1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include <linux/zswapd.h>
50 #include "internal.h"
51 #include "swap.h"
52 
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 				 unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56 
57 static DEFINE_SPINLOCK(swap_lock);
58 static unsigned int nr_swapfiles;
59 atomic_long_t nr_swap_pages;
60 /*
61  * Some modules use swappable objects and may try to swap them out under
62  * memory pressure (via the shrinker). Before doing so, they may wish to
63  * check to see if any swap space is available.
64  */
65 EXPORT_SYMBOL_GPL(nr_swap_pages);
66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
67 long total_swap_pages;
68 static int least_priority = -1;
69 unsigned long swapfile_maximum_size;
70 #ifdef CONFIG_MIGRATION
71 bool swap_migration_ad_supported;
72 #endif	/* CONFIG_MIGRATION */
73 
74 static const char Bad_file[] = "Bad swap file entry ";
75 static const char Unused_file[] = "Unused swap file entry ";
76 static const char Bad_offset[] = "Bad swap offset entry ";
77 static const char Unused_offset[] = "Unused swap offset entry ";
78 
79 /*
80  * all active swap_info_structs
81  * protected with swap_lock, and ordered by priority.
82  */
83 static PLIST_HEAD(swap_active_head);
84 
85 /*
86  * all available (active, not full) swap_info_structs
87  * protected with swap_avail_lock, ordered by priority.
88  * This is used by folio_alloc_swap() instead of swap_active_head
89  * because swap_active_head includes all swap_info_structs,
90  * but folio_alloc_swap() doesn't need to look at full ones.
91  * This uses its own lock instead of swap_lock because when a
92  * swap_info_struct changes between not-full/full, it needs to
93  * add/remove itself to/from this list, but the swap_info_struct->lock
94  * is held and the locking order requires swap_lock to be taken
95  * before any swap_info_struct->lock.
96  */
97 static struct plist_head *swap_avail_heads;
98 static DEFINE_SPINLOCK(swap_avail_lock);
99 
100 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
101 
102 static DEFINE_MUTEX(swapon_mutex);
103 
104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105 /* Activity counter to indicate that a swapon or swapoff has occurred */
106 static atomic_t proc_poll_event = ATOMIC_INIT(0);
107 
108 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
109 
swap_type_to_swap_info(int type)110 static struct swap_info_struct *swap_type_to_swap_info(int type)
111 {
112 	if (type >= MAX_SWAPFILES)
113 		return NULL;
114 
115 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
116 }
117 
swap_count(unsigned char ent)118 static inline unsigned char swap_count(unsigned char ent)
119 {
120 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
121 }
122 
123 /* Reclaim the swap entry anyway if possible */
124 #define TTRS_ANYWAY		0x1
125 /*
126  * Reclaim the swap entry if there are no more mappings of the
127  * corresponding page
128  */
129 #define TTRS_UNMAPPED		0x2
130 /* Reclaim the swap entry if swap is getting full*/
131 #define TTRS_FULL		0x4
132 
133 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset, unsigned long flags)134 static int __try_to_reclaim_swap(struct swap_info_struct *si,
135 				 unsigned long offset, unsigned long flags)
136 {
137 	swp_entry_t entry = swp_entry(si->type, offset);
138 	struct folio *folio;
139 	int ret = 0;
140 
141 	folio = filemap_get_folio(swap_address_space(entry), offset);
142 	if (IS_ERR(folio))
143 		return 0;
144 	/*
145 	 * When this function is called from scan_swap_map_slots() and it's
146 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
147 	 * here. We have to use trylock for avoiding deadlock. This is a special
148 	 * case and you should use folio_free_swap() with explicit folio_lock()
149 	 * in usual operations.
150 	 */
151 	if (folio_trylock(folio)) {
152 		if ((flags & TTRS_ANYWAY) ||
153 		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
154 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
155 			ret = folio_free_swap(folio);
156 		folio_unlock(folio);
157 	}
158 	folio_put(folio);
159 	return ret;
160 }
161 
first_se(struct swap_info_struct *sis)162 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
163 {
164 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
165 	return rb_entry(rb, struct swap_extent, rb_node);
166 }
167 
next_se(struct swap_extent *se)168 static inline struct swap_extent *next_se(struct swap_extent *se)
169 {
170 	struct rb_node *rb = rb_next(&se->rb_node);
171 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
172 }
173 
174 /*
175  * swapon tell device that all the old swap contents can be discarded,
176  * to allow the swap device to optimize its wear-levelling.
177  */
discard_swap(struct swap_info_struct *si)178 static int discard_swap(struct swap_info_struct *si)
179 {
180 	struct swap_extent *se;
181 	sector_t start_block;
182 	sector_t nr_blocks;
183 	int err = 0;
184 
185 	/* Do not discard the swap header page! */
186 	se = first_se(si);
187 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
188 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
189 	if (nr_blocks) {
190 		err = blkdev_issue_discard(si->bdev, start_block,
191 				nr_blocks, GFP_KERNEL);
192 		if (err)
193 			return err;
194 		cond_resched();
195 	}
196 
197 	for (se = next_se(se); se; se = next_se(se)) {
198 		start_block = se->start_block << (PAGE_SHIFT - 9);
199 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
200 
201 		err = blkdev_issue_discard(si->bdev, start_block,
202 				nr_blocks, GFP_KERNEL);
203 		if (err)
204 			break;
205 
206 		cond_resched();
207 	}
208 	return err;		/* That will often be -EOPNOTSUPP */
209 }
210 
211 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)212 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
213 {
214 	struct swap_extent *se;
215 	struct rb_node *rb;
216 
217 	rb = sis->swap_extent_root.rb_node;
218 	while (rb) {
219 		se = rb_entry(rb, struct swap_extent, rb_node);
220 		if (offset < se->start_page)
221 			rb = rb->rb_left;
222 		else if (offset >= se->start_page + se->nr_pages)
223 			rb = rb->rb_right;
224 		else
225 			return se;
226 	}
227 	/* It *must* be present */
228 	BUG();
229 }
230 
swap_page_sector(struct page *page)231 sector_t swap_page_sector(struct page *page)
232 {
233 	struct swap_info_struct *sis = page_swap_info(page);
234 	struct swap_extent *se;
235 	sector_t sector;
236 	pgoff_t offset;
237 
238 	offset = __page_file_index(page);
239 	se = offset_to_swap_extent(sis, offset);
240 	sector = se->start_block + (offset - se->start_page);
241 	return sector << (PAGE_SHIFT - 9);
242 }
243 
244 /*
245  * swap allocation tell device that a cluster of swap can now be discarded,
246  * to allow the swap device to optimize its wear-levelling.
247  */
discard_swap_cluster(struct swap_info_struct *si, pgoff_t start_page, pgoff_t nr_pages)248 static void discard_swap_cluster(struct swap_info_struct *si,
249 				 pgoff_t start_page, pgoff_t nr_pages)
250 {
251 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
252 
253 	while (nr_pages) {
254 		pgoff_t offset = start_page - se->start_page;
255 		sector_t start_block = se->start_block + offset;
256 		sector_t nr_blocks = se->nr_pages - offset;
257 
258 		if (nr_blocks > nr_pages)
259 			nr_blocks = nr_pages;
260 		start_page += nr_blocks;
261 		nr_pages -= nr_blocks;
262 
263 		start_block <<= PAGE_SHIFT - 9;
264 		nr_blocks <<= PAGE_SHIFT - 9;
265 		if (blkdev_issue_discard(si->bdev, start_block,
266 					nr_blocks, GFP_NOIO))
267 			break;
268 
269 		se = next_se(se);
270 	}
271 }
272 
273 #ifdef CONFIG_THP_SWAP
274 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
275 
276 #define swap_entry_size(size)	(size)
277 #else
278 #define SWAPFILE_CLUSTER	256
279 
280 /*
281  * Define swap_entry_size() as constant to let compiler to optimize
282  * out some code if !CONFIG_THP_SWAP
283  */
284 #define swap_entry_size(size)	1
285 #endif
286 #define LATENCY_LIMIT		256
287 
cluster_set_flag(struct swap_cluster_info *info, unsigned int flag)288 static inline void cluster_set_flag(struct swap_cluster_info *info,
289 	unsigned int flag)
290 {
291 	info->flags = flag;
292 }
293 
cluster_count(struct swap_cluster_info *info)294 static inline unsigned int cluster_count(struct swap_cluster_info *info)
295 {
296 	return info->data;
297 }
298 
cluster_set_count(struct swap_cluster_info *info, unsigned int c)299 static inline void cluster_set_count(struct swap_cluster_info *info,
300 				     unsigned int c)
301 {
302 	info->data = c;
303 }
304 
cluster_set_count_flag(struct swap_cluster_info *info, unsigned int c, unsigned int f)305 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
306 					 unsigned int c, unsigned int f)
307 {
308 	info->flags = f;
309 	info->data = c;
310 }
311 
cluster_next(struct swap_cluster_info *info)312 static inline unsigned int cluster_next(struct swap_cluster_info *info)
313 {
314 	return info->data;
315 }
316 
cluster_set_next(struct swap_cluster_info *info, unsigned int n)317 static inline void cluster_set_next(struct swap_cluster_info *info,
318 				    unsigned int n)
319 {
320 	info->data = n;
321 }
322 
cluster_set_next_flag(struct swap_cluster_info *info, unsigned int n, unsigned int f)323 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
324 					 unsigned int n, unsigned int f)
325 {
326 	info->flags = f;
327 	info->data = n;
328 }
329 
cluster_is_free(struct swap_cluster_info *info)330 static inline bool cluster_is_free(struct swap_cluster_info *info)
331 {
332 	return info->flags & CLUSTER_FLAG_FREE;
333 }
334 
cluster_is_null(struct swap_cluster_info *info)335 static inline bool cluster_is_null(struct swap_cluster_info *info)
336 {
337 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
338 }
339 
cluster_set_null(struct swap_cluster_info *info)340 static inline void cluster_set_null(struct swap_cluster_info *info)
341 {
342 	info->flags = CLUSTER_FLAG_NEXT_NULL;
343 	info->data = 0;
344 }
345 
cluster_is_huge(struct swap_cluster_info *info)346 static inline bool cluster_is_huge(struct swap_cluster_info *info)
347 {
348 	if (IS_ENABLED(CONFIG_THP_SWAP))
349 		return info->flags & CLUSTER_FLAG_HUGE;
350 	return false;
351 }
352 
cluster_clear_huge(struct swap_cluster_info *info)353 static inline void cluster_clear_huge(struct swap_cluster_info *info)
354 {
355 	info->flags &= ~CLUSTER_FLAG_HUGE;
356 }
357 
lock_cluster(struct swap_info_struct *si, unsigned long offset)358 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
359 						     unsigned long offset)
360 {
361 	struct swap_cluster_info *ci;
362 
363 	ci = si->cluster_info;
364 	if (ci) {
365 		ci += offset / SWAPFILE_CLUSTER;
366 		spin_lock(&ci->lock);
367 	}
368 	return ci;
369 }
370 
unlock_cluster(struct swap_cluster_info *ci)371 static inline void unlock_cluster(struct swap_cluster_info *ci)
372 {
373 	if (ci)
374 		spin_unlock(&ci->lock);
375 }
376 
377 /*
378  * Determine the locking method in use for this device.  Return
379  * swap_cluster_info if SSD-style cluster-based locking is in place.
380  */
lock_cluster_or_swap_info( struct swap_info_struct *si, unsigned long offset)381 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
382 		struct swap_info_struct *si, unsigned long offset)
383 {
384 	struct swap_cluster_info *ci;
385 
386 	/* Try to use fine-grained SSD-style locking if available: */
387 	ci = lock_cluster(si, offset);
388 	/* Otherwise, fall back to traditional, coarse locking: */
389 	if (!ci)
390 		spin_lock(&si->lock);
391 
392 	return ci;
393 }
394 
unlock_cluster_or_swap_info(struct swap_info_struct *si, struct swap_cluster_info *ci)395 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
396 					       struct swap_cluster_info *ci)
397 {
398 	if (ci)
399 		unlock_cluster(ci);
400 	else
401 		spin_unlock(&si->lock);
402 }
403 
cluster_list_empty(struct swap_cluster_list *list)404 static inline bool cluster_list_empty(struct swap_cluster_list *list)
405 {
406 	return cluster_is_null(&list->head);
407 }
408 
cluster_list_first(struct swap_cluster_list *list)409 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
410 {
411 	return cluster_next(&list->head);
412 }
413 
cluster_list_init(struct swap_cluster_list *list)414 static void cluster_list_init(struct swap_cluster_list *list)
415 {
416 	cluster_set_null(&list->head);
417 	cluster_set_null(&list->tail);
418 }
419 
cluster_list_add_tail(struct swap_cluster_list *list, struct swap_cluster_info *ci, unsigned int idx)420 static void cluster_list_add_tail(struct swap_cluster_list *list,
421 				  struct swap_cluster_info *ci,
422 				  unsigned int idx)
423 {
424 	if (cluster_list_empty(list)) {
425 		cluster_set_next_flag(&list->head, idx, 0);
426 		cluster_set_next_flag(&list->tail, idx, 0);
427 	} else {
428 		struct swap_cluster_info *ci_tail;
429 		unsigned int tail = cluster_next(&list->tail);
430 
431 		/*
432 		 * Nested cluster lock, but both cluster locks are
433 		 * only acquired when we held swap_info_struct->lock
434 		 */
435 		ci_tail = ci + tail;
436 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
437 		cluster_set_next(ci_tail, idx);
438 		spin_unlock(&ci_tail->lock);
439 		cluster_set_next_flag(&list->tail, idx, 0);
440 	}
441 }
442 
cluster_list_del_first(struct swap_cluster_list *list, struct swap_cluster_info *ci)443 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
444 					   struct swap_cluster_info *ci)
445 {
446 	unsigned int idx;
447 
448 	idx = cluster_next(&list->head);
449 	if (cluster_next(&list->tail) == idx) {
450 		cluster_set_null(&list->head);
451 		cluster_set_null(&list->tail);
452 	} else
453 		cluster_set_next_flag(&list->head,
454 				      cluster_next(&ci[idx]), 0);
455 
456 	return idx;
457 }
458 
459 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct *si, unsigned int idx)460 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
461 		unsigned int idx)
462 {
463 	/*
464 	 * If scan_swap_map_slots() can't find a free cluster, it will check
465 	 * si->swap_map directly. To make sure the discarding cluster isn't
466 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
467 	 * It will be cleared after discard
468 	 */
469 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
470 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
471 
472 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
473 
474 	schedule_work(&si->discard_work);
475 }
476 
__free_cluster(struct swap_info_struct *si, unsigned long idx)477 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
478 {
479 	struct swap_cluster_info *ci = si->cluster_info;
480 
481 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
482 	cluster_list_add_tail(&si->free_clusters, ci, idx);
483 }
484 
485 /*
486  * Doing discard actually. After a cluster discard is finished, the cluster
487  * will be added to free cluster list. caller should hold si->lock.
488 */
swap_do_scheduled_discard(struct swap_info_struct *si)489 static void swap_do_scheduled_discard(struct swap_info_struct *si)
490 {
491 	struct swap_cluster_info *info, *ci;
492 	unsigned int idx;
493 
494 	info = si->cluster_info;
495 
496 	while (!cluster_list_empty(&si->discard_clusters)) {
497 		idx = cluster_list_del_first(&si->discard_clusters, info);
498 		spin_unlock(&si->lock);
499 
500 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
501 				SWAPFILE_CLUSTER);
502 
503 		spin_lock(&si->lock);
504 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
505 		__free_cluster(si, idx);
506 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
507 				0, SWAPFILE_CLUSTER);
508 		unlock_cluster(ci);
509 	}
510 }
511 
swap_discard_work(struct work_struct *work)512 static void swap_discard_work(struct work_struct *work)
513 {
514 	struct swap_info_struct *si;
515 
516 	si = container_of(work, struct swap_info_struct, discard_work);
517 
518 	spin_lock(&si->lock);
519 	swap_do_scheduled_discard(si);
520 	spin_unlock(&si->lock);
521 }
522 
swap_users_ref_free(struct percpu_ref *ref)523 static void swap_users_ref_free(struct percpu_ref *ref)
524 {
525 	struct swap_info_struct *si;
526 
527 	si = container_of(ref, struct swap_info_struct, users);
528 	complete(&si->comp);
529 }
530 
alloc_cluster(struct swap_info_struct *si, unsigned long idx)531 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533 	struct swap_cluster_info *ci = si->cluster_info;
534 
535 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
536 	cluster_list_del_first(&si->free_clusters, ci);
537 	cluster_set_count_flag(ci + idx, 0, 0);
538 }
539 
free_cluster(struct swap_info_struct *si, unsigned long idx)540 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
541 {
542 	struct swap_cluster_info *ci = si->cluster_info + idx;
543 
544 	VM_BUG_ON(cluster_count(ci) != 0);
545 	/*
546 	 * If the swap is discardable, prepare discard the cluster
547 	 * instead of free it immediately. The cluster will be freed
548 	 * after discard.
549 	 */
550 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
551 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
552 		swap_cluster_schedule_discard(si, idx);
553 		return;
554 	}
555 
556 	__free_cluster(si, idx);
557 }
558 
559 /*
560  * The cluster corresponding to page_nr will be used. The cluster will be
561  * removed from free cluster list and its usage counter will be increased.
562  */
inc_cluster_info_page(struct swap_info_struct *p, struct swap_cluster_info *cluster_info, unsigned long page_nr)563 static void inc_cluster_info_page(struct swap_info_struct *p,
564 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
565 {
566 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
567 
568 	if (!cluster_info)
569 		return;
570 	if (cluster_is_free(&cluster_info[idx]))
571 		alloc_cluster(p, idx);
572 
573 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
574 	cluster_set_count(&cluster_info[idx],
575 		cluster_count(&cluster_info[idx]) + 1);
576 }
577 
578 /*
579  * The cluster corresponding to page_nr decreases one usage. If the usage
580  * counter becomes 0, which means no page in the cluster is in using, we can
581  * optionally discard the cluster and add it to free cluster list.
582  */
dec_cluster_info_page(struct swap_info_struct *p, struct swap_cluster_info *cluster_info, unsigned long page_nr)583 static void dec_cluster_info_page(struct swap_info_struct *p,
584 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
585 {
586 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
587 
588 	if (!cluster_info)
589 		return;
590 
591 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
592 	cluster_set_count(&cluster_info[idx],
593 		cluster_count(&cluster_info[idx]) - 1);
594 
595 	if (cluster_count(&cluster_info[idx]) == 0)
596 		free_cluster(p, idx);
597 }
598 
599 /*
600  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
601  * cluster list. Avoiding such abuse to avoid list corruption.
602  */
603 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, unsigned long offset)604 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
605 	unsigned long offset)
606 {
607 	struct percpu_cluster *percpu_cluster;
608 	bool conflict;
609 
610 	offset /= SWAPFILE_CLUSTER;
611 	conflict = !cluster_list_empty(&si->free_clusters) &&
612 		offset != cluster_list_first(&si->free_clusters) &&
613 		cluster_is_free(&si->cluster_info[offset]);
614 
615 	if (!conflict)
616 		return false;
617 
618 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
619 	cluster_set_null(&percpu_cluster->index);
620 	return true;
621 }
622 
623 /*
624  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
625  * might involve allocating a new cluster for current CPU too.
626  */
scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, unsigned long *offset, unsigned long *scan_base)627 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
628 	unsigned long *offset, unsigned long *scan_base)
629 {
630 	struct percpu_cluster *cluster;
631 	struct swap_cluster_info *ci;
632 	unsigned long tmp, max;
633 
634 new_cluster:
635 	cluster = this_cpu_ptr(si->percpu_cluster);
636 	if (cluster_is_null(&cluster->index)) {
637 		if (!cluster_list_empty(&si->free_clusters)) {
638 			cluster->index = si->free_clusters.head;
639 			cluster->next = cluster_next(&cluster->index) *
640 					SWAPFILE_CLUSTER;
641 		} else if (!cluster_list_empty(&si->discard_clusters)) {
642 			/*
643 			 * we don't have free cluster but have some clusters in
644 			 * discarding, do discard now and reclaim them, then
645 			 * reread cluster_next_cpu since we dropped si->lock
646 			 */
647 			swap_do_scheduled_discard(si);
648 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
649 			*offset = *scan_base;
650 			goto new_cluster;
651 		} else
652 			return false;
653 	}
654 
655 	/*
656 	 * Other CPUs can use our cluster if they can't find a free cluster,
657 	 * check if there is still free entry in the cluster
658 	 */
659 	tmp = cluster->next;
660 	max = min_t(unsigned long, si->max,
661 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
662 	if (tmp < max) {
663 		ci = lock_cluster(si, tmp);
664 		while (tmp < max) {
665 			if (!si->swap_map[tmp])
666 				break;
667 			tmp++;
668 		}
669 		unlock_cluster(ci);
670 	}
671 	if (tmp >= max) {
672 		cluster_set_null(&cluster->index);
673 		goto new_cluster;
674 	}
675 	cluster->next = tmp + 1;
676 	*offset = tmp;
677 	*scan_base = tmp;
678 	return true;
679 }
680 
__del_from_avail_list(struct swap_info_struct *p)681 static void __del_from_avail_list(struct swap_info_struct *p)
682 {
683 	int nid;
684 
685 	assert_spin_locked(&p->lock);
686 	for_each_node(nid)
687 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
688 }
689 
del_from_avail_list(struct swap_info_struct *p)690 static void del_from_avail_list(struct swap_info_struct *p)
691 {
692 	spin_lock(&swap_avail_lock);
693 	__del_from_avail_list(p);
694 	spin_unlock(&swap_avail_lock);
695 }
696 
swap_range_alloc(struct swap_info_struct *si, unsigned long offset, unsigned int nr_entries)697 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
698 			     unsigned int nr_entries)
699 {
700 	unsigned int end = offset + nr_entries - 1;
701 
702 	if (offset == si->lowest_bit)
703 		si->lowest_bit += nr_entries;
704 	if (end == si->highest_bit)
705 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
706 	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
707 	if (si->inuse_pages == si->pages) {
708 		si->lowest_bit = si->max;
709 		si->highest_bit = 0;
710 		del_from_avail_list(si);
711 	}
712 }
713 
add_to_avail_list(struct swap_info_struct *p)714 static void add_to_avail_list(struct swap_info_struct *p)
715 {
716 	int nid;
717 
718 	spin_lock(&swap_avail_lock);
719 	for_each_node(nid)
720 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
721 	spin_unlock(&swap_avail_lock);
722 }
723 
swap_range_free(struct swap_info_struct *si, unsigned long offset, unsigned int nr_entries)724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
725 			    unsigned int nr_entries)
726 {
727 	unsigned long begin = offset;
728 	unsigned long end = offset + nr_entries - 1;
729 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
730 
731 	if (offset < si->lowest_bit)
732 		si->lowest_bit = offset;
733 	if (end > si->highest_bit) {
734 		bool was_full = !si->highest_bit;
735 
736 		WRITE_ONCE(si->highest_bit, end);
737 		if (was_full && (si->flags & SWP_WRITEOK))
738 			add_to_avail_list(si);
739 	}
740 	atomic_long_add(nr_entries, &nr_swap_pages);
741 	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
742 	if (si->flags & SWP_BLKDEV)
743 		swap_slot_free_notify =
744 			si->bdev->bd_disk->fops->swap_slot_free_notify;
745 	else
746 		swap_slot_free_notify = NULL;
747 	while (offset <= end) {
748 		arch_swap_invalidate_page(si->type, offset);
749 		zswap_invalidate(si->type, offset);
750 		if (swap_slot_free_notify)
751 			swap_slot_free_notify(si->bdev, offset);
752 		offset++;
753 	}
754 	clear_shadow_from_swap_cache(si->type, begin, end);
755 }
756 
set_cluster_next(struct swap_info_struct *si, unsigned long next)757 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
758 {
759 	unsigned long prev;
760 
761 	if (!(si->flags & SWP_SOLIDSTATE)) {
762 		si->cluster_next = next;
763 		return;
764 	}
765 
766 	prev = this_cpu_read(*si->cluster_next_cpu);
767 	/*
768 	 * Cross the swap address space size aligned trunk, choose
769 	 * another trunk randomly to avoid lock contention on swap
770 	 * address space if possible.
771 	 */
772 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
773 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
774 		/* No free swap slots available */
775 		if (si->highest_bit <= si->lowest_bit)
776 			return;
777 		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
778 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
779 		next = max_t(unsigned int, next, si->lowest_bit);
780 	}
781 	this_cpu_write(*si->cluster_next_cpu, next);
782 }
783 
swap_offset_available_and_locked(struct swap_info_struct *si, unsigned long offset)784 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
785 					     unsigned long offset)
786 {
787 	if (data_race(!si->swap_map[offset])) {
788 		spin_lock(&si->lock);
789 		return true;
790 	}
791 
792 	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
793 		spin_lock(&si->lock);
794 		return true;
795 	}
796 
797 	return false;
798 }
799 
scan_swap_map_slots(struct swap_info_struct *si, unsigned char usage, int nr, swp_entry_t slots[])800 static int scan_swap_map_slots(struct swap_info_struct *si,
801 			       unsigned char usage, int nr,
802 			       swp_entry_t slots[])
803 {
804 	struct swap_cluster_info *ci;
805 	unsigned long offset;
806 	unsigned long scan_base;
807 	unsigned long last_in_cluster = 0;
808 	int latency_ration = LATENCY_LIMIT;
809 	int n_ret = 0;
810 	bool scanned_many = false;
811 
812 	/*
813 	 * We try to cluster swap pages by allocating them sequentially
814 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
815 	 * way, however, we resort to first-free allocation, starting
816 	 * a new cluster.  This prevents us from scattering swap pages
817 	 * all over the entire swap partition, so that we reduce
818 	 * overall disk seek times between swap pages.  -- sct
819 	 * But we do now try to find an empty cluster.  -Andrea
820 	 * And we let swap pages go all over an SSD partition.  Hugh
821 	 */
822 
823 	si->flags += SWP_SCANNING;
824 	/*
825 	 * Use percpu scan base for SSD to reduce lock contention on
826 	 * cluster and swap cache.  For HDD, sequential access is more
827 	 * important.
828 	 */
829 	if (si->flags & SWP_SOLIDSTATE)
830 		scan_base = this_cpu_read(*si->cluster_next_cpu);
831 	else
832 		scan_base = si->cluster_next;
833 	offset = scan_base;
834 
835 	/* SSD algorithm */
836 	if (si->cluster_info) {
837 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838 			goto scan;
839 	} else if (unlikely(!si->cluster_nr--)) {
840 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
841 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
842 			goto checks;
843 		}
844 
845 		spin_unlock(&si->lock);
846 
847 		/*
848 		 * If seek is expensive, start searching for new cluster from
849 		 * start of partition, to minimize the span of allocated swap.
850 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
851 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
852 		 */
853 		scan_base = offset = si->lowest_bit;
854 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
855 
856 		/* Locate the first empty (unaligned) cluster */
857 		for (; last_in_cluster <= si->highest_bit; offset++) {
858 			if (si->swap_map[offset])
859 				last_in_cluster = offset + SWAPFILE_CLUSTER;
860 			else if (offset == last_in_cluster) {
861 				spin_lock(&si->lock);
862 				offset -= SWAPFILE_CLUSTER - 1;
863 				si->cluster_next = offset;
864 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
865 				goto checks;
866 			}
867 			if (unlikely(--latency_ration < 0)) {
868 				cond_resched();
869 				latency_ration = LATENCY_LIMIT;
870 			}
871 		}
872 
873 		offset = scan_base;
874 		spin_lock(&si->lock);
875 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
876 	}
877 
878 checks:
879 	if (si->cluster_info) {
880 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
881 		/* take a break if we already got some slots */
882 			if (n_ret)
883 				goto done;
884 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
885 							&scan_base))
886 				goto scan;
887 		}
888 	}
889 	if (!(si->flags & SWP_WRITEOK))
890 		goto no_page;
891 	if (!si->highest_bit)
892 		goto no_page;
893 	if (offset > si->highest_bit)
894 		scan_base = offset = si->lowest_bit;
895 
896 	ci = lock_cluster(si, offset);
897 	/* reuse swap entry of cache-only swap if not busy. */
898 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
899 		int swap_was_freed;
900 		unlock_cluster(ci);
901 		spin_unlock(&si->lock);
902 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
903 		spin_lock(&si->lock);
904 		/* entry was freed successfully, try to use this again */
905 		if (swap_was_freed)
906 			goto checks;
907 		goto scan; /* check next one */
908 	}
909 
910 	if (si->swap_map[offset]) {
911 		unlock_cluster(ci);
912 		if (!n_ret)
913 			goto scan;
914 		else
915 			goto done;
916 	}
917 	WRITE_ONCE(si->swap_map[offset], usage);
918 	inc_cluster_info_page(si, si->cluster_info, offset);
919 	unlock_cluster(ci);
920 
921 	swap_range_alloc(si, offset, 1);
922 	slots[n_ret++] = swp_entry(si->type, offset);
923 
924 	/* got enough slots or reach max slots? */
925 	if ((n_ret == nr) || (offset >= si->highest_bit))
926 		goto done;
927 
928 	/* search for next available slot */
929 
930 	/* time to take a break? */
931 	if (unlikely(--latency_ration < 0)) {
932 		if (n_ret)
933 			goto done;
934 		spin_unlock(&si->lock);
935 		cond_resched();
936 		spin_lock(&si->lock);
937 		latency_ration = LATENCY_LIMIT;
938 	}
939 
940 	/* try to get more slots in cluster */
941 	if (si->cluster_info) {
942 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
943 			goto checks;
944 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
945 		/* non-ssd case, still more slots in cluster? */
946 		--si->cluster_nr;
947 		goto checks;
948 	}
949 
950 	/*
951 	 * Even if there's no free clusters available (fragmented),
952 	 * try to scan a little more quickly with lock held unless we
953 	 * have scanned too many slots already.
954 	 */
955 	if (!scanned_many) {
956 		unsigned long scan_limit;
957 
958 		if (offset < scan_base)
959 			scan_limit = scan_base;
960 		else
961 			scan_limit = si->highest_bit;
962 		for (; offset <= scan_limit && --latency_ration > 0;
963 		     offset++) {
964 			if (!si->swap_map[offset])
965 				goto checks;
966 		}
967 	}
968 
969 done:
970 	set_cluster_next(si, offset + 1);
971 	si->flags -= SWP_SCANNING;
972 	return n_ret;
973 
974 scan:
975 	spin_unlock(&si->lock);
976 	while (++offset <= READ_ONCE(si->highest_bit)) {
977 		if (unlikely(--latency_ration < 0)) {
978 			cond_resched();
979 			latency_ration = LATENCY_LIMIT;
980 			scanned_many = true;
981 		}
982 		if (swap_offset_available_and_locked(si, offset))
983 			goto checks;
984 	}
985 	offset = si->lowest_bit;
986 	while (offset < scan_base) {
987 		if (unlikely(--latency_ration < 0)) {
988 			cond_resched();
989 			latency_ration = LATENCY_LIMIT;
990 			scanned_many = true;
991 		}
992 		if (swap_offset_available_and_locked(si, offset))
993 			goto checks;
994 		offset++;
995 	}
996 	spin_lock(&si->lock);
997 
998 no_page:
999 	si->flags -= SWP_SCANNING;
1000 	return n_ret;
1001 }
1002 
swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)1003 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1004 {
1005 	unsigned long idx;
1006 	struct swap_cluster_info *ci;
1007 	unsigned long offset;
1008 
1009 	/*
1010 	 * Should not even be attempting cluster allocations when huge
1011 	 * page swap is disabled.  Warn and fail the allocation.
1012 	 */
1013 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1014 		VM_WARN_ON_ONCE(1);
1015 		return 0;
1016 	}
1017 
1018 	if (cluster_list_empty(&si->free_clusters))
1019 		return 0;
1020 
1021 	idx = cluster_list_first(&si->free_clusters);
1022 	offset = idx * SWAPFILE_CLUSTER;
1023 	ci = lock_cluster(si, offset);
1024 	alloc_cluster(si, idx);
1025 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1026 
1027 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1028 	unlock_cluster(ci);
1029 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1030 	*slot = swp_entry(si->type, offset);
1031 
1032 	return 1;
1033 }
1034 
swap_free_cluster(struct swap_info_struct *si, unsigned long idx)1035 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1036 {
1037 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1038 	struct swap_cluster_info *ci;
1039 
1040 	ci = lock_cluster(si, offset);
1041 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1042 	cluster_set_count_flag(ci, 0, 0);
1043 	free_cluster(si, idx);
1044 	unlock_cluster(ci);
1045 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1046 }
1047 
get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)1048 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1049 {
1050 	unsigned long size = swap_entry_size(entry_size);
1051 	struct swap_info_struct *si, *next;
1052 	long avail_pgs;
1053 	int n_ret = 0;
1054 	int node;
1055 
1056 	/* Only single cluster request supported */
1057 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1058 
1059 	spin_lock(&swap_avail_lock);
1060 
1061 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1062 	if (avail_pgs <= 0) {
1063 		spin_unlock(&swap_avail_lock);
1064 		goto noswap;
1065 	}
1066 
1067 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1068 
1069 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1070 
1071 start_over:
1072 	node = numa_node_id();
1073 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1074 		/* requeue si to after same-priority siblings */
1075 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1076 		spin_unlock(&swap_avail_lock);
1077 		spin_lock(&si->lock);
1078 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1079 			spin_lock(&swap_avail_lock);
1080 			if (plist_node_empty(&si->avail_lists[node])) {
1081 				spin_unlock(&si->lock);
1082 				goto nextsi;
1083 			}
1084 			WARN(!si->highest_bit,
1085 			     "swap_info %d in list but !highest_bit\n",
1086 			     si->type);
1087 			WARN(!(si->flags & SWP_WRITEOK),
1088 			     "swap_info %d in list but !SWP_WRITEOK\n",
1089 			     si->type);
1090 			__del_from_avail_list(si);
1091 			spin_unlock(&si->lock);
1092 			goto nextsi;
1093 		}
1094 		if (size == SWAPFILE_CLUSTER) {
1095 			if (si->flags & SWP_BLKDEV)
1096 				n_ret = swap_alloc_cluster(si, swp_entries);
1097 		} else
1098 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1099 						    n_goal, swp_entries);
1100 		spin_unlock(&si->lock);
1101 		if (n_ret || size == SWAPFILE_CLUSTER)
1102 			goto check_out;
1103 		cond_resched();
1104 
1105 		spin_lock(&swap_avail_lock);
1106 nextsi:
1107 		/*
1108 		 * if we got here, it's likely that si was almost full before,
1109 		 * and since scan_swap_map_slots() can drop the si->lock,
1110 		 * multiple callers probably all tried to get a page from the
1111 		 * same si and it filled up before we could get one; or, the si
1112 		 * filled up between us dropping swap_avail_lock and taking
1113 		 * si->lock. Since we dropped the swap_avail_lock, the
1114 		 * swap_avail_head list may have been modified; so if next is
1115 		 * still in the swap_avail_head list then try it, otherwise
1116 		 * start over if we have not gotten any slots.
1117 		 */
1118 		if (plist_node_empty(&next->avail_lists[node]))
1119 			goto start_over;
1120 	}
1121 
1122 	spin_unlock(&swap_avail_lock);
1123 
1124 check_out:
1125 	if (n_ret < n_goal)
1126 		atomic_long_add((long)(n_goal - n_ret) * size,
1127 				&nr_swap_pages);
1128 noswap:
1129 	return n_ret;
1130 }
1131 
_swap_info_get(swp_entry_t entry)1132 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1133 {
1134 	struct swap_info_struct *p;
1135 	unsigned long offset;
1136 
1137 	if (!entry.val)
1138 		goto out;
1139 	p = swp_swap_info(entry);
1140 	if (!p)
1141 		goto bad_nofile;
1142 	if (data_race(!(p->flags & SWP_USED)))
1143 		goto bad_device;
1144 	offset = swp_offset(entry);
1145 	if (offset >= p->max)
1146 		goto bad_offset;
1147 	if (data_race(!p->swap_map[swp_offset(entry)]))
1148 		goto bad_free;
1149 	return p;
1150 
1151 bad_free:
1152 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1153 	goto out;
1154 bad_offset:
1155 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1156 	goto out;
1157 bad_device:
1158 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1159 	goto out;
1160 bad_nofile:
1161 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1162 out:
1163 	return NULL;
1164 }
1165 
swap_info_get_cont(swp_entry_t entry, struct swap_info_struct *q)1166 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1167 					struct swap_info_struct *q)
1168 {
1169 	struct swap_info_struct *p;
1170 
1171 	p = _swap_info_get(entry);
1172 
1173 	if (p != q) {
1174 		if (q != NULL)
1175 			spin_unlock(&q->lock);
1176 		if (p != NULL)
1177 			spin_lock(&p->lock);
1178 	}
1179 	return p;
1180 }
1181 
__swap_entry_free_locked(struct swap_info_struct *p, unsigned long offset, unsigned char usage)1182 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1183 					      unsigned long offset,
1184 					      unsigned char usage)
1185 {
1186 	unsigned char count;
1187 	unsigned char has_cache;
1188 
1189 	count = p->swap_map[offset];
1190 
1191 	has_cache = count & SWAP_HAS_CACHE;
1192 	count &= ~SWAP_HAS_CACHE;
1193 
1194 	if (usage == SWAP_HAS_CACHE) {
1195 		VM_BUG_ON(!has_cache);
1196 		has_cache = 0;
1197 	} else if (count == SWAP_MAP_SHMEM) {
1198 		/*
1199 		 * Or we could insist on shmem.c using a special
1200 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1201 		 */
1202 		count = 0;
1203 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1204 		if (count == COUNT_CONTINUED) {
1205 			if (swap_count_continued(p, offset, count))
1206 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1207 			else
1208 				count = SWAP_MAP_MAX;
1209 		} else
1210 			count--;
1211 	}
1212 
1213 	usage = count | has_cache;
1214 	if (usage)
1215 		WRITE_ONCE(p->swap_map[offset], usage);
1216 	else
1217 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1218 
1219 	return usage;
1220 }
1221 
1222 /*
1223  * When we get a swap entry, if there aren't some other ways to
1224  * prevent swapoff, such as the folio in swap cache is locked, page
1225  * table lock is held, etc., the swap entry may become invalid because
1226  * of swapoff.  Then, we need to enclose all swap related functions
1227  * with get_swap_device() and put_swap_device(), unless the swap
1228  * functions call get/put_swap_device() by themselves.
1229  *
1230  * Note that when only holding the PTL, swapoff might succeed immediately
1231  * after freeing a swap entry. Therefore, immediately after
1232  * __swap_entry_free(), the swap info might become stale and should not
1233  * be touched without a prior get_swap_device().
1234  *
1235  * Check whether swap entry is valid in the swap device.  If so,
1236  * return pointer to swap_info_struct, and keep the swap entry valid
1237  * via preventing the swap device from being swapoff, until
1238  * put_swap_device() is called.  Otherwise return NULL.
1239  *
1240  * Notice that swapoff or swapoff+swapon can still happen before the
1241  * percpu_ref_tryget_live() in get_swap_device() or after the
1242  * percpu_ref_put() in put_swap_device() if there isn't any other way
1243  * to prevent swapoff.  The caller must be prepared for that.  For
1244  * example, the following situation is possible.
1245  *
1246  *   CPU1				CPU2
1247  *   do_swap_page()
1248  *     ...				swapoff+swapon
1249  *     __read_swap_cache_async()
1250  *       swapcache_prepare()
1251  *         __swap_duplicate()
1252  *           // check swap_map
1253  *     // verify PTE not changed
1254  *
1255  * In __swap_duplicate(), the swap_map need to be checked before
1256  * changing partly because the specified swap entry may be for another
1257  * swap device which has been swapoff.  And in do_swap_page(), after
1258  * the page is read from the swap device, the PTE is verified not
1259  * changed with the page table locked to check whether the swap device
1260  * has been swapoff or swapoff+swapon.
1261  */
get_swap_device(swp_entry_t entry)1262 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1263 {
1264 	struct swap_info_struct *si;
1265 	unsigned long offset;
1266 
1267 	if (!entry.val)
1268 		goto out;
1269 	si = swp_swap_info(entry);
1270 	if (!si)
1271 		goto bad_nofile;
1272 	if (!percpu_ref_tryget_live(&si->users))
1273 		goto out;
1274 	/*
1275 	 * Guarantee the si->users are checked before accessing other
1276 	 * fields of swap_info_struct.
1277 	 *
1278 	 * Paired with the spin_unlock() after setup_swap_info() in
1279 	 * enable_swap_info().
1280 	 */
1281 	smp_rmb();
1282 	offset = swp_offset(entry);
1283 	if (offset >= si->max)
1284 		goto put_out;
1285 
1286 	return si;
1287 bad_nofile:
1288 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1289 out:
1290 	return NULL;
1291 put_out:
1292 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1293 	percpu_ref_put(&si->users);
1294 	return NULL;
1295 }
1296 
__swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)1297 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1298 				       swp_entry_t entry)
1299 {
1300 	struct swap_cluster_info *ci;
1301 	unsigned long offset = swp_offset(entry);
1302 	unsigned char usage;
1303 
1304 	ci = lock_cluster_or_swap_info(p, offset);
1305 	usage = __swap_entry_free_locked(p, offset, 1);
1306 	unlock_cluster_or_swap_info(p, ci);
1307 	if (!usage)
1308 		free_swap_slot(entry);
1309 
1310 	return usage;
1311 }
1312 
swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)1313 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1314 {
1315 	struct swap_cluster_info *ci;
1316 	unsigned long offset = swp_offset(entry);
1317 	unsigned char count;
1318 
1319 	ci = lock_cluster(p, offset);
1320 	count = p->swap_map[offset];
1321 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1322 	p->swap_map[offset] = 0;
1323 	dec_cluster_info_page(p, p->cluster_info, offset);
1324 	unlock_cluster(ci);
1325 
1326 	mem_cgroup_uncharge_swap(entry, 1);
1327 	swap_range_free(p, offset, 1);
1328 }
1329 
1330 /*
1331  * Caller has made sure that the swap device corresponding to entry
1332  * is still around or has not been recycled.
1333  */
swap_free(swp_entry_t entry)1334 void swap_free(swp_entry_t entry)
1335 {
1336 	struct swap_info_struct *p;
1337 
1338 	p = _swap_info_get(entry);
1339 	if (p)
1340 		__swap_entry_free(p, entry);
1341 }
1342 
1343 /*
1344  * Called after dropping swapcache to decrease refcnt to swap entries.
1345  */
put_swap_folio(struct folio *folio, swp_entry_t entry)1346 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1347 {
1348 	unsigned long offset = swp_offset(entry);
1349 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1350 	struct swap_cluster_info *ci;
1351 	struct swap_info_struct *si;
1352 	unsigned char *map;
1353 	unsigned int i, free_entries = 0;
1354 	unsigned char val;
1355 	int size = swap_entry_size(folio_nr_pages(folio));
1356 
1357 	si = _swap_info_get(entry);
1358 	if (!si)
1359 		return;
1360 
1361 	ci = lock_cluster_or_swap_info(si, offset);
1362 	if (size == SWAPFILE_CLUSTER) {
1363 		VM_BUG_ON(!cluster_is_huge(ci));
1364 		map = si->swap_map + offset;
1365 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1366 			val = map[i];
1367 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1368 			if (val == SWAP_HAS_CACHE)
1369 				free_entries++;
1370 		}
1371 		cluster_clear_huge(ci);
1372 		if (free_entries == SWAPFILE_CLUSTER) {
1373 			unlock_cluster_or_swap_info(si, ci);
1374 			spin_lock(&si->lock);
1375 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1376 			swap_free_cluster(si, idx);
1377 			spin_unlock(&si->lock);
1378 			return;
1379 		}
1380 	}
1381 	for (i = 0; i < size; i++, entry.val++) {
1382 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1383 			unlock_cluster_or_swap_info(si, ci);
1384 			free_swap_slot(entry);
1385 			if (i == size - 1)
1386 				return;
1387 			lock_cluster_or_swap_info(si, offset);
1388 		}
1389 	}
1390 	unlock_cluster_or_swap_info(si, ci);
1391 }
1392 
1393 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1394 int split_swap_cluster(swp_entry_t entry)
1395 {
1396 	struct swap_info_struct *si;
1397 	struct swap_cluster_info *ci;
1398 	unsigned long offset = swp_offset(entry);
1399 
1400 	si = _swap_info_get(entry);
1401 	if (!si)
1402 		return -EBUSY;
1403 	ci = lock_cluster(si, offset);
1404 	cluster_clear_huge(ci);
1405 	unlock_cluster(ci);
1406 	return 0;
1407 }
1408 #endif
1409 
swp_entry_cmp(const void *ent1, const void *ent2)1410 static int swp_entry_cmp(const void *ent1, const void *ent2)
1411 {
1412 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1413 
1414 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1415 }
1416 
swapcache_free_entries(swp_entry_t *entries, int n)1417 void swapcache_free_entries(swp_entry_t *entries, int n)
1418 {
1419 	struct swap_info_struct *p, *prev;
1420 	int i;
1421 
1422 	if (n <= 0)
1423 		return;
1424 
1425 	prev = NULL;
1426 	p = NULL;
1427 
1428 	/*
1429 	 * Sort swap entries by swap device, so each lock is only taken once.
1430 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1431 	 * so low that it isn't necessary to optimize further.
1432 	 */
1433 	if (nr_swapfiles > 1)
1434 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1435 	for (i = 0; i < n; ++i) {
1436 		p = swap_info_get_cont(entries[i], prev);
1437 		if (p)
1438 			swap_entry_free(p, entries[i]);
1439 		prev = p;
1440 	}
1441 	if (p)
1442 		spin_unlock(&p->lock);
1443 }
1444 
__swap_count(swp_entry_t entry)1445 int __swap_count(swp_entry_t entry)
1446 {
1447 	struct swap_info_struct *si = swp_swap_info(entry);
1448 	pgoff_t offset = swp_offset(entry);
1449 
1450 	return swap_count(si->swap_map[offset]);
1451 }
1452 
1453 /*
1454  * How many references to @entry are currently swapped out?
1455  * This does not give an exact answer when swap count is continued,
1456  * but does include the high COUNT_CONTINUED flag to allow for that.
1457  */
swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)1458 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1459 {
1460 	pgoff_t offset = swp_offset(entry);
1461 	struct swap_cluster_info *ci;
1462 	int count;
1463 
1464 	ci = lock_cluster_or_swap_info(si, offset);
1465 	count = swap_count(si->swap_map[offset]);
1466 	unlock_cluster_or_swap_info(si, ci);
1467 	return count;
1468 }
1469 
1470 /*
1471  * How many references to @entry are currently swapped out?
1472  * This considers COUNT_CONTINUED so it returns exact answer.
1473  */
swp_swapcount(swp_entry_t entry)1474 int swp_swapcount(swp_entry_t entry)
1475 {
1476 	int count, tmp_count, n;
1477 	struct swap_info_struct *p;
1478 	struct swap_cluster_info *ci;
1479 	struct page *page;
1480 	pgoff_t offset;
1481 	unsigned char *map;
1482 
1483 	p = _swap_info_get(entry);
1484 	if (!p)
1485 		return 0;
1486 
1487 	offset = swp_offset(entry);
1488 
1489 	ci = lock_cluster_or_swap_info(p, offset);
1490 
1491 	count = swap_count(p->swap_map[offset]);
1492 	if (!(count & COUNT_CONTINUED))
1493 		goto out;
1494 
1495 	count &= ~COUNT_CONTINUED;
1496 	n = SWAP_MAP_MAX + 1;
1497 
1498 	page = vmalloc_to_page(p->swap_map + offset);
1499 	offset &= ~PAGE_MASK;
1500 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1501 
1502 	do {
1503 		page = list_next_entry(page, lru);
1504 		map = kmap_atomic(page);
1505 		tmp_count = map[offset];
1506 		kunmap_atomic(map);
1507 
1508 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1509 		n *= (SWAP_CONT_MAX + 1);
1510 	} while (tmp_count & COUNT_CONTINUED);
1511 out:
1512 	unlock_cluster_or_swap_info(p, ci);
1513 	return count;
1514 }
1515 
swap_page_trans_huge_swapped(struct swap_info_struct *si, swp_entry_t entry)1516 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1517 					 swp_entry_t entry)
1518 {
1519 	struct swap_cluster_info *ci;
1520 	unsigned char *map = si->swap_map;
1521 	unsigned long roffset = swp_offset(entry);
1522 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1523 	int i;
1524 	bool ret = false;
1525 
1526 	ci = lock_cluster_or_swap_info(si, offset);
1527 	if (!ci || !cluster_is_huge(ci)) {
1528 		if (swap_count(map[roffset]))
1529 			ret = true;
1530 		goto unlock_out;
1531 	}
1532 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1533 		if (swap_count(map[offset + i])) {
1534 			ret = true;
1535 			break;
1536 		}
1537 	}
1538 unlock_out:
1539 	unlock_cluster_or_swap_info(si, ci);
1540 	return ret;
1541 }
1542 
folio_swapped(struct folio *folio)1543 static bool folio_swapped(struct folio *folio)
1544 {
1545 	swp_entry_t entry = folio->swap;
1546 	struct swap_info_struct *si = _swap_info_get(entry);
1547 
1548 	if (!si)
1549 		return false;
1550 
1551 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1552 		return swap_swapcount(si, entry) != 0;
1553 
1554 	return swap_page_trans_huge_swapped(si, entry);
1555 }
1556 
1557 /**
1558  * folio_free_swap() - Free the swap space used for this folio.
1559  * @folio: The folio to remove.
1560  *
1561  * If swap is getting full, or if there are no more mappings of this folio,
1562  * then call folio_free_swap to free its swap space.
1563  *
1564  * Return: true if we were able to release the swap space.
1565  */
folio_free_swap(struct folio *folio)1566 bool folio_free_swap(struct folio *folio)
1567 {
1568 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1569 
1570 	if (!folio_test_swapcache(folio))
1571 		return false;
1572 	if (folio_test_writeback(folio))
1573 		return false;
1574 	if (folio_swapped(folio))
1575 		return false;
1576 
1577 	/*
1578 	 * Once hibernation has begun to create its image of memory,
1579 	 * there's a danger that one of the calls to folio_free_swap()
1580 	 * - most probably a call from __try_to_reclaim_swap() while
1581 	 * hibernation is allocating its own swap pages for the image,
1582 	 * but conceivably even a call from memory reclaim - will free
1583 	 * the swap from a folio which has already been recorded in the
1584 	 * image as a clean swapcache folio, and then reuse its swap for
1585 	 * another page of the image.  On waking from hibernation, the
1586 	 * original folio might be freed under memory pressure, then
1587 	 * later read back in from swap, now with the wrong data.
1588 	 *
1589 	 * Hibernation suspends storage while it is writing the image
1590 	 * to disk so check that here.
1591 	 */
1592 	if (pm_suspended_storage())
1593 		return false;
1594 
1595 	delete_from_swap_cache(folio);
1596 	folio_set_dirty(folio);
1597 	return true;
1598 }
1599 
1600 /*
1601  * Free the swap entry like above, but also try to
1602  * free the page cache entry if it is the last user.
1603  */
free_swap_and_cache(swp_entry_t entry)1604 int free_swap_and_cache(swp_entry_t entry)
1605 {
1606 	struct swap_info_struct *p;
1607 	unsigned char count;
1608 
1609 	if (non_swap_entry(entry))
1610 		return 1;
1611 
1612 	p = get_swap_device(entry);
1613 	if (p) {
1614 		if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) {
1615 			put_swap_device(p);
1616 			return 0;
1617 		}
1618 
1619 		count = __swap_entry_free(p, entry);
1620 		if (count == SWAP_HAS_CACHE &&
1621 		    !swap_page_trans_huge_swapped(p, entry))
1622 			__try_to_reclaim_swap(p, swp_offset(entry),
1623 					      TTRS_UNMAPPED | TTRS_FULL);
1624 		put_swap_device(p);
1625 	}
1626 	return p != NULL;
1627 }
1628 
1629 #ifdef CONFIG_HIBERNATION
1630 
get_swap_page_of_type(int type)1631 swp_entry_t get_swap_page_of_type(int type)
1632 {
1633 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1634 	swp_entry_t entry = {0};
1635 
1636 	if (!si)
1637 		goto fail;
1638 
1639 	/* This is called for allocating swap entry, not cache */
1640 	spin_lock(&si->lock);
1641 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1642 		atomic_long_dec(&nr_swap_pages);
1643 	spin_unlock(&si->lock);
1644 fail:
1645 	return entry;
1646 }
1647 
1648 /*
1649  * Find the swap type that corresponds to given device (if any).
1650  *
1651  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1652  * from 0, in which the swap header is expected to be located.
1653  *
1654  * This is needed for the suspend to disk (aka swsusp).
1655  */
swap_type_of(dev_t device, sector_t offset)1656 int swap_type_of(dev_t device, sector_t offset)
1657 {
1658 	int type;
1659 
1660 	if (!device)
1661 		return -1;
1662 
1663 	spin_lock(&swap_lock);
1664 	for (type = 0; type < nr_swapfiles; type++) {
1665 		struct swap_info_struct *sis = swap_info[type];
1666 
1667 		if (!(sis->flags & SWP_WRITEOK))
1668 			continue;
1669 
1670 		if (device == sis->bdev->bd_dev) {
1671 			struct swap_extent *se = first_se(sis);
1672 
1673 			if (se->start_block == offset) {
1674 				spin_unlock(&swap_lock);
1675 				return type;
1676 			}
1677 		}
1678 	}
1679 	spin_unlock(&swap_lock);
1680 	return -ENODEV;
1681 }
1682 
find_first_swap(dev_t *device)1683 int find_first_swap(dev_t *device)
1684 {
1685 	int type;
1686 
1687 	spin_lock(&swap_lock);
1688 	for (type = 0; type < nr_swapfiles; type++) {
1689 		struct swap_info_struct *sis = swap_info[type];
1690 
1691 		if (!(sis->flags & SWP_WRITEOK))
1692 			continue;
1693 		*device = sis->bdev->bd_dev;
1694 		spin_unlock(&swap_lock);
1695 		return type;
1696 	}
1697 	spin_unlock(&swap_lock);
1698 	return -ENODEV;
1699 }
1700 
1701 /*
1702  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1703  * corresponding to given index in swap_info (swap type).
1704  */
swapdev_block(int type, pgoff_t offset)1705 sector_t swapdev_block(int type, pgoff_t offset)
1706 {
1707 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1708 	struct swap_extent *se;
1709 
1710 	if (!si || !(si->flags & SWP_WRITEOK))
1711 		return 0;
1712 	se = offset_to_swap_extent(si, offset);
1713 	return se->start_block + (offset - se->start_page);
1714 }
1715 
1716 /*
1717  * Return either the total number of swap pages of given type, or the number
1718  * of free pages of that type (depending on @free)
1719  *
1720  * This is needed for software suspend
1721  */
count_swap_pages(int type, int free)1722 unsigned int count_swap_pages(int type, int free)
1723 {
1724 	unsigned int n = 0;
1725 
1726 	spin_lock(&swap_lock);
1727 	if ((unsigned int)type < nr_swapfiles) {
1728 		struct swap_info_struct *sis = swap_info[type];
1729 
1730 		spin_lock(&sis->lock);
1731 		if (sis->flags & SWP_WRITEOK) {
1732 			n = sis->pages;
1733 			if (free)
1734 				n -= sis->inuse_pages;
1735 		}
1736 		spin_unlock(&sis->lock);
1737 	}
1738 	spin_unlock(&swap_lock);
1739 	return n;
1740 }
1741 #endif /* CONFIG_HIBERNATION */
1742 
pte_same_as_swp(pte_t pte, pte_t swp_pte)1743 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1744 {
1745 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1746 }
1747 
1748 /*
1749  * No need to decide whether this PTE shares the swap entry with others,
1750  * just let do_wp_page work it out if a write is requested later - to
1751  * force COW, vm_page_prot omits write permission from any private vma.
1752  */
unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, swp_entry_t entry, struct folio *folio)1753 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1754 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1755 {
1756 	struct page *page = folio_file_page(folio, swp_offset(entry));
1757 	struct page *swapcache;
1758 	spinlock_t *ptl;
1759 	pte_t *pte, new_pte, old_pte;
1760 	bool hwpoisoned = PageHWPoison(page);
1761 	int ret = 1;
1762 
1763 	swapcache = page;
1764 	page = ksm_might_need_to_copy(page, vma, addr);
1765 	if (unlikely(!page))
1766 		return -ENOMEM;
1767 	else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1768 		hwpoisoned = true;
1769 
1770 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1771 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1772 						swp_entry_to_pte(entry)))) {
1773 		ret = 0;
1774 		goto out;
1775 	}
1776 
1777 	old_pte = ptep_get(pte);
1778 
1779 	if (unlikely(hwpoisoned || !PageUptodate(page))) {
1780 		swp_entry_t swp_entry;
1781 
1782 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1783 		if (hwpoisoned) {
1784 			swp_entry = make_hwpoison_entry(swapcache);
1785 			page = swapcache;
1786 		} else {
1787 			swp_entry = make_poisoned_swp_entry();
1788 		}
1789 		new_pte = swp_entry_to_pte(swp_entry);
1790 		ret = 0;
1791 		goto setpte;
1792 	}
1793 
1794 	/*
1795 	 * Some architectures may have to restore extra metadata to the page
1796 	 * when reading from swap. This metadata may be indexed by swap entry
1797 	 * so this must be called before swap_free().
1798 	 */
1799 	arch_swap_restore(entry, page_folio(page));
1800 
1801 	/* See do_swap_page() */
1802 	BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1803 	BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1804 
1805 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1806 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1807 	get_page(page);
1808 	if (page == swapcache) {
1809 		rmap_t rmap_flags = RMAP_NONE;
1810 
1811 		/*
1812 		 * See do_swap_page(): PageWriteback() would be problematic.
1813 		 * However, we do a wait_on_page_writeback() just before this
1814 		 * call and have the page locked.
1815 		 */
1816 		VM_BUG_ON_PAGE(PageWriteback(page), page);
1817 		if (pte_swp_exclusive(old_pte))
1818 			rmap_flags |= RMAP_EXCLUSIVE;
1819 
1820 		page_add_anon_rmap(page, vma, addr, rmap_flags);
1821 	} else { /* ksm created a completely new copy */
1822 		page_add_new_anon_rmap(page, vma, addr);
1823 		lru_cache_add_inactive_or_unevictable(page, vma);
1824 	}
1825 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1826 	if (pte_swp_soft_dirty(old_pte))
1827 		new_pte = pte_mksoft_dirty(new_pte);
1828 	if (pte_swp_uffd_wp(old_pte))
1829 		new_pte = pte_mkuffd_wp(new_pte);
1830 setpte:
1831 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1832 	swap_free(entry);
1833 out:
1834 	if (pte)
1835 		pte_unmap_unlock(pte, ptl);
1836 	if (page != swapcache) {
1837 		unlock_page(page);
1838 		put_page(page);
1839 	}
1840 	return ret;
1841 }
1842 
unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned int type)1843 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1844 			unsigned long addr, unsigned long end,
1845 			unsigned int type)
1846 {
1847 	pte_t *pte = NULL;
1848 	struct swap_info_struct *si;
1849 
1850 	si = swap_info[type];
1851 	do {
1852 		struct folio *folio;
1853 		unsigned long offset;
1854 		unsigned char swp_count;
1855 		swp_entry_t entry;
1856 		int ret;
1857 		pte_t ptent;
1858 
1859 		if (!pte++) {
1860 			pte = pte_offset_map(pmd, addr);
1861 			if (!pte)
1862 				break;
1863 		}
1864 
1865 		ptent = ptep_get_lockless(pte);
1866 
1867 		if (!is_swap_pte(ptent))
1868 			continue;
1869 
1870 		entry = pte_to_swp_entry(ptent);
1871 		if (swp_type(entry) != type)
1872 			continue;
1873 
1874 		offset = swp_offset(entry);
1875 		pte_unmap(pte);
1876 		pte = NULL;
1877 
1878 		folio = swap_cache_get_folio(entry, vma, addr);
1879 		if (!folio) {
1880 			struct page *page;
1881 			struct vm_fault vmf = {
1882 				.vma = vma,
1883 				.address = addr,
1884 				.real_address = addr,
1885 				.pmd = pmd,
1886 			};
1887 
1888 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1889 						&vmf);
1890 			if (page)
1891 				folio = page_folio(page);
1892 		}
1893 		if (!folio) {
1894 			swp_count = READ_ONCE(si->swap_map[offset]);
1895 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1896 				continue;
1897 			return -ENOMEM;
1898 		}
1899 
1900 		folio_lock(folio);
1901 		folio_wait_writeback(folio);
1902 		ret = unuse_pte(vma, pmd, addr, entry, folio);
1903 		if (ret < 0) {
1904 			folio_unlock(folio);
1905 			folio_put(folio);
1906 			return ret;
1907 		}
1908 
1909 		folio_free_swap(folio);
1910 		folio_unlock(folio);
1911 		folio_put(folio);
1912 	} while (addr += PAGE_SIZE, addr != end);
1913 
1914 	if (pte)
1915 		pte_unmap(pte);
1916 	return 0;
1917 }
1918 
unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, unsigned int type)1919 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1920 				unsigned long addr, unsigned long end,
1921 				unsigned int type)
1922 {
1923 	pmd_t *pmd;
1924 	unsigned long next;
1925 	int ret;
1926 
1927 	pmd = pmd_offset(pud, addr);
1928 	do {
1929 		cond_resched();
1930 		next = pmd_addr_end(addr, end);
1931 		ret = unuse_pte_range(vma, pmd, addr, next, type);
1932 		if (ret)
1933 			return ret;
1934 	} while (pmd++, addr = next, addr != end);
1935 	return 0;
1936 }
1937 
unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned int type)1938 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1939 				unsigned long addr, unsigned long end,
1940 				unsigned int type)
1941 {
1942 	pud_t *pud;
1943 	unsigned long next;
1944 	int ret;
1945 
1946 	pud = pud_offset(p4d, addr);
1947 	do {
1948 		next = pud_addr_end(addr, end);
1949 		if (pud_none_or_clear_bad(pud))
1950 			continue;
1951 		ret = unuse_pmd_range(vma, pud, addr, next, type);
1952 		if (ret)
1953 			return ret;
1954 	} while (pud++, addr = next, addr != end);
1955 	return 0;
1956 }
1957 
unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned int type)1958 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1959 				unsigned long addr, unsigned long end,
1960 				unsigned int type)
1961 {
1962 	p4d_t *p4d;
1963 	unsigned long next;
1964 	int ret;
1965 
1966 	p4d = p4d_offset(pgd, addr);
1967 	do {
1968 		next = p4d_addr_end(addr, end);
1969 		if (p4d_none_or_clear_bad(p4d))
1970 			continue;
1971 		ret = unuse_pud_range(vma, p4d, addr, next, type);
1972 		if (ret)
1973 			return ret;
1974 	} while (p4d++, addr = next, addr != end);
1975 	return 0;
1976 }
1977 
unuse_vma(struct vm_area_struct *vma, unsigned int type)1978 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1979 {
1980 	pgd_t *pgd;
1981 	unsigned long addr, end, next;
1982 	int ret;
1983 
1984 	addr = vma->vm_start;
1985 	end = vma->vm_end;
1986 
1987 	pgd = pgd_offset(vma->vm_mm, addr);
1988 	do {
1989 		next = pgd_addr_end(addr, end);
1990 		if (pgd_none_or_clear_bad(pgd))
1991 			continue;
1992 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1993 		if (ret)
1994 			return ret;
1995 	} while (pgd++, addr = next, addr != end);
1996 	return 0;
1997 }
1998 
unuse_mm(struct mm_struct *mm, unsigned int type)1999 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2000 {
2001 	struct vm_area_struct *vma;
2002 	int ret = 0;
2003 	VMA_ITERATOR(vmi, mm, 0);
2004 
2005 	mmap_read_lock(mm);
2006 	for_each_vma(vmi, vma) {
2007 		if (vma->anon_vma) {
2008 			ret = unuse_vma(vma, type);
2009 			if (ret)
2010 				break;
2011 		}
2012 
2013 		cond_resched();
2014 	}
2015 	mmap_read_unlock(mm);
2016 	return ret;
2017 }
2018 
2019 /*
2020  * Scan swap_map from current position to next entry still in use.
2021  * Return 0 if there are no inuse entries after prev till end of
2022  * the map.
2023  */
find_next_to_unuse(struct swap_info_struct *si, unsigned int prev)2024 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2025 					unsigned int prev)
2026 {
2027 	unsigned int i;
2028 	unsigned char count;
2029 
2030 	/*
2031 	 * No need for swap_lock here: we're just looking
2032 	 * for whether an entry is in use, not modifying it; false
2033 	 * hits are okay, and sys_swapoff() has already prevented new
2034 	 * allocations from this area (while holding swap_lock).
2035 	 */
2036 	for (i = prev + 1; i < si->max; i++) {
2037 		count = READ_ONCE(si->swap_map[i]);
2038 		if (count && swap_count(count) != SWAP_MAP_BAD)
2039 			break;
2040 		if ((i % LATENCY_LIMIT) == 0)
2041 			cond_resched();
2042 	}
2043 
2044 	if (i == si->max)
2045 		i = 0;
2046 
2047 	return i;
2048 }
2049 
try_to_unuse(unsigned int type)2050 static int try_to_unuse(unsigned int type)
2051 {
2052 	struct mm_struct *prev_mm;
2053 	struct mm_struct *mm;
2054 	struct list_head *p;
2055 	int retval = 0;
2056 	struct swap_info_struct *si = swap_info[type];
2057 	struct folio *folio;
2058 	swp_entry_t entry;
2059 	unsigned int i;
2060 
2061 	if (!READ_ONCE(si->inuse_pages))
2062 		return 0;
2063 
2064 retry:
2065 	retval = shmem_unuse(type);
2066 	if (retval)
2067 		return retval;
2068 
2069 	prev_mm = &init_mm;
2070 	mmget(prev_mm);
2071 
2072 	spin_lock(&mmlist_lock);
2073 	p = &init_mm.mmlist;
2074 	while (READ_ONCE(si->inuse_pages) &&
2075 	       !signal_pending(current) &&
2076 	       (p = p->next) != &init_mm.mmlist) {
2077 
2078 		mm = list_entry(p, struct mm_struct, mmlist);
2079 		if (!mmget_not_zero(mm))
2080 			continue;
2081 		spin_unlock(&mmlist_lock);
2082 		mmput(prev_mm);
2083 		prev_mm = mm;
2084 		retval = unuse_mm(mm, type);
2085 		if (retval) {
2086 			mmput(prev_mm);
2087 			return retval;
2088 		}
2089 
2090 		/*
2091 		 * Make sure that we aren't completely killing
2092 		 * interactive performance.
2093 		 */
2094 		cond_resched();
2095 		spin_lock(&mmlist_lock);
2096 	}
2097 	spin_unlock(&mmlist_lock);
2098 
2099 	mmput(prev_mm);
2100 
2101 	i = 0;
2102 	while (READ_ONCE(si->inuse_pages) &&
2103 	       !signal_pending(current) &&
2104 	       (i = find_next_to_unuse(si, i)) != 0) {
2105 
2106 		entry = swp_entry(type, i);
2107 		folio = filemap_get_folio(swap_address_space(entry), i);
2108 		if (IS_ERR(folio))
2109 			continue;
2110 
2111 		/*
2112 		 * It is conceivable that a racing task removed this folio from
2113 		 * swap cache just before we acquired the page lock. The folio
2114 		 * might even be back in swap cache on another swap area. But
2115 		 * that is okay, folio_free_swap() only removes stale folios.
2116 		 */
2117 		folio_lock(folio);
2118 		folio_wait_writeback(folio);
2119 		folio_free_swap(folio);
2120 		folio_unlock(folio);
2121 		folio_put(folio);
2122 	}
2123 
2124 	/*
2125 	 * Lets check again to see if there are still swap entries in the map.
2126 	 * If yes, we would need to do retry the unuse logic again.
2127 	 * Under global memory pressure, swap entries can be reinserted back
2128 	 * into process space after the mmlist loop above passes over them.
2129 	 *
2130 	 * Limit the number of retries? No: when mmget_not_zero()
2131 	 * above fails, that mm is likely to be freeing swap from
2132 	 * exit_mmap(), which proceeds at its own independent pace;
2133 	 * and even shmem_writepage() could have been preempted after
2134 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2135 	 * and robust (though cpu-intensive) just to keep retrying.
2136 	 */
2137 	if (READ_ONCE(si->inuse_pages)) {
2138 		if (!signal_pending(current))
2139 			goto retry;
2140 		return -EINTR;
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 /*
2147  * After a successful try_to_unuse, if no swap is now in use, we know
2148  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2149  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2150  * added to the mmlist just after page_duplicate - before would be racy.
2151  */
drain_mmlist(void)2152 static void drain_mmlist(void)
2153 {
2154 	struct list_head *p, *next;
2155 	unsigned int type;
2156 
2157 	for (type = 0; type < nr_swapfiles; type++)
2158 		if (swap_info[type]->inuse_pages)
2159 			return;
2160 	spin_lock(&mmlist_lock);
2161 	list_for_each_safe(p, next, &init_mm.mmlist)
2162 		list_del_init(p);
2163 	spin_unlock(&mmlist_lock);
2164 }
2165 
2166 /*
2167  * Free all of a swapdev's extent information
2168  */
destroy_swap_extents(struct swap_info_struct *sis)2169 static void destroy_swap_extents(struct swap_info_struct *sis)
2170 {
2171 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2172 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2173 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2174 
2175 		rb_erase(rb, &sis->swap_extent_root);
2176 		kfree(se);
2177 	}
2178 
2179 	if (sis->flags & SWP_ACTIVATED) {
2180 		struct file *swap_file = sis->swap_file;
2181 		struct address_space *mapping = swap_file->f_mapping;
2182 
2183 		sis->flags &= ~SWP_ACTIVATED;
2184 		if (mapping->a_ops->swap_deactivate)
2185 			mapping->a_ops->swap_deactivate(swap_file);
2186 	}
2187 }
2188 
2189 /*
2190  * Add a block range (and the corresponding page range) into this swapdev's
2191  * extent tree.
2192  *
2193  * This function rather assumes that it is called in ascending page order.
2194  */
2195 int
add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, unsigned long nr_pages, sector_t start_block)2196 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2197 		unsigned long nr_pages, sector_t start_block)
2198 {
2199 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2200 	struct swap_extent *se;
2201 	struct swap_extent *new_se;
2202 
2203 	/*
2204 	 * place the new node at the right most since the
2205 	 * function is called in ascending page order.
2206 	 */
2207 	while (*link) {
2208 		parent = *link;
2209 		link = &parent->rb_right;
2210 	}
2211 
2212 	if (parent) {
2213 		se = rb_entry(parent, struct swap_extent, rb_node);
2214 		BUG_ON(se->start_page + se->nr_pages != start_page);
2215 		if (se->start_block + se->nr_pages == start_block) {
2216 			/* Merge it */
2217 			se->nr_pages += nr_pages;
2218 			return 0;
2219 		}
2220 	}
2221 
2222 	/* No merge, insert a new extent. */
2223 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2224 	if (new_se == NULL)
2225 		return -ENOMEM;
2226 	new_se->start_page = start_page;
2227 	new_se->nr_pages = nr_pages;
2228 	new_se->start_block = start_block;
2229 
2230 	rb_link_node(&new_se->rb_node, parent, link);
2231 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2232 	return 1;
2233 }
2234 EXPORT_SYMBOL_GPL(add_swap_extent);
2235 
2236 /*
2237  * A `swap extent' is a simple thing which maps a contiguous range of pages
2238  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2239  * built at swapon time and is then used at swap_writepage/swap_readpage
2240  * time for locating where on disk a page belongs.
2241  *
2242  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2243  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2244  * swap files identically.
2245  *
2246  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2247  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2248  * swapfiles are handled *identically* after swapon time.
2249  *
2250  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2251  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2252  * blocks are found which do not fall within the PAGE_SIZE alignment
2253  * requirements, they are simply tossed out - we will never use those blocks
2254  * for swapping.
2255  *
2256  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2257  * prevents users from writing to the swap device, which will corrupt memory.
2258  *
2259  * The amount of disk space which a single swap extent represents varies.
2260  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2261  * extents in the rbtree. - akpm.
2262  */
setup_swap_extents(struct swap_info_struct *sis, sector_t *span)2263 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2264 {
2265 	struct file *swap_file = sis->swap_file;
2266 	struct address_space *mapping = swap_file->f_mapping;
2267 	struct inode *inode = mapping->host;
2268 	int ret;
2269 
2270 	if (S_ISBLK(inode->i_mode)) {
2271 		ret = add_swap_extent(sis, 0, sis->max, 0);
2272 		*span = sis->pages;
2273 		return ret;
2274 	}
2275 
2276 	if (mapping->a_ops->swap_activate) {
2277 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2278 		if (ret < 0)
2279 			return ret;
2280 		sis->flags |= SWP_ACTIVATED;
2281 		if ((sis->flags & SWP_FS_OPS) &&
2282 		    sio_pool_init() != 0) {
2283 			destroy_swap_extents(sis);
2284 			return -ENOMEM;
2285 		}
2286 		return ret;
2287 	}
2288 
2289 	return generic_swapfile_activate(sis, swap_file, span);
2290 }
2291 
swap_node(struct swap_info_struct *p)2292 static int swap_node(struct swap_info_struct *p)
2293 {
2294 	struct block_device *bdev;
2295 
2296 	if (p->bdev)
2297 		bdev = p->bdev;
2298 	else
2299 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2300 
2301 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2302 }
2303 
setup_swap_info(struct swap_info_struct *p, int prio, unsigned char *swap_map, struct swap_cluster_info *cluster_info)2304 static void setup_swap_info(struct swap_info_struct *p, int prio,
2305 			    unsigned char *swap_map,
2306 			    struct swap_cluster_info *cluster_info)
2307 {
2308 	int i;
2309 
2310 	if (prio >= 0)
2311 		p->prio = prio;
2312 	else
2313 		p->prio = --least_priority;
2314 	/*
2315 	 * the plist prio is negated because plist ordering is
2316 	 * low-to-high, while swap ordering is high-to-low
2317 	 */
2318 	p->list.prio = -p->prio;
2319 	for_each_node(i) {
2320 		if (p->prio >= 0)
2321 			p->avail_lists[i].prio = -p->prio;
2322 		else {
2323 			if (swap_node(p) == i)
2324 				p->avail_lists[i].prio = 1;
2325 			else
2326 				p->avail_lists[i].prio = -p->prio;
2327 		}
2328 	}
2329 	p->swap_map = swap_map;
2330 	p->cluster_info = cluster_info;
2331 }
2332 
_enable_swap_info(struct swap_info_struct *p)2333 static void _enable_swap_info(struct swap_info_struct *p)
2334 {
2335 	p->flags |= SWP_WRITEOK;
2336 	atomic_long_add(p->pages, &nr_swap_pages);
2337 	total_swap_pages += p->pages;
2338 
2339 	assert_spin_locked(&swap_lock);
2340 	/*
2341 	 * both lists are plists, and thus priority ordered.
2342 	 * swap_active_head needs to be priority ordered for swapoff(),
2343 	 * which on removal of any swap_info_struct with an auto-assigned
2344 	 * (i.e. negative) priority increments the auto-assigned priority
2345 	 * of any lower-priority swap_info_structs.
2346 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2347 	 * which allocates swap pages from the highest available priority
2348 	 * swap_info_struct.
2349 	 */
2350 	plist_add(&p->list, &swap_active_head);
2351 
2352 	/* add to available list iff swap device is not full */
2353 	if (p->highest_bit)
2354 		add_to_avail_list(p);
2355 }
2356 
enable_swap_info(struct swap_info_struct *p, int prio, unsigned char *swap_map, struct swap_cluster_info *cluster_info)2357 static void enable_swap_info(struct swap_info_struct *p, int prio,
2358 				unsigned char *swap_map,
2359 				struct swap_cluster_info *cluster_info)
2360 {
2361 	zswap_swapon(p->type);
2362 
2363 	spin_lock(&swap_lock);
2364 	spin_lock(&p->lock);
2365 	setup_swap_info(p, prio, swap_map, cluster_info);
2366 	spin_unlock(&p->lock);
2367 	spin_unlock(&swap_lock);
2368 	/*
2369 	 * Finished initializing swap device, now it's safe to reference it.
2370 	 */
2371 	percpu_ref_resurrect(&p->users);
2372 	spin_lock(&swap_lock);
2373 	spin_lock(&p->lock);
2374 	_enable_swap_info(p);
2375 	spin_unlock(&p->lock);
2376 	spin_unlock(&swap_lock);
2377 }
2378 
reinsert_swap_info(struct swap_info_struct *p)2379 static void reinsert_swap_info(struct swap_info_struct *p)
2380 {
2381 	spin_lock(&swap_lock);
2382 	spin_lock(&p->lock);
2383 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2384 	_enable_swap_info(p);
2385 	spin_unlock(&p->lock);
2386 	spin_unlock(&swap_lock);
2387 }
2388 
has_usable_swap(void)2389 bool has_usable_swap(void)
2390 {
2391 	bool ret = true;
2392 
2393 	spin_lock(&swap_lock);
2394 	if (plist_head_empty(&swap_active_head))
2395 		ret = false;
2396 	spin_unlock(&swap_lock);
2397 	return ret;
2398 }
2399 
SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)2400 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2401 {
2402 	struct swap_info_struct *p = NULL;
2403 	unsigned char *swap_map;
2404 	struct swap_cluster_info *cluster_info;
2405 	struct file *swap_file, *victim;
2406 	struct address_space *mapping;
2407 	struct inode *inode;
2408 	struct filename *pathname;
2409 	int err, found = 0;
2410 	unsigned int old_block_size;
2411 
2412 	if (!capable(CAP_SYS_ADMIN))
2413 		return -EPERM;
2414 
2415 	BUG_ON(!current->mm);
2416 
2417 	pathname = getname(specialfile);
2418 	if (IS_ERR(pathname))
2419 		return PTR_ERR(pathname);
2420 
2421 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2422 	err = PTR_ERR(victim);
2423 	if (IS_ERR(victim))
2424 		goto out;
2425 
2426 	mapping = victim->f_mapping;
2427 	spin_lock(&swap_lock);
2428 	plist_for_each_entry(p, &swap_active_head, list) {
2429 		if (p->flags & SWP_WRITEOK) {
2430 			if (p->swap_file->f_mapping == mapping) {
2431 				found = 1;
2432 				break;
2433 			}
2434 		}
2435 	}
2436 	if (!found) {
2437 		err = -EINVAL;
2438 		spin_unlock(&swap_lock);
2439 		goto out_dput;
2440 	}
2441 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2442 		vm_unacct_memory(p->pages);
2443 	else {
2444 		err = -ENOMEM;
2445 		spin_unlock(&swap_lock);
2446 		goto out_dput;
2447 	}
2448 	spin_lock(&p->lock);
2449 	del_from_avail_list(p);
2450 	if (p->prio < 0) {
2451 		struct swap_info_struct *si = p;
2452 		int nid;
2453 
2454 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2455 			si->prio++;
2456 			si->list.prio--;
2457 			for_each_node(nid) {
2458 				if (si->avail_lists[nid].prio != 1)
2459 					si->avail_lists[nid].prio--;
2460 			}
2461 		}
2462 		least_priority++;
2463 	}
2464 	plist_del(&p->list, &swap_active_head);
2465 	atomic_long_sub(p->pages, &nr_swap_pages);
2466 	total_swap_pages -= p->pages;
2467 	p->flags &= ~SWP_WRITEOK;
2468 	spin_unlock(&p->lock);
2469 	spin_unlock(&swap_lock);
2470 
2471 	disable_swap_slots_cache_lock();
2472 
2473 	set_current_oom_origin();
2474 	err = try_to_unuse(p->type);
2475 	clear_current_oom_origin();
2476 
2477 	if (err) {
2478 		/* re-insert swap space back into swap_list */
2479 		reinsert_swap_info(p);
2480 		reenable_swap_slots_cache_unlock();
2481 		goto out_dput;
2482 	}
2483 
2484 	reenable_swap_slots_cache_unlock();
2485 
2486 	/*
2487 	 * Wait for swap operations protected by get/put_swap_device()
2488 	 * to complete.
2489 	 *
2490 	 * We need synchronize_rcu() here to protect the accessing to
2491 	 * the swap cache data structure.
2492 	 */
2493 	percpu_ref_kill(&p->users);
2494 	synchronize_rcu();
2495 	wait_for_completion(&p->comp);
2496 
2497 	flush_work(&p->discard_work);
2498 
2499 	destroy_swap_extents(p);
2500 	if (p->flags & SWP_CONTINUED)
2501 		free_swap_count_continuations(p);
2502 
2503 	if (!p->bdev || !bdev_nonrot(p->bdev))
2504 		atomic_dec(&nr_rotate_swap);
2505 
2506 	mutex_lock(&swapon_mutex);
2507 	spin_lock(&swap_lock);
2508 	spin_lock(&p->lock);
2509 	drain_mmlist();
2510 
2511 	/* wait for anyone still in scan_swap_map_slots */
2512 	p->highest_bit = 0;		/* cuts scans short */
2513 	while (p->flags >= SWP_SCANNING) {
2514 		spin_unlock(&p->lock);
2515 		spin_unlock(&swap_lock);
2516 		schedule_timeout_uninterruptible(1);
2517 		spin_lock(&swap_lock);
2518 		spin_lock(&p->lock);
2519 	}
2520 
2521 	swap_file = p->swap_file;
2522 	old_block_size = p->old_block_size;
2523 	p->swap_file = NULL;
2524 	p->max = 0;
2525 	swap_map = p->swap_map;
2526 	p->swap_map = NULL;
2527 	cluster_info = p->cluster_info;
2528 	p->cluster_info = NULL;
2529 	spin_unlock(&p->lock);
2530 	spin_unlock(&swap_lock);
2531 	arch_swap_invalidate_area(p->type);
2532 	zswap_swapoff(p->type);
2533 	mutex_unlock(&swapon_mutex);
2534 	free_percpu(p->percpu_cluster);
2535 	p->percpu_cluster = NULL;
2536 	free_percpu(p->cluster_next_cpu);
2537 	p->cluster_next_cpu = NULL;
2538 	vfree(swap_map);
2539 	kvfree(cluster_info);
2540 	/* Destroy swap account information */
2541 	swap_cgroup_swapoff(p->type);
2542 	exit_swap_address_space(p->type);
2543 
2544 	inode = mapping->host;
2545 	if (S_ISBLK(inode->i_mode)) {
2546 		struct block_device *bdev = I_BDEV(inode);
2547 
2548 		set_blocksize(bdev, old_block_size);
2549 		blkdev_put(bdev, p);
2550 	}
2551 
2552 	inode_lock(inode);
2553 	inode->i_flags &= ~S_SWAPFILE;
2554 	inode_unlock(inode);
2555 	filp_close(swap_file, NULL);
2556 
2557 	/*
2558 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2559 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2560 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2561 	 */
2562 	spin_lock(&swap_lock);
2563 	p->flags = 0;
2564 	spin_unlock(&swap_lock);
2565 
2566 	err = 0;
2567 	atomic_inc(&proc_poll_event);
2568 	wake_up_interruptible(&proc_poll_wait);
2569 
2570 out_dput:
2571 	filp_close(victim, NULL);
2572 out:
2573 	putname(pathname);
2574 	return err;
2575 }
2576 
2577 #ifdef CONFIG_PROC_FS
swaps_poll(struct file *file, poll_table *wait)2578 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2579 {
2580 	struct seq_file *seq = file->private_data;
2581 
2582 	poll_wait(file, &proc_poll_wait, wait);
2583 
2584 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2585 		seq->poll_event = atomic_read(&proc_poll_event);
2586 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2587 	}
2588 
2589 	return EPOLLIN | EPOLLRDNORM;
2590 }
2591 
2592 /* iterator */
swap_start(struct seq_file *swap, loff_t *pos)2593 static void *swap_start(struct seq_file *swap, loff_t *pos)
2594 {
2595 	struct swap_info_struct *si;
2596 	int type;
2597 	loff_t l = *pos;
2598 
2599 	mutex_lock(&swapon_mutex);
2600 
2601 	if (!l)
2602 		return SEQ_START_TOKEN;
2603 
2604 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2605 		if (!(si->flags & SWP_USED) || !si->swap_map)
2606 			continue;
2607 		if (!--l)
2608 			return si;
2609 	}
2610 
2611 	return NULL;
2612 }
2613 
swap_next(struct seq_file *swap, void *v, loff_t *pos)2614 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2615 {
2616 	struct swap_info_struct *si = v;
2617 	int type;
2618 
2619 	if (v == SEQ_START_TOKEN)
2620 		type = 0;
2621 	else
2622 		type = si->type + 1;
2623 
2624 	++(*pos);
2625 	for (; (si = swap_type_to_swap_info(type)); type++) {
2626 		if (!(si->flags & SWP_USED) || !si->swap_map)
2627 			continue;
2628 		return si;
2629 	}
2630 
2631 	return NULL;
2632 }
2633 
swap_stop(struct seq_file *swap, void *v)2634 static void swap_stop(struct seq_file *swap, void *v)
2635 {
2636 	mutex_unlock(&swapon_mutex);
2637 }
2638 
swap_show(struct seq_file *swap, void *v)2639 static int swap_show(struct seq_file *swap, void *v)
2640 {
2641 	struct swap_info_struct *si = v;
2642 	struct file *file;
2643 	int len;
2644 	unsigned long bytes, inuse;
2645 
2646 	if (si == SEQ_START_TOKEN) {
2647 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2648 		return 0;
2649 	}
2650 
2651 	bytes = K(si->pages);
2652 	inuse = K(READ_ONCE(si->inuse_pages));
2653 
2654 	file = si->swap_file;
2655 	len = seq_file_path(swap, file, " \t\n\\");
2656 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2657 			len < 40 ? 40 - len : 1, " ",
2658 			S_ISBLK(file_inode(file)->i_mode) ?
2659 				"partition" : "file\t",
2660 			bytes, bytes < 10000000 ? "\t" : "",
2661 			inuse, inuse < 10000000 ? "\t" : "",
2662 			si->prio);
2663 	return 0;
2664 }
2665 
2666 static const struct seq_operations swaps_op = {
2667 	.start =	swap_start,
2668 	.next =		swap_next,
2669 	.stop =		swap_stop,
2670 	.show =		swap_show
2671 };
2672 
swaps_open(struct inode *inode, struct file *file)2673 static int swaps_open(struct inode *inode, struct file *file)
2674 {
2675 	struct seq_file *seq;
2676 	int ret;
2677 
2678 	ret = seq_open(file, &swaps_op);
2679 	if (ret)
2680 		return ret;
2681 
2682 	seq = file->private_data;
2683 	seq->poll_event = atomic_read(&proc_poll_event);
2684 	return 0;
2685 }
2686 
2687 static const struct proc_ops swaps_proc_ops = {
2688 	.proc_flags	= PROC_ENTRY_PERMANENT,
2689 	.proc_open	= swaps_open,
2690 	.proc_read	= seq_read,
2691 	.proc_lseek	= seq_lseek,
2692 	.proc_release	= seq_release,
2693 	.proc_poll	= swaps_poll,
2694 };
2695 
procswaps_init(void)2696 static int __init procswaps_init(void)
2697 {
2698 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2699 	return 0;
2700 }
2701 __initcall(procswaps_init);
2702 #endif /* CONFIG_PROC_FS */
2703 
2704 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2705 static int __init max_swapfiles_check(void)
2706 {
2707 	MAX_SWAPFILES_CHECK();
2708 	return 0;
2709 }
2710 late_initcall(max_swapfiles_check);
2711 #endif
2712 
alloc_swap_info(void)2713 static struct swap_info_struct *alloc_swap_info(void)
2714 {
2715 	struct swap_info_struct *p;
2716 	struct swap_info_struct *defer = NULL;
2717 	unsigned int type;
2718 	int i;
2719 
2720 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2721 	if (!p)
2722 		return ERR_PTR(-ENOMEM);
2723 
2724 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2725 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2726 		kvfree(p);
2727 		return ERR_PTR(-ENOMEM);
2728 	}
2729 
2730 	spin_lock(&swap_lock);
2731 	for (type = 0; type < nr_swapfiles; type++) {
2732 		if (!(swap_info[type]->flags & SWP_USED))
2733 			break;
2734 	}
2735 	if (type >= MAX_SWAPFILES) {
2736 		spin_unlock(&swap_lock);
2737 		percpu_ref_exit(&p->users);
2738 		kvfree(p);
2739 		return ERR_PTR(-EPERM);
2740 	}
2741 	if (type >= nr_swapfiles) {
2742 		p->type = type;
2743 		/*
2744 		 * Publish the swap_info_struct after initializing it.
2745 		 * Note that kvzalloc() above zeroes all its fields.
2746 		 */
2747 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2748 		nr_swapfiles++;
2749 	} else {
2750 		defer = p;
2751 		p = swap_info[type];
2752 		/*
2753 		 * Do not memset this entry: a racing procfs swap_next()
2754 		 * would be relying on p->type to remain valid.
2755 		 */
2756 	}
2757 	p->swap_extent_root = RB_ROOT;
2758 	plist_node_init(&p->list, 0);
2759 	for_each_node(i)
2760 		plist_node_init(&p->avail_lists[i], 0);
2761 	p->flags = SWP_USED;
2762 	spin_unlock(&swap_lock);
2763 	if (defer) {
2764 		percpu_ref_exit(&defer->users);
2765 		kvfree(defer);
2766 	}
2767 	spin_lock_init(&p->lock);
2768 	spin_lock_init(&p->cont_lock);
2769 	init_completion(&p->comp);
2770 
2771 	return p;
2772 }
2773 
claim_swapfile(struct swap_info_struct *p, struct inode *inode)2774 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2775 {
2776 	int error;
2777 
2778 	if (S_ISBLK(inode->i_mode)) {
2779 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2780 				BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2781 		if (IS_ERR(p->bdev)) {
2782 			error = PTR_ERR(p->bdev);
2783 			p->bdev = NULL;
2784 			return error;
2785 		}
2786 		p->old_block_size = block_size(p->bdev);
2787 		error = set_blocksize(p->bdev, PAGE_SIZE);
2788 		if (error < 0)
2789 			return error;
2790 		/*
2791 		 * Zoned block devices contain zones that have a sequential
2792 		 * write only restriction.  Hence zoned block devices are not
2793 		 * suitable for swapping.  Disallow them here.
2794 		 */
2795 		if (bdev_is_zoned(p->bdev))
2796 			return -EINVAL;
2797 		p->flags |= SWP_BLKDEV;
2798 	} else if (S_ISREG(inode->i_mode)) {
2799 		p->bdev = inode->i_sb->s_bdev;
2800 	}
2801 
2802 	return 0;
2803 }
2804 
2805 
2806 /*
2807  * Find out how many pages are allowed for a single swap device. There
2808  * are two limiting factors:
2809  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2810  * 2) the number of bits in the swap pte, as defined by the different
2811  * architectures.
2812  *
2813  * In order to find the largest possible bit mask, a swap entry with
2814  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2815  * decoded to a swp_entry_t again, and finally the swap offset is
2816  * extracted.
2817  *
2818  * This will mask all the bits from the initial ~0UL mask that can't
2819  * be encoded in either the swp_entry_t or the architecture definition
2820  * of a swap pte.
2821  */
generic_max_swapfile_size(void)2822 unsigned long generic_max_swapfile_size(void)
2823 {
2824 	return swp_offset(pte_to_swp_entry(
2825 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2826 }
2827 
2828 /* Can be overridden by an architecture for additional checks. */
arch_max_swapfile_size(void)2829 __weak unsigned long arch_max_swapfile_size(void)
2830 {
2831 	return generic_max_swapfile_size();
2832 }
2833 
read_swap_header(struct swap_info_struct *p, union swap_header *swap_header, struct inode *inode)2834 static unsigned long read_swap_header(struct swap_info_struct *p,
2835 					union swap_header *swap_header,
2836 					struct inode *inode)
2837 {
2838 	int i;
2839 	unsigned long maxpages;
2840 	unsigned long swapfilepages;
2841 	unsigned long last_page;
2842 
2843 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2844 		pr_err("Unable to find swap-space signature\n");
2845 		return 0;
2846 	}
2847 
2848 	/* swap partition endianness hack... */
2849 	if (swab32(swap_header->info.version) == 1) {
2850 		swab32s(&swap_header->info.version);
2851 		swab32s(&swap_header->info.last_page);
2852 		swab32s(&swap_header->info.nr_badpages);
2853 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2854 			return 0;
2855 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2856 			swab32s(&swap_header->info.badpages[i]);
2857 	}
2858 	/* Check the swap header's sub-version */
2859 	if (swap_header->info.version != 1) {
2860 		pr_warn("Unable to handle swap header version %d\n",
2861 			swap_header->info.version);
2862 		return 0;
2863 	}
2864 
2865 	p->lowest_bit  = 1;
2866 	p->cluster_next = 1;
2867 	p->cluster_nr = 0;
2868 
2869 	maxpages = swapfile_maximum_size;
2870 	last_page = swap_header->info.last_page;
2871 	if (!last_page) {
2872 		pr_warn("Empty swap-file\n");
2873 		return 0;
2874 	}
2875 	if (last_page > maxpages) {
2876 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2877 			K(maxpages), K(last_page));
2878 	}
2879 	if (maxpages > last_page) {
2880 		maxpages = last_page + 1;
2881 		/* p->max is an unsigned int: don't overflow it */
2882 		if ((unsigned int)maxpages == 0)
2883 			maxpages = UINT_MAX;
2884 	}
2885 	p->highest_bit = maxpages - 1;
2886 
2887 	if (!maxpages)
2888 		return 0;
2889 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2890 	if (swapfilepages && maxpages > swapfilepages) {
2891 		pr_warn("Swap area shorter than signature indicates\n");
2892 		return 0;
2893 	}
2894 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2895 		return 0;
2896 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2897 		return 0;
2898 
2899 	return maxpages;
2900 }
2901 
2902 #define SWAP_CLUSTER_INFO_COLS						\
2903 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2904 #define SWAP_CLUSTER_SPACE_COLS						\
2905 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2906 #define SWAP_CLUSTER_COLS						\
2907 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2908 
setup_swap_map_and_extents(struct swap_info_struct *p, union swap_header *swap_header, unsigned char *swap_map, struct swap_cluster_info *cluster_info, unsigned long maxpages, sector_t *span)2909 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2910 					union swap_header *swap_header,
2911 					unsigned char *swap_map,
2912 					struct swap_cluster_info *cluster_info,
2913 					unsigned long maxpages,
2914 					sector_t *span)
2915 {
2916 	unsigned int j, k;
2917 	unsigned int nr_good_pages;
2918 	int nr_extents;
2919 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2920 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2921 	unsigned long i, idx;
2922 
2923 	nr_good_pages = maxpages - 1;	/* omit header page */
2924 
2925 	cluster_list_init(&p->free_clusters);
2926 	cluster_list_init(&p->discard_clusters);
2927 
2928 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2929 		unsigned int page_nr = swap_header->info.badpages[i];
2930 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2931 			return -EINVAL;
2932 		if (page_nr < maxpages) {
2933 			swap_map[page_nr] = SWAP_MAP_BAD;
2934 			nr_good_pages--;
2935 			/*
2936 			 * Haven't marked the cluster free yet, no list
2937 			 * operation involved
2938 			 */
2939 			inc_cluster_info_page(p, cluster_info, page_nr);
2940 		}
2941 	}
2942 
2943 	/* Haven't marked the cluster free yet, no list operation involved */
2944 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2945 		inc_cluster_info_page(p, cluster_info, i);
2946 
2947 	if (nr_good_pages) {
2948 		swap_map[0] = SWAP_MAP_BAD;
2949 		/*
2950 		 * Not mark the cluster free yet, no list
2951 		 * operation involved
2952 		 */
2953 		inc_cluster_info_page(p, cluster_info, 0);
2954 		p->max = maxpages;
2955 		p->pages = nr_good_pages;
2956 		nr_extents = setup_swap_extents(p, span);
2957 		if (nr_extents < 0)
2958 			return nr_extents;
2959 		nr_good_pages = p->pages;
2960 	}
2961 	if (!nr_good_pages) {
2962 		pr_warn("Empty swap-file\n");
2963 		return -EINVAL;
2964 	}
2965 
2966 	if (!cluster_info)
2967 		return nr_extents;
2968 
2969 
2970 	/*
2971 	 * Reduce false cache line sharing between cluster_info and
2972 	 * sharing same address space.
2973 	 */
2974 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2975 		j = (k + col) % SWAP_CLUSTER_COLS;
2976 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2977 			idx = i * SWAP_CLUSTER_COLS + j;
2978 			if (idx >= nr_clusters)
2979 				continue;
2980 			if (cluster_count(&cluster_info[idx]))
2981 				continue;
2982 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2983 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2984 					      idx);
2985 		}
2986 	}
2987 	return nr_extents;
2988 }
2989 
SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)2990 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2991 {
2992 	struct swap_info_struct *p;
2993 	struct filename *name;
2994 	struct file *swap_file = NULL;
2995 	struct address_space *mapping;
2996 	struct dentry *dentry;
2997 	int prio;
2998 	int error;
2999 	union swap_header *swap_header;
3000 	int nr_extents;
3001 	sector_t span;
3002 	unsigned long maxpages;
3003 	unsigned char *swap_map = NULL;
3004 	struct swap_cluster_info *cluster_info = NULL;
3005 	struct page *page = NULL;
3006 	struct inode *inode = NULL;
3007 	bool inced_nr_rotate_swap = false;
3008 
3009 	if (swap_flags & ~SWAP_FLAGS_VALID)
3010 		return -EINVAL;
3011 
3012 	if (!capable(CAP_SYS_ADMIN))
3013 		return -EPERM;
3014 
3015 	if (!swap_avail_heads)
3016 		return -ENOMEM;
3017 
3018 	p = alloc_swap_info();
3019 	if (IS_ERR(p))
3020 		return PTR_ERR(p);
3021 
3022 	INIT_WORK(&p->discard_work, swap_discard_work);
3023 
3024 	name = getname(specialfile);
3025 	if (IS_ERR(name)) {
3026 		error = PTR_ERR(name);
3027 		name = NULL;
3028 		goto bad_swap;
3029 	}
3030 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3031 	if (IS_ERR(swap_file)) {
3032 		error = PTR_ERR(swap_file);
3033 		swap_file = NULL;
3034 		goto bad_swap;
3035 	}
3036 
3037 	p->swap_file = swap_file;
3038 	mapping = swap_file->f_mapping;
3039 	dentry = swap_file->f_path.dentry;
3040 	inode = mapping->host;
3041 
3042 	error = claim_swapfile(p, inode);
3043 	if (unlikely(error))
3044 		goto bad_swap;
3045 
3046 	inode_lock(inode);
3047 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3048 		error = -ENOENT;
3049 		goto bad_swap_unlock_inode;
3050 	}
3051 	if (IS_SWAPFILE(inode)) {
3052 		error = -EBUSY;
3053 		goto bad_swap_unlock_inode;
3054 	}
3055 
3056 	/*
3057 	 * Read the swap header.
3058 	 */
3059 	if (!mapping->a_ops->read_folio) {
3060 		error = -EINVAL;
3061 		goto bad_swap_unlock_inode;
3062 	}
3063 	page = read_mapping_page(mapping, 0, swap_file);
3064 	if (IS_ERR(page)) {
3065 		error = PTR_ERR(page);
3066 		goto bad_swap_unlock_inode;
3067 	}
3068 	swap_header = kmap(page);
3069 
3070 	maxpages = read_swap_header(p, swap_header, inode);
3071 	if (unlikely(!maxpages)) {
3072 		error = -EINVAL;
3073 		goto bad_swap_unlock_inode;
3074 	}
3075 
3076 	/* OK, set up the swap map and apply the bad block list */
3077 	swap_map = vzalloc(maxpages);
3078 	if (!swap_map) {
3079 		error = -ENOMEM;
3080 		goto bad_swap_unlock_inode;
3081 	}
3082 
3083 	if (p->bdev && bdev_stable_writes(p->bdev))
3084 		p->flags |= SWP_STABLE_WRITES;
3085 
3086 	if (p->bdev && bdev_synchronous(p->bdev))
3087 		p->flags |= SWP_SYNCHRONOUS_IO;
3088 
3089 	if (p->bdev && bdev_nonrot(p->bdev)) {
3090 		int cpu;
3091 		unsigned long ci, nr_cluster;
3092 
3093 		p->flags |= SWP_SOLIDSTATE;
3094 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3095 		if (!p->cluster_next_cpu) {
3096 			error = -ENOMEM;
3097 			goto bad_swap_unlock_inode;
3098 		}
3099 		/*
3100 		 * select a random position to start with to help wear leveling
3101 		 * SSD
3102 		 */
3103 		for_each_possible_cpu(cpu) {
3104 			per_cpu(*p->cluster_next_cpu, cpu) =
3105 				get_random_u32_inclusive(1, p->highest_bit);
3106 		}
3107 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3108 
3109 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3110 					GFP_KERNEL);
3111 		if (!cluster_info) {
3112 			error = -ENOMEM;
3113 			goto bad_swap_unlock_inode;
3114 		}
3115 
3116 		for (ci = 0; ci < nr_cluster; ci++)
3117 			spin_lock_init(&((cluster_info + ci)->lock));
3118 
3119 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3120 		if (!p->percpu_cluster) {
3121 			error = -ENOMEM;
3122 			goto bad_swap_unlock_inode;
3123 		}
3124 		for_each_possible_cpu(cpu) {
3125 			struct percpu_cluster *cluster;
3126 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3127 			cluster_set_null(&cluster->index);
3128 		}
3129 	} else {
3130 		atomic_inc(&nr_rotate_swap);
3131 		inced_nr_rotate_swap = true;
3132 	}
3133 
3134 	error = swap_cgroup_swapon(p->type, maxpages);
3135 	if (error)
3136 		goto bad_swap_unlock_inode;
3137 
3138 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3139 		cluster_info, maxpages, &span);
3140 	if (unlikely(nr_extents < 0)) {
3141 		error = nr_extents;
3142 		goto bad_swap_unlock_inode;
3143 	}
3144 
3145 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3146 	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3147 		/*
3148 		 * When discard is enabled for swap with no particular
3149 		 * policy flagged, we set all swap discard flags here in
3150 		 * order to sustain backward compatibility with older
3151 		 * swapon(8) releases.
3152 		 */
3153 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3154 			     SWP_PAGE_DISCARD);
3155 
3156 		/*
3157 		 * By flagging sys_swapon, a sysadmin can tell us to
3158 		 * either do single-time area discards only, or to just
3159 		 * perform discards for released swap page-clusters.
3160 		 * Now it's time to adjust the p->flags accordingly.
3161 		 */
3162 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3163 			p->flags &= ~SWP_PAGE_DISCARD;
3164 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3165 			p->flags &= ~SWP_AREA_DISCARD;
3166 
3167 		/* issue a swapon-time discard if it's still required */
3168 		if (p->flags & SWP_AREA_DISCARD) {
3169 			int err = discard_swap(p);
3170 			if (unlikely(err))
3171 				pr_err("swapon: discard_swap(%p): %d\n",
3172 					p, err);
3173 		}
3174 	}
3175 
3176 	error = init_swap_address_space(p->type, maxpages);
3177 	if (error)
3178 		goto bad_swap_unlock_inode;
3179 
3180 	/*
3181 	 * Flush any pending IO and dirty mappings before we start using this
3182 	 * swap device.
3183 	 */
3184 	inode->i_flags |= S_SWAPFILE;
3185 	error = inode_drain_writes(inode);
3186 	if (error) {
3187 		inode->i_flags &= ~S_SWAPFILE;
3188 		goto free_swap_address_space;
3189 	}
3190 
3191 	mutex_lock(&swapon_mutex);
3192 	prio = -1;
3193 	if (swap_flags & SWAP_FLAG_PREFER)
3194 		prio =
3195 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3196 	enable_swap_info(p, prio, swap_map, cluster_info);
3197 
3198 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3199 		K(p->pages), name->name, p->prio, nr_extents,
3200 		K((unsigned long long)span),
3201 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3202 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3203 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3204 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3205 
3206 	mutex_unlock(&swapon_mutex);
3207 	atomic_inc(&proc_poll_event);
3208 	wake_up_interruptible(&proc_poll_wait);
3209 
3210 	error = 0;
3211 	goto out;
3212 free_swap_address_space:
3213 	exit_swap_address_space(p->type);
3214 bad_swap_unlock_inode:
3215 	inode_unlock(inode);
3216 bad_swap:
3217 	free_percpu(p->percpu_cluster);
3218 	p->percpu_cluster = NULL;
3219 	free_percpu(p->cluster_next_cpu);
3220 	p->cluster_next_cpu = NULL;
3221 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3222 		set_blocksize(p->bdev, p->old_block_size);
3223 		blkdev_put(p->bdev, p);
3224 	}
3225 	inode = NULL;
3226 	destroy_swap_extents(p);
3227 	swap_cgroup_swapoff(p->type);
3228 	spin_lock(&swap_lock);
3229 	p->swap_file = NULL;
3230 	p->flags = 0;
3231 	spin_unlock(&swap_lock);
3232 	vfree(swap_map);
3233 	kvfree(cluster_info);
3234 	if (inced_nr_rotate_swap)
3235 		atomic_dec(&nr_rotate_swap);
3236 	if (swap_file)
3237 		filp_close(swap_file, NULL);
3238 out:
3239 	if (page && !IS_ERR(page)) {
3240 		kunmap(page);
3241 		put_page(page);
3242 	}
3243 	if (name)
3244 		putname(name);
3245 	if (inode)
3246 		inode_unlock(inode);
3247 	if (!error)
3248 		enable_swap_slots_cache();
3249 	return error;
3250 }
3251 
si_swapinfo(struct sysinfo *val)3252 void si_swapinfo(struct sysinfo *val)
3253 {
3254 	unsigned int type;
3255 	unsigned long nr_to_be_unused = 0;
3256 
3257 	spin_lock(&swap_lock);
3258 	for (type = 0; type < nr_swapfiles; type++) {
3259 		struct swap_info_struct *si = swap_info[type];
3260 
3261 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3262 			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3263 	}
3264 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3265 	val->totalswap = total_swap_pages + nr_to_be_unused;
3266 	spin_unlock(&swap_lock);
3267 }
3268 
3269 #ifdef CONFIG_HYPERHOLD_ZSWAPD
free_swap_is_low(void)3270 bool free_swap_is_low(void)
3271 {
3272 	unsigned int type;
3273 	unsigned long long freeswap = 0;
3274 	unsigned long nr_to_be_unused = 0;
3275 
3276 	spin_lock(&swap_lock);
3277 	for (type = 0; type < nr_swapfiles; type++) {
3278 		struct swap_info_struct *si = swap_info[type];
3279 
3280 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3281 			nr_to_be_unused += si->inuse_pages;
3282 	}
3283 	freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3284 	spin_unlock(&swap_lock);
3285 
3286 	return (freeswap < get_free_swap_threshold());
3287 }
3288 EXPORT_SYMBOL(free_swap_is_low);
3289 #endif
3290 
3291 /*
3292  * Verify that a swap entry is valid and increment its swap map count.
3293  *
3294  * Returns error code in following case.
3295  * - success -> 0
3296  * - swp_entry is invalid -> EINVAL
3297  * - swp_entry is migration entry -> EINVAL
3298  * - swap-cache reference is requested but there is already one. -> EEXIST
3299  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3300  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3301  */
__swap_duplicate(swp_entry_t entry, unsigned char usage)3302 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3303 {
3304 	struct swap_info_struct *p;
3305 	struct swap_cluster_info *ci;
3306 	unsigned long offset;
3307 	unsigned char count;
3308 	unsigned char has_cache;
3309 	int err;
3310 
3311 	p = swp_swap_info(entry);
3312 
3313 	offset = swp_offset(entry);
3314 	ci = lock_cluster_or_swap_info(p, offset);
3315 
3316 	count = p->swap_map[offset];
3317 
3318 	/*
3319 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3320 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3321 	 */
3322 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3323 		err = -ENOENT;
3324 		goto unlock_out;
3325 	}
3326 
3327 	has_cache = count & SWAP_HAS_CACHE;
3328 	count &= ~SWAP_HAS_CACHE;
3329 	err = 0;
3330 
3331 	if (usage == SWAP_HAS_CACHE) {
3332 
3333 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3334 		if (!has_cache && count)
3335 			has_cache = SWAP_HAS_CACHE;
3336 		else if (has_cache)		/* someone else added cache */
3337 			err = -EEXIST;
3338 		else				/* no users remaining */
3339 			err = -ENOENT;
3340 
3341 	} else if (count || has_cache) {
3342 
3343 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3344 			count += usage;
3345 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3346 			err = -EINVAL;
3347 		else if (swap_count_continued(p, offset, count))
3348 			count = COUNT_CONTINUED;
3349 		else
3350 			err = -ENOMEM;
3351 	} else
3352 		err = -ENOENT;			/* unused swap entry */
3353 
3354 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3355 
3356 unlock_out:
3357 	unlock_cluster_or_swap_info(p, ci);
3358 	return err;
3359 }
3360 
3361 /*
3362  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3363  * (in which case its reference count is never incremented).
3364  */
swap_shmem_alloc(swp_entry_t entry)3365 void swap_shmem_alloc(swp_entry_t entry)
3366 {
3367 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3368 }
3369 
3370 /*
3371  * Increase reference count of swap entry by 1.
3372  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3373  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3374  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3375  * might occur if a page table entry has got corrupted.
3376  */
swap_duplicate(swp_entry_t entry)3377 int swap_duplicate(swp_entry_t entry)
3378 {
3379 	int err = 0;
3380 
3381 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3382 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3383 	return err;
3384 }
3385 
3386 /*
3387  * @entry: swap entry for which we allocate swap cache.
3388  *
3389  * Called when allocating swap cache for existing swap entry,
3390  * This can return error codes. Returns 0 at success.
3391  * -EEXIST means there is a swap cache.
3392  * Note: return code is different from swap_duplicate().
3393  */
swapcache_prepare(swp_entry_t entry)3394 int swapcache_prepare(swp_entry_t entry)
3395 {
3396 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3397 }
3398 
swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)3399 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3400 {
3401 	struct swap_cluster_info *ci;
3402 	unsigned long offset = swp_offset(entry);
3403 	unsigned char usage;
3404 
3405 	ci = lock_cluster_or_swap_info(si, offset);
3406 	usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3407 	unlock_cluster_or_swap_info(si, ci);
3408 	if (!usage)
3409 		free_swap_slot(entry);
3410 }
3411 
swp_swap_info(swp_entry_t entry)3412 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3413 {
3414 	return swap_type_to_swap_info(swp_type(entry));
3415 }
3416 
page_swap_info(struct page *page)3417 struct swap_info_struct *page_swap_info(struct page *page)
3418 {
3419 	swp_entry_t entry = page_swap_entry(page);
3420 	return swp_swap_info(entry);
3421 }
3422 
3423 /*
3424  * out-of-line methods to avoid include hell.
3425  */
swapcache_mapping(struct folio *folio)3426 struct address_space *swapcache_mapping(struct folio *folio)
3427 {
3428 	return page_swap_info(&folio->page)->swap_file->f_mapping;
3429 }
3430 EXPORT_SYMBOL_GPL(swapcache_mapping);
3431 
__page_file_index(struct page *page)3432 pgoff_t __page_file_index(struct page *page)
3433 {
3434 	swp_entry_t swap = page_swap_entry(page);
3435 	return swp_offset(swap);
3436 }
3437 EXPORT_SYMBOL_GPL(__page_file_index);
3438 
3439 /*
3440  * add_swap_count_continuation - called when a swap count is duplicated
3441  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3442  * page of the original vmalloc'ed swap_map, to hold the continuation count
3443  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3444  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3445  *
3446  * These continuation pages are seldom referenced: the common paths all work
3447  * on the original swap_map, only referring to a continuation page when the
3448  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3449  *
3450  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3451  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3452  * can be called after dropping locks.
3453  */
add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)3454 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3455 {
3456 	struct swap_info_struct *si;
3457 	struct swap_cluster_info *ci;
3458 	struct page *head;
3459 	struct page *page;
3460 	struct page *list_page;
3461 	pgoff_t offset;
3462 	unsigned char count;
3463 	int ret = 0;
3464 
3465 	/*
3466 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3467 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3468 	 */
3469 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3470 
3471 	si = get_swap_device(entry);
3472 	if (!si) {
3473 		/*
3474 		 * An acceptable race has occurred since the failing
3475 		 * __swap_duplicate(): the swap device may be swapoff
3476 		 */
3477 		goto outer;
3478 	}
3479 	spin_lock(&si->lock);
3480 
3481 	offset = swp_offset(entry);
3482 
3483 	ci = lock_cluster(si, offset);
3484 
3485 	count = swap_count(si->swap_map[offset]);
3486 
3487 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3488 		/*
3489 		 * The higher the swap count, the more likely it is that tasks
3490 		 * will race to add swap count continuation: we need to avoid
3491 		 * over-provisioning.
3492 		 */
3493 		goto out;
3494 	}
3495 
3496 	if (!page) {
3497 		ret = -ENOMEM;
3498 		goto out;
3499 	}
3500 
3501 	head = vmalloc_to_page(si->swap_map + offset);
3502 	offset &= ~PAGE_MASK;
3503 
3504 	spin_lock(&si->cont_lock);
3505 	/*
3506 	 * Page allocation does not initialize the page's lru field,
3507 	 * but it does always reset its private field.
3508 	 */
3509 	if (!page_private(head)) {
3510 		BUG_ON(count & COUNT_CONTINUED);
3511 		INIT_LIST_HEAD(&head->lru);
3512 		set_page_private(head, SWP_CONTINUED);
3513 		si->flags |= SWP_CONTINUED;
3514 	}
3515 
3516 	list_for_each_entry(list_page, &head->lru, lru) {
3517 		unsigned char *map;
3518 
3519 		/*
3520 		 * If the previous map said no continuation, but we've found
3521 		 * a continuation page, free our allocation and use this one.
3522 		 */
3523 		if (!(count & COUNT_CONTINUED))
3524 			goto out_unlock_cont;
3525 
3526 		map = kmap_atomic(list_page) + offset;
3527 		count = *map;
3528 		kunmap_atomic(map);
3529 
3530 		/*
3531 		 * If this continuation count now has some space in it,
3532 		 * free our allocation and use this one.
3533 		 */
3534 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3535 			goto out_unlock_cont;
3536 	}
3537 
3538 	list_add_tail(&page->lru, &head->lru);
3539 	page = NULL;			/* now it's attached, don't free it */
3540 out_unlock_cont:
3541 	spin_unlock(&si->cont_lock);
3542 out:
3543 	unlock_cluster(ci);
3544 	spin_unlock(&si->lock);
3545 	put_swap_device(si);
3546 outer:
3547 	if (page)
3548 		__free_page(page);
3549 	return ret;
3550 }
3551 
3552 /*
3553  * swap_count_continued - when the original swap_map count is incremented
3554  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3555  * into, carry if so, or else fail until a new continuation page is allocated;
3556  * when the original swap_map count is decremented from 0 with continuation,
3557  * borrow from the continuation and report whether it still holds more.
3558  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3559  * lock.
3560  */
swap_count_continued(struct swap_info_struct *si, pgoff_t offset, unsigned char count)3561 static bool swap_count_continued(struct swap_info_struct *si,
3562 				 pgoff_t offset, unsigned char count)
3563 {
3564 	struct page *head;
3565 	struct page *page;
3566 	unsigned char *map;
3567 	bool ret;
3568 
3569 	head = vmalloc_to_page(si->swap_map + offset);
3570 	if (page_private(head) != SWP_CONTINUED) {
3571 		BUG_ON(count & COUNT_CONTINUED);
3572 		return false;		/* need to add count continuation */
3573 	}
3574 
3575 	spin_lock(&si->cont_lock);
3576 	offset &= ~PAGE_MASK;
3577 	page = list_next_entry(head, lru);
3578 	map = kmap_atomic(page) + offset;
3579 
3580 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3581 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3582 
3583 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3584 		/*
3585 		 * Think of how you add 1 to 999
3586 		 */
3587 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3588 			kunmap_atomic(map);
3589 			page = list_next_entry(page, lru);
3590 			BUG_ON(page == head);
3591 			map = kmap_atomic(page) + offset;
3592 		}
3593 		if (*map == SWAP_CONT_MAX) {
3594 			kunmap_atomic(map);
3595 			page = list_next_entry(page, lru);
3596 			if (page == head) {
3597 				ret = false;	/* add count continuation */
3598 				goto out;
3599 			}
3600 			map = kmap_atomic(page) + offset;
3601 init_map:		*map = 0;		/* we didn't zero the page */
3602 		}
3603 		*map += 1;
3604 		kunmap_atomic(map);
3605 		while ((page = list_prev_entry(page, lru)) != head) {
3606 			map = kmap_atomic(page) + offset;
3607 			*map = COUNT_CONTINUED;
3608 			kunmap_atomic(map);
3609 		}
3610 		ret = true;			/* incremented */
3611 
3612 	} else {				/* decrementing */
3613 		/*
3614 		 * Think of how you subtract 1 from 1000
3615 		 */
3616 		BUG_ON(count != COUNT_CONTINUED);
3617 		while (*map == COUNT_CONTINUED) {
3618 			kunmap_atomic(map);
3619 			page = list_next_entry(page, lru);
3620 			BUG_ON(page == head);
3621 			map = kmap_atomic(page) + offset;
3622 		}
3623 		BUG_ON(*map == 0);
3624 		*map -= 1;
3625 		if (*map == 0)
3626 			count = 0;
3627 		kunmap_atomic(map);
3628 		while ((page = list_prev_entry(page, lru)) != head) {
3629 			map = kmap_atomic(page) + offset;
3630 			*map = SWAP_CONT_MAX | count;
3631 			count = COUNT_CONTINUED;
3632 			kunmap_atomic(map);
3633 		}
3634 		ret = count == COUNT_CONTINUED;
3635 	}
3636 out:
3637 	spin_unlock(&si->cont_lock);
3638 	return ret;
3639 }
3640 
3641 /*
3642  * free_swap_count_continuations - swapoff free all the continuation pages
3643  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3644  */
free_swap_count_continuations(struct swap_info_struct *si)3645 static void free_swap_count_continuations(struct swap_info_struct *si)
3646 {
3647 	pgoff_t offset;
3648 
3649 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3650 		struct page *head;
3651 		head = vmalloc_to_page(si->swap_map + offset);
3652 		if (page_private(head)) {
3653 			struct page *page, *next;
3654 
3655 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3656 				list_del(&page->lru);
3657 				__free_page(page);
3658 			}
3659 		}
3660 	}
3661 }
3662 
3663 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__folio_throttle_swaprate(struct folio *folio, gfp_t gfp)3664 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3665 {
3666 	struct swap_info_struct *si, *next;
3667 	int nid = folio_nid(folio);
3668 
3669 	if (!(gfp & __GFP_IO))
3670 		return;
3671 
3672 	if (!blk_cgroup_congested())
3673 		return;
3674 
3675 	/*
3676 	 * We've already scheduled a throttle, avoid taking the global swap
3677 	 * lock.
3678 	 */
3679 	if (current->throttle_disk)
3680 		return;
3681 
3682 	spin_lock(&swap_avail_lock);
3683 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3684 				  avail_lists[nid]) {
3685 		if (si->bdev) {
3686 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3687 			break;
3688 		}
3689 	}
3690 	spin_unlock(&swap_avail_lock);
3691 }
3692 #endif
3693 
swapfile_init(void)3694 static int __init swapfile_init(void)
3695 {
3696 	int nid;
3697 
3698 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3699 					 GFP_KERNEL);
3700 	if (!swap_avail_heads) {
3701 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3702 		return -ENOMEM;
3703 	}
3704 
3705 	for_each_node(nid)
3706 		plist_head_init(&swap_avail_heads[nid]);
3707 
3708 	swapfile_maximum_size = arch_max_swapfile_size();
3709 
3710 #ifdef CONFIG_MIGRATION
3711 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3712 		swap_migration_ad_supported = true;
3713 #endif	/* CONFIG_MIGRATION */
3714 
3715 	return 0;
3716 }
3717 subsys_initcall(swapfile_init);
3718