1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * vma_start_write
29 * mapping->i_mmap_rwsem
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
44 *
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 * ->tasklist_lock
47 * pte map lock
48 *
49 * hugetlbfs PageHuge() take locks in this order:
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * vma_lock (hugetlb specific lock for pmd_sharing)
52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53 * page->flags PG_locked (lock_page)
54 */
55
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78 #include <linux/mm_purgeable.h>
79
80 #include <asm/tlbflush.h>
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/tlb.h>
84 #include <trace/events/migrate.h>
85
86 #include "internal.h"
87
88 static struct kmem_cache *anon_vma_cachep;
89 static struct kmem_cache *anon_vma_chain_cachep;
90
anon_vma_alloc(void)91 static inline struct anon_vma *anon_vma_alloc(void)
92 {
93 struct anon_vma *anon_vma;
94
95 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
96 if (anon_vma) {
97 atomic_set(&anon_vma->refcount, 1);
98 anon_vma->num_children = 0;
99 anon_vma->num_active_vmas = 0;
100 anon_vma->parent = anon_vma;
101 /*
102 * Initialise the anon_vma root to point to itself. If called
103 * from fork, the root will be reset to the parents anon_vma.
104 */
105 anon_vma->root = anon_vma;
106 }
107
108 return anon_vma;
109 }
110
anon_vma_free(struct anon_vma *anon_vma)111 static inline void anon_vma_free(struct anon_vma *anon_vma)
112 {
113 VM_BUG_ON(atomic_read(&anon_vma->refcount));
114
115 /*
116 * Synchronize against folio_lock_anon_vma_read() such that
117 * we can safely hold the lock without the anon_vma getting
118 * freed.
119 *
120 * Relies on the full mb implied by the atomic_dec_and_test() from
121 * put_anon_vma() against the acquire barrier implied by
122 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
123 *
124 * folio_lock_anon_vma_read() VS put_anon_vma()
125 * down_read_trylock() atomic_dec_and_test()
126 * LOCK MB
127 * atomic_read() rwsem_is_locked()
128 *
129 * LOCK should suffice since the actual taking of the lock must
130 * happen _before_ what follows.
131 */
132 might_sleep();
133 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
134 anon_vma_lock_write(anon_vma);
135 anon_vma_unlock_write(anon_vma);
136 }
137
138 kmem_cache_free(anon_vma_cachep, anon_vma);
139 }
140
anon_vma_chain_alloc(gfp_t gfp)141 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
142 {
143 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
144 }
145
anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)146 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
147 {
148 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
149 }
150
anon_vma_chain_link(struct vm_area_struct *vma, struct anon_vma_chain *avc, struct anon_vma *anon_vma)151 static void anon_vma_chain_link(struct vm_area_struct *vma,
152 struct anon_vma_chain *avc,
153 struct anon_vma *anon_vma)
154 {
155 avc->vma = vma;
156 avc->anon_vma = anon_vma;
157 list_add(&avc->same_vma, &vma->anon_vma_chain);
158 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
159 }
160
161 /**
162 * __anon_vma_prepare - attach an anon_vma to a memory region
163 * @vma: the memory region in question
164 *
165 * This makes sure the memory mapping described by 'vma' has
166 * an 'anon_vma' attached to it, so that we can associate the
167 * anonymous pages mapped into it with that anon_vma.
168 *
169 * The common case will be that we already have one, which
170 * is handled inline by anon_vma_prepare(). But if
171 * not we either need to find an adjacent mapping that we
172 * can re-use the anon_vma from (very common when the only
173 * reason for splitting a vma has been mprotect()), or we
174 * allocate a new one.
175 *
176 * Anon-vma allocations are very subtle, because we may have
177 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
178 * and that may actually touch the rwsem even in the newly
179 * allocated vma (it depends on RCU to make sure that the
180 * anon_vma isn't actually destroyed).
181 *
182 * As a result, we need to do proper anon_vma locking even
183 * for the new allocation. At the same time, we do not want
184 * to do any locking for the common case of already having
185 * an anon_vma.
186 *
187 * This must be called with the mmap_lock held for reading.
188 */
__anon_vma_prepare(struct vm_area_struct *vma)189 int __anon_vma_prepare(struct vm_area_struct *vma)
190 {
191 struct mm_struct *mm = vma->vm_mm;
192 struct anon_vma *anon_vma, *allocated;
193 struct anon_vma_chain *avc;
194
195 might_sleep();
196
197 avc = anon_vma_chain_alloc(GFP_KERNEL);
198 if (!avc)
199 goto out_enomem;
200
201 anon_vma = find_mergeable_anon_vma(vma);
202 allocated = NULL;
203 if (!anon_vma) {
204 anon_vma = anon_vma_alloc();
205 if (unlikely(!anon_vma))
206 goto out_enomem_free_avc;
207 anon_vma->num_children++; /* self-parent link for new root */
208 allocated = anon_vma;
209 }
210
211 anon_vma_lock_write(anon_vma);
212 /* page_table_lock to protect against threads */
213 spin_lock(&mm->page_table_lock);
214 if (likely(!vma->anon_vma)) {
215 vma->anon_vma = anon_vma;
216 anon_vma_chain_link(vma, avc, anon_vma);
217 anon_vma->num_active_vmas++;
218 allocated = NULL;
219 avc = NULL;
220 }
221 spin_unlock(&mm->page_table_lock);
222 anon_vma_unlock_write(anon_vma);
223
224 if (unlikely(allocated))
225 put_anon_vma(allocated);
226 if (unlikely(avc))
227 anon_vma_chain_free(avc);
228
229 return 0;
230
231 out_enomem_free_avc:
232 anon_vma_chain_free(avc);
233 out_enomem:
234 return -ENOMEM;
235 }
236
237 /*
238 * This is a useful helper function for locking the anon_vma root as
239 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
240 * have the same vma.
241 *
242 * Such anon_vma's should have the same root, so you'd expect to see
243 * just a single mutex_lock for the whole traversal.
244 */
lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)245 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
246 {
247 struct anon_vma *new_root = anon_vma->root;
248 if (new_root != root) {
249 if (WARN_ON_ONCE(root))
250 up_write(&root->rwsem);
251 root = new_root;
252 down_write(&root->rwsem);
253 }
254 return root;
255 }
256
unlock_anon_vma_root(struct anon_vma *root)257 static inline void unlock_anon_vma_root(struct anon_vma *root)
258 {
259 if (root)
260 up_write(&root->rwsem);
261 }
262
263 /*
264 * Attach the anon_vmas from src to dst.
265 * Returns 0 on success, -ENOMEM on failure.
266 *
267 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
268 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
269 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
270 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
271 * call, we can identify this case by checking (!dst->anon_vma &&
272 * src->anon_vma).
273 *
274 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
275 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
276 * This prevents degradation of anon_vma hierarchy to endless linear chain in
277 * case of constantly forking task. On the other hand, an anon_vma with more
278 * than one child isn't reused even if there was no alive vma, thus rmap
279 * walker has a good chance of avoiding scanning the whole hierarchy when it
280 * searches where page is mapped.
281 */
anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)282 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
283 {
284 struct anon_vma_chain *avc, *pavc;
285 struct anon_vma *root = NULL;
286
287 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
288 struct anon_vma *anon_vma;
289
290 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
291 if (unlikely(!avc)) {
292 unlock_anon_vma_root(root);
293 root = NULL;
294 avc = anon_vma_chain_alloc(GFP_KERNEL);
295 if (!avc)
296 goto enomem_failure;
297 }
298 anon_vma = pavc->anon_vma;
299 root = lock_anon_vma_root(root, anon_vma);
300 anon_vma_chain_link(dst, avc, anon_vma);
301
302 /*
303 * Reuse existing anon_vma if it has no vma and only one
304 * anon_vma child.
305 *
306 * Root anon_vma is never reused:
307 * it has self-parent reference and at least one child.
308 */
309 if (!dst->anon_vma && src->anon_vma &&
310 anon_vma->num_children < 2 &&
311 anon_vma->num_active_vmas == 0)
312 dst->anon_vma = anon_vma;
313 }
314 if (dst->anon_vma)
315 dst->anon_vma->num_active_vmas++;
316 unlock_anon_vma_root(root);
317 return 0;
318
319 enomem_failure:
320 /*
321 * dst->anon_vma is dropped here otherwise its num_active_vmas can
322 * be incorrectly decremented in unlink_anon_vmas().
323 * We can safely do this because callers of anon_vma_clone() don't care
324 * about dst->anon_vma if anon_vma_clone() failed.
325 */
326 dst->anon_vma = NULL;
327 unlink_anon_vmas(dst);
328 return -ENOMEM;
329 }
330
331 /*
332 * Attach vma to its own anon_vma, as well as to the anon_vmas that
333 * the corresponding VMA in the parent process is attached to.
334 * Returns 0 on success, non-zero on failure.
335 */
anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)336 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
337 {
338 struct anon_vma_chain *avc;
339 struct anon_vma *anon_vma;
340 int error;
341
342 /* Don't bother if the parent process has no anon_vma here. */
343 if (!pvma->anon_vma)
344 return 0;
345
346 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
347 vma->anon_vma = NULL;
348
349 /*
350 * First, attach the new VMA to the parent VMA's anon_vmas,
351 * so rmap can find non-COWed pages in child processes.
352 */
353 error = anon_vma_clone(vma, pvma);
354 if (error)
355 return error;
356
357 /* An existing anon_vma has been reused, all done then. */
358 if (vma->anon_vma)
359 return 0;
360
361 /* Then add our own anon_vma. */
362 anon_vma = anon_vma_alloc();
363 if (!anon_vma)
364 goto out_error;
365 anon_vma->num_active_vmas++;
366 avc = anon_vma_chain_alloc(GFP_KERNEL);
367 if (!avc)
368 goto out_error_free_anon_vma;
369
370 /*
371 * The root anon_vma's rwsem is the lock actually used when we
372 * lock any of the anon_vmas in this anon_vma tree.
373 */
374 anon_vma->root = pvma->anon_vma->root;
375 anon_vma->parent = pvma->anon_vma;
376 /*
377 * With refcounts, an anon_vma can stay around longer than the
378 * process it belongs to. The root anon_vma needs to be pinned until
379 * this anon_vma is freed, because the lock lives in the root.
380 */
381 get_anon_vma(anon_vma->root);
382 /* Mark this anon_vma as the one where our new (COWed) pages go. */
383 vma->anon_vma = anon_vma;
384 anon_vma_lock_write(anon_vma);
385 anon_vma_chain_link(vma, avc, anon_vma);
386 anon_vma->parent->num_children++;
387 anon_vma_unlock_write(anon_vma);
388
389 return 0;
390
391 out_error_free_anon_vma:
392 put_anon_vma(anon_vma);
393 out_error:
394 unlink_anon_vmas(vma);
395 return -ENOMEM;
396 }
397
unlink_anon_vmas(struct vm_area_struct *vma)398 void unlink_anon_vmas(struct vm_area_struct *vma)
399 {
400 struct anon_vma_chain *avc, *next;
401 struct anon_vma *root = NULL;
402
403 /*
404 * Unlink each anon_vma chained to the VMA. This list is ordered
405 * from newest to oldest, ensuring the root anon_vma gets freed last.
406 */
407 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
408 struct anon_vma *anon_vma = avc->anon_vma;
409
410 root = lock_anon_vma_root(root, anon_vma);
411 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
412
413 /*
414 * Leave empty anon_vmas on the list - we'll need
415 * to free them outside the lock.
416 */
417 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
418 anon_vma->parent->num_children--;
419 continue;
420 }
421
422 list_del(&avc->same_vma);
423 anon_vma_chain_free(avc);
424 }
425 if (vma->anon_vma) {
426 vma->anon_vma->num_active_vmas--;
427
428 /*
429 * vma would still be needed after unlink, and anon_vma will be prepared
430 * when handle fault.
431 */
432 vma->anon_vma = NULL;
433 }
434 unlock_anon_vma_root(root);
435
436 /*
437 * Iterate the list once more, it now only contains empty and unlinked
438 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
439 * needing to write-acquire the anon_vma->root->rwsem.
440 */
441 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
442 struct anon_vma *anon_vma = avc->anon_vma;
443
444 VM_WARN_ON(anon_vma->num_children);
445 VM_WARN_ON(anon_vma->num_active_vmas);
446 put_anon_vma(anon_vma);
447
448 list_del(&avc->same_vma);
449 anon_vma_chain_free(avc);
450 }
451 }
452
anon_vma_ctor(void *data)453 static void anon_vma_ctor(void *data)
454 {
455 struct anon_vma *anon_vma = data;
456
457 init_rwsem(&anon_vma->rwsem);
458 atomic_set(&anon_vma->refcount, 0);
459 anon_vma->rb_root = RB_ROOT_CACHED;
460 }
461
anon_vma_init(void)462 void __init anon_vma_init(void)
463 {
464 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
465 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
466 anon_vma_ctor);
467 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
468 SLAB_PANIC|SLAB_ACCOUNT);
469 }
470
471 /*
472 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
473 *
474 * Since there is no serialization what so ever against page_remove_rmap()
475 * the best this function can do is return a refcount increased anon_vma
476 * that might have been relevant to this page.
477 *
478 * The page might have been remapped to a different anon_vma or the anon_vma
479 * returned may already be freed (and even reused).
480 *
481 * In case it was remapped to a different anon_vma, the new anon_vma will be a
482 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
483 * ensure that any anon_vma obtained from the page will still be valid for as
484 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
485 *
486 * All users of this function must be very careful when walking the anon_vma
487 * chain and verify that the page in question is indeed mapped in it
488 * [ something equivalent to page_mapped_in_vma() ].
489 *
490 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
491 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
492 * if there is a mapcount, we can dereference the anon_vma after observing
493 * those.
494 */
folio_get_anon_vma(struct folio *folio)495 struct anon_vma *folio_get_anon_vma(struct folio *folio)
496 {
497 struct anon_vma *anon_vma = NULL;
498 unsigned long anon_mapping;
499
500 rcu_read_lock();
501 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
502 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
503 goto out;
504 if (!folio_mapped(folio))
505 goto out;
506
507 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
508 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
509 anon_vma = NULL;
510 goto out;
511 }
512
513 /*
514 * If this folio is still mapped, then its anon_vma cannot have been
515 * freed. But if it has been unmapped, we have no security against the
516 * anon_vma structure being freed and reused (for another anon_vma:
517 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
518 * above cannot corrupt).
519 */
520 if (!folio_mapped(folio)) {
521 rcu_read_unlock();
522 put_anon_vma(anon_vma);
523 return NULL;
524 }
525 out:
526 rcu_read_unlock();
527
528 return anon_vma;
529 }
530
531 /*
532 * Similar to folio_get_anon_vma() except it locks the anon_vma.
533 *
534 * Its a little more complex as it tries to keep the fast path to a single
535 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
536 * reference like with folio_get_anon_vma() and then block on the mutex
537 * on !rwc->try_lock case.
538 */
folio_lock_anon_vma_read(struct folio *folio, struct rmap_walk_control *rwc)539 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
540 struct rmap_walk_control *rwc)
541 {
542 struct anon_vma *anon_vma = NULL;
543 struct anon_vma *root_anon_vma;
544 unsigned long anon_mapping;
545
546 rcu_read_lock();
547 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
548 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
549 goto out;
550 if (!folio_mapped(folio))
551 goto out;
552
553 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
554 root_anon_vma = READ_ONCE(anon_vma->root);
555 if (down_read_trylock(&root_anon_vma->rwsem)) {
556 /*
557 * If the folio is still mapped, then this anon_vma is still
558 * its anon_vma, and holding the mutex ensures that it will
559 * not go away, see anon_vma_free().
560 */
561 if (!folio_mapped(folio)) {
562 up_read(&root_anon_vma->rwsem);
563 anon_vma = NULL;
564 }
565 goto out;
566 }
567
568 if (rwc && rwc->try_lock) {
569 anon_vma = NULL;
570 rwc->contended = true;
571 goto out;
572 }
573
574 /* trylock failed, we got to sleep */
575 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
576 anon_vma = NULL;
577 goto out;
578 }
579
580 if (!folio_mapped(folio)) {
581 rcu_read_unlock();
582 put_anon_vma(anon_vma);
583 return NULL;
584 }
585
586 /* we pinned the anon_vma, its safe to sleep */
587 rcu_read_unlock();
588 anon_vma_lock_read(anon_vma);
589
590 if (atomic_dec_and_test(&anon_vma->refcount)) {
591 /*
592 * Oops, we held the last refcount, release the lock
593 * and bail -- can't simply use put_anon_vma() because
594 * we'll deadlock on the anon_vma_lock_write() recursion.
595 */
596 anon_vma_unlock_read(anon_vma);
597 __put_anon_vma(anon_vma);
598 anon_vma = NULL;
599 }
600
601 return anon_vma;
602
603 out:
604 rcu_read_unlock();
605 return anon_vma;
606 }
607
608 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
609 /*
610 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
611 * important if a PTE was dirty when it was unmapped that it's flushed
612 * before any IO is initiated on the page to prevent lost writes. Similarly,
613 * it must be flushed before freeing to prevent data leakage.
614 */
try_to_unmap_flush(void)615 void try_to_unmap_flush(void)
616 {
617 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
618
619 if (!tlb_ubc->flush_required)
620 return;
621
622 arch_tlbbatch_flush(&tlb_ubc->arch);
623 tlb_ubc->flush_required = false;
624 tlb_ubc->writable = false;
625 }
626
627 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)628 void try_to_unmap_flush_dirty(void)
629 {
630 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
631
632 if (tlb_ubc->writable)
633 try_to_unmap_flush();
634 }
635
636 /*
637 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
638 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
639 */
640 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
641 #define TLB_FLUSH_BATCH_PENDING_MASK \
642 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
643 #define TLB_FLUSH_BATCH_PENDING_LARGE \
644 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
645
set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, unsigned long uaddr)646 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
647 unsigned long uaddr)
648 {
649 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
650 int batch;
651 bool writable = pte_dirty(pteval);
652
653 if (!pte_accessible(mm, pteval))
654 return;
655
656 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
657 tlb_ubc->flush_required = true;
658
659 /*
660 * Ensure compiler does not re-order the setting of tlb_flush_batched
661 * before the PTE is cleared.
662 */
663 barrier();
664 batch = atomic_read(&mm->tlb_flush_batched);
665 retry:
666 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
667 /*
668 * Prevent `pending' from catching up with `flushed' because of
669 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
670 * `pending' becomes large.
671 */
672 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
673 goto retry;
674 } else {
675 atomic_inc(&mm->tlb_flush_batched);
676 }
677
678 /*
679 * If the PTE was dirty then it's best to assume it's writable. The
680 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
681 * before the page is queued for IO.
682 */
683 if (writable)
684 tlb_ubc->writable = true;
685 }
686
687 /*
688 * Returns true if the TLB flush should be deferred to the end of a batch of
689 * unmap operations to reduce IPIs.
690 */
should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)691 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
692 {
693 if (!(flags & TTU_BATCH_FLUSH))
694 return false;
695
696 return arch_tlbbatch_should_defer(mm);
697 }
698
699 /*
700 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
701 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
702 * operation such as mprotect or munmap to race between reclaim unmapping
703 * the page and flushing the page. If this race occurs, it potentially allows
704 * access to data via a stale TLB entry. Tracking all mm's that have TLB
705 * batching in flight would be expensive during reclaim so instead track
706 * whether TLB batching occurred in the past and if so then do a flush here
707 * if required. This will cost one additional flush per reclaim cycle paid
708 * by the first operation at risk such as mprotect and mumap.
709 *
710 * This must be called under the PTL so that an access to tlb_flush_batched
711 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
712 * via the PTL.
713 */
flush_tlb_batched_pending(struct mm_struct *mm)714 void flush_tlb_batched_pending(struct mm_struct *mm)
715 {
716 int batch = atomic_read(&mm->tlb_flush_batched);
717 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
718 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
719
720 if (pending != flushed) {
721 arch_flush_tlb_batched_pending(mm);
722 /*
723 * If the new TLB flushing is pending during flushing, leave
724 * mm->tlb_flush_batched as is, to avoid losing flushing.
725 */
726 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
727 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
728 }
729 }
730 #else
set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, unsigned long uaddr)731 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
732 unsigned long uaddr)
733 {
734 }
735
should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)736 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
737 {
738 return false;
739 }
740 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
741
742 /*
743 * At what user virtual address is page expected in vma?
744 * Caller should check the page is actually part of the vma.
745 */
page_address_in_vma(struct page *page, struct vm_area_struct *vma)746 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
747 {
748 struct folio *folio = page_folio(page);
749 if (folio_test_anon(folio)) {
750 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
751 /*
752 * Note: swapoff's unuse_vma() is more efficient with this
753 * check, and needs it to match anon_vma when KSM is active.
754 */
755 if (!vma->anon_vma || !page__anon_vma ||
756 vma->anon_vma->root != page__anon_vma->root)
757 return -EFAULT;
758 } else if (!vma->vm_file) {
759 return -EFAULT;
760 } else if (vma->vm_file->f_mapping != folio->mapping) {
761 return -EFAULT;
762 }
763
764 return vma_address(page, vma);
765 }
766
767 /*
768 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
769 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
770 * represents.
771 */
mm_find_pmd(struct mm_struct *mm, unsigned long address)772 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
773 {
774 pgd_t *pgd;
775 p4d_t *p4d;
776 pud_t *pud;
777 pmd_t *pmd = NULL;
778
779 pgd = pgd_offset(mm, address);
780 if (!pgd_present(*pgd))
781 goto out;
782
783 p4d = p4d_offset(pgd, address);
784 if (!p4d_present(*p4d))
785 goto out;
786
787 pud = pud_offset(p4d, address);
788 if (!pud_present(*pud))
789 goto out;
790
791 pmd = pmd_offset(pud, address);
792 out:
793 return pmd;
794 }
795
796 struct folio_referenced_arg {
797 int mapcount;
798 int referenced;
799 unsigned long vm_flags;
800 struct mem_cgroup *memcg;
801 };
802 /*
803 * arg: folio_referenced_arg will be passed
804 */
folio_referenced_one(struct folio *folio, struct vm_area_struct *vma, unsigned long address, void *arg)805 static bool folio_referenced_one(struct folio *folio,
806 struct vm_area_struct *vma, unsigned long address, void *arg)
807 {
808 struct folio_referenced_arg *pra = arg;
809 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
810 int referenced = 0;
811
812 while (page_vma_mapped_walk(&pvmw)) {
813 address = pvmw.address;
814
815 #ifdef CONFIG_MEM_PURGEABLE
816 if (!(vma->vm_flags & VM_PURGEABLE))
817 pra->vm_flags &= ~VM_PURGEABLE;
818 #endif
819 if ((vma->vm_flags & VM_LOCKED) &&
820 (!folio_test_large(folio) || !pvmw.pte)) {
821 /* Restore the mlock which got missed */
822 mlock_vma_folio(folio, vma, !pvmw.pte);
823 page_vma_mapped_walk_done(&pvmw);
824 pra->vm_flags |= VM_LOCKED;
825 return false; /* To break the loop */
826 }
827
828 if (pvmw.pte) {
829 if (lru_gen_enabled() &&
830 pte_young(ptep_get(pvmw.pte))) {
831 lru_gen_look_around(&pvmw);
832 referenced++;
833 }
834
835 if (ptep_clear_flush_young_notify(vma, address,
836 pvmw.pte))
837 referenced++;
838 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
839 if (pmdp_clear_flush_young_notify(vma, address,
840 pvmw.pmd))
841 referenced++;
842 } else {
843 /* unexpected pmd-mapped folio? */
844 WARN_ON_ONCE(1);
845 }
846
847 pra->mapcount--;
848 }
849
850 if (referenced)
851 folio_clear_idle(folio);
852 if (folio_test_clear_young(folio))
853 referenced++;
854
855 if (referenced) {
856 pra->referenced++;
857 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
858 #ifdef CONFIG_MEM_PURGEABLE
859 pra->vm_flags |= vma->vm_flags & ~VM_PURGEABLE;
860 #endif
861 }
862
863 if (!pra->mapcount)
864 return false; /* To break the loop */
865
866 return true;
867 }
868
invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)869 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
870 {
871 struct folio_referenced_arg *pra = arg;
872 struct mem_cgroup *memcg = pra->memcg;
873
874 /*
875 * Ignore references from this mapping if it has no recency. If the
876 * folio has been used in another mapping, we will catch it; if this
877 * other mapping is already gone, the unmap path will have set the
878 * referenced flag or activated the folio in zap_pte_range().
879 */
880 if (!vma_has_recency(vma))
881 return true;
882
883 /*
884 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
885 * of references from different cgroups.
886 */
887 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
888 return true;
889
890 return false;
891 }
892
893 /**
894 * folio_referenced() - Test if the folio was referenced.
895 * @folio: The folio to test.
896 * @is_locked: Caller holds lock on the folio.
897 * @memcg: target memory cgroup
898 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
899 *
900 * Quick test_and_clear_referenced for all mappings of a folio,
901 *
902 * Return: The number of mappings which referenced the folio. Return -1 if
903 * the function bailed out due to rmap lock contention.
904 */
folio_referenced(struct folio *folio, int is_locked, struct mem_cgroup *memcg, unsigned long *vm_flags)905 int folio_referenced(struct folio *folio, int is_locked,
906 struct mem_cgroup *memcg, unsigned long *vm_flags)
907 {
908 int we_locked = 0;
909 struct folio_referenced_arg pra = {
910 .mapcount = folio_mapcount(folio),
911 .memcg = memcg,
912 #ifdef CONFIG_MEM_PURGEABLE
913 .vm_flags = VM_PURGEABLE,
914 #endif
915 };
916 struct rmap_walk_control rwc = {
917 .rmap_one = folio_referenced_one,
918 .arg = (void *)&pra,
919 .anon_lock = folio_lock_anon_vma_read,
920 .try_lock = true,
921 .invalid_vma = invalid_folio_referenced_vma,
922 };
923
924 *vm_flags = 0;
925 if (!pra.mapcount)
926 return 0;
927
928 if (!folio_raw_mapping(folio))
929 return 0;
930
931 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
932 we_locked = folio_trylock(folio);
933 if (!we_locked)
934 return 1;
935 }
936
937 rmap_walk(folio, &rwc);
938 *vm_flags = pra.vm_flags;
939
940 if (we_locked)
941 folio_unlock(folio);
942
943 return rwc.contended ? -1 : pra.referenced;
944 }
945
page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)946 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
947 {
948 int cleaned = 0;
949 struct vm_area_struct *vma = pvmw->vma;
950 struct mmu_notifier_range range;
951 unsigned long address = pvmw->address;
952
953 /*
954 * We have to assume the worse case ie pmd for invalidation. Note that
955 * the folio can not be freed from this function.
956 */
957 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
958 vma->vm_mm, address, vma_address_end(pvmw));
959 mmu_notifier_invalidate_range_start(&range);
960
961 while (page_vma_mapped_walk(pvmw)) {
962 int ret = 0;
963
964 address = pvmw->address;
965 if (pvmw->pte) {
966 pte_t *pte = pvmw->pte;
967 pte_t entry = ptep_get(pte);
968
969 if (!pte_dirty(entry) && !pte_write(entry))
970 continue;
971
972 flush_cache_page(vma, address, pte_pfn(entry));
973 entry = ptep_clear_flush(vma, address, pte);
974 entry = pte_wrprotect(entry);
975 entry = pte_mkclean(entry);
976 set_pte_at(vma->vm_mm, address, pte, entry);
977 ret = 1;
978 } else {
979 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
980 pmd_t *pmd = pvmw->pmd;
981 pmd_t entry;
982
983 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
984 continue;
985
986 flush_cache_range(vma, address,
987 address + HPAGE_PMD_SIZE);
988 entry = pmdp_invalidate(vma, address, pmd);
989 entry = pmd_wrprotect(entry);
990 entry = pmd_mkclean(entry);
991 set_pmd_at(vma->vm_mm, address, pmd, entry);
992 ret = 1;
993 #else
994 /* unexpected pmd-mapped folio? */
995 WARN_ON_ONCE(1);
996 #endif
997 }
998
999 if (ret)
1000 cleaned++;
1001 }
1002
1003 mmu_notifier_invalidate_range_end(&range);
1004
1005 return cleaned;
1006 }
1007
page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, unsigned long address, void *arg)1008 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1009 unsigned long address, void *arg)
1010 {
1011 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1012 int *cleaned = arg;
1013
1014 *cleaned += page_vma_mkclean_one(&pvmw);
1015
1016 return true;
1017 }
1018
invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)1019 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1020 {
1021 if (vma->vm_flags & VM_SHARED)
1022 return false;
1023
1024 return true;
1025 }
1026
folio_mkclean(struct folio *folio)1027 int folio_mkclean(struct folio *folio)
1028 {
1029 int cleaned = 0;
1030 struct address_space *mapping;
1031 struct rmap_walk_control rwc = {
1032 .arg = (void *)&cleaned,
1033 .rmap_one = page_mkclean_one,
1034 .invalid_vma = invalid_mkclean_vma,
1035 };
1036
1037 BUG_ON(!folio_test_locked(folio));
1038
1039 if (!folio_mapped(folio))
1040 return 0;
1041
1042 mapping = folio_mapping(folio);
1043 if (!mapping)
1044 return 0;
1045
1046 rmap_walk(folio, &rwc);
1047
1048 return cleaned;
1049 }
1050 EXPORT_SYMBOL_GPL(folio_mkclean);
1051
1052 /**
1053 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1054 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1055 * within the @vma of shared mappings. And since clean PTEs
1056 * should also be readonly, write protects them too.
1057 * @pfn: start pfn.
1058 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1059 * @pgoff: page offset that the @pfn mapped with.
1060 * @vma: vma that @pfn mapped within.
1061 *
1062 * Returns the number of cleaned PTEs (including PMDs).
1063 */
pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, struct vm_area_struct *vma)1064 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1065 struct vm_area_struct *vma)
1066 {
1067 struct page_vma_mapped_walk pvmw = {
1068 .pfn = pfn,
1069 .nr_pages = nr_pages,
1070 .pgoff = pgoff,
1071 .vma = vma,
1072 .flags = PVMW_SYNC,
1073 };
1074
1075 if (invalid_mkclean_vma(vma, NULL))
1076 return 0;
1077
1078 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1079 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1080
1081 return page_vma_mkclean_one(&pvmw);
1082 }
1083
folio_total_mapcount(struct folio *folio)1084 int folio_total_mapcount(struct folio *folio)
1085 {
1086 int mapcount = folio_entire_mapcount(folio);
1087 int nr_pages;
1088 int i;
1089
1090 /* In the common case, avoid the loop when no pages mapped by PTE */
1091 if (folio_nr_pages_mapped(folio) == 0)
1092 return mapcount;
1093 /*
1094 * Add all the PTE mappings of those pages mapped by PTE.
1095 * Limit the loop to folio_nr_pages_mapped()?
1096 * Perhaps: given all the raciness, that may be a good or a bad idea.
1097 */
1098 nr_pages = folio_nr_pages(folio);
1099 for (i = 0; i < nr_pages; i++)
1100 mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
1101
1102 /* But each of those _mapcounts was based on -1 */
1103 mapcount += nr_pages;
1104 return mapcount;
1105 }
1106
1107 /**
1108 * page_move_anon_rmap - move a page to our anon_vma
1109 * @page: the page to move to our anon_vma
1110 * @vma: the vma the page belongs to
1111 *
1112 * When a page belongs exclusively to one process after a COW event,
1113 * that page can be moved into the anon_vma that belongs to just that
1114 * process, so the rmap code will not search the parent or sibling
1115 * processes.
1116 */
page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)1117 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1118 {
1119 void *anon_vma = vma->anon_vma;
1120 struct folio *folio = page_folio(page);
1121
1122 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1123 VM_BUG_ON_VMA(!anon_vma, vma);
1124
1125 anon_vma += PAGE_MAPPING_ANON;
1126 /*
1127 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1128 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1129 * folio_test_anon()) will not see one without the other.
1130 */
1131 WRITE_ONCE(folio->mapping, anon_vma);
1132 SetPageAnonExclusive(page);
1133 }
1134
1135 /**
1136 * __page_set_anon_rmap - set up new anonymous rmap
1137 * @folio: Folio which contains page.
1138 * @page: Page to add to rmap.
1139 * @vma: VM area to add page to.
1140 * @address: User virtual address of the mapping
1141 * @exclusive: the page is exclusively owned by the current process
1142 */
__page_set_anon_rmap(struct folio *folio, struct page *page, struct vm_area_struct *vma, unsigned long address, int exclusive)1143 static void __page_set_anon_rmap(struct folio *folio, struct page *page,
1144 struct vm_area_struct *vma, unsigned long address, int exclusive)
1145 {
1146 struct anon_vma *anon_vma = vma->anon_vma;
1147
1148 BUG_ON(!anon_vma);
1149
1150 if (folio_test_anon(folio))
1151 goto out;
1152
1153 /*
1154 * If the page isn't exclusively mapped into this vma,
1155 * we must use the _oldest_ possible anon_vma for the
1156 * page mapping!
1157 */
1158 if (!exclusive)
1159 anon_vma = anon_vma->root;
1160
1161 /*
1162 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1163 * Make sure the compiler doesn't split the stores of anon_vma and
1164 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1165 * could mistake the mapping for a struct address_space and crash.
1166 */
1167 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1168 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1169 folio->index = linear_page_index(vma, address);
1170 out:
1171 if (exclusive)
1172 SetPageAnonExclusive(page);
1173 }
1174
1175 /**
1176 * __page_check_anon_rmap - sanity check anonymous rmap addition
1177 * @folio: The folio containing @page.
1178 * @page: the page to check the mapping of
1179 * @vma: the vm area in which the mapping is added
1180 * @address: the user virtual address mapped
1181 */
__page_check_anon_rmap(struct folio *folio, struct page *page, struct vm_area_struct *vma, unsigned long address)1182 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1183 struct vm_area_struct *vma, unsigned long address)
1184 {
1185 /*
1186 * The page's anon-rmap details (mapping and index) are guaranteed to
1187 * be set up correctly at this point.
1188 *
1189 * We have exclusion against page_add_anon_rmap because the caller
1190 * always holds the page locked.
1191 *
1192 * We have exclusion against page_add_new_anon_rmap because those pages
1193 * are initially only visible via the pagetables, and the pte is locked
1194 * over the call to page_add_new_anon_rmap.
1195 */
1196 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1197 folio);
1198 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1199 page);
1200 }
1201
1202 /**
1203 * page_add_anon_rmap - add pte mapping to an anonymous page
1204 * @page: the page to add the mapping to
1205 * @vma: the vm area in which the mapping is added
1206 * @address: the user virtual address mapped
1207 * @flags: the rmap flags
1208 *
1209 * The caller needs to hold the pte lock, and the page must be locked in
1210 * the anon_vma case: to serialize mapping,index checking after setting,
1211 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1212 * (but PageKsm is never downgraded to PageAnon).
1213 */
page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address, rmap_t flags)1214 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
1215 unsigned long address, rmap_t flags)
1216 {
1217 struct folio *folio = page_folio(page);
1218 atomic_t *mapped = &folio->_nr_pages_mapped;
1219 int nr = 0, nr_pmdmapped = 0;
1220 bool compound = flags & RMAP_COMPOUND;
1221 bool first = true;
1222
1223 /* Is page being mapped by PTE? Is this its first map to be added? */
1224 if (likely(!compound)) {
1225 first = atomic_inc_and_test(&page->_mapcount);
1226 nr = first;
1227 if (first && folio_test_large(folio)) {
1228 nr = atomic_inc_return_relaxed(mapped);
1229 nr = (nr < COMPOUND_MAPPED);
1230 }
1231 } else if (folio_test_pmd_mappable(folio)) {
1232 /* That test is redundant: it's for safety or to optimize out */
1233
1234 first = atomic_inc_and_test(&folio->_entire_mapcount);
1235 if (first) {
1236 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1237 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1238 nr_pmdmapped = folio_nr_pages(folio);
1239 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1240 /* Raced ahead of a remove and another add? */
1241 if (unlikely(nr < 0))
1242 nr = 0;
1243 } else {
1244 /* Raced ahead of a remove of COMPOUND_MAPPED */
1245 nr = 0;
1246 }
1247 }
1248 }
1249
1250 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1251 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1252
1253 if (nr_pmdmapped)
1254 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1255 if (nr)
1256 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1257
1258 if (likely(!folio_test_ksm(folio))) {
1259 /* address might be in next vma when migration races vma_merge */
1260 if (first)
1261 __page_set_anon_rmap(folio, page, vma, address,
1262 !!(flags & RMAP_EXCLUSIVE));
1263 else
1264 __page_check_anon_rmap(folio, page, vma, address);
1265 }
1266
1267 mlock_vma_folio(folio, vma, compound);
1268 }
1269
1270 /**
1271 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1272 * @folio: The folio to add the mapping to.
1273 * @vma: the vm area in which the mapping is added
1274 * @address: the user virtual address mapped
1275 *
1276 * Like page_add_anon_rmap() but must only be called on *new* folios.
1277 * This means the inc-and-test can be bypassed.
1278 * The folio does not have to be locked.
1279 *
1280 * If the folio is large, it is accounted as a THP. As the folio
1281 * is new, it's assumed to be mapped exclusively by a single process.
1282 */
folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, unsigned long address)1283 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1284 unsigned long address)
1285 {
1286 int nr;
1287
1288 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1289 __folio_set_swapbacked(folio);
1290
1291 if (likely(!folio_test_pmd_mappable(folio))) {
1292 /* increment count (starts at -1) */
1293 atomic_set(&folio->_mapcount, 0);
1294 nr = 1;
1295 } else {
1296 /* increment count (starts at -1) */
1297 atomic_set(&folio->_entire_mapcount, 0);
1298 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED);
1299 nr = folio_nr_pages(folio);
1300 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1301 }
1302
1303 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1304 __page_set_anon_rmap(folio, &folio->page, vma, address, 1);
1305 }
1306
1307 /**
1308 * folio_add_file_rmap_range - add pte mapping to page range of a folio
1309 * @folio: The folio to add the mapping to
1310 * @page: The first page to add
1311 * @nr_pages: The number of pages which will be mapped
1312 * @vma: the vm area in which the mapping is added
1313 * @compound: charge the page as compound or small page
1314 *
1315 * The page range of folio is defined by [first_page, first_page + nr_pages)
1316 *
1317 * The caller needs to hold the pte lock.
1318 */
folio_add_file_rmap_range(struct folio *folio, struct page *page, unsigned int nr_pages, struct vm_area_struct *vma, bool compound)1319 void folio_add_file_rmap_range(struct folio *folio, struct page *page,
1320 unsigned int nr_pages, struct vm_area_struct *vma,
1321 bool compound)
1322 {
1323 atomic_t *mapped = &folio->_nr_pages_mapped;
1324 unsigned int nr_pmdmapped = 0, first;
1325 int nr = 0;
1326
1327 VM_WARN_ON_FOLIO(compound && !folio_test_pmd_mappable(folio), folio);
1328
1329 /* Is page being mapped by PTE? Is this its first map to be added? */
1330 if (likely(!compound)) {
1331 do {
1332 first = atomic_inc_and_test(&page->_mapcount);
1333 if (first && folio_test_large(folio)) {
1334 first = atomic_inc_return_relaxed(mapped);
1335 first = (first < COMPOUND_MAPPED);
1336 }
1337
1338 if (first)
1339 nr++;
1340 } while (page++, --nr_pages > 0);
1341 } else if (folio_test_pmd_mappable(folio)) {
1342 /* That test is redundant: it's for safety or to optimize out */
1343
1344 first = atomic_inc_and_test(&folio->_entire_mapcount);
1345 if (first) {
1346 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1347 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1348 nr_pmdmapped = folio_nr_pages(folio);
1349 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1350 /* Raced ahead of a remove and another add? */
1351 if (unlikely(nr < 0))
1352 nr = 0;
1353 } else {
1354 /* Raced ahead of a remove of COMPOUND_MAPPED */
1355 nr = 0;
1356 }
1357 }
1358 }
1359
1360 if (nr_pmdmapped)
1361 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1362 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1363 if (nr)
1364 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1365
1366 mlock_vma_folio(folio, vma, compound);
1367 }
1368
1369 /**
1370 * page_add_file_rmap - add pte mapping to a file page
1371 * @page: the page to add the mapping to
1372 * @vma: the vm area in which the mapping is added
1373 * @compound: charge the page as compound or small page
1374 *
1375 * The caller needs to hold the pte lock.
1376 */
page_add_file_rmap(struct page *page, struct vm_area_struct *vma, bool compound)1377 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
1378 bool compound)
1379 {
1380 struct folio *folio = page_folio(page);
1381 unsigned int nr_pages;
1382
1383 VM_WARN_ON_ONCE_PAGE(compound && !PageTransHuge(page), page);
1384
1385 if (likely(!compound))
1386 nr_pages = 1;
1387 else
1388 nr_pages = folio_nr_pages(folio);
1389
1390 folio_add_file_rmap_range(folio, page, nr_pages, vma, compound);
1391 }
1392
1393 /**
1394 * page_remove_rmap - take down pte mapping from a page
1395 * @page: page to remove mapping from
1396 * @vma: the vm area from which the mapping is removed
1397 * @compound: uncharge the page as compound or small page
1398 *
1399 * The caller needs to hold the pte lock.
1400 */
page_remove_rmap(struct page *page, struct vm_area_struct *vma, bool compound)1401 void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
1402 bool compound)
1403 {
1404 struct folio *folio = page_folio(page);
1405 atomic_t *mapped = &folio->_nr_pages_mapped;
1406 int nr = 0, nr_pmdmapped = 0;
1407 bool last;
1408 enum node_stat_item idx;
1409
1410 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1411
1412 /* Hugetlb pages are not counted in NR_*MAPPED */
1413 if (unlikely(folio_test_hugetlb(folio))) {
1414 /* hugetlb pages are always mapped with pmds */
1415 atomic_dec(&folio->_entire_mapcount);
1416 return;
1417 }
1418
1419 /* Is page being unmapped by PTE? Is this its last map to be removed? */
1420 if (likely(!compound)) {
1421 last = atomic_add_negative(-1, &page->_mapcount);
1422 nr = last;
1423 if (last && folio_test_large(folio)) {
1424 nr = atomic_dec_return_relaxed(mapped);
1425 nr = (nr < COMPOUND_MAPPED);
1426 }
1427 } else if (folio_test_pmd_mappable(folio)) {
1428 /* That test is redundant: it's for safety or to optimize out */
1429
1430 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1431 if (last) {
1432 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1433 if (likely(nr < COMPOUND_MAPPED)) {
1434 nr_pmdmapped = folio_nr_pages(folio);
1435 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1436 /* Raced ahead of another remove and an add? */
1437 if (unlikely(nr < 0))
1438 nr = 0;
1439 } else {
1440 /* An add of COMPOUND_MAPPED raced ahead */
1441 nr = 0;
1442 }
1443 }
1444 }
1445
1446 if (nr_pmdmapped) {
1447 if (folio_test_anon(folio))
1448 idx = NR_ANON_THPS;
1449 else if (folio_test_swapbacked(folio))
1450 idx = NR_SHMEM_PMDMAPPED;
1451 else
1452 idx = NR_FILE_PMDMAPPED;
1453 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1454 }
1455 if (nr) {
1456 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1457 __lruvec_stat_mod_folio(folio, idx, -nr);
1458
1459 /*
1460 * Queue anon THP for deferred split if at least one
1461 * page of the folio is unmapped and at least one page
1462 * is still mapped.
1463 */
1464 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
1465 if (!compound || nr < nr_pmdmapped)
1466 deferred_split_folio(folio);
1467 }
1468
1469 /*
1470 * It would be tidy to reset folio_test_anon mapping when fully
1471 * unmapped, but that might overwrite a racing page_add_anon_rmap
1472 * which increments mapcount after us but sets mapping before us:
1473 * so leave the reset to free_pages_prepare, and remember that
1474 * it's only reliable while mapped.
1475 */
1476
1477 munlock_vma_folio(folio, vma, compound);
1478 }
1479
1480 /*
1481 * @arg: enum ttu_flags will be passed to this argument
1482 */
try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, unsigned long address, void *arg)1483 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1484 unsigned long address, void *arg)
1485 {
1486 struct mm_struct *mm = vma->vm_mm;
1487 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1488 pte_t pteval;
1489 struct page *subpage;
1490 bool anon_exclusive, ret = true;
1491 struct mmu_notifier_range range;
1492 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1493 unsigned long pfn;
1494 unsigned long hsz = 0;
1495
1496 /*
1497 * When racing against e.g. zap_pte_range() on another cpu,
1498 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1499 * try_to_unmap() may return before page_mapped() has become false,
1500 * if page table locking is skipped: use TTU_SYNC to wait for that.
1501 */
1502 if (flags & TTU_SYNC)
1503 pvmw.flags = PVMW_SYNC;
1504
1505 if (flags & TTU_SPLIT_HUGE_PMD)
1506 split_huge_pmd_address(vma, address, false, folio);
1507
1508 /*
1509 * For THP, we have to assume the worse case ie pmd for invalidation.
1510 * For hugetlb, it could be much worse if we need to do pud
1511 * invalidation in the case of pmd sharing.
1512 *
1513 * Note that the folio can not be freed in this function as call of
1514 * try_to_unmap() must hold a reference on the folio.
1515 */
1516 range.end = vma_address_end(&pvmw);
1517 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1518 address, range.end);
1519 if (folio_test_hugetlb(folio)) {
1520 /*
1521 * If sharing is possible, start and end will be adjusted
1522 * accordingly.
1523 */
1524 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1525 &range.end);
1526
1527 /* We need the huge page size for set_huge_pte_at() */
1528 hsz = huge_page_size(hstate_vma(vma));
1529 }
1530 mmu_notifier_invalidate_range_start(&range);
1531
1532 while (page_vma_mapped_walk(&pvmw)) {
1533 /* Unexpected PMD-mapped THP? */
1534 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1535
1536 #ifdef CONFIG_MEM_PURGEABLE
1537 if ((vma->vm_flags & VM_PURGEABLE) && !lock_uxpte(vma, address)) {
1538 ret = false;
1539 page_vma_mapped_walk_done(&pvmw);
1540 break;
1541 }
1542 #endif
1543 /*
1544 * If the folio is in an mlock()d vma, we must not swap it out.
1545 */
1546 if (!(flags & TTU_IGNORE_MLOCK) &&
1547 (vma->vm_flags & VM_LOCKED)) {
1548 /* Restore the mlock which got missed */
1549 mlock_vma_folio(folio, vma, false);
1550 page_vma_mapped_walk_done(&pvmw);
1551 ret = false;
1552 break;
1553 }
1554
1555 pfn = pte_pfn(ptep_get(pvmw.pte));
1556 subpage = folio_page(folio, pfn - folio_pfn(folio));
1557 address = pvmw.address;
1558 anon_exclusive = folio_test_anon(folio) &&
1559 PageAnonExclusive(subpage);
1560
1561 if (folio_test_hugetlb(folio)) {
1562 bool anon = folio_test_anon(folio);
1563
1564 /*
1565 * The try_to_unmap() is only passed a hugetlb page
1566 * in the case where the hugetlb page is poisoned.
1567 */
1568 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1569 /*
1570 * huge_pmd_unshare may unmap an entire PMD page.
1571 * There is no way of knowing exactly which PMDs may
1572 * be cached for this mm, so we must flush them all.
1573 * start/end were already adjusted above to cover this
1574 * range.
1575 */
1576 flush_cache_range(vma, range.start, range.end);
1577
1578 /*
1579 * To call huge_pmd_unshare, i_mmap_rwsem must be
1580 * held in write mode. Caller needs to explicitly
1581 * do this outside rmap routines.
1582 *
1583 * We also must hold hugetlb vma_lock in write mode.
1584 * Lock order dictates acquiring vma_lock BEFORE
1585 * i_mmap_rwsem. We can only try lock here and fail
1586 * if unsuccessful.
1587 */
1588 if (!anon) {
1589 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1590 if (!hugetlb_vma_trylock_write(vma)) {
1591 page_vma_mapped_walk_done(&pvmw);
1592 ret = false;
1593 break;
1594 }
1595 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1596 hugetlb_vma_unlock_write(vma);
1597 flush_tlb_range(vma,
1598 range.start, range.end);
1599 /*
1600 * The ref count of the PMD page was
1601 * dropped which is part of the way map
1602 * counting is done for shared PMDs.
1603 * Return 'true' here. When there is
1604 * no other sharing, huge_pmd_unshare
1605 * returns false and we will unmap the
1606 * actual page and drop map count
1607 * to zero.
1608 */
1609 page_vma_mapped_walk_done(&pvmw);
1610 break;
1611 }
1612 hugetlb_vma_unlock_write(vma);
1613 }
1614 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1615 } else {
1616 flush_cache_page(vma, address, pfn);
1617 /* Nuke the page table entry. */
1618 if (should_defer_flush(mm, flags)) {
1619 /*
1620 * We clear the PTE but do not flush so potentially
1621 * a remote CPU could still be writing to the folio.
1622 * If the entry was previously clean then the
1623 * architecture must guarantee that a clear->dirty
1624 * transition on a cached TLB entry is written through
1625 * and traps if the PTE is unmapped.
1626 */
1627 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1628
1629 set_tlb_ubc_flush_pending(mm, pteval, address);
1630 } else {
1631 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1632 }
1633 }
1634
1635 /*
1636 * Now the pte is cleared. If this pte was uffd-wp armed,
1637 * we may want to replace a none pte with a marker pte if
1638 * it's file-backed, so we don't lose the tracking info.
1639 */
1640 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1641
1642 /* Set the dirty flag on the folio now the pte is gone. */
1643 if (pte_dirty(pteval))
1644 folio_mark_dirty(folio);
1645
1646 /* Update high watermark before we lower rss */
1647 update_hiwater_rss(mm);
1648
1649 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1650 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1651 if (folio_test_hugetlb(folio)) {
1652 hugetlb_count_sub(folio_nr_pages(folio), mm);
1653 set_huge_pte_at(mm, address, pvmw.pte, pteval,
1654 hsz);
1655 } else {
1656 dec_mm_counter(mm, mm_counter(&folio->page));
1657 set_pte_at(mm, address, pvmw.pte, pteval);
1658 }
1659
1660 #ifdef CONFIG_MEM_PURGEABLE
1661 } else if ((vma->vm_flags & VM_PURGEABLE) || (pte_unused(pteval) &&
1662 !userfaultfd_armed(vma))) {
1663 #else
1664 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1665 #endif
1666 #ifdef CONFIG_MEM_PURGEABLE
1667 if (vma->vm_flags & VM_PURGEABLE)
1668 unlock_uxpte(vma, address);
1669 #endif
1670
1671 /*
1672 * The guest indicated that the page content is of no
1673 * interest anymore. Simply discard the pte, vmscan
1674 * will take care of the rest.
1675 * A future reference will then fault in a new zero
1676 * page. When userfaultfd is active, we must not drop
1677 * this page though, as its main user (postcopy
1678 * migration) will not expect userfaults on already
1679 * copied pages.
1680 */
1681 dec_mm_counter(mm, mm_counter(&folio->page));
1682 } else if (folio_test_anon(folio)) {
1683 swp_entry_t entry = page_swap_entry(subpage);
1684 pte_t swp_pte;
1685 /*
1686 * Store the swap location in the pte.
1687 * See handle_pte_fault() ...
1688 */
1689 if (unlikely(folio_test_swapbacked(folio) !=
1690 folio_test_swapcache(folio))) {
1691 WARN_ON_ONCE(1);
1692 ret = false;
1693 page_vma_mapped_walk_done(&pvmw);
1694 break;
1695 }
1696
1697 /* MADV_FREE page check */
1698 if (!folio_test_swapbacked(folio)) {
1699 int ref_count, map_count;
1700
1701 /*
1702 * Synchronize with gup_pte_range():
1703 * - clear PTE; barrier; read refcount
1704 * - inc refcount; barrier; read PTE
1705 */
1706 smp_mb();
1707
1708 ref_count = folio_ref_count(folio);
1709 map_count = folio_mapcount(folio);
1710
1711 /*
1712 * Order reads for page refcount and dirty flag
1713 * (see comments in __remove_mapping()).
1714 */
1715 smp_rmb();
1716
1717 /*
1718 * The only page refs must be one from isolation
1719 * plus the rmap(s) (dropped by discard:).
1720 */
1721 if (ref_count == 1 + map_count &&
1722 !folio_test_dirty(folio)) {
1723 dec_mm_counter(mm, MM_ANONPAGES);
1724 goto discard;
1725 }
1726
1727 /*
1728 * If the folio was redirtied, it cannot be
1729 * discarded. Remap the page to page table.
1730 */
1731 set_pte_at(mm, address, pvmw.pte, pteval);
1732 folio_set_swapbacked(folio);
1733 ret = false;
1734 page_vma_mapped_walk_done(&pvmw);
1735 break;
1736 }
1737
1738 if (swap_duplicate(entry) < 0) {
1739 set_pte_at(mm, address, pvmw.pte, pteval);
1740 ret = false;
1741 page_vma_mapped_walk_done(&pvmw);
1742 break;
1743 }
1744 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1745 swap_free(entry);
1746 set_pte_at(mm, address, pvmw.pte, pteval);
1747 ret = false;
1748 page_vma_mapped_walk_done(&pvmw);
1749 break;
1750 }
1751
1752 /* See page_try_share_anon_rmap(): clear PTE first. */
1753 if (anon_exclusive &&
1754 page_try_share_anon_rmap(subpage)) {
1755 swap_free(entry);
1756 set_pte_at(mm, address, pvmw.pte, pteval);
1757 ret = false;
1758 page_vma_mapped_walk_done(&pvmw);
1759 break;
1760 }
1761 if (list_empty(&mm->mmlist)) {
1762 spin_lock(&mmlist_lock);
1763 if (list_empty(&mm->mmlist))
1764 list_add(&mm->mmlist, &init_mm.mmlist);
1765 spin_unlock(&mmlist_lock);
1766 }
1767 dec_mm_counter(mm, MM_ANONPAGES);
1768 inc_mm_counter(mm, MM_SWAPENTS);
1769 swp_pte = swp_entry_to_pte(entry);
1770 if (anon_exclusive)
1771 swp_pte = pte_swp_mkexclusive(swp_pte);
1772 if (pte_soft_dirty(pteval))
1773 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1774 if (pte_uffd_wp(pteval))
1775 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1776 set_pte_at(mm, address, pvmw.pte, swp_pte);
1777 } else {
1778 /*
1779 * This is a locked file-backed folio,
1780 * so it cannot be removed from the page
1781 * cache and replaced by a new folio before
1782 * mmu_notifier_invalidate_range_end, so no
1783 * concurrent thread might update its page table
1784 * to point at a new folio while a device is
1785 * still using this folio.
1786 *
1787 * See Documentation/mm/mmu_notifier.rst
1788 */
1789 dec_mm_counter(mm, mm_counter_file(&folio->page));
1790 }
1791 discard:
1792 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1793 if (vma->vm_flags & VM_LOCKED)
1794 mlock_drain_local();
1795 folio_put(folio);
1796 }
1797
1798 mmu_notifier_invalidate_range_end(&range);
1799
1800 return ret;
1801 }
1802
invalid_migration_vma(struct vm_area_struct *vma, void *arg)1803 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1804 {
1805 return vma_is_temporary_stack(vma);
1806 }
1807
folio_not_mapped(struct folio *folio)1808 static int folio_not_mapped(struct folio *folio)
1809 {
1810 return !folio_mapped(folio);
1811 }
1812
1813 /**
1814 * try_to_unmap - Try to remove all page table mappings to a folio.
1815 * @folio: The folio to unmap.
1816 * @flags: action and flags
1817 *
1818 * Tries to remove all the page table entries which are mapping this
1819 * folio. It is the caller's responsibility to check if the folio is
1820 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1821 *
1822 * Context: Caller must hold the folio lock.
1823 */
try_to_unmap(struct folio *folio, enum ttu_flags flags)1824 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1825 {
1826 struct rmap_walk_control rwc = {
1827 .rmap_one = try_to_unmap_one,
1828 .arg = (void *)flags,
1829 .done = folio_not_mapped,
1830 .anon_lock = folio_lock_anon_vma_read,
1831 };
1832
1833 if (flags & TTU_RMAP_LOCKED)
1834 rmap_walk_locked(folio, &rwc);
1835 else
1836 rmap_walk(folio, &rwc);
1837 }
1838
1839 /*
1840 * @arg: enum ttu_flags will be passed to this argument.
1841 *
1842 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1843 * containing migration entries.
1844 */
try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, unsigned long address, void *arg)1845 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1846 unsigned long address, void *arg)
1847 {
1848 struct mm_struct *mm = vma->vm_mm;
1849 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1850 pte_t pteval;
1851 struct page *subpage;
1852 bool anon_exclusive, ret = true;
1853 struct mmu_notifier_range range;
1854 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1855 unsigned long pfn;
1856 unsigned long hsz = 0;
1857
1858 /*
1859 * When racing against e.g. zap_pte_range() on another cpu,
1860 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1861 * try_to_migrate() may return before page_mapped() has become false,
1862 * if page table locking is skipped: use TTU_SYNC to wait for that.
1863 */
1864 if (flags & TTU_SYNC)
1865 pvmw.flags = PVMW_SYNC;
1866
1867 /*
1868 * unmap_page() in mm/huge_memory.c is the only user of migration with
1869 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1870 */
1871 if (flags & TTU_SPLIT_HUGE_PMD)
1872 split_huge_pmd_address(vma, address, true, folio);
1873
1874 /*
1875 * For THP, we have to assume the worse case ie pmd for invalidation.
1876 * For hugetlb, it could be much worse if we need to do pud
1877 * invalidation in the case of pmd sharing.
1878 *
1879 * Note that the page can not be free in this function as call of
1880 * try_to_unmap() must hold a reference on the page.
1881 */
1882 range.end = vma_address_end(&pvmw);
1883 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1884 address, range.end);
1885 if (folio_test_hugetlb(folio)) {
1886 /*
1887 * If sharing is possible, start and end will be adjusted
1888 * accordingly.
1889 */
1890 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1891 &range.end);
1892
1893 /* We need the huge page size for set_huge_pte_at() */
1894 hsz = huge_page_size(hstate_vma(vma));
1895 }
1896 mmu_notifier_invalidate_range_start(&range);
1897
1898 while (page_vma_mapped_walk(&pvmw)) {
1899 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1900 /* PMD-mapped THP migration entry */
1901 if (!pvmw.pte) {
1902 subpage = folio_page(folio,
1903 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1904 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1905 !folio_test_pmd_mappable(folio), folio);
1906
1907 if (set_pmd_migration_entry(&pvmw, subpage)) {
1908 ret = false;
1909 page_vma_mapped_walk_done(&pvmw);
1910 break;
1911 }
1912 continue;
1913 }
1914 #endif
1915
1916 /* Unexpected PMD-mapped THP? */
1917 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1918
1919 pfn = pte_pfn(ptep_get(pvmw.pte));
1920
1921 if (folio_is_zone_device(folio)) {
1922 /*
1923 * Our PTE is a non-present device exclusive entry and
1924 * calculating the subpage as for the common case would
1925 * result in an invalid pointer.
1926 *
1927 * Since only PAGE_SIZE pages can currently be
1928 * migrated, just set it to page. This will need to be
1929 * changed when hugepage migrations to device private
1930 * memory are supported.
1931 */
1932 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1933 subpage = &folio->page;
1934 } else {
1935 subpage = folio_page(folio, pfn - folio_pfn(folio));
1936 }
1937 address = pvmw.address;
1938 anon_exclusive = folio_test_anon(folio) &&
1939 PageAnonExclusive(subpage);
1940
1941 if (folio_test_hugetlb(folio)) {
1942 bool anon = folio_test_anon(folio);
1943
1944 /*
1945 * huge_pmd_unshare may unmap an entire PMD page.
1946 * There is no way of knowing exactly which PMDs may
1947 * be cached for this mm, so we must flush them all.
1948 * start/end were already adjusted above to cover this
1949 * range.
1950 */
1951 flush_cache_range(vma, range.start, range.end);
1952
1953 /*
1954 * To call huge_pmd_unshare, i_mmap_rwsem must be
1955 * held in write mode. Caller needs to explicitly
1956 * do this outside rmap routines.
1957 *
1958 * We also must hold hugetlb vma_lock in write mode.
1959 * Lock order dictates acquiring vma_lock BEFORE
1960 * i_mmap_rwsem. We can only try lock here and
1961 * fail if unsuccessful.
1962 */
1963 if (!anon) {
1964 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1965 if (!hugetlb_vma_trylock_write(vma)) {
1966 page_vma_mapped_walk_done(&pvmw);
1967 ret = false;
1968 break;
1969 }
1970 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1971 hugetlb_vma_unlock_write(vma);
1972 flush_tlb_range(vma,
1973 range.start, range.end);
1974
1975 /*
1976 * The ref count of the PMD page was
1977 * dropped which is part of the way map
1978 * counting is done for shared PMDs.
1979 * Return 'true' here. When there is
1980 * no other sharing, huge_pmd_unshare
1981 * returns false and we will unmap the
1982 * actual page and drop map count
1983 * to zero.
1984 */
1985 page_vma_mapped_walk_done(&pvmw);
1986 break;
1987 }
1988 hugetlb_vma_unlock_write(vma);
1989 }
1990 /* Nuke the hugetlb page table entry */
1991 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1992 } else {
1993 flush_cache_page(vma, address, pfn);
1994 /* Nuke the page table entry. */
1995 if (should_defer_flush(mm, flags)) {
1996 /*
1997 * We clear the PTE but do not flush so potentially
1998 * a remote CPU could still be writing to the folio.
1999 * If the entry was previously clean then the
2000 * architecture must guarantee that a clear->dirty
2001 * transition on a cached TLB entry is written through
2002 * and traps if the PTE is unmapped.
2003 */
2004 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2005
2006 set_tlb_ubc_flush_pending(mm, pteval, address);
2007 } else {
2008 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2009 }
2010 }
2011
2012 /* Set the dirty flag on the folio now the pte is gone. */
2013 if (pte_dirty(pteval))
2014 folio_mark_dirty(folio);
2015
2016 /* Update high watermark before we lower rss */
2017 update_hiwater_rss(mm);
2018
2019 if (folio_is_device_private(folio)) {
2020 unsigned long pfn = folio_pfn(folio);
2021 swp_entry_t entry;
2022 pte_t swp_pte;
2023
2024 if (anon_exclusive)
2025 BUG_ON(page_try_share_anon_rmap(subpage));
2026
2027 /*
2028 * Store the pfn of the page in a special migration
2029 * pte. do_swap_page() will wait until the migration
2030 * pte is removed and then restart fault handling.
2031 */
2032 entry = pte_to_swp_entry(pteval);
2033 if (is_writable_device_private_entry(entry))
2034 entry = make_writable_migration_entry(pfn);
2035 else if (anon_exclusive)
2036 entry = make_readable_exclusive_migration_entry(pfn);
2037 else
2038 entry = make_readable_migration_entry(pfn);
2039 swp_pte = swp_entry_to_pte(entry);
2040
2041 /*
2042 * pteval maps a zone device page and is therefore
2043 * a swap pte.
2044 */
2045 if (pte_swp_soft_dirty(pteval))
2046 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2047 if (pte_swp_uffd_wp(pteval))
2048 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2049 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2050 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2051 compound_order(&folio->page));
2052 /*
2053 * No need to invalidate here it will synchronize on
2054 * against the special swap migration pte.
2055 */
2056 } else if (PageHWPoison(subpage)) {
2057 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2058 if (folio_test_hugetlb(folio)) {
2059 hugetlb_count_sub(folio_nr_pages(folio), mm);
2060 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2061 hsz);
2062 } else {
2063 dec_mm_counter(mm, mm_counter(&folio->page));
2064 set_pte_at(mm, address, pvmw.pte, pteval);
2065 }
2066
2067 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2068 /*
2069 * The guest indicated that the page content is of no
2070 * interest anymore. Simply discard the pte, vmscan
2071 * will take care of the rest.
2072 * A future reference will then fault in a new zero
2073 * page. When userfaultfd is active, we must not drop
2074 * this page though, as its main user (postcopy
2075 * migration) will not expect userfaults on already
2076 * copied pages.
2077 */
2078 dec_mm_counter(mm, mm_counter(&folio->page));
2079 } else {
2080 swp_entry_t entry;
2081 pte_t swp_pte;
2082
2083 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2084 if (folio_test_hugetlb(folio))
2085 set_huge_pte_at(mm, address, pvmw.pte,
2086 pteval, hsz);
2087 else
2088 set_pte_at(mm, address, pvmw.pte, pteval);
2089 ret = false;
2090 page_vma_mapped_walk_done(&pvmw);
2091 break;
2092 }
2093 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2094 !anon_exclusive, subpage);
2095
2096 /* See page_try_share_anon_rmap(): clear PTE first. */
2097 if (anon_exclusive &&
2098 page_try_share_anon_rmap(subpage)) {
2099 if (folio_test_hugetlb(folio))
2100 set_huge_pte_at(mm, address, pvmw.pte,
2101 pteval, hsz);
2102 else
2103 set_pte_at(mm, address, pvmw.pte, pteval);
2104 ret = false;
2105 page_vma_mapped_walk_done(&pvmw);
2106 break;
2107 }
2108
2109 /*
2110 * Store the pfn of the page in a special migration
2111 * pte. do_swap_page() will wait until the migration
2112 * pte is removed and then restart fault handling.
2113 */
2114 if (pte_write(pteval))
2115 entry = make_writable_migration_entry(
2116 page_to_pfn(subpage));
2117 else if (anon_exclusive)
2118 entry = make_readable_exclusive_migration_entry(
2119 page_to_pfn(subpage));
2120 else
2121 entry = make_readable_migration_entry(
2122 page_to_pfn(subpage));
2123 if (pte_young(pteval))
2124 entry = make_migration_entry_young(entry);
2125 if (pte_dirty(pteval))
2126 entry = make_migration_entry_dirty(entry);
2127 swp_pte = swp_entry_to_pte(entry);
2128 if (pte_soft_dirty(pteval))
2129 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2130 if (pte_uffd_wp(pteval))
2131 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2132 if (folio_test_hugetlb(folio))
2133 set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2134 hsz);
2135 else
2136 set_pte_at(mm, address, pvmw.pte, swp_pte);
2137 trace_set_migration_pte(address, pte_val(swp_pte),
2138 compound_order(&folio->page));
2139 /*
2140 * No need to invalidate here it will synchronize on
2141 * against the special swap migration pte.
2142 */
2143 }
2144
2145 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2146 if (vma->vm_flags & VM_LOCKED)
2147 mlock_drain_local();
2148 folio_put(folio);
2149 }
2150
2151 mmu_notifier_invalidate_range_end(&range);
2152
2153 return ret;
2154 }
2155
2156 /**
2157 * try_to_migrate - try to replace all page table mappings with swap entries
2158 * @folio: the folio to replace page table entries for
2159 * @flags: action and flags
2160 *
2161 * Tries to remove all the page table entries which are mapping this folio and
2162 * replace them with special swap entries. Caller must hold the folio lock.
2163 */
try_to_migrate(struct folio *folio, enum ttu_flags flags)2164 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2165 {
2166 struct rmap_walk_control rwc = {
2167 .rmap_one = try_to_migrate_one,
2168 .arg = (void *)flags,
2169 .done = folio_not_mapped,
2170 .anon_lock = folio_lock_anon_vma_read,
2171 };
2172
2173 /*
2174 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2175 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2176 */
2177 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2178 TTU_SYNC | TTU_BATCH_FLUSH)))
2179 return;
2180
2181 if (folio_is_zone_device(folio) &&
2182 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2183 return;
2184
2185 /*
2186 * During exec, a temporary VMA is setup and later moved.
2187 * The VMA is moved under the anon_vma lock but not the
2188 * page tables leading to a race where migration cannot
2189 * find the migration ptes. Rather than increasing the
2190 * locking requirements of exec(), migration skips
2191 * temporary VMAs until after exec() completes.
2192 */
2193 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2194 rwc.invalid_vma = invalid_migration_vma;
2195
2196 if (flags & TTU_RMAP_LOCKED)
2197 rmap_walk_locked(folio, &rwc);
2198 else
2199 rmap_walk(folio, &rwc);
2200 }
2201
2202 #ifdef CONFIG_DEVICE_PRIVATE
2203 struct make_exclusive_args {
2204 struct mm_struct *mm;
2205 unsigned long address;
2206 void *owner;
2207 bool valid;
2208 };
2209
page_make_device_exclusive_one(struct folio *folio, struct vm_area_struct *vma, unsigned long address, void *priv)2210 static bool page_make_device_exclusive_one(struct folio *folio,
2211 struct vm_area_struct *vma, unsigned long address, void *priv)
2212 {
2213 struct mm_struct *mm = vma->vm_mm;
2214 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2215 struct make_exclusive_args *args = priv;
2216 pte_t pteval;
2217 struct page *subpage;
2218 bool ret = true;
2219 struct mmu_notifier_range range;
2220 swp_entry_t entry;
2221 pte_t swp_pte;
2222 pte_t ptent;
2223
2224 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2225 vma->vm_mm, address, min(vma->vm_end,
2226 address + folio_size(folio)),
2227 args->owner);
2228 mmu_notifier_invalidate_range_start(&range);
2229
2230 while (page_vma_mapped_walk(&pvmw)) {
2231 /* Unexpected PMD-mapped THP? */
2232 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2233
2234 ptent = ptep_get(pvmw.pte);
2235 if (!pte_present(ptent)) {
2236 ret = false;
2237 page_vma_mapped_walk_done(&pvmw);
2238 break;
2239 }
2240
2241 subpage = folio_page(folio,
2242 pte_pfn(ptent) - folio_pfn(folio));
2243 address = pvmw.address;
2244
2245 /* Nuke the page table entry. */
2246 flush_cache_page(vma, address, pte_pfn(ptent));
2247 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2248
2249 /* Set the dirty flag on the folio now the pte is gone. */
2250 if (pte_dirty(pteval))
2251 folio_mark_dirty(folio);
2252
2253 /*
2254 * Check that our target page is still mapped at the expected
2255 * address.
2256 */
2257 if (args->mm == mm && args->address == address &&
2258 pte_write(pteval))
2259 args->valid = true;
2260
2261 /*
2262 * Store the pfn of the page in a special migration
2263 * pte. do_swap_page() will wait until the migration
2264 * pte is removed and then restart fault handling.
2265 */
2266 if (pte_write(pteval))
2267 entry = make_writable_device_exclusive_entry(
2268 page_to_pfn(subpage));
2269 else
2270 entry = make_readable_device_exclusive_entry(
2271 page_to_pfn(subpage));
2272 swp_pte = swp_entry_to_pte(entry);
2273 if (pte_soft_dirty(pteval))
2274 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2275 if (pte_uffd_wp(pteval))
2276 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2277
2278 set_pte_at(mm, address, pvmw.pte, swp_pte);
2279
2280 /*
2281 * There is a reference on the page for the swap entry which has
2282 * been removed, so shouldn't take another.
2283 */
2284 page_remove_rmap(subpage, vma, false);
2285 }
2286
2287 mmu_notifier_invalidate_range_end(&range);
2288
2289 return ret;
2290 }
2291
2292 /**
2293 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2294 * @folio: The folio to replace page table entries for.
2295 * @mm: The mm_struct where the folio is expected to be mapped.
2296 * @address: Address where the folio is expected to be mapped.
2297 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2298 *
2299 * Tries to remove all the page table entries which are mapping this
2300 * folio and replace them with special device exclusive swap entries to
2301 * grant a device exclusive access to the folio.
2302 *
2303 * Context: Caller must hold the folio lock.
2304 * Return: false if the page is still mapped, or if it could not be unmapped
2305 * from the expected address. Otherwise returns true (success).
2306 */
folio_make_device_exclusive(struct folio *folio, struct mm_struct *mm, unsigned long address, void *owner)2307 static bool folio_make_device_exclusive(struct folio *folio,
2308 struct mm_struct *mm, unsigned long address, void *owner)
2309 {
2310 struct make_exclusive_args args = {
2311 .mm = mm,
2312 .address = address,
2313 .owner = owner,
2314 .valid = false,
2315 };
2316 struct rmap_walk_control rwc = {
2317 .rmap_one = page_make_device_exclusive_one,
2318 .done = folio_not_mapped,
2319 .anon_lock = folio_lock_anon_vma_read,
2320 .arg = &args,
2321 };
2322
2323 /*
2324 * Restrict to anonymous folios for now to avoid potential writeback
2325 * issues.
2326 */
2327 if (!folio_test_anon(folio))
2328 return false;
2329
2330 rmap_walk(folio, &rwc);
2331
2332 return args.valid && !folio_mapcount(folio);
2333 }
2334
2335 /**
2336 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2337 * @mm: mm_struct of associated target process
2338 * @start: start of the region to mark for exclusive device access
2339 * @end: end address of region
2340 * @pages: returns the pages which were successfully marked for exclusive access
2341 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2342 *
2343 * Returns: number of pages found in the range by GUP. A page is marked for
2344 * exclusive access only if the page pointer is non-NULL.
2345 *
2346 * This function finds ptes mapping page(s) to the given address range, locks
2347 * them and replaces mappings with special swap entries preventing userspace CPU
2348 * access. On fault these entries are replaced with the original mapping after
2349 * calling MMU notifiers.
2350 *
2351 * A driver using this to program access from a device must use a mmu notifier
2352 * critical section to hold a device specific lock during programming. Once
2353 * programming is complete it should drop the page lock and reference after
2354 * which point CPU access to the page will revoke the exclusive access.
2355 */
make_device_exclusive_range(struct mm_struct *mm, unsigned long start, unsigned long end, struct page **pages, void *owner)2356 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2357 unsigned long end, struct page **pages,
2358 void *owner)
2359 {
2360 long npages = (end - start) >> PAGE_SHIFT;
2361 long i;
2362
2363 npages = get_user_pages_remote(mm, start, npages,
2364 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2365 pages, NULL);
2366 if (npages < 0)
2367 return npages;
2368
2369 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2370 struct folio *folio = page_folio(pages[i]);
2371 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2372 folio_put(folio);
2373 pages[i] = NULL;
2374 continue;
2375 }
2376
2377 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2378 folio_unlock(folio);
2379 folio_put(folio);
2380 pages[i] = NULL;
2381 }
2382 }
2383
2384 return npages;
2385 }
2386 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2387 #endif
2388
__put_anon_vma(struct anon_vma *anon_vma)2389 void __put_anon_vma(struct anon_vma *anon_vma)
2390 {
2391 struct anon_vma *root = anon_vma->root;
2392
2393 anon_vma_free(anon_vma);
2394 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2395 anon_vma_free(root);
2396 }
2397
rmap_walk_anon_lock(struct folio *folio, struct rmap_walk_control *rwc)2398 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2399 struct rmap_walk_control *rwc)
2400 {
2401 struct anon_vma *anon_vma;
2402
2403 if (rwc->anon_lock)
2404 return rwc->anon_lock(folio, rwc);
2405
2406 /*
2407 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2408 * because that depends on page_mapped(); but not all its usages
2409 * are holding mmap_lock. Users without mmap_lock are required to
2410 * take a reference count to prevent the anon_vma disappearing
2411 */
2412 anon_vma = folio_anon_vma(folio);
2413 if (!anon_vma)
2414 return NULL;
2415
2416 if (anon_vma_trylock_read(anon_vma))
2417 goto out;
2418
2419 if (rwc->try_lock) {
2420 anon_vma = NULL;
2421 rwc->contended = true;
2422 goto out;
2423 }
2424
2425 anon_vma_lock_read(anon_vma);
2426 out:
2427 return anon_vma;
2428 }
2429
2430 /*
2431 * rmap_walk_anon - do something to anonymous page using the object-based
2432 * rmap method
2433 * @folio: the folio to be handled
2434 * @rwc: control variable according to each walk type
2435 * @locked: caller holds relevant rmap lock
2436 *
2437 * Find all the mappings of a folio using the mapping pointer and the vma
2438 * chains contained in the anon_vma struct it points to.
2439 */
rmap_walk_anon(struct folio *folio, struct rmap_walk_control *rwc, bool locked)2440 static void rmap_walk_anon(struct folio *folio,
2441 struct rmap_walk_control *rwc, bool locked)
2442 {
2443 struct anon_vma *anon_vma;
2444 pgoff_t pgoff_start, pgoff_end;
2445 struct anon_vma_chain *avc;
2446
2447 if (locked) {
2448 anon_vma = folio_anon_vma(folio);
2449 /* anon_vma disappear under us? */
2450 VM_BUG_ON_FOLIO(!anon_vma, folio);
2451 } else {
2452 anon_vma = rmap_walk_anon_lock(folio, rwc);
2453 }
2454 if (!anon_vma)
2455 return;
2456
2457 pgoff_start = folio_pgoff(folio);
2458 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2459 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2460 pgoff_start, pgoff_end) {
2461 struct vm_area_struct *vma = avc->vma;
2462 unsigned long address = vma_address(&folio->page, vma);
2463
2464 VM_BUG_ON_VMA(address == -EFAULT, vma);
2465 cond_resched();
2466
2467 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2468 continue;
2469
2470 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2471 break;
2472 if (rwc->done && rwc->done(folio))
2473 break;
2474 }
2475
2476 if (!locked)
2477 anon_vma_unlock_read(anon_vma);
2478 }
2479
2480 /*
2481 * rmap_walk_file - do something to file page using the object-based rmap method
2482 * @folio: the folio to be handled
2483 * @rwc: control variable according to each walk type
2484 * @locked: caller holds relevant rmap lock
2485 *
2486 * Find all the mappings of a folio using the mapping pointer and the vma chains
2487 * contained in the address_space struct it points to.
2488 */
rmap_walk_file(struct folio *folio, struct rmap_walk_control *rwc, bool locked)2489 static void rmap_walk_file(struct folio *folio,
2490 struct rmap_walk_control *rwc, bool locked)
2491 {
2492 struct address_space *mapping = folio_mapping(folio);
2493 pgoff_t pgoff_start, pgoff_end;
2494 struct vm_area_struct *vma;
2495
2496 /*
2497 * The page lock not only makes sure that page->mapping cannot
2498 * suddenly be NULLified by truncation, it makes sure that the
2499 * structure at mapping cannot be freed and reused yet,
2500 * so we can safely take mapping->i_mmap_rwsem.
2501 */
2502 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2503
2504 if (!mapping)
2505 return;
2506
2507 pgoff_start = folio_pgoff(folio);
2508 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2509 if (!locked) {
2510 if (i_mmap_trylock_read(mapping))
2511 goto lookup;
2512
2513 if (rwc->try_lock) {
2514 rwc->contended = true;
2515 return;
2516 }
2517
2518 i_mmap_lock_read(mapping);
2519 }
2520 lookup:
2521 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2522 pgoff_start, pgoff_end) {
2523 unsigned long address = vma_address(&folio->page, vma);
2524
2525 VM_BUG_ON_VMA(address == -EFAULT, vma);
2526 cond_resched();
2527
2528 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2529 continue;
2530
2531 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2532 goto done;
2533 if (rwc->done && rwc->done(folio))
2534 goto done;
2535 }
2536
2537 done:
2538 if (!locked)
2539 i_mmap_unlock_read(mapping);
2540 }
2541
rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)2542 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2543 {
2544 if (unlikely(folio_test_ksm(folio)))
2545 rmap_walk_ksm(folio, rwc);
2546 else if (folio_test_anon(folio))
2547 rmap_walk_anon(folio, rwc, false);
2548 else
2549 rmap_walk_file(folio, rwc, false);
2550 }
2551
2552 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)2553 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2554 {
2555 /* no ksm support for now */
2556 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2557 if (folio_test_anon(folio))
2558 rmap_walk_anon(folio, rwc, true);
2559 else
2560 rmap_walk_file(folio, rwc, true);
2561 }
2562
2563 #ifdef CONFIG_HUGETLB_PAGE
2564 /*
2565 * The following two functions are for anonymous (private mapped) hugepages.
2566 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2567 * and no lru code, because we handle hugepages differently from common pages.
2568 *
2569 * RMAP_COMPOUND is ignored.
2570 */
hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address, rmap_t flags)2571 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2572 unsigned long address, rmap_t flags)
2573 {
2574 struct folio *folio = page_folio(page);
2575 struct anon_vma *anon_vma = vma->anon_vma;
2576 int first;
2577
2578 BUG_ON(!folio_test_locked(folio));
2579 BUG_ON(!anon_vma);
2580 /* address might be in next vma when migration races vma_merge */
2581 first = atomic_inc_and_test(&folio->_entire_mapcount);
2582 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2583 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2584 if (first)
2585 __page_set_anon_rmap(folio, page, vma, address,
2586 !!(flags & RMAP_EXCLUSIVE));
2587 }
2588
hugepage_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, unsigned long address)2589 void hugepage_add_new_anon_rmap(struct folio *folio,
2590 struct vm_area_struct *vma, unsigned long address)
2591 {
2592 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2593 /* increment count (starts at -1) */
2594 atomic_set(&folio->_entire_mapcount, 0);
2595 folio_clear_hugetlb_restore_reserve(folio);
2596 __page_set_anon_rmap(folio, &folio->page, vma, address, 1);
2597 }
2598 #endif /* CONFIG_HUGETLB_PAGE */
2599