void)2152 static void drain_mmlist(void)
2153 {
2154 struct list_head *p, *next;
2155 unsigned int type;
2156
2157 for (type = 0; type < nr_swapfiles; type++)
2158 if (swap_info[type]->inuse_pages)
2159 return;
2160 spin_lock(&mmlist_lock);
2161 list_for_each_safe(p, next, &init_mm.mmlist)
2162 list_del_init(p);
2163 spin_unlock(&mmlist_lock);
2164 }
2165
2166 /*
2167 * Free all of a swapdev's extent information
2168 */
destroy_swap_extents(struct swap_info_struct *sis)2169 static void destroy_swap_extents(struct swap_info_struct *sis)
2170 {
2171 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2172 struct rb_node *rb = sis->swap_extent_root.rb_node;
2173 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2174
2175 rb_erase(rb, &sis->swap_extent_root);
2176 kfree(se);
2177 }
2178
2179 if (sis->flags & SWP_ACTIVATED) {
2180 struct file *swap_file = sis->swap_file;
2181 struct address_space *mapping = swap_file->f_mapping;
2182
2183 sis->flags &= ~SWP_ACTIVATED;
2184 if (mapping->a_ops->swap_deactivate)
2185 mapping->a_ops->swap_deactivate(swap_file);
2186 }
2187 }
2188
2189 /*
2190 * Add a block range (and the corresponding page range) into this swapdev's
2191 * extent tree.
2192 *
2193 * This function rather assumes that it is called in ascending page order.
2194 */
2195 int
add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, unsigned long nr_pages, sector_t start_block)2196 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2197 unsigned long nr_pages, sector_t start_block)
2198 {
2199 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2200 struct swap_extent *se;
2201 struct swap_extent *new_se;
2202
2203 /*
2204 * place the new node at the right most since the
2205 * function is called in ascending page order.
2206 */
2207 while (*link) {
2208 parent = *link;
2209 link = &parent->rb_right;
2210 }
2211
2212 if (parent) {
2213 se = rb_entry(parent, struct swap_extent, rb_node);
2214 BUG_ON(se->start_page + se->nr_pages != start_page);
2215 if (se->start_block + se->nr_pages == start_block) {
2216 /* Merge it */
2217 se->nr_pages += nr_pages;
2218 return 0;
2219 }
2220 }
2221
2222 /* No merge, insert a new extent. */
2223 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2224 if (new_se == NULL)
2225 return -ENOMEM;
2226 new_se->start_page = start_page;
2227 new_se->nr_pages = nr_pages;
2228 new_se->start_block = start_block;
2229
2230 rb_link_node(&new_se->rb_node, parent, link);
2231 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2232 return 1;
2233 }
2234 EXPORT_SYMBOL_GPL(add_swap_extent);
2235
2236 /*
2237 * A `swap extent' is a simple thing which maps a contiguous range of pages
2238 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2239 * built at swapon time and is then used at swap_writepage/swap_readpage
2240 * time for locating where on disk a page belongs.
2241 *
2242 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2243 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2244 * swap files identically.
2245 *
2246 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2247 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2248 * swapfiles are handled *identically* after swapon time.
2249 *
2250 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2251 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2252 * blocks are found which do not fall within the PAGE_SIZE alignment
2253 * requirements, they are simply tossed out - we will never use those blocks
2254 * for swapping.
2255 *
2256 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2257 * prevents users from writing to the swap device, which will corrupt memory.
2258 *
2259 * The amount of disk space which a single swap extent represents varies.
2260 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2261 * extents in the rbtree. - akpm.
2262 */
setup_swap_extents(struct swap_info_struct *sis, sector_t *span)2263 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2264 {
2265 struct file *swap_file = sis->swap_file;
2266 struct address_space *mapping = swap_file->f_mapping;
2267 struct inode *inode = mapping->host;
2268 int ret;
2269
2270 if (S_ISBLK(inode->i_mode)) {
2271 ret = add_swap_extent(sis, 0, sis->max, 0);
2272 *span = sis->pages;
2273 return ret;
2274 }
2275
2276 if (mapping->a_ops->swap_activate) {
2277 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2278 if (ret < 0)
2279 return ret;
2280 sis->flags |= SWP_ACTIVATED;
2281 if ((sis->flags & SWP_FS_OPS) &&
2282 sio_pool_init() != 0) {
2283 destroy_swap_extents(sis);
2284 return -ENOMEM;
2285 }
2286 return ret;
2287 }
2288
2289 return generic_swapfile_activate(sis, swap_file, span);
2290 }
2291
swap_node(struct swap_info_struct *p)2292 static int swap_node(struct swap_info_struct *p)
2293 {
2294 struct block_device *bdev;
2295
2296 if (p->bdev)
2297 bdev = p->bdev;
2298 else
2299 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2300
2301 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2302 }
2303
setup_swap_info(struct swap_info_struct *p, int prio, unsigned char *swap_map, struct swap_cluster_info *cluster_info)2304 static void setup_swap_info(struct swap_info_struct *p, int prio,
2305 unsigned char *swap_map,
2306 struct swap_cluster_info *cluster_info)
2307 {
2308 int i;
2309
2310 if (prio >= 0)
2311 p->prio = prio;
2312 else
2313 p->prio = --least_priority;
2314 /*
2315 * the plist prio is negated because plist ordering is
2316 * low-to-high, while swap ordering is high-to-low
2317 */
2318 p->list.prio = -p->prio;
2319 for_each_node(i) {
2320 if (p->prio >= 0)
2321 p->avail_lists[i].prio = -p->prio;
2322 else {
2323 if (swap_node(p) == i)
2324 p->avail_lists[i].prio = 1;
2325 else
2326 p->avail_lists[i].prio = -p->prio;
2327 }
2328 }
2329 p->swap_map = swap_map;
2330 p->cluster_info = cluster_info;
2331 }
2332
_enable_swap_info(struct swap_info_struct *p)2333 static void _enable_swap_info(struct swap_info_struct *p)
2334 {
2335 p->flags |= SWP_WRITEOK;
2336 atomic_long_add(p->pages, &nr_swap_pages);
2337 total_swap_pages += p->pages;
2338
2339 assert_spin_locked(&swap_lock);
2340 /*
2341 * both lists are plists, and thus priority ordered.
2342 * swap_active_head needs to be priority ordered for swapoff(),
2343 * which on removal of any swap_info_struct with an auto-assigned
2344 * (i.e. negative) priority increments the auto-assigned priority
2345 * of any lower-priority swap_info_structs.
2346 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2347 * which allocates swap pages from the highest available priority
2348 * swap_info_struct.
2349 */
2350 plist_add(&p->list, &swap_active_head);
2351
2352 /* add to available list iff swap device is not full */
2353 if (p->highest_bit)
2354 add_to_avail_list(p);
2355 }
2356
enable_swap_info(struct swap_info_struct *p, int prio, unsigned char *swap_map, struct swap_cluster_info *cluster_info)2357 static void enable_swap_info(struct swap_info_struct *p, int prio,
2358 unsigned char *swap_map,
2359 struct swap_cluster_info *cluster_info)
2360 {
2361 zswap_swapon(p->type);
2362
2363 spin_lock(&swap_lock);
2364 spin_lock(&p->lock);
2365 setup_swap_info(p, prio, swap_map, cluster_info);
2366 spin_unlock(&p->lock);
2367 spin_unlock(&swap_lock);
2368 /*
2369 * Finished initializing swap device, now it's safe to reference it.
2370 */
2371 percpu_ref_resurrect(&p->users);
2372 spin_lock(&swap_lock);
2373 spin_lock(&p->lock);
2374 _enable_swap_info(p);
2375 spin_unlock(&p->lock);
2376 spin_unlock(&swap_lock);
2377 }
2378
reinsert_swap_info(struct swap_info_struct *p)2379 static void reinsert_swap_info(struct swap_info_struct *p)
2380 {
2381 spin_lock(&swap_lock);
2382 spin_lock(&p->lock);
2383 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2384 _enable_swap_info(p);
2385 spin_unlock(&p->lock);
2386 spin_unlock(&swap_lock);
2387 }
2388
has_usable_swap(void)2389 bool has_usable_swap(void)
2390 {
2391 bool ret = true;
2392
2393 spin_lock(&swap_lock);
2394 if (plist_head_empty(&swap_active_head))
2395 ret = false;
2396 spin_unlock(&swap_lock);
2397 return ret;
2398 }
2399
SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)2400 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2401 {
2402 struct swap_info_struct *p = NULL;
2403 unsigned char *swap_map;
2404 struct swap_cluster_info *cluster_info;
2405 struct file *swap_file, *victim;
2406 struct address_space *mapping;
2407 struct inode *inode;
2408 struct filename *pathname;
2409 int err, found = 0;
2410 unsigned int old_block_size;
2411
2412 if (!capable(CAP_SYS_ADMIN))
2413 return -EPERM;
2414
2415 BUG_ON(!current->mm);
2416
2417 pathname = getname(specialfile);
2418 if (IS_ERR(pathname))
2419 return PTR_ERR(pathname);
2420
2421 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2422 err = PTR_ERR(victim);
2423 if (IS_ERR(victim))
2424 goto out;
2425
2426 mapping = victim->f_mapping;
2427 spin_lock(&swap_lock);
2428 plist_for_each_entry(p, &swap_active_head, list) {
2429 if (p->flags & SWP_WRITEOK) {
2430 if (p->swap_file->f_mapping == mapping) {
2431 found = 1;
2432 break;
2433 }
2434 }
2435 }
2436 if (!found) {
2437 err = -EINVAL;
2438 spin_unlock(&swap_lock);
2439 goto out_dput;
2440 }
2441 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2442 vm_unacct_memory(p->pages);
2443 else {
2444 err = -ENOMEM;
2445 spin_unlock(&swap_lock);
2446 goto out_dput;
2447 }
2448 spin_lock(&p->lock);
2449 del_from_avail_list(p);
2450 if (p->prio < 0) {
2451 struct swap_info_struct *si = p;
2452 int nid;
2453
2454 plist_for_each_entry_continue(si, &swap_active_head, list) {
2455 si->prio++;
2456 si->list.prio--;
2457 for_each_node(nid) {
2458 if (si->avail_lists[nid].prio != 1)
2459 si->avail_lists[nid].prio--;
2460 }
2461 }
2462 least_priority++;
2463 }
2464 plist_del(&p->list, &swap_active_head);
2465 atomic_long_sub(p->pages, &nr_swap_pages);
2466 total_swap_pages -= p->pages;
2467 p->flags &= ~SWP_WRITEOK;
2468 spin_unlock(&p->lock);
2469 spin_unlock(&swap_lock);
2470
2471 disable_swap_slots_cache_lock();
2472
2473 set_current_oom_origin();
2474 err = try_to_unuse(p->type);
2475 clear_current_oom_origin();
2476
2477 if (err) {
2478 /* re-insert swap space back into swap_list */
2479 reinsert_swap_info(p);
2480 reenable_swap_slots_cache_unlock();
2481 goto out_dput;
2482 }
2483
2484 reenable_swap_slots_cache_unlock();
2485
2486 /*
2487 * Wait for swap operations protected by get/put_swap_device()
2488 * to complete.
2489 *
2490 * We need synchronize_rcu() here to protect the accessing to
2491 * the swap cache data structure.
2492 */
2493 percpu_ref_kill(&p->users);
2494 synchronize_rcu();
2495 wait_for_completion(&p->comp);
2496
2497 flush_work(&p->discard_work);
2498
2499 destroy_swap_extents(p);
2500 if (p->flags & SWP_CONTINUED)
2501 free_swap_count_continuations(p);
2502
2503 if (!p->bdev || !bdev_nonrot(p->bdev))
2504 atomic_dec(&nr_rotate_swap);
2505
2506 mutex_lock(&swapon_mutex);
2507 spin_lock(&swap_lock);
2508 spin_lock(&p->lock);
2509 drain_mmlist();
2510
2511 /* wait for anyone still in scan_swap_map_slots */
2512 p->highest_bit = 0; /* cuts scans short */
2513 while (p->flags >= SWP_SCANNING) {
2514 spin_unlock(&p->lock);
2515 spin_unlock(&swap_lock);
2516 schedule_timeout_uninterruptible(1);
2517 spin_lock(&swap_lock);
2518 spin_lock(&p->lock);
2519 }
2520
2521 swap_file = p->swap_file;
2522 old_block_size = p->old_block_size;
2523 p->swap_file = NULL;
2524 p->max = 0;
2525 swap_map = p->swap_map;
2526 p->swap_map = NULL;
2527 cluster_info = p->cluster_info;
2528 p->cluster_info = NULL;
2529 spin_unlock(&p->lock);
2530 spin_unlock(&swap_lock);
2531 arch_swap_invalidate_area(p->type);
2532 zswap_swapoff(p->type);
2533 mutex_unlock(&swapon_mutex);
2534 free_percpu(p->percpu_cluster);
2535 p->percpu_cluster = NULL;
2536 free_percpu(p->cluster_next_cpu);
2537 p->cluster_next_cpu = NULL;
2538 vfree(swap_map);
2539 kvfree(cluster_info);
2540 /* Destroy swap account information */
2541 swap_cgroup_swapoff(p->type);
2542 exit_swap_address_space(p->type);
2543
2544 inode = mapping->host;
2545 if (S_ISBLK(inode->i_mode)) {
2546 struct block_device *bdev = I_BDEV(inode);
2547
2548 set_blocksize(bdev, old_block_size);
2549 blkdev_put(bdev, p);
2550 }
2551
2552 inode_lock(inode);
2553 inode->i_flags &= ~S_SWAPFILE;
2554 inode_unlock(inode);
2555 filp_close(swap_file, NULL);
2556
2557 /*
2558 * Clear the SWP_USED flag after all resources are freed so that swapon
2559 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2560 * not hold p->lock after we cleared its SWP_WRITEOK.
2561 */
2562 spin_lock(&swap_lock);
2563 p->flags = 0;
2564 spin_unlock(&swap_lock);
2565
2566 err = 0;
2567 atomic_inc(&proc_poll_event);
2568 wake_up_interruptible(&proc_poll_wait);
2569
2570 out_dput:
2571 filp_close(victim, NULL);
2572 out:
2573 putname(pathname);
2574 return err;
2575 }
2576
2577 #ifdef CONFIG_PROC_FS
swaps_poll(struct file *file, poll_table *wait)2578 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2579 {
2580 struct seq_file *seq = file->private_data;
2581
2582 poll_wait(file, &proc_poll_wait, wait);
2583
2584 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2585 seq->poll_event = atomic_read(&proc_poll_event);
2586 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2587 }
2588
2589 return EPOLLIN | EPOLLRDNORM;
2590 }
2591
2592 /* iterator */
swap_start(struct seq_file *swap, loff_t *pos)2593 static void *swap_start(struct seq_file *swap, loff_t *pos)
2594 {
2595 struct swap_info_struct *si;
2596 int type;
2597 loff_t l = *pos;
2598
2599 mutex_lock(&swapon_mutex);
2600
2601 if (!l)
2602 return SEQ_START_TOKEN;
2603
2604 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2605 if (!(si->flags & SWP_USED) || !si->swap_map)
2606 continue;
2607 if (!--l)
2608 return si;
2609 }
2610
2611 return NULL;
2612 }
2613
swap_next(struct seq_file *swap, void *v, loff_t *pos)2614 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2615 {
2616 struct swap_info_struct *si = v;
2617 int type;
2618
2619 if (v == SEQ_START_TOKEN)
2620 type = 0;
2621 else
2622 type = si->type + 1;
2623
2624 ++(*pos);
2625 for (; (si = swap_type_to_swap_info(type)); type++) {
2626 if (!(si->flags & SWP_USED) || !si->swap_map)
2627 continue;
2628 return si;
2629 }
2630
2631 return NULL;
2632 }
2633
swap_stop(struct seq_file *swap, void *v)2634 static void swap_stop(struct seq_file *swap, void *v)
2635 {
2636 mutex_unlock(&swapon_mutex);
2637 }
2638
swap_show(struct seq_file *swap, void *v)2639 static int swap_show(struct seq_file *swap, void *v)
2640 {
2641 struct swap_info_struct *si = v;
2642 struct file *file;
2643 int len;
2644 unsigned long bytes, inuse;
2645
2646 if (si == SEQ_START_TOKEN) {
2647 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2648 return 0;
2649 }
2650
2651 bytes = K(si->pages);
2652 inuse = K(READ_ONCE(si->inuse_pages));
2653
2654 file = si->swap_file;
2655 len = seq_file_path(swap, file, " \t\n\\");
2656 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2657 len < 40 ? 40 - len : 1, " ",
2658 S_ISBLK(file_inode(file)->i_mode) ?
2659 "partition" : "file\t",
2660 bytes, bytes < 10000000 ? "\t" : "",
2661 inuse, inuse < 10000000 ? "\t" : "",
2662 si->prio);
2663 return 0;
2664 }
2665
2666 static const struct seq_operations swaps_op = {
2667 .start = swap_start,
2668 .next = swap_next,
2669 .stop = swap_stop,
2670 .show = swap_show
2671 };
2672
swaps_open(struct inode *inode, struct file *file)2673 static int swaps_open(struct inode *inode, struct file *file)
2674 {
2675 struct seq_file *seq;
2676 int ret;
2677
2678 ret = seq_open(file, &swaps_op);
2679 if (ret)
2680 return ret;
2681
2682 seq = file->private_data;
2683 seq->poll_event = atomic_read(&proc_poll_event);
2684 return 0;
2685 }
2686
2687 static const struct proc_ops swaps_proc_ops = {
2688 .proc_flags = PROC_ENTRY_PERMANENT,
2689 .proc_open = swaps_open,
2690 .proc_read = seq_read,
2691 .proc_lseek = seq_lseek,
2692 .proc_release = seq_release,
2693 .proc_poll = swaps_poll,
2694 };
2695
procswaps_init(void)2696 static int __init procswaps_init(void)
2697 {
2698 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2699 return 0;
2700 }
2701 __initcall(procswaps_init);
2702 #endif /* CONFIG_PROC_FS */
2703
2704 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2705 static int __init max_swapfiles_check(void)
2706 {
2707 MAX_SWAPFILES_CHECK();
2708 return 0;
2709 }
2710 late_initcall(max_swapfiles_check);
2711 #endif
2712
alloc_swap_info(void)2713 static struct swap_info_struct *alloc_swap_info(void)
2714 {
2715 struct swap_info_struct *p;
2716 struct swap_info_struct *defer = NULL;
2717 unsigned int type;
2718 int i;
2719
2720 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2721 if (!p)
2722 return ERR_PTR(-ENOMEM);
2723
2724 if (percpu_ref_init(&p->users, swap_users_ref_free,
2725 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2726 kvfree(p);
2727 return ERR_PTR(-ENOMEM);
2728 }
2729
2730 spin_lock(&swap_lock);
2731 for (type = 0; type < nr_swapfiles; type++) {
2732 if (!(swap_info[type]->flags & SWP_USED))
2733 break;
2734 }
2735 if (type >= MAX_SWAPFILES) {
2736 spin_unlock(&swap_lock);
2737 percpu_ref_exit(&p->users);
2738 kvfree(p);
2739 return ERR_PTR(-EPERM);
2740 }
2741 if (type >= nr_swapfiles) {
2742 p->type = type;
2743 /*
2744 * Publish the swap_info_struct after initializing it.
2745 * Note that kvzalloc() above zeroes all its fields.
2746 */
2747 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2748 nr_swapfiles++;
2749 } else {
2750 defer = p;
2751 p = swap_info[type];
2752 /*
2753 * Do not memset this entry: a racing procfs swap_next()
2754 * would be relying on p->type to remain valid.
2755 */
2756 }
2757 p->swap_extent_root = RB_ROOT;
2758 plist_node_init(&p->list, 0);
2759 for_each_node(i)
2760 plist_node_init(&p->avail_lists[i], 0);
2761 p->flags = SWP_USED;
2762 spin_unlock(&swap_lock);
2763 if (defer) {
2764 percpu_ref_exit(&defer->users);
2765 kvfree(defer);
2766 }
2767 spin_lock_init(&p->lock);
2768 spin_lock_init(&p->cont_lock);
2769 init_completion(&p->comp);
2770
2771 return p;
2772 }
2773
claim_swapfile(struct swap_info_struct *p, struct inode *inode)2774 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2775 {
2776 int error;
2777
2778 if (S_ISBLK(inode->i_mode)) {
2779 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2780 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2781 if (IS_ERR(p->bdev)) {
2782 error = PTR_ERR(p->bdev);
2783 p->bdev = NULL;
2784 return error;
2785 }
2786 p->old_block_size = block_size(p->bdev);
2787 error = set_blocksize(p->bdev, PAGE_SIZE);
2788 if (error < 0)
2789 return error;
2790 /*
2791 * Zoned block devices contain zones that have a sequential
2792 * write only restriction. Hence zoned block devices are not
2793 * suitable for swapping. Disallow them here.
2794 */
2795 if (bdev_is_zoned(p->bdev))
2796 return -EINVAL;
2797 p->flags |= SWP_BLKDEV;
2798 } else if (S_ISREG(inode->i_mode)) {
2799 p->bdev = inode->i_sb->s_bdev;
2800 }
2801
2802 return 0;
2803 }
2804
2805
2806 /*
2807 * Find out how many pages are allowed for a single swap device. There
2808 * are two limiting factors:
2809 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2810 * 2) the number of bits in the swap pte, as defined by the different
2811 * architectures.
2812 *
2813 * In order to find the largest possible bit mask, a swap entry with
2814 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2815 * decoded to a swp_entry_t again, and finally the swap offset is
2816 * extracted.
2817 *
2818 * This will mask all the bits from the initial ~0UL mask that can't
2819 * be encoded in either the swp_entry_t or the architecture definition
2820 * of a swap pte.
2821 */
generic_max_swapfile_size(void)2822 unsigned long generic_max_swapfile_size(void)
2823 {
2824 return swp_offset(pte_to_swp_entry(
2825 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2826 }
2827
2828 /* Can be overridden by an architecture for additional checks. */
arch_max_swapfile_size(void)2829 __weak unsigned long arch_max_swapfile_size(void)
2830 {
2831 return generic_max_swapfile_size();
2832 }
2833
read_swap_header(struct swap_info_struct *p, union swap_header *swap_header, struct inode *inode)2834 static unsigned long read_swap_header(struct swap_info_struct *p,
2835 union swap_header *swap_header,
2836 struct inode *inode)
2837 {
2838 int i;
2839 unsigned long maxpages;
2840 unsigned long swapfilepages;
2841 unsigned long last_page;
2842
2843 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2844 pr_err("Unable to find swap-space signature\n");
2845 return 0;
2846 }
2847
2848 /* swap partition endianness hack... */
2849 if (swab32(swap_header->info.version) == 1) {
2850 swab32s(&swap_header->info.version);
2851 swab32s(&swap_header->info.last_page);
2852 swab32s(&swap_header->info.nr_badpages);
2853 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2854 return 0;
2855 for (i = 0; i < swap_header->info.nr_badpages; i++)
2856 swab32s(&swap_header->info.badpages[i]);
2857 }
2858 /* Check the swap header's sub-version */
2859 if (swap_header->info.version != 1) {
2860 pr_warn("Unable to handle swap header version %d\n",
2861 swap_header->info.version);
2862 return 0;
2863 }
2864
2865 p->lowest_bit = 1;
2866 p->cluster_next = 1;
2867 p->cluster_nr = 0;
2868
2869 maxpages = swapfile_maximum_size;
2870 last_page = swap_header->info.last_page;
2871 if (!last_page) {
2872 pr_warn("Empty swap-file\n");
2873 return 0;
2874 }
2875 if (last_page > maxpages) {
2876 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2877 K(maxpages), K(last_page));
2878 }
2879 if (maxpages > last_page) {
2880 maxpages = last_page + 1;
2881 /* p->max is an unsigned int: don't overflow it */
2882 if ((unsigned int)maxpages == 0)
2883 maxpages = UINT_MAX;
2884 }
2885 p->highest_bit = maxpages - 1;
2886
2887 if (!maxpages)
2888 return 0;
2889 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2890 if (swapfilepages && maxpages > swapfilepages) {
2891 pr_warn("Swap area shorter than signature indicates\n");
2892 return 0;
2893 }
2894 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2895 return 0;
2896 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2897 return 0;
2898
2899 return maxpages;
2900 }
2901
2902 #define SWAP_CLUSTER_INFO_COLS \
2903 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2904 #define SWAP_CLUSTER_SPACE_COLS \
2905 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2906 #define SWAP_CLUSTER_COLS \
2907 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2908
setup_swap_map_and_extents(struct swap_info_struct *p, union swap_header *swap_header, unsigned char *swap_map, struct swap_cluster_info *cluster_info, unsigned long maxpages, sector_t *span)2909 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2910 union swap_header *swap_header,
2911 unsigned char *swap_map,
2912 struct swap_cluster_info *cluster_info,
2913 unsigned long maxpages,
2914 sector_t *span)
2915 {
2916 unsigned int j, k;
2917 unsigned int nr_good_pages;
2918 int nr_extents;
2919 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2920 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2921 unsigned long i, idx;
2922
2923 nr_good_pages = maxpages - 1; /* omit header page */
2924
2925 cluster_list_init(&p->free_clusters);
2926 cluster_list_init(&p->discard_clusters);
2927
2928 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2929 unsigned int page_nr = swap_header->info.badpages[i];
2930 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2931 return -EINVAL;
2932 if (page_nr < maxpages) {
2933 swap_map[page_nr] = SWAP_MAP_BAD;
2934 nr_good_pages--;
2935 /*
2936 * Haven't marked the cluster free yet, no list
2937 * operation involved
2938 */
2939 inc_cluster_info_page(p, cluster_info, page_nr);
2940 }
2941 }
2942
2943 /* Haven't marked the cluster free yet, no list operation involved */
2944 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2945 inc_cluster_info_page(p, cluster_info, i);
2946
2947 if (nr_good_pages) {
2948 swap_map[0] = SWAP_MAP_BAD;
2949 /*
2950 * Not mark the cluster free yet, no list
2951 * operation involved
2952 */
2953 inc_cluster_info_page(p, cluster_info, 0);
2954 p->max = maxpages;
2955 p->pages = nr_good_pages;
2956 nr_extents = setup_swap_extents(p, span);
2957 if (nr_extents < 0)
2958 return nr_extents;
2959 nr_good_pages = p->pages;
2960 }
2961 if (!nr_good_pages) {
2962 pr_warn("Empty swap-file\n");
2963 return -EINVAL;
2964 }
2965
2966 if (!cluster_info)
2967 return nr_extents;
2968
2969
2970 /*
2971 * Reduce false cache line sharing between cluster_info and
2972 * sharing same address space.
2973 */
2974 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2975 j = (k + col) % SWAP_CLUSTER_COLS;
2976 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2977 idx = i * SWAP_CLUSTER_COLS + j;
2978 if (idx >= nr_clusters)
2979 continue;
2980 if (cluster_count(&cluster_info[idx]))
2981 continue;
2982 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2983 cluster_list_add_tail(&p->free_clusters, cluster_info,
2984 idx);
2985 }
2986 }
2987 return nr_extents;
2988 }
2989
SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)2990 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2991 {
2992 struct swap_info_struct *p;
2993 struct filename *name;
2994 struct file *swap_file = NULL;
2995 struct address_space *mapping;
2996 struct dentry *dentry;
2997 int prio;
2998 int error;
2999 union swap_header *swap_header;
3000 int nr_extents;
3001 sector_t span;
3002 unsigned long maxpages;
3003 unsigned char *swap_map = NULL;
3004 struct swap_cluster_info *cluster_info = NULL;
3005 struct page *page = NULL;
3006 struct inode *inode = NULL;
3007 bool inced_nr_rotate_swap = false;
3008
3009 if (swap_flags & ~SWAP_FLAGS_VALID)
3010 return -EINVAL;
3011
3012 if (!capable(CAP_SYS_ADMIN))
3013 return -EPERM;
3014
3015 if (!swap_avail_heads)
3016 return -ENOMEM;
3017
3018 p = alloc_swap_info();
3019 if (IS_ERR(p))
3020 return PTR_ERR(p);
3021
3022 INIT_WORK(&p->discard_work, swap_discard_work);
3023
3024 name = getname(specialfile);
3025 if (IS_ERR(name)) {
3026 error = PTR_ERR(name);
3027 name = NULL;
3028 goto bad_swap;
3029 }
3030 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3031 if (IS_ERR(swap_file)) {
3032 error = PTR_ERR(swap_file);
3033 swap_file = NULL;
3034 goto bad_swap;
3035 }
3036
3037 p->swap_file = swap_file;
3038 mapping = swap_file->f_mapping;
3039 dentry = swap_file->f_path.dentry;
3040 inode = mapping->host;
3041
3042 error = claim_swapfile(p, inode);
3043 if (unlikely(error))
3044 goto bad_swap;
3045
3046 inode_lock(inode);
3047 if (d_unlinked(dentry) || cant_mount(dentry)) {
3048 error = -ENOENT;
3049 goto bad_swap_unlock_inode;
3050 }
3051 if (IS_SWAPFILE(inode)) {
3052 error = -EBUSY;
3053 goto bad_swap_unlock_inode;
3054 }
3055
3056 /*
3057 * Read the swap header.
3058 */
3059 if (!mapping->a_ops->read_folio) {
3060 error = -EINVAL;
3061 goto bad_swap_unlock_inode;
3062 }
3063 page = read_mapping_page(mapping, 0, swap_file);
3064 if (IS_ERR(page)) {
3065 error = PTR_ERR(page);
3066 goto bad_swap_unlock_inode;
3067 }
3068 swap_header = kmap(page);
3069
3070 maxpages = read_swap_header(p, swap_header, inode);
3071 if (unlikely(!maxpages)) {
3072 error = -EINVAL;
3073 goto bad_swap_unlock_inode;
3074 }
3075
3076 /* OK, set up the swap map and apply the bad block list */
3077 swap_map = vzalloc(maxpages);
3078 if (!swap_map) {
3079 error = -ENOMEM;
3080 goto bad_swap_unlock_inode;
3081 }
3082
3083 if (p->bdev && bdev_stable_writes(p->bdev))
3084 p->flags |= SWP_STABLE_WRITES;
3085
3086 if (p->bdev && bdev_synchronous(p->bdev))
3087 p->flags |= SWP_SYNCHRONOUS_IO;
3088
3089 if (p->bdev && bdev_nonrot(p->bdev)) {
3090 int cpu;
3091 unsigned long ci, nr_cluster;
3092
3093 p->flags |= SWP_SOLIDSTATE;
3094 p->cluster_next_cpu = alloc_percpu(unsigned int);
3095 if (!p->cluster_next_cpu) {
3096 error = -ENOMEM;
3097 goto bad_swap_unlock_inode;
3098 }
3099 /*
3100 * select a random position to start with to help wear leveling
3101 * SSD
3102 */
3103 for_each_possible_cpu(cpu) {
3104 per_cpu(*p->cluster_next_cpu, cpu) =
3105 get_random_u32_inclusive(1, p->highest_bit);
3106 }
3107 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3108
3109 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3110 GFP_KERNEL);
3111 if (!cluster_info) {
3112 error = -ENOMEM;
3113 goto bad_swap_unlock_inode;
3114 }
3115
3116 for (ci = 0; ci < nr_cluster; ci++)
3117 spin_lock_init(&((cluster_info + ci)->lock));
3118
3119 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3120 if (!p->percpu_cluster) {
3121 error = -ENOMEM;
3122 goto bad_swap_unlock_inode;
3123 }
3124 for_each_possible_cpu(cpu) {
3125 struct percpu_cluster *cluster;
3126 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3127 cluster_set_null(&cluster->index);
3128 }
3129 } else {
3130 atomic_inc(&nr_rotate_swap);
3131 inced_nr_rotate_swap = true;
3132 }
3133
3134 error = swap_cgroup_swapon(p->type, maxpages);
3135 if (error)
3136 goto bad_swap_unlock_inode;
3137
3138 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3139 cluster_info, maxpages, &span);
3140 if (unlikely(nr_extents < 0)) {
3141 error = nr_extents;
3142 goto bad_swap_unlock_inode;
3143 }
3144
3145 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3146 p->bdev && bdev_max_discard_sectors(p->bdev)) {
3147 /*
3148 * When discard is enabled for swap with no particular
3149 * policy flagged, we set all swap discard flags here in
3150 * order to sustain backward compatibility with older
3151 * swapon(8) releases.
3152 */
3153 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3154 SWP_PAGE_DISCARD);
3155
3156 /*
3157 * By flagging sys_swapon, a sysadmin can tell us to
3158 * either do single-time area discards only, or to just
3159 * perform discards for released swap page-clusters.
3160 * Now it's time to adjust the p->flags accordingly.
3161 */
3162 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3163 p->flags &= ~SWP_PAGE_DISCARD;
3164 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3165 p->flags &= ~SWP_AREA_DISCARD;
3166
3167 /* issue a swapon-time discard if it's still required */
3168 if (p->flags & SWP_AREA_DISCARD) {
3169 int err = discard_swap(p);
3170 if (unlikely(err))
3171 pr_err("swapon: discard_swap(%p): %d\n",
3172 p, err);
3173 }
3174 }
3175
3176 error = init_swap_address_space(p->type, maxpages);
3177 if (error)
3178 goto bad_swap_unlock_inode;
3179
3180 /*
3181 * Flush any pending IO and dirty mappings before we start using this
3182 * swap device.
3183 */
3184 inode->i_flags |= S_SWAPFILE;
3185 error = inode_drain_writes(inode);
3186 if (error) {
3187 inode->i_flags &= ~S_SWAPFILE;
3188 goto free_swap_address_space;
3189 }
3190
3191 mutex_lock(&swapon_mutex);
3192 prio = -1;
3193 if (swap_flags & SWAP_FLAG_PREFER)
3194 prio =
3195 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3196 enable_swap_info(p, prio, swap_map, cluster_info);
3197
3198 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3199 K(p->pages), name->name, p->prio, nr_extents,
3200 K((unsigned long long)span),
3201 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3202 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3203 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3204 (p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3205
3206 mutex_unlock(&swapon_mutex);
3207 atomic_inc(&proc_poll_event);
3208 wake_up_interruptible(&proc_poll_wait);
3209
3210 error = 0;
3211 goto out;
3212 free_swap_address_space:
3213 exit_swap_address_space(p->type);
3214 bad_swap_unlock_inode:
3215 inode_unlock(inode);
3216 bad_swap:
3217 free_percpu(p->percpu_cluster);
3218 p->percpu_cluster = NULL;
3219 free_percpu(p->cluster_next_cpu);
3220 p->cluster_next_cpu = NULL;
3221 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3222 set_blocksize(p->bdev, p->old_block_size);
3223 blkdev_put(p->bdev, p);
3224 }
3225 inode = NULL;
3226 destroy_swap_extents(p);
3227 swap_cgroup_swapoff(p->type);
3228 spin_lock(&swap_lock);
3229 p->swap_file = NULL;
3230 p->flags = 0;
3231 spin_unlock(&swap_lock);
3232 vfree(swap_map);
3233 kvfree(cluster_info);
3234 if (inced_nr_rotate_swap)
3235 atomic_dec(&nr_rotate_swap);
3236 if (swap_file)
3237 filp_close(swap_file, NULL);
3238 out:
3239 if (page && !IS_ERR(page)) {
3240 kunmap(page);
3241 put_page(page);
3242 }
3243 if (name)
3244 putname(name);
3245 if (inode)
3246 inode_unlock(inode);
3247 if (!error)
3248 enable_swap_slots_cache();
3249 return error;
3250 }
3251
si_swapinfo(struct sysinfo *val)3252 void si_swapinfo(struct sysinfo *val)
3253 {
3254 unsigned int type;
3255 unsigned long nr_to_be_unused = 0;
3256
3257 spin_lock(&swap_lock);
3258 for (type = 0; type < nr_swapfiles; type++) {
3259 struct swap_info_struct *si = swap_info[type];
3260
3261 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3262 nr_to_be_unused += READ_ONCE(si->inuse_pages);
3263 }
3264 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3265 val->totalswap = total_swap_pages + nr_to_be_unused;
3266 spin_unlock(&swap_lock);
3267 }
3268
3269 #ifdef CONFIG_HYPERHOLD_ZSWAPD
free_swap_is_low(void)3270 bool free_swap_is_low(void)
3271 {
3272 unsigned int type;
3273 unsigned long long freeswap = 0;
3274 unsigned long nr_to_be_unused = 0;
3275
3276 spin_lock(&swap_lock);
3277 for (type = 0; type < nr_swapfiles; type++) {
3278 struct swap_info_struct *si = swap_info[type];
3279
3280 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3281 nr_to_be_unused += si->inuse_pages;
3282 }
3283 freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3284 spin_unlock(&swap_lock);
3285
3286 return (freeswap < get_free_swap_threshold());
3287 }
3288 EXPORT_SYMBOL(free_swap_is_low);
3289 #endif
3290
3291 /*
3292 * Verify that a swap entry is valid and increment its swap map count.
3293 *
3294 * Returns error code in following case.
3295 * - success -> 0
3296 * - swp_entry is invalid -> EINVAL
3297 * - swp_entry is migration entry -> EINVAL
3298 * - swap-cache reference is requested but there is already one. -> EEXIST
3299 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3300 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3301 */
__swap_duplicate(swp_entry_t entry, unsigned char usage)3302 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3303 {
3304 struct swap_info_struct *p;
3305 struct swap_cluster_info *ci;
3306 unsigned long offset;
3307 unsigned char count;
3308 unsigned char has_cache;
3309 int err;
3310
3311 p = swp_swap_info(entry);
3312
3313 offset = swp_offset(entry);
3314 ci = lock_cluster_or_swap_info(p, offset);
3315
3316 count = p->swap_map[offset];
3317
3318 /*
3319 * swapin_readahead() doesn't check if a swap entry is valid, so the
3320 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3321 */
3322 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3323 err = -ENOENT;
3324 goto unlock_out;
3325 }
3326
3327 has_cache = count & SWAP_HAS_CACHE;
3328 count &= ~SWAP_HAS_CACHE;
3329 err = 0;
3330
3331 if (usage == SWAP_HAS_CACHE) {
3332
3333 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3334 if (!has_cache && count)
3335 has_cache = SWAP_HAS_CACHE;
3336 else if (has_cache) /* someone else added cache */
3337 err = -EEXIST;
3338 else /* no users remaining */
3339 err = -ENOENT;
3340
3341 } else if (count || has_cache) {
3342
3343 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3344 count += usage;
3345 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3346 err = -EINVAL;
3347 else if (swap_count_continued(p, offset, count))
3348 count = COUNT_CONTINUED;
3349 else
3350 err = -ENOMEM;
3351 } else
3352 err = -ENOENT; /* unused swap entry */
3353
3354 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3355
3356 unlock_out:
3357 unlock_cluster_or_swap_info(p, ci);
3358 return err;
3359 }
3360
3361 /*
3362 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3363 * (in which case its reference count is never incremented).
3364 */
swap_shmem_alloc(swp_entry_t entry)3365 void swap_shmem_alloc(swp_entry_t entry)
3366 {
3367 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3368 }
3369
3370 /*
3371 * Increase reference count of swap entry by 1.
3372 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3373 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3374 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3375 * might occur if a page table entry has got corrupted.
3376 */
swap_duplicate(swp_entry_t entry)3377 int swap_duplicate(swp_entry_t entry)
3378 {
3379 int err = 0;
3380
3381 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3382 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3383 return err;
3384 }
3385
3386 /*
3387 * @entry: swap entry for which we allocate swap cache.
3388 *
3389 * Called when allocating swap cache for existing swap entry,
3390 * This can return error codes. Returns 0 at success.
3391 * -EEXIST means there is a swap cache.
3392 * Note: return code is different from swap_duplicate().
3393 */
swapcache_prepare(swp_entry_t entry)3394 int swapcache_prepare(swp_entry_t entry)
3395 {
3396 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3397 }
3398
swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)3399 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3400 {
3401 struct swap_cluster_info *ci;
3402 unsigned long offset = swp_offset(entry);
3403 unsigned char usage;
3404
3405 ci = lock_cluster_or_swap_info(si, offset);
3406 usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3407 unlock_cluster_or_swap_info(si, ci);
3408 if (!usage)
3409 free_swap_slot(entry);
3410 }
3411
swp_swap_info(swp_entry_t entry)3412 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3413 {
3414 return swap_type_to_swap_info(swp_type(entry));
3415 }
3416
page_swap_info(struct page *page)3417 struct swap_info_struct *page_swap_info(struct page *page)
3418 {
3419 swp_entry_t entry = page_swap_entry(page);
3420 return swp_swap_info(entry);
3421 }
3422
3423 /*
3424 * out-of-line methods to avoid include hell.
3425 */
swapcache_mapping(struct folio *folio)3426 struct address_space *swapcache_mapping(struct folio *folio)
3427 {
3428 return page_swap_info(&folio->page)->swap_file->f_mapping;
3429 }
3430 EXPORT_SYMBOL_GPL(swapcache_mapping);
3431
__page_file_index(struct page *page)3432 pgoff_t __page_file_index(struct page *page)
3433 {
3434 swp_entry_t swap = page_swap_entry(page);
3435 return swp_offset(swap);
3436 }
3437 EXPORT_SYMBOL_GPL(__page_file_index);
3438
3439 /*
3440 * add_swap_count_continuation - called when a swap count is duplicated
3441 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3442 * page of the original vmalloc'ed swap_map, to hold the continuation count
3443 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3444 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3445 *
3446 * These continuation pages are seldom referenced: the common paths all work
3447 * on the original swap_map, only referring to a continuation page when the
3448 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3449 *
3450 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3451 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3452 * can be called after dropping locks.
3453 */
add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)3454 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3455 {
3456 struct swap_info_struct *si;
3457 struct swap_cluster_info *ci;
3458 struct page *head;
3459 struct page *page;
3460 struct page *list_page;
3461 pgoff_t offset;
3462 unsigned char count;
3463 int ret = 0;
3464
3465 /*
3466 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3467 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3468 */
3469 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3470
3471 si = get_swap_device(entry);
3472 if (!si) {
3473 /*
3474 * An acceptable race has occurred since the failing
3475 * __swap_duplicate(): the swap device may be swapoff
3476 */
3477 goto outer;
3478 }
3479 spin_lock(&si->lock);
3480
3481 offset = swp_offset(entry);
3482
3483 ci = lock_cluster(si, offset);
3484
3485 count = swap_count(si->swap_map[offset]);
3486
3487 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3488 /*
3489 * The higher the swap count, the more likely it is that tasks
3490 * will race to add swap count continuation: we need to avoid
3491 * over-provisioning.
3492 */
3493 goto out;
3494 }
3495
3496 if (!page) {
3497 ret = -ENOMEM;
3498 goto out;
3499 }
3500
3501 head = vmalloc_to_page(si->swap_map + offset);
3502 offset &= ~PAGE_MASK;
3503
3504 spin_lock(&si->cont_lock);
3505 /*
3506 * Page allocation does not initialize the page's lru field,
3507 * but it does always reset its private field.
3508 */
3509 if (!page_private(head)) {
3510 BUG_ON(count & COUNT_CONTINUED);
3511 INIT_LIST_HEAD(&head->lru);
3512 set_page_private(head, SWP_CONTINUED);
3513 si->flags |= SWP_CONTINUED;
3514 }
3515
3516 list_for_each_entry(list_page, &head->lru, lru) {
3517 unsigned char *map;
3518
3519 /*
3520 * If the previous map said no continuation, but we've found
3521 * a continuation page, free our allocation and use this one.
3522 */
3523 if (!(count & COUNT_CONTINUED))
3524 goto out_unlock_cont;
3525
3526 map = kmap_atomic(list_page) + offset;
3527 count = *map;
3528 kunmap_atomic(map);
3529
3530 /*
3531 * If this continuation count now has some space in it,
3532 * free our allocation and use this one.
3533 */
3534 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3535 goto out_unlock_cont;
3536 }
3537
3538 list_add_tail(&page->lru, &head->lru);
3539 page = NULL; /* now it's attached, don't free it */
3540 out_unlock_cont:
3541 spin_unlock(&si->cont_lock);
3542 out:
3543 unlock_cluster(ci);
3544 spin_unlock(&si->lock);
3545 put_swap_device(si);
3546 outer:
3547 if (page)
3548 __free_page(page);
3549 return ret;
3550 }
3551
3552 /*
3553 * swap_count_continued - when the original swap_map count is incremented
3554 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3555 * into, carry if so, or else fail until a new continuation page is allocated;
3556 * when the original swap_map count is decremented from 0 with continuation,
3557 * borrow from the continuation and report whether it still holds more.
3558 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3559 * lock.
3560 */
swap_count_continued(struct swap_info_struct *si, pgoff_t offset, unsigned char count)3561 static bool swap_count_continued(struct swap_info_struct *si,
3562 pgoff_t offset, unsigned char count)
3563 {
3564 struct page *head;
3565 struct page *page;
3566 unsigned char *map;
3567 bool ret;
3568
3569 head = vmalloc_to_page(si->swap_map + offset);
3570 if (page_private(head) != SWP_CONTINUED) {
3571 BUG_ON(count & COUNT_CONTINUED);
3572 return false; /* need to add count continuation */
3573 }
3574
3575 spin_lock(&si->cont_lock);
3576 offset &= ~PAGE_MASK;
3577 page = list_next_entry(head, lru);
3578 map = kmap_atomic(page) + offset;
3579
3580 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3581 goto init_map; /* jump over SWAP_CONT_MAX checks */
3582
3583 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3584 /*
3585 * Think of how you add 1 to 999
3586 */
3587 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3588 kunmap_atomic(map);
3589 page = list_next_entry(page, lru);
3590 BUG_ON(page == head);
3591 map = kmap_atomic(page) + offset;
3592 }
3593 if (*map == SWAP_CONT_MAX) {
3594 kunmap_atomic(map);
3595 page = list_next_entry(page, lru);
3596 if (page == head) {
3597 ret = false; /* add count continuation */
3598 goto out;
3599 }
3600 map = kmap_atomic(page) + offset;
3601 init_map: *map = 0; /* we didn't zero the page */
3602 }
3603 *map += 1;
3604 kunmap_atomic(map);
3605 while ((page = list_prev_entry(page, lru)) != head) {
3606 map = kmap_atomic(page) + offset;
3607 *map = COUNT_CONTINUED;
3608 kunmap_atomic(map);
3609 }
3610 ret = true; /* incremented */
3611
3612 } else { /* decrementing */
3613 /*
3614 * Think of how you subtract 1 from 1000
3615 */
3616 BUG_ON(count != COUNT_CONTINUED);
3617 while (*map == COUNT_CONTINUED) {
3618 kunmap_atomic(map);
3619 page = list_next_entry(page, lru);
3620 BUG_ON(page == head);
3621 map = kmap_atomic(page) + offset;
3622 }
3623 BUG_ON(*map == 0);
3624 *map -= 1;
3625 if (*map == 0)
3626 count = 0;
3627 kunmap_atomic(map);
3628 while ((page = list_prev_entry(page, lru)) != head) {
3629 map = kmap_atomic(page) + offset;
3630 *map = SWAP_CONT_MAX | count;
3631 count = COUNT_CONTINUED;
3632 kunmap_atomic(map);
3633 }
3634 ret = count == COUNT_CONTINUED;
3635 }
3636 out:
3637 spin_unlock(&si->cont_lock);
3638 return ret;
3639 }
3640
3641 /*
3642 * free_swap_count_continuations - swapoff free all the continuation pages
3643 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3644 */
free_swap_count_continuations(struct swap_info_struct *si)3645 static void free_swap_count_continuations(struct swap_info_struct *si)
3646 {
3647 pgoff_t offset;
3648
3649 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3650 struct page *head;
3651 head = vmalloc_to_page(si->swap_map + offset);
3652 if (page_private(head)) {
3653 struct page *page, *next;
3654
3655 list_for_each_entry_safe(page, next, &head->lru, lru) {
3656 list_del(&page->lru);
3657 __free_page(page);
3658 }
3659 }
3660 }
3661 }
3662
3663 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__folio_throttle_swaprate(struct folio *folio, gfp_t gfp)3664 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3665 {
3666 struct swap_info_struct *si, *next;
3667 int nid = folio_nid(folio);
3668
3669 if (!(gfp & __GFP_IO))
3670 return;
3671
3672 if (!blk_cgroup_congested())
3673 return;
3674
3675 /*
3676 * We've already scheduled a throttle, avoid taking the global swap
3677 * lock.
3678 */
3679 if (current->throttle_disk)
3680 return;
3681
3682 spin_lock(&swap_avail_lock);
3683 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3684 avail_lists[nid]) {
3685 if (si->bdev) {
3686 blkcg_schedule_throttle(si->bdev->bd_disk, true);
3687 break;
3688 }
3689 }
3690 spin_unlock(&swap_avail_lock);
3691 }
3692 #endif
3693
swapfile_init(void)3694 static int __init swapfile_init(void)
3695 {
3696 int nid;
3697
3698 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3699 GFP_KERNEL);
3700 if (!swap_avail_heads) {
3701 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3702 return -ENOMEM;
3703 }
3704
3705 for_each_node(nid)
3706 plist_head_init(&swap_avail_heads[nid]);
3707
3708 swapfile_maximum_size = arch_max_swapfile_size();
3709
3710 #ifdef CONFIG_MIGRATION
3711 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3712 swap_migration_ad_supported = true;
3713 #endif /* CONFIG_MIGRATION */
3714
3715 return 0;
3716 }
3717 subsys_initcall(swapfile_init);
3718