1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 const int page_cluster_max = 31;
49 
50 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */
51 struct lru_rotate {
52 	local_lock_t lock;
53 	struct folio_batch fbatch;
54 };
55 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
56 	.lock = INIT_LOCAL_LOCK(lock),
57 };
58 
59 /*
60  * The following folio batches are grouped together because they are protected
61  * by disabling preemption (and interrupts remain enabled).
62  */
63 struct cpu_fbatches {
64 	local_lock_t lock;
65 	struct folio_batch lru_add;
66 	struct folio_batch lru_deactivate_file;
67 	struct folio_batch lru_deactivate;
68 	struct folio_batch lru_lazyfree;
69 #ifdef CONFIG_SMP
70 	struct folio_batch activate;
71 #endif
72 };
73 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
74 	.lock = INIT_LOCAL_LOCK(lock),
75 };
76 
77 /*
78  * This path almost never happens for VM activity - pages are normally freed
79  * in batches.  But it gets used by networking - and for compound pages.
80  */
__page_cache_release(struct folio *folio)81 static void __page_cache_release(struct folio *folio)
82 {
83 	if (folio_test_lru(folio)) {
84 		struct lruvec *lruvec;
85 		unsigned long flags;
86 
87 		lruvec = folio_lruvec_lock_irqsave(folio, &flags);
88 		lruvec_del_folio(lruvec, folio);
89 		__folio_clear_lru_flags(folio);
90 		unlock_page_lruvec_irqrestore(lruvec, flags);
91 	}
92 	/* See comment on folio_test_mlocked in release_pages() */
93 	if (unlikely(folio_test_mlocked(folio))) {
94 		long nr_pages = folio_nr_pages(folio);
95 
96 		__folio_clear_mlocked(folio);
97 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
98 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
99 	}
100 }
101 
__folio_put_small(struct folio *folio)102 static void __folio_put_small(struct folio *folio)
103 {
104 	__page_cache_release(folio);
105 	mem_cgroup_uncharge(folio);
106 	free_unref_page(&folio->page, 0);
107 }
108 
__folio_put_large(struct folio *folio)109 static void __folio_put_large(struct folio *folio)
110 {
111 	/*
112 	 * __page_cache_release() is supposed to be called for thp, not for
113 	 * hugetlb. This is because hugetlb page does never have PageLRU set
114 	 * (it's never listed to any LRU lists) and no memcg routines should
115 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
116 	 */
117 	if (!folio_test_hugetlb(folio))
118 		__page_cache_release(folio);
119 	destroy_large_folio(folio);
120 }
121 
__folio_put(struct folio *folio)122 void __folio_put(struct folio *folio)
123 {
124 	if (unlikely(folio_is_zone_device(folio)))
125 		free_zone_device_page(&folio->page);
126 	else if (unlikely(folio_test_large(folio)))
127 		__folio_put_large(folio);
128 	else
129 		__folio_put_small(folio);
130 }
131 EXPORT_SYMBOL(__folio_put);
132 
133 /**
134  * put_pages_list() - release a list of pages
135  * @pages: list of pages threaded on page->lru
136  *
137  * Release a list of pages which are strung together on page.lru.
138  */
put_pages_list(struct list_head *pages)139 void put_pages_list(struct list_head *pages)
140 {
141 	struct folio *folio, *next;
142 
143 	list_for_each_entry_safe(folio, next, pages, lru) {
144 		if (!folio_put_testzero(folio)) {
145 			list_del(&folio->lru);
146 			continue;
147 		}
148 		if (folio_test_large(folio)) {
149 			list_del(&folio->lru);
150 			__folio_put_large(folio);
151 			continue;
152 		}
153 		/* LRU flag must be clear because it's passed using the lru */
154 	}
155 
156 	free_unref_page_list(pages);
157 	INIT_LIST_HEAD(pages);
158 }
159 EXPORT_SYMBOL(put_pages_list);
160 
161 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
162 
lru_add_fn(struct lruvec *lruvec, struct folio *folio)163 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
164 {
165 	int was_unevictable = folio_test_clear_unevictable(folio);
166 	long nr_pages = folio_nr_pages(folio);
167 
168 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
169 
170 	/*
171 	 * Is an smp_mb__after_atomic() still required here, before
172 	 * folio_evictable() tests the mlocked flag, to rule out the possibility
173 	 * of stranding an evictable folio on an unevictable LRU?  I think
174 	 * not, because __munlock_folio() only clears the mlocked flag
175 	 * while the LRU lock is held.
176 	 *
177 	 * (That is not true of __page_cache_release(), and not necessarily
178 	 * true of release_pages(): but those only clear the mlocked flag after
179 	 * folio_put_testzero() has excluded any other users of the folio.)
180 	 */
181 	if (folio_evictable(folio)) {
182 		if (was_unevictable)
183 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
184 	} else {
185 		folio_clear_active(folio);
186 		folio_set_unevictable(folio);
187 		/*
188 		 * folio->mlock_count = !!folio_test_mlocked(folio)?
189 		 * But that leaves __mlock_folio() in doubt whether another
190 		 * actor has already counted the mlock or not.  Err on the
191 		 * safe side, underestimate, let page reclaim fix it, rather
192 		 * than leaving a page on the unevictable LRU indefinitely.
193 		 */
194 		folio->mlock_count = 0;
195 		if (!was_unevictable)
196 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
197 	}
198 
199 	lruvec_add_folio(lruvec, folio);
200 	trace_mm_lru_insertion(folio);
201 }
202 
folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)203 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
204 {
205 	int i;
206 	struct lruvec *lruvec = NULL;
207 	unsigned long flags = 0;
208 
209 	for (i = 0; i < folio_batch_count(fbatch); i++) {
210 		struct folio *folio = fbatch->folios[i];
211 
212 		/* block memcg migration while the folio moves between lru */
213 		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
214 			continue;
215 
216 		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
217 		move_fn(lruvec, folio);
218 
219 		folio_set_lru(folio);
220 	}
221 
222 	if (lruvec)
223 		unlock_page_lruvec_irqrestore(lruvec, flags);
224 	folios_put(fbatch->folios, folio_batch_count(fbatch));
225 	folio_batch_reinit(fbatch);
226 }
227 
folio_batch_add_and_move(struct folio_batch *fbatch, struct folio *folio, move_fn_t move_fn)228 static void folio_batch_add_and_move(struct folio_batch *fbatch,
229 		struct folio *folio, move_fn_t move_fn)
230 {
231 	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
232 	    !lru_cache_disabled())
233 		return;
234 	folio_batch_move_lru(fbatch, move_fn);
235 }
236 
lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)237 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
238 {
239 	if (!folio_test_unevictable(folio)) {
240 		lruvec_del_folio(lruvec, folio);
241 		folio_clear_active(folio);
242 		lruvec_add_folio_tail(lruvec, folio);
243 		__count_vm_events(PGROTATED, folio_nr_pages(folio));
244 	}
245 }
246 
247 /*
248  * Writeback is about to end against a folio which has been marked for
249  * immediate reclaim.  If it still appears to be reclaimable, move it
250  * to the tail of the inactive list.
251  *
252  * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
253  */
folio_rotate_reclaimable(struct folio *folio)254 void folio_rotate_reclaimable(struct folio *folio)
255 {
256 	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
257 	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
258 		struct folio_batch *fbatch;
259 		unsigned long flags;
260 
261 		folio_get(folio);
262 		local_lock_irqsave(&lru_rotate.lock, flags);
263 		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
264 		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
265 		local_unlock_irqrestore(&lru_rotate.lock, flags);
266 	}
267 }
268 
lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_io, unsigned int nr_rotated)269 void lru_note_cost(struct lruvec *lruvec, bool file,
270 		   unsigned int nr_io, unsigned int nr_rotated)
271 {
272 	unsigned long cost;
273 
274 	/*
275 	 * Reflect the relative cost of incurring IO and spending CPU
276 	 * time on rotations. This doesn't attempt to make a precise
277 	 * comparison, it just says: if reloads are about comparable
278 	 * between the LRU lists, or rotations are overwhelmingly
279 	 * different between them, adjust scan balance for CPU work.
280 	 */
281 	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
282 
283 	do {
284 		unsigned long lrusize;
285 
286 		/*
287 		 * Hold lruvec->lru_lock is safe here, since
288 		 * 1) The pinned lruvec in reclaim, or
289 		 * 2) From a pre-LRU page during refault (which also holds the
290 		 *    rcu lock, so would be safe even if the page was on the LRU
291 		 *    and could move simultaneously to a new lruvec).
292 		 */
293 		spin_lock_irq(&lruvec->lru_lock);
294 		/* Record cost event */
295 		if (file)
296 			lruvec->file_cost += cost;
297 		else
298 			lruvec->anon_cost += cost;
299 
300 		/*
301 		 * Decay previous events
302 		 *
303 		 * Because workloads change over time (and to avoid
304 		 * overflow) we keep these statistics as a floating
305 		 * average, which ends up weighing recent refaults
306 		 * more than old ones.
307 		 */
308 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
309 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
310 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
311 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
312 
313 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
314 			lruvec->file_cost /= 2;
315 			lruvec->anon_cost /= 2;
316 		}
317 		spin_unlock_irq(&lruvec->lru_lock);
318 	} while ((lruvec = parent_lruvec(lruvec)));
319 }
320 
lru_note_cost_refault(struct folio *folio)321 void lru_note_cost_refault(struct folio *folio)
322 {
323 #ifdef CONFIG_HYPERHOLD_FILE_LRU
324 	if (page_is_file_lru(folio_page(folio, 0))) {
325 		lru_note_cost(&(folio_pgdat(folio)->__lruvec), 1, folio_nr_pages(folio), 0);
326 		return;
327 	}
328 #endif
329 
330 	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
331 		      folio_nr_pages(folio), 0);
332 }
333 
folio_activate_fn(struct lruvec *lruvec, struct folio *folio)334 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
335 {
336 	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
337 		long nr_pages = folio_nr_pages(folio);
338 
339 		lruvec_del_folio(lruvec, folio);
340 		folio_set_active(folio);
341 		lruvec_add_folio(lruvec, folio);
342 		trace_mm_lru_activate(folio);
343 
344 		__count_vm_events(PGACTIVATE, nr_pages);
345 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
346 				     nr_pages);
347 	}
348 }
349 
350 #ifdef CONFIG_SMP
folio_activate_drain(int cpu)351 static void folio_activate_drain(int cpu)
352 {
353 	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
354 
355 	if (folio_batch_count(fbatch))
356 		folio_batch_move_lru(fbatch, folio_activate_fn);
357 }
358 
folio_activate(struct folio *folio)359 void folio_activate(struct folio *folio)
360 {
361 	if (folio_test_lru(folio) && !folio_test_active(folio) &&
362 	    !folio_test_unevictable(folio)) {
363 		struct folio_batch *fbatch;
364 
365 		folio_get(folio);
366 		local_lock(&cpu_fbatches.lock);
367 		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
368 		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
369 		local_unlock(&cpu_fbatches.lock);
370 	}
371 }
372 
373 #else
folio_activate_drain(int cpu)374 static inline void folio_activate_drain(int cpu)
375 {
376 }
377 
folio_activate(struct folio *folio)378 void folio_activate(struct folio *folio)
379 {
380 	struct lruvec *lruvec;
381 
382 	if (folio_test_clear_lru(folio)) {
383 		lruvec = folio_lruvec_lock_irq(folio);
384 		folio_activate_fn(lruvec, folio);
385 		unlock_page_lruvec_irq(lruvec);
386 		folio_set_lru(folio);
387 	}
388 }
389 #endif
390 
__lru_cache_activate_folio(struct folio *folio)391 static void __lru_cache_activate_folio(struct folio *folio)
392 {
393 	struct folio_batch *fbatch;
394 	int i;
395 
396 	local_lock(&cpu_fbatches.lock);
397 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
398 
399 	/*
400 	 * Search backwards on the optimistic assumption that the folio being
401 	 * activated has just been added to this batch. Note that only
402 	 * the local batch is examined as a !LRU folio could be in the
403 	 * process of being released, reclaimed, migrated or on a remote
404 	 * batch that is currently being drained. Furthermore, marking
405 	 * a remote batch's folio active potentially hits a race where
406 	 * a folio is marked active just after it is added to the inactive
407 	 * list causing accounting errors and BUG_ON checks to trigger.
408 	 */
409 	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
410 		struct folio *batch_folio = fbatch->folios[i];
411 
412 		if (batch_folio == folio) {
413 			folio_set_active(folio);
414 			break;
415 		}
416 	}
417 
418 	local_unlock(&cpu_fbatches.lock);
419 }
420 
421 #ifdef CONFIG_LRU_GEN
folio_inc_refs(struct folio *folio)422 static void folio_inc_refs(struct folio *folio)
423 {
424 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
425 
426 	if (folio_test_unevictable(folio))
427 		return;
428 
429 	if (!folio_test_referenced(folio)) {
430 		folio_set_referenced(folio);
431 		return;
432 	}
433 
434 	if (!folio_test_workingset(folio)) {
435 		folio_set_workingset(folio);
436 		return;
437 	}
438 
439 	/* see the comment on MAX_NR_TIERS */
440 	do {
441 		new_flags = old_flags & LRU_REFS_MASK;
442 		if (new_flags == LRU_REFS_MASK)
443 			break;
444 
445 		new_flags += BIT(LRU_REFS_PGOFF);
446 		new_flags |= old_flags & ~LRU_REFS_MASK;
447 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
448 }
449 #else
folio_inc_refs(struct folio *folio)450 static void folio_inc_refs(struct folio *folio)
451 {
452 }
453 #endif /* CONFIG_LRU_GEN */
454 
455 /*
456  * Mark a page as having seen activity.
457  *
458  * inactive,unreferenced	->	inactive,referenced
459  * inactive,referenced		->	active,unreferenced
460  * active,unreferenced		->	active,referenced
461  *
462  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
463  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
464  */
folio_mark_accessed(struct folio *folio)465 void folio_mark_accessed(struct folio *folio)
466 {
467 	if (lru_gen_enabled()) {
468 		folio_inc_refs(folio);
469 		return;
470 	}
471 
472 	if (!folio_test_referenced(folio)) {
473 		folio_set_referenced(folio);
474 	} else if (folio_test_unevictable(folio)) {
475 		/*
476 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
477 		 * this list is never rotated or maintained, so marking an
478 		 * unevictable page accessed has no effect.
479 		 */
480 	} else if (!folio_test_active(folio)) {
481 		/*
482 		 * If the folio is on the LRU, queue it for activation via
483 		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
484 		 * folio_batch, mark it active and it'll be moved to the active
485 		 * LRU on the next drain.
486 		 */
487 		if (folio_test_lru(folio))
488 			folio_activate(folio);
489 		else
490 			__lru_cache_activate_folio(folio);
491 		folio_clear_referenced(folio);
492 		workingset_activation(folio);
493 	}
494 	if (folio_test_idle(folio))
495 		folio_clear_idle(folio);
496 }
497 EXPORT_SYMBOL(folio_mark_accessed);
498 
499 /**
500  * folio_add_lru - Add a folio to an LRU list.
501  * @folio: The folio to be added to the LRU.
502  *
503  * Queue the folio for addition to the LRU. The decision on whether
504  * to add the page to the [in]active [file|anon] list is deferred until the
505  * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
506  * have the folio added to the active list using folio_mark_accessed().
507  */
folio_add_lru(struct folio *folio)508 void folio_add_lru(struct folio *folio)
509 {
510 	struct folio_batch *fbatch;
511 
512 	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
513 			folio_test_unevictable(folio), folio);
514 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
515 
516 	/* see the comment in lru_gen_add_folio() */
517 	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
518 	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
519 		folio_set_active(folio);
520 
521 	folio_get(folio);
522 	local_lock(&cpu_fbatches.lock);
523 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
524 	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
525 	local_unlock(&cpu_fbatches.lock);
526 }
527 EXPORT_SYMBOL(folio_add_lru);
528 
529 /**
530  * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
531  * @folio: The folio to be added to the LRU.
532  * @vma: VMA in which the folio is mapped.
533  *
534  * If the VMA is mlocked, @folio is added to the unevictable list.
535  * Otherwise, it is treated the same way as folio_add_lru().
536  */
folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)537 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
538 {
539 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
540 
541 	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
542 		mlock_new_folio(folio);
543 	else
544 		folio_add_lru(folio);
545 }
546 
547 /*
548  * If the folio cannot be invalidated, it is moved to the
549  * inactive list to speed up its reclaim.  It is moved to the
550  * head of the list, rather than the tail, to give the flusher
551  * threads some time to write it out, as this is much more
552  * effective than the single-page writeout from reclaim.
553  *
554  * If the folio isn't mapped and dirty/writeback, the folio
555  * could be reclaimed asap using the reclaim flag.
556  *
557  * 1. active, mapped folio -> none
558  * 2. active, dirty/writeback folio -> inactive, head, reclaim
559  * 3. inactive, mapped folio -> none
560  * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
561  * 5. inactive, clean -> inactive, tail
562  * 6. Others -> none
563  *
564  * In 4, it moves to the head of the inactive list so the folio is
565  * written out by flusher threads as this is much more efficient
566  * than the single-page writeout from reclaim.
567  */
lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)568 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
569 {
570 	bool active = folio_test_active(folio);
571 	long nr_pages = folio_nr_pages(folio);
572 
573 	if (folio_test_unevictable(folio))
574 		return;
575 
576 	/* Some processes are using the folio */
577 	if (folio_mapped(folio))
578 		return;
579 
580 	lruvec_del_folio(lruvec, folio);
581 	folio_clear_active(folio);
582 	folio_clear_referenced(folio);
583 
584 	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
585 		/*
586 		 * Setting the reclaim flag could race with
587 		 * folio_end_writeback() and confuse readahead.  But the
588 		 * race window is _really_ small and  it's not a critical
589 		 * problem.
590 		 */
591 		lruvec_add_folio(lruvec, folio);
592 		folio_set_reclaim(folio);
593 	} else {
594 		/*
595 		 * The folio's writeback ended while it was in the batch.
596 		 * We move that folio to the tail of the inactive list.
597 		 */
598 		lruvec_add_folio_tail(lruvec, folio);
599 		__count_vm_events(PGROTATED, nr_pages);
600 	}
601 
602 	if (active) {
603 		__count_vm_events(PGDEACTIVATE, nr_pages);
604 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
605 				     nr_pages);
606 	}
607 }
608 
lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)609 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
610 {
611 	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
612 		long nr_pages = folio_nr_pages(folio);
613 
614 		lruvec_del_folio(lruvec, folio);
615 		folio_clear_active(folio);
616 		folio_clear_referenced(folio);
617 		lruvec_add_folio(lruvec, folio);
618 
619 		__count_vm_events(PGDEACTIVATE, nr_pages);
620 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
621 				     nr_pages);
622 	}
623 }
624 
lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)625 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
626 {
627 	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
628 	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
629 		long nr_pages = folio_nr_pages(folio);
630 
631 		lruvec_del_folio(lruvec, folio);
632 		folio_clear_active(folio);
633 		folio_clear_referenced(folio);
634 		/*
635 		 * Lazyfree folios are clean anonymous folios.  They have
636 		 * the swapbacked flag cleared, to distinguish them from normal
637 		 * anonymous folios
638 		 */
639 		folio_clear_swapbacked(folio);
640 		lruvec_add_folio(lruvec, folio);
641 
642 		__count_vm_events(PGLAZYFREE, nr_pages);
643 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
644 				     nr_pages);
645 	}
646 }
647 
648 /*
649  * Drain pages out of the cpu's folio_batch.
650  * Either "cpu" is the current CPU, and preemption has already been
651  * disabled; or "cpu" is being hot-unplugged, and is already dead.
652  */
lru_add_drain_cpu(int cpu)653 void lru_add_drain_cpu(int cpu)
654 {
655 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
656 	struct folio_batch *fbatch = &fbatches->lru_add;
657 
658 	if (folio_batch_count(fbatch))
659 		folio_batch_move_lru(fbatch, lru_add_fn);
660 
661 	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
662 	/* Disabling interrupts below acts as a compiler barrier. */
663 	if (data_race(folio_batch_count(fbatch))) {
664 		unsigned long flags;
665 
666 		/* No harm done if a racing interrupt already did this */
667 		local_lock_irqsave(&lru_rotate.lock, flags);
668 		folio_batch_move_lru(fbatch, lru_move_tail_fn);
669 		local_unlock_irqrestore(&lru_rotate.lock, flags);
670 	}
671 
672 	fbatch = &fbatches->lru_deactivate_file;
673 	if (folio_batch_count(fbatch))
674 		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
675 
676 	fbatch = &fbatches->lru_deactivate;
677 	if (folio_batch_count(fbatch))
678 		folio_batch_move_lru(fbatch, lru_deactivate_fn);
679 
680 	fbatch = &fbatches->lru_lazyfree;
681 	if (folio_batch_count(fbatch))
682 		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
683 
684 	folio_activate_drain(cpu);
685 }
686 
687 /**
688  * deactivate_file_folio() - Deactivate a file folio.
689  * @folio: Folio to deactivate.
690  *
691  * This function hints to the VM that @folio is a good reclaim candidate,
692  * for example if its invalidation fails due to the folio being dirty
693  * or under writeback.
694  *
695  * Context: Caller holds a reference on the folio.
696  */
deactivate_file_folio(struct folio *folio)697 void deactivate_file_folio(struct folio *folio)
698 {
699 	struct folio_batch *fbatch;
700 
701 	/* Deactivating an unevictable folio will not accelerate reclaim */
702 	if (folio_test_unevictable(folio))
703 		return;
704 
705 	folio_get(folio);
706 	local_lock(&cpu_fbatches.lock);
707 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
708 	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
709 	local_unlock(&cpu_fbatches.lock);
710 }
711 
712 /*
713  * folio_deactivate - deactivate a folio
714  * @folio: folio to deactivate
715  *
716  * folio_deactivate() moves @folio to the inactive list if @folio was on the
717  * active list and was not unevictable. This is done to accelerate the
718  * reclaim of @folio.
719  */
folio_deactivate(struct folio *folio)720 void folio_deactivate(struct folio *folio)
721 {
722 	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
723 	    (folio_test_active(folio) || lru_gen_enabled())) {
724 		struct folio_batch *fbatch;
725 
726 		folio_get(folio);
727 		local_lock(&cpu_fbatches.lock);
728 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
729 		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
730 		local_unlock(&cpu_fbatches.lock);
731 	}
732 }
733 
734 /**
735  * folio_mark_lazyfree - make an anon folio lazyfree
736  * @folio: folio to deactivate
737  *
738  * folio_mark_lazyfree() moves @folio to the inactive file list.
739  * This is done to accelerate the reclaim of @folio.
740  */
folio_mark_lazyfree(struct folio *folio)741 void folio_mark_lazyfree(struct folio *folio)
742 {
743 	if (folio_test_lru(folio) && folio_test_anon(folio) &&
744 	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
745 	    !folio_test_unevictable(folio)) {
746 		struct folio_batch *fbatch;
747 
748 		folio_get(folio);
749 		local_lock(&cpu_fbatches.lock);
750 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
751 		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
752 		local_unlock(&cpu_fbatches.lock);
753 	}
754 }
755 
lru_add_drain(void)756 void lru_add_drain(void)
757 {
758 	local_lock(&cpu_fbatches.lock);
759 	lru_add_drain_cpu(smp_processor_id());
760 	local_unlock(&cpu_fbatches.lock);
761 	mlock_drain_local();
762 }
763 
764 /*
765  * It's called from per-cpu workqueue context in SMP case so
766  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
767  * the same cpu. It shouldn't be a problem in !SMP case since
768  * the core is only one and the locks will disable preemption.
769  */
lru_add_and_bh_lrus_drain(void)770 static void lru_add_and_bh_lrus_drain(void)
771 {
772 	local_lock(&cpu_fbatches.lock);
773 	lru_add_drain_cpu(smp_processor_id());
774 	local_unlock(&cpu_fbatches.lock);
775 	invalidate_bh_lrus_cpu();
776 	mlock_drain_local();
777 }
778 
lru_add_drain_cpu_zone(struct zone *zone)779 void lru_add_drain_cpu_zone(struct zone *zone)
780 {
781 	local_lock(&cpu_fbatches.lock);
782 	lru_add_drain_cpu(smp_processor_id());
783 	drain_local_pages(zone);
784 	local_unlock(&cpu_fbatches.lock);
785 	mlock_drain_local();
786 }
787 
788 #ifdef CONFIG_SMP
789 
790 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
791 
lru_add_drain_per_cpu(struct work_struct *dummy)792 static void lru_add_drain_per_cpu(struct work_struct *dummy)
793 {
794 	lru_add_and_bh_lrus_drain();
795 }
796 
cpu_needs_drain(unsigned int cpu)797 static bool cpu_needs_drain(unsigned int cpu)
798 {
799 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
800 
801 	/* Check these in order of likelihood that they're not zero */
802 	return folio_batch_count(&fbatches->lru_add) ||
803 		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
804 		folio_batch_count(&fbatches->lru_deactivate_file) ||
805 		folio_batch_count(&fbatches->lru_deactivate) ||
806 		folio_batch_count(&fbatches->lru_lazyfree) ||
807 		folio_batch_count(&fbatches->activate) ||
808 		need_mlock_drain(cpu) ||
809 		has_bh_in_lru(cpu, NULL);
810 }
811 
812 /*
813  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
814  * kworkers being shut down before our page_alloc_cpu_dead callback is
815  * executed on the offlined cpu.
816  * Calling this function with cpu hotplug locks held can actually lead
817  * to obscure indirect dependencies via WQ context.
818  */
__lru_add_drain_all(bool force_all_cpus)819 static inline void __lru_add_drain_all(bool force_all_cpus)
820 {
821 	/*
822 	 * lru_drain_gen - Global pages generation number
823 	 *
824 	 * (A) Definition: global lru_drain_gen = x implies that all generations
825 	 *     0 < n <= x are already *scheduled* for draining.
826 	 *
827 	 * This is an optimization for the highly-contended use case where a
828 	 * user space workload keeps constantly generating a flow of pages for
829 	 * each CPU.
830 	 */
831 	static unsigned int lru_drain_gen;
832 	static struct cpumask has_work;
833 	static DEFINE_MUTEX(lock);
834 	unsigned cpu, this_gen;
835 
836 	/*
837 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
838 	 * initialized.
839 	 */
840 	if (WARN_ON(!mm_percpu_wq))
841 		return;
842 
843 	/*
844 	 * Guarantee folio_batch counter stores visible by this CPU
845 	 * are visible to other CPUs before loading the current drain
846 	 * generation.
847 	 */
848 	smp_mb();
849 
850 	/*
851 	 * (B) Locally cache global LRU draining generation number
852 	 *
853 	 * The read barrier ensures that the counter is loaded before the mutex
854 	 * is taken. It pairs with smp_mb() inside the mutex critical section
855 	 * at (D).
856 	 */
857 	this_gen = smp_load_acquire(&lru_drain_gen);
858 
859 	mutex_lock(&lock);
860 
861 	/*
862 	 * (C) Exit the draining operation if a newer generation, from another
863 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
864 	 */
865 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
866 		goto done;
867 
868 	/*
869 	 * (D) Increment global generation number
870 	 *
871 	 * Pairs with smp_load_acquire() at (B), outside of the critical
872 	 * section. Use a full memory barrier to guarantee that the
873 	 * new global drain generation number is stored before loading
874 	 * folio_batch counters.
875 	 *
876 	 * This pairing must be done here, before the for_each_online_cpu loop
877 	 * below which drains the page vectors.
878 	 *
879 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
880 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
881 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
882 	 * along, adds some pages to its per-cpu vectors, then calls
883 	 * lru_add_drain_all().
884 	 *
885 	 * If the paired barrier is done at any later step, e.g. after the
886 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
887 	 * added pages.
888 	 */
889 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
890 	smp_mb();
891 
892 	cpumask_clear(&has_work);
893 	for_each_online_cpu(cpu) {
894 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
895 
896 		if (cpu_needs_drain(cpu)) {
897 			INIT_WORK(work, lru_add_drain_per_cpu);
898 			queue_work_on(cpu, mm_percpu_wq, work);
899 			__cpumask_set_cpu(cpu, &has_work);
900 		}
901 	}
902 
903 	for_each_cpu(cpu, &has_work)
904 		flush_work(&per_cpu(lru_add_drain_work, cpu));
905 
906 done:
907 	mutex_unlock(&lock);
908 }
909 
lru_add_drain_all(void)910 void lru_add_drain_all(void)
911 {
912 	__lru_add_drain_all(false);
913 }
914 #else
lru_add_drain_all(void)915 void lru_add_drain_all(void)
916 {
917 	lru_add_drain();
918 }
919 #endif /* CONFIG_SMP */
920 
921 atomic_t lru_disable_count = ATOMIC_INIT(0);
922 
923 /*
924  * lru_cache_disable() needs to be called before we start compiling
925  * a list of pages to be migrated using isolate_lru_page().
926  * It drains pages on LRU cache and then disable on all cpus until
927  * lru_cache_enable is called.
928  *
929  * Must be paired with a call to lru_cache_enable().
930  */
lru_cache_disable(void)931 void lru_cache_disable(void)
932 {
933 	atomic_inc(&lru_disable_count);
934 	/*
935 	 * Readers of lru_disable_count are protected by either disabling
936 	 * preemption or rcu_read_lock:
937 	 *
938 	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
939 	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
940 	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
941 	 *
942 	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
943 	 * preempt_disable() regions of code. So any CPU which sees
944 	 * lru_disable_count = 0 will have exited the critical
945 	 * section when synchronize_rcu() returns.
946 	 */
947 	synchronize_rcu_expedited();
948 #ifdef CONFIG_SMP
949 	__lru_add_drain_all(true);
950 #else
951 	lru_add_and_bh_lrus_drain();
952 #endif
953 }
954 
955 /**
956  * release_pages - batched put_page()
957  * @arg: array of pages to release
958  * @nr: number of pages
959  *
960  * Decrement the reference count on all the pages in @arg.  If it
961  * fell to zero, remove the page from the LRU and free it.
962  *
963  * Note that the argument can be an array of pages, encoded pages,
964  * or folio pointers. We ignore any encoded bits, and turn any of
965  * them into just a folio that gets free'd.
966  */
release_pages(release_pages_arg arg, int nr)967 void release_pages(release_pages_arg arg, int nr)
968 {
969 	int i;
970 	struct encoded_page **encoded = arg.encoded_pages;
971 	LIST_HEAD(pages_to_free);
972 	struct lruvec *lruvec = NULL;
973 	unsigned long flags = 0;
974 	unsigned int lock_batch;
975 
976 	for (i = 0; i < nr; i++) {
977 		struct folio *folio;
978 
979 		/* Turn any of the argument types into a folio */
980 		folio = page_folio(encoded_page_ptr(encoded[i]));
981 
982 		/*
983 		 * Make sure the IRQ-safe lock-holding time does not get
984 		 * excessive with a continuous string of pages from the
985 		 * same lruvec. The lock is held only if lruvec != NULL.
986 		 */
987 		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
988 			unlock_page_lruvec_irqrestore(lruvec, flags);
989 			lruvec = NULL;
990 		}
991 
992 		if (is_huge_zero_page(&folio->page))
993 			continue;
994 
995 		if (folio_is_zone_device(folio)) {
996 			if (lruvec) {
997 				unlock_page_lruvec_irqrestore(lruvec, flags);
998 				lruvec = NULL;
999 			}
1000 			if (put_devmap_managed_page(&folio->page))
1001 				continue;
1002 			if (folio_put_testzero(folio))
1003 				free_zone_device_page(&folio->page);
1004 			continue;
1005 		}
1006 
1007 		if (!folio_put_testzero(folio))
1008 			continue;
1009 
1010 		if (folio_test_large(folio)) {
1011 			if (lruvec) {
1012 				unlock_page_lruvec_irqrestore(lruvec, flags);
1013 				lruvec = NULL;
1014 			}
1015 			__folio_put_large(folio);
1016 			continue;
1017 		}
1018 
1019 		if (folio_test_lru(folio)) {
1020 			struct lruvec *prev_lruvec = lruvec;
1021 
1022 			lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
1023 									&flags);
1024 			if (prev_lruvec != lruvec)
1025 				lock_batch = 0;
1026 
1027 			lruvec_del_folio(lruvec, folio);
1028 			__folio_clear_lru_flags(folio);
1029 		}
1030 
1031 		/*
1032 		 * In rare cases, when truncation or holepunching raced with
1033 		 * munlock after VM_LOCKED was cleared, Mlocked may still be
1034 		 * found set here.  This does not indicate a problem, unless
1035 		 * "unevictable_pgs_cleared" appears worryingly large.
1036 		 */
1037 		if (unlikely(folio_test_mlocked(folio))) {
1038 			__folio_clear_mlocked(folio);
1039 			zone_stat_sub_folio(folio, NR_MLOCK);
1040 			count_vm_event(UNEVICTABLE_PGCLEARED);
1041 		}
1042 
1043 		list_add(&folio->lru, &pages_to_free);
1044 	}
1045 	if (lruvec)
1046 		unlock_page_lruvec_irqrestore(lruvec, flags);
1047 
1048 	mem_cgroup_uncharge_list(&pages_to_free);
1049 	free_unref_page_list(&pages_to_free);
1050 }
1051 EXPORT_SYMBOL(release_pages);
1052 
1053 /*
1054  * The folios which we're about to release may be in the deferred lru-addition
1055  * queues.  That would prevent them from really being freed right now.  That's
1056  * OK from a correctness point of view but is inefficient - those folios may be
1057  * cache-warm and we want to give them back to the page allocator ASAP.
1058  *
1059  * So __folio_batch_release() will drain those queues here.
1060  * folio_batch_move_lru() calls folios_put() directly to avoid
1061  * mutual recursion.
1062  */
__folio_batch_release(struct folio_batch *fbatch)1063 void __folio_batch_release(struct folio_batch *fbatch)
1064 {
1065 	if (!fbatch->percpu_pvec_drained) {
1066 		lru_add_drain();
1067 		fbatch->percpu_pvec_drained = true;
1068 	}
1069 	release_pages(fbatch->folios, folio_batch_count(fbatch));
1070 	folio_batch_reinit(fbatch);
1071 }
1072 EXPORT_SYMBOL(__folio_batch_release);
1073 
1074 /**
1075  * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1076  * @fbatch: The batch to prune
1077  *
1078  * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1079  * entries.  This function prunes all the non-folio entries from @fbatch
1080  * without leaving holes, so that it can be passed on to folio-only batch
1081  * operations.
1082  */
folio_batch_remove_exceptionals(struct folio_batch *fbatch)1083 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1084 {
1085 	unsigned int i, j;
1086 
1087 	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1088 		struct folio *folio = fbatch->folios[i];
1089 		if (!xa_is_value(folio))
1090 			fbatch->folios[j++] = folio;
1091 	}
1092 	fbatch->nr = j;
1093 }
1094 
1095 /*
1096  * Perform any setup for the swap system
1097  */
swap_setup(void)1098 void __init swap_setup(void)
1099 {
1100 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1101 
1102 	/* Use a smaller cluster for small-memory machines */
1103 	if (megs < 16)
1104 		page_cluster = 2;
1105 	else
1106 		page_cluster = 3;
1107 	/*
1108 	 * Right now other parts of the system means that we
1109 	 * _really_ don't want to cluster much more
1110 	 */
1111 }
1112