1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/zswapd.h>
55 #ifdef CONFIG_RECLAIM_ACCT
56 #include <linux/reclaim_acct.h>
57 #endif
58 #include <linux/delayacct.h>
59 #include <asm/div64.h>
60 #include "internal.h"
61 #include "shuffle.h"
62 #include "page_reporting.h"
63 
64 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
65 typedef int __bitwise fpi_t;
66 
67 /* No special request */
68 #define FPI_NONE		((__force fpi_t)0)
69 
70 /*
71  * Skip free page reporting notification for the (possibly merged) page.
72  * This does not hinder free page reporting from grabbing the page,
73  * reporting it and marking it "reported" -  it only skips notifying
74  * the free page reporting infrastructure about a newly freed page. For
75  * example, used when temporarily pulling a page from a freelist and
76  * putting it back unmodified.
77  */
78 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
79 
80 /*
81  * Place the (possibly merged) page to the tail of the freelist. Will ignore
82  * page shuffling (relevant code - e.g., memory onlining - is expected to
83  * shuffle the whole zone).
84  *
85  * Note: No code should rely on this flag for correctness - it's purely
86  *       to allow for optimizations when handing back either fresh pages
87  *       (memory onlining) or untouched pages (page isolation, free page
88  *       reporting).
89  */
90 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
91 
92 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
93 static DEFINE_MUTEX(pcp_batch_high_lock);
94 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
95 
96 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
97 /*
98  * On SMP, spin_trylock is sufficient protection.
99  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
100  */
101 #define pcp_trylock_prepare(flags)	do { } while (0)
102 #define pcp_trylock_finish(flag)	do { } while (0)
103 #else
104 
105 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
106 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
107 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
108 #endif
109 
110 /*
111  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
112  * a migration causing the wrong PCP to be locked and remote memory being
113  * potentially allocated, pin the task to the CPU for the lookup+lock.
114  * preempt_disable is used on !RT because it is faster than migrate_disable.
115  * migrate_disable is used on RT because otherwise RT spinlock usage is
116  * interfered with and a high priority task cannot preempt the allocator.
117  */
118 #ifndef CONFIG_PREEMPT_RT
119 #define pcpu_task_pin()		preempt_disable()
120 #define pcpu_task_unpin()	preempt_enable()
121 #else
122 #define pcpu_task_pin()		migrate_disable()
123 #define pcpu_task_unpin()	migrate_enable()
124 #endif
125 
126 /*
127  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
128  * Return value should be used with equivalent unlock helper.
129  */
130 #define pcpu_spin_lock(type, member, ptr)				\
131 ({									\
132 	type *_ret;							\
133 	pcpu_task_pin();						\
134 	_ret = this_cpu_ptr(ptr);					\
135 	spin_lock(&_ret->member);					\
136 	_ret;								\
137 })
138 
139 #define pcpu_spin_trylock(type, member, ptr)				\
140 ({									\
141 	type *_ret;							\
142 	pcpu_task_pin();						\
143 	_ret = this_cpu_ptr(ptr);					\
144 	if (!spin_trylock(&_ret->member)) {				\
145 		pcpu_task_unpin();					\
146 		_ret = NULL;						\
147 	}								\
148 	_ret;								\
149 })
150 
151 #define pcpu_spin_unlock(member, ptr)					\
152 ({									\
153 	spin_unlock(&ptr->member);					\
154 	pcpu_task_unpin();						\
155 })
156 
157 /* struct per_cpu_pages specific helpers. */
158 #define pcp_spin_lock(ptr)						\
159 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
160 
161 #define pcp_spin_trylock(ptr)						\
162 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
163 
164 #define pcp_spin_unlock(ptr)						\
165 	pcpu_spin_unlock(lock, ptr)
166 
167 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
168 DEFINE_PER_CPU(int, numa_node);
169 EXPORT_PER_CPU_SYMBOL(numa_node);
170 #endif
171 
172 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
173 
174 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
175 /*
176  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
177  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
178  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
179  * defined in <linux/topology.h>.
180  */
181 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
182 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
183 #endif
184 
185 static DEFINE_MUTEX(pcpu_drain_mutex);
186 
187 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
188 volatile unsigned long latent_entropy __latent_entropy;
189 EXPORT_SYMBOL(latent_entropy);
190 #endif
191 
192 /*
193  * Array of node states.
194  */
195 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
196 	[N_POSSIBLE] = NODE_MASK_ALL,
197 	[N_ONLINE] = { { [0] = 1UL } },
198 #ifndef CONFIG_NUMA
199 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
200 #ifdef CONFIG_HIGHMEM
201 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
202 #endif
203 	[N_MEMORY] = { { [0] = 1UL } },
204 	[N_CPU] = { { [0] = 1UL } },
205 #endif	/* NUMA */
206 };
207 EXPORT_SYMBOL(node_states);
208 
209 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
210 
211 /*
212  * A cached value of the page's pageblock's migratetype, used when the page is
213  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
214  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
215  * Also the migratetype set in the page does not necessarily match the pcplist
216  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
217  * other index - this ensures that it will be put on the correct CMA freelist.
218  */
get_pcppage_migratetype(struct page *page)219 static inline int get_pcppage_migratetype(struct page *page)
220 {
221 	return page->index;
222 }
223 
set_pcppage_migratetype(struct page *page, int migratetype)224 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
225 {
226 	page->index = migratetype;
227 }
228 
229 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
230 unsigned int pageblock_order __read_mostly;
231 #endif
232 
233 static void __free_pages_ok(struct page *page, unsigned int order,
234 			    fpi_t fpi_flags);
235 
236 /*
237  * results with 256, 32 in the lowmem_reserve sysctl:
238  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
239  *	1G machine -> (16M dma, 784M normal, 224M high)
240  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
241  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
242  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
243  *
244  * TBD: should special case ZONE_DMA32 machines here - in those we normally
245  * don't need any ZONE_NORMAL reservation
246  */
247 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
248 #ifdef CONFIG_ZONE_DMA
249 	[ZONE_DMA] = 256,
250 #endif
251 #ifdef CONFIG_ZONE_DMA32
252 	[ZONE_DMA32] = 256,
253 #endif
254 	[ZONE_NORMAL] = 32,
255 #ifdef CONFIG_HIGHMEM
256 	[ZONE_HIGHMEM] = 0,
257 #endif
258 	[ZONE_MOVABLE] = 0,
259 };
260 
261 char * const zone_names[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 	 "DMA",
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 	 "DMA32",
267 #endif
268 	 "Normal",
269 #ifdef CONFIG_HIGHMEM
270 	 "HighMem",
271 #endif
272 	 "Movable",
273 #ifdef CONFIG_ZONE_DEVICE
274 	 "Device",
275 #endif
276 };
277 
278 const char * const migratetype_names[MIGRATE_TYPES] = {
279 	"Unmovable",
280 	"Movable",
281 	"Reclaimable",
282 #ifdef CONFIG_CMA_REUSE
283 	"CMA",
284 #endif
285 	"HighAtomic",
286 #if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
287 	"CMA",
288 #endif
289 #ifdef CONFIG_MEMORY_ISOLATION
290 	"Isolate",
291 #endif
292 };
293 
294 int min_free_kbytes = 1024;
295 int user_min_free_kbytes = -1;
296 static int watermark_boost_factor __read_mostly = 15000;
297 static int watermark_scale_factor = 10;
298 
299 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
300 int movable_zone;
301 EXPORT_SYMBOL(movable_zone);
302 
303 #if MAX_NUMNODES > 1
304 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
305 unsigned int nr_online_nodes __read_mostly = 1;
306 EXPORT_SYMBOL(nr_node_ids);
307 EXPORT_SYMBOL(nr_online_nodes);
308 #endif
309 
310 static bool page_contains_unaccepted(struct page *page, unsigned int order);
311 static void accept_page(struct page *page, unsigned int order);
312 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
313 static inline bool has_unaccepted_memory(void);
314 static bool __free_unaccepted(struct page *page);
315 
316 int page_group_by_mobility_disabled __read_mostly;
317 
318 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
319 /*
320  * During boot we initialize deferred pages on-demand, as needed, but once
321  * page_alloc_init_late() has finished, the deferred pages are all initialized,
322  * and we can permanently disable that path.
323  */
324 DEFINE_STATIC_KEY_TRUE(deferred_pages);
325 
deferred_pages_enabled(void)326 static inline bool deferred_pages_enabled(void)
327 {
328 	return static_branch_unlikely(&deferred_pages);
329 }
330 
331 /*
332  * deferred_grow_zone() is __init, but it is called from
333  * get_page_from_freelist() during early boot until deferred_pages permanently
334  * disables this call. This is why we have refdata wrapper to avoid warning,
335  * and to ensure that the function body gets unloaded.
336  */
337 static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)338 _deferred_grow_zone(struct zone *zone, unsigned int order)
339 {
340        return deferred_grow_zone(zone, order);
341 }
342 #else
deferred_pages_enabled(void)343 static inline bool deferred_pages_enabled(void)
344 {
345 	return false;
346 }
347 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
348 
349 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page *page, unsigned long pfn)350 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
351 							unsigned long pfn)
352 {
353 #ifdef CONFIG_SPARSEMEM
354 	return section_to_usemap(__pfn_to_section(pfn));
355 #else
356 	return page_zone(page)->pageblock_flags;
357 #endif /* CONFIG_SPARSEMEM */
358 }
359 
pfn_to_bitidx(const struct page *page, unsigned long pfn)360 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
361 {
362 #ifdef CONFIG_SPARSEMEM
363 	pfn &= (PAGES_PER_SECTION-1);
364 #else
365 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
366 #endif /* CONFIG_SPARSEMEM */
367 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
368 }
369 
370 /**
371  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
372  * @page: The page within the block of interest
373  * @pfn: The target page frame number
374  * @mask: mask of bits that the caller is interested in
375  *
376  * Return: pageblock_bits flags
377  */
get_pfnblock_flags_mask(const struct page *page, unsigned long pfn, unsigned long mask)378 unsigned long get_pfnblock_flags_mask(const struct page *page,
379 					unsigned long pfn, unsigned long mask)
380 {
381 	unsigned long *bitmap;
382 	unsigned long bitidx, word_bitidx;
383 	unsigned long word;
384 
385 	bitmap = get_pageblock_bitmap(page, pfn);
386 	bitidx = pfn_to_bitidx(page, pfn);
387 	word_bitidx = bitidx / BITS_PER_LONG;
388 	bitidx &= (BITS_PER_LONG-1);
389 	/*
390 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
391 	 * a consistent read of the memory array, so that results, even though
392 	 * racy, are not corrupted.
393 	 */
394 	word = READ_ONCE(bitmap[word_bitidx]);
395 	return (word >> bitidx) & mask;
396 }
397 
get_pfnblock_migratetype(const struct page *page, unsigned long pfn)398 static __always_inline int get_pfnblock_migratetype(const struct page *page,
399 					unsigned long pfn)
400 {
401 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
402 }
403 
404 /**
405  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
406  * @page: The page within the block of interest
407  * @flags: The flags to set
408  * @pfn: The target page frame number
409  * @mask: mask of bits that the caller is interested in
410  */
set_pfnblock_flags_mask(struct page *page, unsigned long flags, unsigned long pfn, unsigned long mask)411 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
412 					unsigned long pfn,
413 					unsigned long mask)
414 {
415 	unsigned long *bitmap;
416 	unsigned long bitidx, word_bitidx;
417 	unsigned long word;
418 
419 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
420 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
421 
422 	bitmap = get_pageblock_bitmap(page, pfn);
423 	bitidx = pfn_to_bitidx(page, pfn);
424 	word_bitidx = bitidx / BITS_PER_LONG;
425 	bitidx &= (BITS_PER_LONG-1);
426 
427 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
428 
429 	mask <<= bitidx;
430 	flags <<= bitidx;
431 
432 	word = READ_ONCE(bitmap[word_bitidx]);
433 	do {
434 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
435 }
436 
set_pageblock_migratetype(struct page *page, int migratetype)437 void set_pageblock_migratetype(struct page *page, int migratetype)
438 {
439 	if (unlikely(page_group_by_mobility_disabled &&
440 		     migratetype < MIGRATE_PCPTYPES))
441 		migratetype = MIGRATE_UNMOVABLE;
442 
443 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
444 				page_to_pfn(page), MIGRATETYPE_MASK);
445 }
446 
447 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone *zone, struct page *page)448 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
449 {
450 	int ret;
451 	unsigned seq;
452 	unsigned long pfn = page_to_pfn(page);
453 	unsigned long sp, start_pfn;
454 
455 	do {
456 		seq = zone_span_seqbegin(zone);
457 		start_pfn = zone->zone_start_pfn;
458 		sp = zone->spanned_pages;
459 		ret = !zone_spans_pfn(zone, pfn);
460 	} while (zone_span_seqretry(zone, seq));
461 
462 	if (ret)
463 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
464 			pfn, zone_to_nid(zone), zone->name,
465 			start_pfn, start_pfn + sp);
466 
467 	return ret;
468 }
469 
470 /*
471  * Temporary debugging check for pages not lying within a given zone.
472  */
bad_range(struct zone *zone, struct page *page)473 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
474 {
475 	if (page_outside_zone_boundaries(zone, page))
476 		return 1;
477 	if (zone != page_zone(page))
478 		return 1;
479 
480 	return 0;
481 }
482 #else
bad_range(struct zone *zone, struct page *page)483 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
484 {
485 	return 0;
486 }
487 #endif
488 
bad_page(struct page *page, const char *reason)489 static void bad_page(struct page *page, const char *reason)
490 {
491 	static unsigned long resume;
492 	static unsigned long nr_shown;
493 	static unsigned long nr_unshown;
494 
495 	/*
496 	 * Allow a burst of 60 reports, then keep quiet for that minute;
497 	 * or allow a steady drip of one report per second.
498 	 */
499 	if (nr_shown == 60) {
500 		if (time_before(jiffies, resume)) {
501 			nr_unshown++;
502 			goto out;
503 		}
504 		if (nr_unshown) {
505 			pr_alert(
506 			      "BUG: Bad page state: %lu messages suppressed\n",
507 				nr_unshown);
508 			nr_unshown = 0;
509 		}
510 		nr_shown = 0;
511 	}
512 	if (nr_shown++ == 0)
513 		resume = jiffies + 60 * HZ;
514 
515 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
516 		current->comm, page_to_pfn(page));
517 	dump_page(page, reason);
518 
519 	print_modules();
520 	dump_stack();
521 out:
522 	/* Leave bad fields for debug, except PageBuddy could make trouble */
523 	page_mapcount_reset(page); /* remove PageBuddy */
524 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
525 }
526 
order_to_pindex(int migratetype, int order)527 static inline unsigned int order_to_pindex(int migratetype, int order)
528 {
529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
530 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
531 		VM_BUG_ON(order != pageblock_order);
532 		return NR_LOWORDER_PCP_LISTS;
533 	}
534 #else
535 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
536 #endif
537 
538 	return (MIGRATE_PCPTYPES * order) + migratetype;
539 }
540 
pindex_to_order(unsigned int pindex)541 static inline int pindex_to_order(unsigned int pindex)
542 {
543 	int order = pindex / MIGRATE_PCPTYPES;
544 
545 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
546 	if (pindex == NR_LOWORDER_PCP_LISTS)
547 		order = pageblock_order;
548 #else
549 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
550 #endif
551 
552 	return order;
553 }
554 
pcp_allowed_order(unsigned int order)555 static inline bool pcp_allowed_order(unsigned int order)
556 {
557 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
558 		return true;
559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
560 	if (order == pageblock_order)
561 		return true;
562 #endif
563 	return false;
564 }
565 
free_the_page(struct page *page, unsigned int order)566 static inline void free_the_page(struct page *page, unsigned int order)
567 {
568 	if (pcp_allowed_order(order))		/* Via pcp? */
569 		free_unref_page(page, order);
570 	else
571 		__free_pages_ok(page, order, FPI_NONE);
572 }
573 
574 /*
575  * Higher-order pages are called "compound pages".  They are structured thusly:
576  *
577  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
578  *
579  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
580  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
581  *
582  * The first tail page's ->compound_order holds the order of allocation.
583  * This usage means that zero-order pages may not be compound.
584  */
585 
prep_compound_page(struct page *page, unsigned int order)586 void prep_compound_page(struct page *page, unsigned int order)
587 {
588 	int i;
589 	int nr_pages = 1 << order;
590 
591 	__SetPageHead(page);
592 	for (i = 1; i < nr_pages; i++)
593 		prep_compound_tail(page, i);
594 
595 	prep_compound_head(page, order);
596 }
597 
destroy_large_folio(struct folio *folio)598 void destroy_large_folio(struct folio *folio)
599 {
600 	if (folio_test_hugetlb(folio)) {
601 		free_huge_folio(folio);
602 		return;
603 	}
604 
605 	if (folio_test_large_rmappable(folio))
606 		folio_undo_large_rmappable(folio);
607 
608 	mem_cgroup_uncharge(folio);
609 	free_the_page(&folio->page, folio_order(folio));
610 }
611 
set_buddy_order(struct page *page, unsigned int order)612 static inline void set_buddy_order(struct page *page, unsigned int order)
613 {
614 	set_page_private(page, order);
615 	__SetPageBuddy(page);
616 }
617 
618 #ifdef CONFIG_COMPACTION
task_capc(struct zone *zone)619 static inline struct capture_control *task_capc(struct zone *zone)
620 {
621 	struct capture_control *capc = current->capture_control;
622 
623 	return unlikely(capc) &&
624 		!(current->flags & PF_KTHREAD) &&
625 		!capc->page &&
626 		capc->cc->zone == zone ? capc : NULL;
627 }
628 
629 static inline bool
compaction_capture(struct capture_control *capc, struct page *page, int order, int migratetype)630 compaction_capture(struct capture_control *capc, struct page *page,
631 		   int order, int migratetype)
632 {
633 	if (!capc || order != capc->cc->order)
634 		return false;
635 
636 	/* Do not accidentally pollute CMA or isolated regions*/
637 	if (is_migrate_cma(migratetype) ||
638 	    is_migrate_isolate(migratetype))
639 		return false;
640 
641 	/*
642 	 * Do not let lower order allocations pollute a movable pageblock.
643 	 * This might let an unmovable request use a reclaimable pageblock
644 	 * and vice-versa but no more than normal fallback logic which can
645 	 * have trouble finding a high-order free page.
646 	 */
647 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
648 		return false;
649 
650 	capc->page = page;
651 	return true;
652 }
653 
654 #else
task_capc(struct zone *zone)655 static inline struct capture_control *task_capc(struct zone *zone)
656 {
657 	return NULL;
658 }
659 
660 static inline bool
compaction_capture(struct capture_control *capc, struct page *page, int order, int migratetype)661 compaction_capture(struct capture_control *capc, struct page *page,
662 		   int order, int migratetype)
663 {
664 	return false;
665 }
666 #endif /* CONFIG_COMPACTION */
667 
668 /* Used for pages not on another list */
add_to_free_list(struct page *page, struct zone *zone, unsigned int order, int migratetype)669 static inline void add_to_free_list(struct page *page, struct zone *zone,
670 				    unsigned int order, int migratetype)
671 {
672 	struct free_area *area = &zone->free_area[order];
673 
674 	list_add(&page->buddy_list, &area->free_list[migratetype]);
675 	area->nr_free++;
676 }
677 
678 /* Used for pages not on another list */
add_to_free_list_tail(struct page *page, struct zone *zone, unsigned int order, int migratetype)679 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
680 					 unsigned int order, int migratetype)
681 {
682 	struct free_area *area = &zone->free_area[order];
683 
684 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
685 	area->nr_free++;
686 }
687 
688 /*
689  * Used for pages which are on another list. Move the pages to the tail
690  * of the list - so the moved pages won't immediately be considered for
691  * allocation again (e.g., optimization for memory onlining).
692  */
move_to_free_list(struct page *page, struct zone *zone, unsigned int order, int migratetype)693 static inline void move_to_free_list(struct page *page, struct zone *zone,
694 				     unsigned int order, int migratetype)
695 {
696 	struct free_area *area = &zone->free_area[order];
697 
698 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
699 }
700 
del_page_from_free_list(struct page *page, struct zone *zone, unsigned int order)701 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
702 					   unsigned int order)
703 {
704 	/* clear reported state and update reported page count */
705 	if (page_reported(page))
706 		__ClearPageReported(page);
707 
708 	list_del(&page->buddy_list);
709 	__ClearPageBuddy(page);
710 	set_page_private(page, 0);
711 	zone->free_area[order].nr_free--;
712 }
713 
get_page_from_free_area(struct free_area *area, int migratetype)714 static inline struct page *get_page_from_free_area(struct free_area *area,
715 					    int migratetype)
716 {
717 	return list_first_entry_or_null(&area->free_list[migratetype],
718 					struct page, buddy_list);
719 }
720 
721 /*
722  * If this is not the largest possible page, check if the buddy
723  * of the next-highest order is free. If it is, it's possible
724  * that pages are being freed that will coalesce soon. In case,
725  * that is happening, add the free page to the tail of the list
726  * so it's less likely to be used soon and more likely to be merged
727  * as a higher order page
728  */
729 static inline bool
buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, struct page *page, unsigned int order)730 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
731 		   struct page *page, unsigned int order)
732 {
733 	unsigned long higher_page_pfn;
734 	struct page *higher_page;
735 
736 	if (order >= MAX_ORDER - 1)
737 		return false;
738 
739 	higher_page_pfn = buddy_pfn & pfn;
740 	higher_page = page + (higher_page_pfn - pfn);
741 
742 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
743 			NULL) != NULL;
744 }
745 
746 /*
747  * Freeing function for a buddy system allocator.
748  *
749  * The concept of a buddy system is to maintain direct-mapped table
750  * (containing bit values) for memory blocks of various "orders".
751  * The bottom level table contains the map for the smallest allocatable
752  * units of memory (here, pages), and each level above it describes
753  * pairs of units from the levels below, hence, "buddies".
754  * At a high level, all that happens here is marking the table entry
755  * at the bottom level available, and propagating the changes upward
756  * as necessary, plus some accounting needed to play nicely with other
757  * parts of the VM system.
758  * At each level, we keep a list of pages, which are heads of continuous
759  * free pages of length of (1 << order) and marked with PageBuddy.
760  * Page's order is recorded in page_private(page) field.
761  * So when we are allocating or freeing one, we can derive the state of the
762  * other.  That is, if we allocate a small block, and both were
763  * free, the remainder of the region must be split into blocks.
764  * If a block is freed, and its buddy is also free, then this
765  * triggers coalescing into a block of larger size.
766  *
767  * -- nyc
768  */
769 
__free_one_page(struct page *page, unsigned long pfn, struct zone *zone, unsigned int order, int migratetype, fpi_t fpi_flags)770 static inline void __free_one_page(struct page *page,
771 		unsigned long pfn,
772 		struct zone *zone, unsigned int order,
773 		int migratetype, fpi_t fpi_flags)
774 {
775 	struct capture_control *capc = task_capc(zone);
776 	unsigned long buddy_pfn = 0;
777 	unsigned long combined_pfn;
778 	struct page *buddy;
779 	bool to_tail;
780 
781 	VM_BUG_ON(!zone_is_initialized(zone));
782 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
783 
784 	VM_BUG_ON(migratetype == -1);
785 	if (likely(!is_migrate_isolate(migratetype)))
786 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
787 
788 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
789 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
790 
791 	while (order < MAX_ORDER) {
792 		if (compaction_capture(capc, page, order, migratetype)) {
793 			__mod_zone_freepage_state(zone, -(1 << order),
794 								migratetype);
795 			return;
796 		}
797 
798 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
799 		if (!buddy)
800 			goto done_merging;
801 
802 		if (unlikely(order >= pageblock_order)) {
803 			/*
804 			 * We want to prevent merge between freepages on pageblock
805 			 * without fallbacks and normal pageblock. Without this,
806 			 * pageblock isolation could cause incorrect freepage or CMA
807 			 * accounting or HIGHATOMIC accounting.
808 			 */
809 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
810 
811 			if (migratetype != buddy_mt
812 					&& (!migratetype_is_mergeable(migratetype) ||
813 						!migratetype_is_mergeable(buddy_mt)))
814 				goto done_merging;
815 		}
816 
817 		/*
818 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
819 		 * merge with it and move up one order.
820 		 */
821 		if (page_is_guard(buddy))
822 			clear_page_guard(zone, buddy, order, migratetype);
823 		else
824 			del_page_from_free_list(buddy, zone, order);
825 		combined_pfn = buddy_pfn & pfn;
826 		page = page + (combined_pfn - pfn);
827 		pfn = combined_pfn;
828 		order++;
829 	}
830 
831 done_merging:
832 	set_buddy_order(page, order);
833 
834 	if (fpi_flags & FPI_TO_TAIL)
835 		to_tail = true;
836 	else if (is_shuffle_order(order))
837 		to_tail = shuffle_pick_tail();
838 	else
839 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
840 
841 	if (to_tail)
842 		add_to_free_list_tail(page, zone, order, migratetype);
843 	else
844 		add_to_free_list(page, zone, order, migratetype);
845 
846 	/* Notify page reporting subsystem of freed page */
847 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
848 		page_reporting_notify_free(order);
849 }
850 
851 /**
852  * split_free_page() -- split a free page at split_pfn_offset
853  * @free_page:		the original free page
854  * @order:		the order of the page
855  * @split_pfn_offset:	split offset within the page
856  *
857  * Return -ENOENT if the free page is changed, otherwise 0
858  *
859  * It is used when the free page crosses two pageblocks with different migratetypes
860  * at split_pfn_offset within the page. The split free page will be put into
861  * separate migratetype lists afterwards. Otherwise, the function achieves
862  * nothing.
863  */
split_free_page(struct page *free_page, unsigned int order, unsigned long split_pfn_offset)864 int split_free_page(struct page *free_page,
865 			unsigned int order, unsigned long split_pfn_offset)
866 {
867 	struct zone *zone = page_zone(free_page);
868 	unsigned long free_page_pfn = page_to_pfn(free_page);
869 	unsigned long pfn;
870 	unsigned long flags;
871 	int free_page_order;
872 	int mt;
873 	int ret = 0;
874 
875 	if (split_pfn_offset == 0)
876 		return ret;
877 
878 	spin_lock_irqsave(&zone->lock, flags);
879 
880 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
881 		ret = -ENOENT;
882 		goto out;
883 	}
884 
885 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
886 	if (likely(!is_migrate_isolate(mt)))
887 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
888 
889 	del_page_from_free_list(free_page, zone, order);
890 	for (pfn = free_page_pfn;
891 	     pfn < free_page_pfn + (1UL << order);) {
892 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
893 
894 		free_page_order = min_t(unsigned int,
895 					pfn ? __ffs(pfn) : order,
896 					__fls(split_pfn_offset));
897 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
898 				mt, FPI_NONE);
899 		pfn += 1UL << free_page_order;
900 		split_pfn_offset -= (1UL << free_page_order);
901 		/* we have done the first part, now switch to second part */
902 		if (split_pfn_offset == 0)
903 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
904 	}
905 out:
906 	spin_unlock_irqrestore(&zone->lock, flags);
907 	return ret;
908 }
909 /*
910  * A bad page could be due to a number of fields. Instead of multiple branches,
911  * try and check multiple fields with one check. The caller must do a detailed
912  * check if necessary.
913  */
page_expected_state(struct page *page, unsigned long check_flags)914 static inline bool page_expected_state(struct page *page,
915 					unsigned long check_flags)
916 {
917 	if (unlikely(atomic_read(&page->_mapcount) != -1))
918 		return false;
919 
920 	if (unlikely((unsigned long)page->mapping |
921 			page_ref_count(page) |
922 #ifdef CONFIG_MEMCG
923 			page->memcg_data |
924 #endif
925 			(page->flags & check_flags)))
926 		return false;
927 
928 	return true;
929 }
930 
page_bad_reason(struct page *page, unsigned long flags)931 static const char *page_bad_reason(struct page *page, unsigned long flags)
932 {
933 	const char *bad_reason = NULL;
934 
935 	if (unlikely(atomic_read(&page->_mapcount) != -1))
936 		bad_reason = "nonzero mapcount";
937 	if (unlikely(page->mapping != NULL))
938 		bad_reason = "non-NULL mapping";
939 	if (unlikely(page_ref_count(page) != 0))
940 		bad_reason = "nonzero _refcount";
941 	if (unlikely(page->flags & flags)) {
942 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
943 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
944 		else
945 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
946 	}
947 #ifdef CONFIG_MEMCG
948 	if (unlikely(page->memcg_data))
949 		bad_reason = "page still charged to cgroup";
950 #endif
951 	return bad_reason;
952 }
953 
free_page_is_bad_report(struct page *page)954 static void free_page_is_bad_report(struct page *page)
955 {
956 	bad_page(page,
957 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
958 }
959 
free_page_is_bad(struct page *page)960 static inline bool free_page_is_bad(struct page *page)
961 {
962 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
963 		return false;
964 
965 	/* Something has gone sideways, find it */
966 	free_page_is_bad_report(page);
967 	return true;
968 }
969 
is_check_pages_enabled(void)970 static inline bool is_check_pages_enabled(void)
971 {
972 	return static_branch_unlikely(&check_pages_enabled);
973 }
974 
free_tail_page_prepare(struct page *head_page, struct page *page)975 static int free_tail_page_prepare(struct page *head_page, struct page *page)
976 {
977 	struct folio *folio = (struct folio *)head_page;
978 	int ret = 1;
979 
980 	/*
981 	 * We rely page->lru.next never has bit 0 set, unless the page
982 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
983 	 */
984 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
985 
986 	if (!is_check_pages_enabled()) {
987 		ret = 0;
988 		goto out;
989 	}
990 	switch (page - head_page) {
991 	case 1:
992 		/* the first tail page: these may be in place of ->mapping */
993 		if (unlikely(folio_entire_mapcount(folio))) {
994 			bad_page(page, "nonzero entire_mapcount");
995 			goto out;
996 		}
997 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
998 			bad_page(page, "nonzero nr_pages_mapped");
999 			goto out;
1000 		}
1001 		if (unlikely(atomic_read(&folio->_pincount))) {
1002 			bad_page(page, "nonzero pincount");
1003 			goto out;
1004 		}
1005 		break;
1006 	case 2:
1007 		/*
1008 		 * the second tail page: ->mapping is
1009 		 * deferred_list.next -- ignore value.
1010 		 */
1011 		break;
1012 	default:
1013 		if (page->mapping != TAIL_MAPPING) {
1014 			bad_page(page, "corrupted mapping in tail page");
1015 			goto out;
1016 		}
1017 		break;
1018 	}
1019 	if (unlikely(!PageTail(page))) {
1020 		bad_page(page, "PageTail not set");
1021 		goto out;
1022 	}
1023 	if (unlikely(compound_head(page) != head_page)) {
1024 		bad_page(page, "compound_head not consistent");
1025 		goto out;
1026 	}
1027 	ret = 0;
1028 out:
1029 	page->mapping = NULL;
1030 	clear_compound_head(page);
1031 	return ret;
1032 }
1033 
1034 /*
1035  * Skip KASAN memory poisoning when either:
1036  *
1037  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1038  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1039  *    using page tags instead (see below).
1040  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1041  *    that error detection is disabled for accesses via the page address.
1042  *
1043  * Pages will have match-all tags in the following circumstances:
1044  *
1045  * 1. Pages are being initialized for the first time, including during deferred
1046  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1047  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1048  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1049  * 3. The allocation was excluded from being checked due to sampling,
1050  *    see the call to kasan_unpoison_pages.
1051  *
1052  * Poisoning pages during deferred memory init will greatly lengthen the
1053  * process and cause problem in large memory systems as the deferred pages
1054  * initialization is done with interrupt disabled.
1055  *
1056  * Assuming that there will be no reference to those newly initialized
1057  * pages before they are ever allocated, this should have no effect on
1058  * KASAN memory tracking as the poison will be properly inserted at page
1059  * allocation time. The only corner case is when pages are allocated by
1060  * on-demand allocation and then freed again before the deferred pages
1061  * initialization is done, but this is not likely to happen.
1062  */
should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)1063 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1064 {
1065 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1066 		return deferred_pages_enabled();
1067 
1068 	return page_kasan_tag(page) == 0xff;
1069 }
1070 
kernel_init_pages(struct page *page, int numpages)1071 static void kernel_init_pages(struct page *page, int numpages)
1072 {
1073 	int i;
1074 
1075 	/* s390's use of memset() could override KASAN redzones. */
1076 	kasan_disable_current();
1077 	for (i = 0; i < numpages; i++)
1078 		clear_highpage_kasan_tagged(page + i);
1079 	kasan_enable_current();
1080 }
1081 
free_pages_prepare(struct page *page, unsigned int order, fpi_t fpi_flags)1082 static __always_inline bool free_pages_prepare(struct page *page,
1083 			unsigned int order, fpi_t fpi_flags)
1084 {
1085 	int bad = 0;
1086 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1087 	bool init = want_init_on_free();
1088 
1089 	VM_BUG_ON_PAGE(PageTail(page), page);
1090 
1091 	trace_mm_page_free(page, order);
1092 	kmsan_free_page(page, order);
1093 
1094 	if (unlikely(PageHWPoison(page)) && !order) {
1095 		/*
1096 		 * Do not let hwpoison pages hit pcplists/buddy
1097 		 * Untie memcg state and reset page's owner
1098 		 */
1099 		if (memcg_kmem_online() && PageMemcgKmem(page))
1100 			__memcg_kmem_uncharge_page(page, order);
1101 		reset_page_owner(page, order);
1102 		page_table_check_free(page, order);
1103 		return false;
1104 	}
1105 
1106 	/*
1107 	 * Check tail pages before head page information is cleared to
1108 	 * avoid checking PageCompound for order-0 pages.
1109 	 */
1110 	if (unlikely(order)) {
1111 		bool compound = PageCompound(page);
1112 		int i;
1113 
1114 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1115 
1116 		if (compound)
1117 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1118 		for (i = 1; i < (1 << order); i++) {
1119 			if (compound)
1120 				bad += free_tail_page_prepare(page, page + i);
1121 			if (is_check_pages_enabled()) {
1122 				if (free_page_is_bad(page + i)) {
1123 					bad++;
1124 					continue;
1125 				}
1126 			}
1127 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1128 		}
1129 	}
1130 	if (PageMappingFlags(page))
1131 		page->mapping = NULL;
1132 	if (memcg_kmem_online() && PageMemcgKmem(page))
1133 		__memcg_kmem_uncharge_page(page, order);
1134 	if (is_check_pages_enabled()) {
1135 		if (free_page_is_bad(page))
1136 			bad++;
1137 		if (bad)
1138 			return false;
1139 	}
1140 
1141 	page_cpupid_reset_last(page);
1142 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1143 	reset_page_owner(page, order);
1144 	page_table_check_free(page, order);
1145 
1146 	if (!PageHighMem(page)) {
1147 		debug_check_no_locks_freed(page_address(page),
1148 					   PAGE_SIZE << order);
1149 		debug_check_no_obj_freed(page_address(page),
1150 					   PAGE_SIZE << order);
1151 	}
1152 
1153 	kernel_poison_pages(page, 1 << order);
1154 
1155 	/*
1156 	 * As memory initialization might be integrated into KASAN,
1157 	 * KASAN poisoning and memory initialization code must be
1158 	 * kept together to avoid discrepancies in behavior.
1159 	 *
1160 	 * With hardware tag-based KASAN, memory tags must be set before the
1161 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1162 	 */
1163 	if (!skip_kasan_poison) {
1164 		kasan_poison_pages(page, order, init);
1165 
1166 		/* Memory is already initialized if KASAN did it internally. */
1167 		if (kasan_has_integrated_init())
1168 			init = false;
1169 	}
1170 	if (init)
1171 		kernel_init_pages(page, 1 << order);
1172 
1173 	/*
1174 	 * arch_free_page() can make the page's contents inaccessible.  s390
1175 	 * does this.  So nothing which can access the page's contents should
1176 	 * happen after this.
1177 	 */
1178 	arch_free_page(page, order);
1179 
1180 	debug_pagealloc_unmap_pages(page, 1 << order);
1181 
1182 	return true;
1183 }
1184 
1185 /*
1186  * Frees a number of pages from the PCP lists
1187  * Assumes all pages on list are in same zone.
1188  * count is the number of pages to free.
1189  */
free_pcppages_bulk(struct zone *zone, int count, struct per_cpu_pages *pcp, int pindex)1190 static void free_pcppages_bulk(struct zone *zone, int count,
1191 					struct per_cpu_pages *pcp,
1192 					int pindex)
1193 {
1194 	unsigned long flags;
1195 	unsigned int order;
1196 	bool isolated_pageblocks;
1197 	struct page *page;
1198 
1199 	/*
1200 	 * Ensure proper count is passed which otherwise would stuck in the
1201 	 * below while (list_empty(list)) loop.
1202 	 */
1203 	count = min(pcp->count, count);
1204 
1205 	/* Ensure requested pindex is drained first. */
1206 	pindex = pindex - 1;
1207 
1208 	spin_lock_irqsave(&zone->lock, flags);
1209 	isolated_pageblocks = has_isolate_pageblock(zone);
1210 
1211 	while (count > 0) {
1212 		struct list_head *list;
1213 		int nr_pages;
1214 
1215 		/* Remove pages from lists in a round-robin fashion. */
1216 		do {
1217 			if (++pindex > NR_PCP_LISTS - 1)
1218 				pindex = 0;
1219 			list = &pcp->lists[pindex];
1220 		} while (list_empty(list));
1221 
1222 		order = pindex_to_order(pindex);
1223 		nr_pages = 1 << order;
1224 		do {
1225 			int mt;
1226 
1227 			page = list_last_entry(list, struct page, pcp_list);
1228 			mt = get_pcppage_migratetype(page);
1229 
1230 			/* must delete to avoid corrupting pcp list */
1231 			list_del(&page->pcp_list);
1232 			count -= nr_pages;
1233 			pcp->count -= nr_pages;
1234 
1235 			/* MIGRATE_ISOLATE page should not go to pcplists */
1236 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1237 			/* Pageblock could have been isolated meanwhile */
1238 			if (unlikely(isolated_pageblocks))
1239 				mt = get_pageblock_migratetype(page);
1240 
1241 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1242 			trace_mm_page_pcpu_drain(page, order, mt);
1243 		} while (count > 0 && !list_empty(list));
1244 	}
1245 
1246 	spin_unlock_irqrestore(&zone->lock, flags);
1247 }
1248 
free_one_page(struct zone *zone, struct page *page, unsigned long pfn, unsigned int order, int migratetype, fpi_t fpi_flags)1249 static void free_one_page(struct zone *zone,
1250 				struct page *page, unsigned long pfn,
1251 				unsigned int order,
1252 				int migratetype, fpi_t fpi_flags)
1253 {
1254 	unsigned long flags;
1255 
1256 	spin_lock_irqsave(&zone->lock, flags);
1257 	if (unlikely(has_isolate_pageblock(zone) ||
1258 		is_migrate_isolate(migratetype))) {
1259 		migratetype = get_pfnblock_migratetype(page, pfn);
1260 	}
1261 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1262 	spin_unlock_irqrestore(&zone->lock, flags);
1263 }
1264 
__free_pages_ok(struct page *page, unsigned int order, fpi_t fpi_flags)1265 static void __free_pages_ok(struct page *page, unsigned int order,
1266 			    fpi_t fpi_flags)
1267 {
1268 	unsigned long flags;
1269 	int migratetype;
1270 	unsigned long pfn = page_to_pfn(page);
1271 	struct zone *zone = page_zone(page);
1272 
1273 	if (!free_pages_prepare(page, order, fpi_flags))
1274 		return;
1275 
1276 	/*
1277 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1278 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1279 	 * This will reduce the lock holding time.
1280 	 */
1281 	migratetype = get_pfnblock_migratetype(page, pfn);
1282 
1283 	spin_lock_irqsave(&zone->lock, flags);
1284 	if (unlikely(has_isolate_pageblock(zone) ||
1285 		is_migrate_isolate(migratetype))) {
1286 		migratetype = get_pfnblock_migratetype(page, pfn);
1287 	}
1288 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1289 	spin_unlock_irqrestore(&zone->lock, flags);
1290 
1291 	__count_vm_events(PGFREE, 1 << order);
1292 }
1293 
__free_pages_core(struct page *page, unsigned int order)1294 void __free_pages_core(struct page *page, unsigned int order)
1295 {
1296 	unsigned int nr_pages = 1 << order;
1297 	struct page *p = page;
1298 	unsigned int loop;
1299 
1300 	/*
1301 	 * When initializing the memmap, __init_single_page() sets the refcount
1302 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1303 	 * refcount of all involved pages to 0.
1304 	 */
1305 	prefetchw(p);
1306 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1307 		prefetchw(p + 1);
1308 		__ClearPageReserved(p);
1309 		set_page_count(p, 0);
1310 	}
1311 	__ClearPageReserved(p);
1312 	set_page_count(p, 0);
1313 
1314 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1315 
1316 	if (page_contains_unaccepted(page, order)) {
1317 		if (order == MAX_ORDER && __free_unaccepted(page))
1318 			return;
1319 
1320 		accept_page(page, order);
1321 	}
1322 
1323 	/*
1324 	 * Bypass PCP and place fresh pages right to the tail, primarily
1325 	 * relevant for memory onlining.
1326 	 */
1327 	__free_pages_ok(page, order, FPI_TO_TAIL);
1328 }
1329 
1330 /*
1331  * Check that the whole (or subset of) a pageblock given by the interval of
1332  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1333  * with the migration of free compaction scanner.
1334  *
1335  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336  *
1337  * It's possible on some configurations to have a setup like node0 node1 node0
1338  * i.e. it's possible that all pages within a zones range of pages do not
1339  * belong to a single zone. We assume that a border between node0 and node1
1340  * can occur within a single pageblock, but not a node0 node1 node0
1341  * interleaving within a single pageblock. It is therefore sufficient to check
1342  * the first and last page of a pageblock and avoid checking each individual
1343  * page in a pageblock.
1344  *
1345  * Note: the function may return non-NULL struct page even for a page block
1346  * which contains a memory hole (i.e. there is no physical memory for a subset
1347  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1348  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1349  * even though the start pfn is online and valid. This should be safe most of
1350  * the time because struct pages are still initialized via init_unavailable_range()
1351  * and pfn walkers shouldn't touch any physical memory range for which they do
1352  * not recognize any specific metadata in struct pages.
1353  */
__pageblock_pfn_to_page(unsigned long start_pfn, unsigned long end_pfn, struct zone *zone)1354 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1355 				     unsigned long end_pfn, struct zone *zone)
1356 {
1357 	struct page *start_page;
1358 	struct page *end_page;
1359 
1360 	/* end_pfn is one past the range we are checking */
1361 	end_pfn--;
1362 
1363 	if (!pfn_valid(end_pfn))
1364 		return NULL;
1365 
1366 	start_page = pfn_to_online_page(start_pfn);
1367 	if (!start_page)
1368 		return NULL;
1369 
1370 	if (page_zone(start_page) != zone)
1371 		return NULL;
1372 
1373 	end_page = pfn_to_page(end_pfn);
1374 
1375 	/* This gives a shorter code than deriving page_zone(end_page) */
1376 	if (page_zone_id(start_page) != page_zone_id(end_page))
1377 		return NULL;
1378 
1379 	return start_page;
1380 }
1381 
1382 /*
1383  * The order of subdivision here is critical for the IO subsystem.
1384  * Please do not alter this order without good reasons and regression
1385  * testing. Specifically, as large blocks of memory are subdivided,
1386  * the order in which smaller blocks are delivered depends on the order
1387  * they're subdivided in this function. This is the primary factor
1388  * influencing the order in which pages are delivered to the IO
1389  * subsystem according to empirical testing, and this is also justified
1390  * by considering the behavior of a buddy system containing a single
1391  * large block of memory acted on by a series of small allocations.
1392  * This behavior is a critical factor in sglist merging's success.
1393  *
1394  * -- nyc
1395  */
expand(struct zone *zone, struct page *page, int low, int high, int migratetype)1396 static inline void expand(struct zone *zone, struct page *page,
1397 	int low, int high, int migratetype)
1398 {
1399 	unsigned long size = 1 << high;
1400 
1401 	while (high > low) {
1402 		high--;
1403 		size >>= 1;
1404 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1405 
1406 		/*
1407 		 * Mark as guard pages (or page), that will allow to
1408 		 * merge back to allocator when buddy will be freed.
1409 		 * Corresponding page table entries will not be touched,
1410 		 * pages will stay not present in virtual address space
1411 		 */
1412 		if (set_page_guard(zone, &page[size], high, migratetype))
1413 			continue;
1414 
1415 		add_to_free_list(&page[size], zone, high, migratetype);
1416 		set_buddy_order(&page[size], high);
1417 	}
1418 }
1419 
check_new_page_bad(struct page *page)1420 static void check_new_page_bad(struct page *page)
1421 {
1422 	if (unlikely(page->flags & __PG_HWPOISON)) {
1423 		/* Don't complain about hwpoisoned pages */
1424 		page_mapcount_reset(page); /* remove PageBuddy */
1425 		return;
1426 	}
1427 
1428 	bad_page(page,
1429 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1430 }
1431 
1432 /*
1433  * This page is about to be returned from the page allocator
1434  */
check_new_page(struct page *page)1435 static int check_new_page(struct page *page)
1436 {
1437 	if (likely(page_expected_state(page,
1438 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1439 		return 0;
1440 
1441 	check_new_page_bad(page);
1442 	return 1;
1443 }
1444 
check_new_pages(struct page *page, unsigned int order)1445 static inline bool check_new_pages(struct page *page, unsigned int order)
1446 {
1447 	if (is_check_pages_enabled()) {
1448 		for (int i = 0; i < (1 << order); i++) {
1449 			struct page *p = page + i;
1450 
1451 			if (check_new_page(p))
1452 				return true;
1453 		}
1454 	}
1455 
1456 	return false;
1457 }
1458 
should_skip_kasan_unpoison(gfp_t flags)1459 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1460 {
1461 	/* Don't skip if a software KASAN mode is enabled. */
1462 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1463 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1464 		return false;
1465 
1466 	/* Skip, if hardware tag-based KASAN is not enabled. */
1467 	if (!kasan_hw_tags_enabled())
1468 		return true;
1469 
1470 	/*
1471 	 * With hardware tag-based KASAN enabled, skip if this has been
1472 	 * requested via __GFP_SKIP_KASAN.
1473 	 */
1474 	return flags & __GFP_SKIP_KASAN;
1475 }
1476 
should_skip_init(gfp_t flags)1477 static inline bool should_skip_init(gfp_t flags)
1478 {
1479 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1480 	if (!kasan_hw_tags_enabled())
1481 		return false;
1482 
1483 	/* For hardware tag-based KASAN, skip if requested. */
1484 	return (flags & __GFP_SKIP_ZERO);
1485 }
1486 
post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags)1487 inline void post_alloc_hook(struct page *page, unsigned int order,
1488 				gfp_t gfp_flags)
1489 {
1490 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1491 			!should_skip_init(gfp_flags);
1492 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1493 	int i;
1494 
1495 	set_page_private(page, 0);
1496 	set_page_refcounted(page);
1497 
1498 	arch_alloc_page(page, order);
1499 	debug_pagealloc_map_pages(page, 1 << order);
1500 
1501 	/*
1502 	 * Page unpoisoning must happen before memory initialization.
1503 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1504 	 * allocations and the page unpoisoning code will complain.
1505 	 */
1506 	kernel_unpoison_pages(page, 1 << order);
1507 
1508 	/*
1509 	 * As memory initialization might be integrated into KASAN,
1510 	 * KASAN unpoisoning and memory initializion code must be
1511 	 * kept together to avoid discrepancies in behavior.
1512 	 */
1513 
1514 	/*
1515 	 * If memory tags should be zeroed
1516 	 * (which happens only when memory should be initialized as well).
1517 	 */
1518 	if (zero_tags) {
1519 		/* Initialize both memory and memory tags. */
1520 		for (i = 0; i != 1 << order; ++i)
1521 			tag_clear_highpage(page + i);
1522 
1523 		/* Take note that memory was initialized by the loop above. */
1524 		init = false;
1525 	}
1526 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1527 	    kasan_unpoison_pages(page, order, init)) {
1528 		/* Take note that memory was initialized by KASAN. */
1529 		if (kasan_has_integrated_init())
1530 			init = false;
1531 	} else {
1532 		/*
1533 		 * If memory tags have not been set by KASAN, reset the page
1534 		 * tags to ensure page_address() dereferencing does not fault.
1535 		 */
1536 		for (i = 0; i != 1 << order; ++i)
1537 			page_kasan_tag_reset(page + i);
1538 	}
1539 	/* If memory is still not initialized, initialize it now. */
1540 	if (init)
1541 		kernel_init_pages(page, 1 << order);
1542 
1543 	set_page_owner(page, order, gfp_flags);
1544 	page_table_check_alloc(page, order);
1545 }
1546 
prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, unsigned int alloc_flags)1547 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1548 							unsigned int alloc_flags)
1549 {
1550 	post_alloc_hook(page, order, gfp_flags);
1551 
1552 	if (order && (gfp_flags & __GFP_COMP))
1553 		prep_compound_page(page, order);
1554 
1555 	/*
1556 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1557 	 * allocate the page. The expectation is that the caller is taking
1558 	 * steps that will free more memory. The caller should avoid the page
1559 	 * being used for !PFMEMALLOC purposes.
1560 	 */
1561 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1562 		set_page_pfmemalloc(page);
1563 	else
1564 		clear_page_pfmemalloc(page);
1565 }
1566 
1567 /*
1568  * Go through the free lists for the given migratetype and remove
1569  * the smallest available page from the freelists
1570  */
1571 static __always_inline
__rmqueue_smallest(struct zone *zone, unsigned int order, int migratetype)1572 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1573 						int migratetype)
1574 {
1575 	unsigned int current_order;
1576 	struct free_area *area;
1577 	struct page *page;
1578 
1579 	/* Find a page of the appropriate size in the preferred list */
1580 	for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1581 		area = &(zone->free_area[current_order]);
1582 		page = get_page_from_free_area(area, migratetype);
1583 		if (!page)
1584 			continue;
1585 		del_page_from_free_list(page, zone, current_order);
1586 		expand(zone, page, order, current_order, migratetype);
1587 		set_pcppage_migratetype(page, migratetype);
1588 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1589 				pcp_allowed_order(order) &&
1590 				migratetype < MIGRATE_PCPTYPES);
1591 		return page;
1592 	}
1593 
1594 	return NULL;
1595 }
1596 
1597 
1598 /*
1599  * This array describes the order lists are fallen back to when
1600  * the free lists for the desirable migrate type are depleted
1601  *
1602  * The other migratetypes do not have fallbacks.
1603  */
1604 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1605 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1606 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1607 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1608 };
1609 
1610 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone *zone, unsigned int order)1611 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1612 					unsigned int order)
1613 {
1614 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1615 }
1616 #else
__rmqueue_cma_fallback(struct zone *zone, unsigned int order)1617 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1618 					unsigned int order) { return NULL; }
1619 #endif
1620 
1621 /*
1622  * Move the free pages in a range to the freelist tail of the requested type.
1623  * Note that start_page and end_pages are not aligned on a pageblock
1624  * boundary. If alignment is required, use move_freepages_block()
1625  */
move_freepages(struct zone *zone, unsigned long start_pfn, unsigned long end_pfn, int migratetype, int *num_movable)1626 static int move_freepages(struct zone *zone,
1627 			  unsigned long start_pfn, unsigned long end_pfn,
1628 			  int migratetype, int *num_movable)
1629 {
1630 	struct page *page;
1631 	unsigned long pfn;
1632 	unsigned int order;
1633 	int pages_moved = 0;
1634 
1635 	for (pfn = start_pfn; pfn <= end_pfn;) {
1636 		page = pfn_to_page(pfn);
1637 		if (!PageBuddy(page)) {
1638 			/*
1639 			 * We assume that pages that could be isolated for
1640 			 * migration are movable. But we don't actually try
1641 			 * isolating, as that would be expensive.
1642 			 */
1643 			if (num_movable &&
1644 					(PageLRU(page) || __PageMovable(page)))
1645 				(*num_movable)++;
1646 			pfn++;
1647 			continue;
1648 		}
1649 
1650 		/* Make sure we are not inadvertently changing nodes */
1651 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1652 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1653 
1654 		order = buddy_order(page);
1655 		move_to_free_list(page, zone, order, migratetype);
1656 		pfn += 1 << order;
1657 		pages_moved += 1 << order;
1658 	}
1659 
1660 	return pages_moved;
1661 }
1662 
move_freepages_block(struct zone *zone, struct page *page, int migratetype, int *num_movable)1663 int move_freepages_block(struct zone *zone, struct page *page,
1664 				int migratetype, int *num_movable)
1665 {
1666 	unsigned long start_pfn, end_pfn, pfn;
1667 
1668 	if (num_movable)
1669 		*num_movable = 0;
1670 
1671 	pfn = page_to_pfn(page);
1672 	start_pfn = pageblock_start_pfn(pfn);
1673 	end_pfn = pageblock_end_pfn(pfn) - 1;
1674 
1675 	/* Do not cross zone boundaries */
1676 	if (!zone_spans_pfn(zone, start_pfn))
1677 		start_pfn = pfn;
1678 	if (!zone_spans_pfn(zone, end_pfn))
1679 		return 0;
1680 
1681 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1682 								num_movable);
1683 }
1684 
change_pageblock_range(struct page *pageblock_page, int start_order, int migratetype)1685 static void change_pageblock_range(struct page *pageblock_page,
1686 					int start_order, int migratetype)
1687 {
1688 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1689 
1690 	while (nr_pageblocks--) {
1691 		set_pageblock_migratetype(pageblock_page, migratetype);
1692 		pageblock_page += pageblock_nr_pages;
1693 	}
1694 }
1695 
1696 /*
1697  * When we are falling back to another migratetype during allocation, try to
1698  * steal extra free pages from the same pageblocks to satisfy further
1699  * allocations, instead of polluting multiple pageblocks.
1700  *
1701  * If we are stealing a relatively large buddy page, it is likely there will
1702  * be more free pages in the pageblock, so try to steal them all. For
1703  * reclaimable and unmovable allocations, we steal regardless of page size,
1704  * as fragmentation caused by those allocations polluting movable pageblocks
1705  * is worse than movable allocations stealing from unmovable and reclaimable
1706  * pageblocks.
1707  */
can_steal_fallback(unsigned int order, int start_mt)1708 static bool can_steal_fallback(unsigned int order, int start_mt)
1709 {
1710 	/*
1711 	 * Leaving this order check is intended, although there is
1712 	 * relaxed order check in next check. The reason is that
1713 	 * we can actually steal whole pageblock if this condition met,
1714 	 * but, below check doesn't guarantee it and that is just heuristic
1715 	 * so could be changed anytime.
1716 	 */
1717 	if (order >= pageblock_order)
1718 		return true;
1719 
1720 	if (order >= pageblock_order / 2 ||
1721 		start_mt == MIGRATE_RECLAIMABLE ||
1722 		start_mt == MIGRATE_UNMOVABLE ||
1723 		page_group_by_mobility_disabled)
1724 		return true;
1725 
1726 	return false;
1727 }
1728 
boost_watermark(struct zone *zone)1729 static inline bool boost_watermark(struct zone *zone)
1730 {
1731 	unsigned long max_boost;
1732 
1733 	if (!watermark_boost_factor)
1734 		return false;
1735 	/*
1736 	 * Don't bother in zones that are unlikely to produce results.
1737 	 * On small machines, including kdump capture kernels running
1738 	 * in a small area, boosting the watermark can cause an out of
1739 	 * memory situation immediately.
1740 	 */
1741 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1742 		return false;
1743 
1744 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1745 			watermark_boost_factor, 10000);
1746 
1747 	/*
1748 	 * high watermark may be uninitialised if fragmentation occurs
1749 	 * very early in boot so do not boost. We do not fall
1750 	 * through and boost by pageblock_nr_pages as failing
1751 	 * allocations that early means that reclaim is not going
1752 	 * to help and it may even be impossible to reclaim the
1753 	 * boosted watermark resulting in a hang.
1754 	 */
1755 	if (!max_boost)
1756 		return false;
1757 
1758 	max_boost = max(pageblock_nr_pages, max_boost);
1759 
1760 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1761 		max_boost);
1762 
1763 	return true;
1764 }
1765 
1766 /*
1767  * This function implements actual steal behaviour. If order is large enough,
1768  * we can steal whole pageblock. If not, we first move freepages in this
1769  * pageblock to our migratetype and determine how many already-allocated pages
1770  * are there in the pageblock with a compatible migratetype. If at least half
1771  * of pages are free or compatible, we can change migratetype of the pageblock
1772  * itself, so pages freed in the future will be put on the correct free list.
1773  */
steal_suitable_fallback(struct zone *zone, struct page *page, unsigned int alloc_flags, int start_type, bool whole_block)1774 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1775 		unsigned int alloc_flags, int start_type, bool whole_block)
1776 {
1777 	unsigned int current_order = buddy_order(page);
1778 	int free_pages, movable_pages, alike_pages;
1779 	int old_block_type;
1780 
1781 	old_block_type = get_pageblock_migratetype(page);
1782 
1783 	/*
1784 	 * This can happen due to races and we want to prevent broken
1785 	 * highatomic accounting.
1786 	 */
1787 	if (is_migrate_highatomic(old_block_type))
1788 		goto single_page;
1789 
1790 	/* Take ownership for orders >= pageblock_order */
1791 	if (current_order >= pageblock_order) {
1792 		change_pageblock_range(page, current_order, start_type);
1793 		goto single_page;
1794 	}
1795 
1796 	/*
1797 	 * Boost watermarks to increase reclaim pressure to reduce the
1798 	 * likelihood of future fallbacks. Wake kswapd now as the node
1799 	 * may be balanced overall and kswapd will not wake naturally.
1800 	 */
1801 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1802 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1803 
1804 	/* We are not allowed to try stealing from the whole block */
1805 	if (!whole_block)
1806 		goto single_page;
1807 
1808 	free_pages = move_freepages_block(zone, page, start_type,
1809 						&movable_pages);
1810 	/* moving whole block can fail due to zone boundary conditions */
1811 	if (!free_pages)
1812 		goto single_page;
1813 
1814 	/*
1815 	 * Determine how many pages are compatible with our allocation.
1816 	 * For movable allocation, it's the number of movable pages which
1817 	 * we just obtained. For other types it's a bit more tricky.
1818 	 */
1819 	if (start_type == MIGRATE_MOVABLE) {
1820 		alike_pages = movable_pages;
1821 	} else {
1822 		/*
1823 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1824 		 * to MOVABLE pageblock, consider all non-movable pages as
1825 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1826 		 * vice versa, be conservative since we can't distinguish the
1827 		 * exact migratetype of non-movable pages.
1828 		 */
1829 		if (old_block_type == MIGRATE_MOVABLE)
1830 			alike_pages = pageblock_nr_pages
1831 						- (free_pages + movable_pages);
1832 		else
1833 			alike_pages = 0;
1834 	}
1835 	/*
1836 	 * If a sufficient number of pages in the block are either free or of
1837 	 * compatible migratability as our allocation, claim the whole block.
1838 	 */
1839 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1840 			page_group_by_mobility_disabled)
1841 		set_pageblock_migratetype(page, start_type);
1842 
1843 	return;
1844 
1845 single_page:
1846 	move_to_free_list(page, zone, current_order, start_type);
1847 }
1848 
1849 /*
1850  * Check whether there is a suitable fallback freepage with requested order.
1851  * If only_stealable is true, this function returns fallback_mt only if
1852  * we can steal other freepages all together. This would help to reduce
1853  * fragmentation due to mixed migratetype pages in one pageblock.
1854  */
find_suitable_fallback(struct free_area *area, unsigned int order, int migratetype, bool only_stealable, bool *can_steal)1855 int find_suitable_fallback(struct free_area *area, unsigned int order,
1856 			int migratetype, bool only_stealable, bool *can_steal)
1857 {
1858 	int i;
1859 	int fallback_mt;
1860 
1861 	if (area->nr_free == 0)
1862 		return -1;
1863 
1864 	*can_steal = false;
1865 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1866 		fallback_mt = fallbacks[migratetype][i];
1867 		if (free_area_empty(area, fallback_mt))
1868 			continue;
1869 
1870 		if (can_steal_fallback(order, migratetype))
1871 			*can_steal = true;
1872 
1873 		if (!only_stealable)
1874 			return fallback_mt;
1875 
1876 		if (*can_steal)
1877 			return fallback_mt;
1878 	}
1879 
1880 	return -1;
1881 }
1882 
1883 /*
1884  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1885  * there are no empty page blocks that contain a page with a suitable order
1886  */
reserve_highatomic_pageblock(struct page *page, struct zone *zone)1887 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1888 {
1889 	int mt;
1890 	unsigned long max_managed, flags;
1891 
1892 	/*
1893 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1894 	 * Check is race-prone but harmless.
1895 	 */
1896 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1897 	if (zone->nr_reserved_highatomic >= max_managed)
1898 		return;
1899 
1900 	spin_lock_irqsave(&zone->lock, flags);
1901 
1902 	/* Recheck the nr_reserved_highatomic limit under the lock */
1903 	if (zone->nr_reserved_highatomic >= max_managed)
1904 		goto out_unlock;
1905 
1906 	/* Yoink! */
1907 	mt = get_pageblock_migratetype(page);
1908 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1909 	if (migratetype_is_mergeable(mt)) {
1910 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1911 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1912 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1913 	}
1914 
1915 out_unlock:
1916 	spin_unlock_irqrestore(&zone->lock, flags);
1917 }
1918 
1919 /*
1920  * Used when an allocation is about to fail under memory pressure. This
1921  * potentially hurts the reliability of high-order allocations when under
1922  * intense memory pressure but failed atomic allocations should be easier
1923  * to recover from than an OOM.
1924  *
1925  * If @force is true, try to unreserve a pageblock even though highatomic
1926  * pageblock is exhausted.
1927  */
unreserve_highatomic_pageblock(const struct alloc_context *ac, bool force)1928 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1929 						bool force)
1930 {
1931 	struct zonelist *zonelist = ac->zonelist;
1932 	unsigned long flags;
1933 	struct zoneref *z;
1934 	struct zone *zone;
1935 	struct page *page;
1936 	int order;
1937 	bool ret;
1938 
1939 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1940 								ac->nodemask) {
1941 		/*
1942 		 * Preserve at least one pageblock unless memory pressure
1943 		 * is really high.
1944 		 */
1945 		if (!force && zone->nr_reserved_highatomic <=
1946 					pageblock_nr_pages)
1947 			continue;
1948 
1949 		spin_lock_irqsave(&zone->lock, flags);
1950 		for (order = 0; order <= MAX_ORDER; order++) {
1951 			struct free_area *area = &(zone->free_area[order]);
1952 
1953 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1954 			if (!page)
1955 				continue;
1956 
1957 			/*
1958 			 * In page freeing path, migratetype change is racy so
1959 			 * we can counter several free pages in a pageblock
1960 			 * in this loop although we changed the pageblock type
1961 			 * from highatomic to ac->migratetype. So we should
1962 			 * adjust the count once.
1963 			 */
1964 			if (is_migrate_highatomic_page(page)) {
1965 				/*
1966 				 * It should never happen but changes to
1967 				 * locking could inadvertently allow a per-cpu
1968 				 * drain to add pages to MIGRATE_HIGHATOMIC
1969 				 * while unreserving so be safe and watch for
1970 				 * underflows.
1971 				 */
1972 				zone->nr_reserved_highatomic -= min(
1973 						pageblock_nr_pages,
1974 						zone->nr_reserved_highatomic);
1975 			}
1976 
1977 			/*
1978 			 * Convert to ac->migratetype and avoid the normal
1979 			 * pageblock stealing heuristics. Minimally, the caller
1980 			 * is doing the work and needs the pages. More
1981 			 * importantly, if the block was always converted to
1982 			 * MIGRATE_UNMOVABLE or another type then the number
1983 			 * of pageblocks that cannot be completely freed
1984 			 * may increase.
1985 			 */
1986 			set_pageblock_migratetype(page, ac->migratetype);
1987 			ret = move_freepages_block(zone, page, ac->migratetype,
1988 									NULL);
1989 			if (ret) {
1990 				spin_unlock_irqrestore(&zone->lock, flags);
1991 				return ret;
1992 			}
1993 		}
1994 		spin_unlock_irqrestore(&zone->lock, flags);
1995 	}
1996 
1997 	return false;
1998 }
1999 
2000 /*
2001  * Try finding a free buddy page on the fallback list and put it on the free
2002  * list of requested migratetype, possibly along with other pages from the same
2003  * block, depending on fragmentation avoidance heuristics. Returns true if
2004  * fallback was found so that __rmqueue_smallest() can grab it.
2005  *
2006  * The use of signed ints for order and current_order is a deliberate
2007  * deviation from the rest of this file, to make the for loop
2008  * condition simpler.
2009  */
2010 static __always_inline bool
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype, unsigned int alloc_flags)2011 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2012 						unsigned int alloc_flags)
2013 {
2014 	struct free_area *area;
2015 	int current_order;
2016 	int min_order = order;
2017 	struct page *page;
2018 	int fallback_mt;
2019 	bool can_steal;
2020 
2021 	/*
2022 	 * Do not steal pages from freelists belonging to other pageblocks
2023 	 * i.e. orders < pageblock_order. If there are no local zones free,
2024 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2025 	 */
2026 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2027 		min_order = pageblock_order;
2028 
2029 	/*
2030 	 * Find the largest available free page in the other list. This roughly
2031 	 * approximates finding the pageblock with the most free pages, which
2032 	 * would be too costly to do exactly.
2033 	 */
2034 	for (current_order = MAX_ORDER; current_order >= min_order;
2035 				--current_order) {
2036 		area = &(zone->free_area[current_order]);
2037 		fallback_mt = find_suitable_fallback(area, current_order,
2038 				start_migratetype, false, &can_steal);
2039 		if (fallback_mt == -1)
2040 			continue;
2041 
2042 		/*
2043 		 * We cannot steal all free pages from the pageblock and the
2044 		 * requested migratetype is movable. In that case it's better to
2045 		 * steal and split the smallest available page instead of the
2046 		 * largest available page, because even if the next movable
2047 		 * allocation falls back into a different pageblock than this
2048 		 * one, it won't cause permanent fragmentation.
2049 		 */
2050 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2051 					&& current_order > order)
2052 			goto find_smallest;
2053 
2054 		goto do_steal;
2055 	}
2056 
2057 	return false;
2058 
2059 find_smallest:
2060 	for (current_order = order; current_order <= MAX_ORDER;
2061 							current_order++) {
2062 		area = &(zone->free_area[current_order]);
2063 		fallback_mt = find_suitable_fallback(area, current_order,
2064 				start_migratetype, false, &can_steal);
2065 		if (fallback_mt != -1)
2066 			break;
2067 	}
2068 
2069 	/*
2070 	 * This should not happen - we already found a suitable fallback
2071 	 * when looking for the largest page.
2072 	 */
2073 	VM_BUG_ON(current_order > MAX_ORDER);
2074 
2075 do_steal:
2076 	page = get_page_from_free_area(area, fallback_mt);
2077 
2078 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2079 								can_steal);
2080 
2081 	trace_mm_page_alloc_extfrag(page, order, current_order,
2082 		start_migratetype, fallback_mt);
2083 
2084 	return true;
2085 
2086 }
2087 
2088 static __always_inline struct page *
__rmqueue_with_cma_reuse(struct zone *zone, unsigned int order, int migratetype, unsigned int alloc_flags)2089 __rmqueue_with_cma_reuse(struct zone *zone, unsigned int order,
2090 					int migratetype, unsigned int alloc_flags)
2091 {
2092     struct page *page = NULL;
2093 retry:
2094 	page = __rmqueue_smallest(zone, order, migratetype);
2095 
2096     if (unlikely(!page) && is_migrate_cma(migratetype)) {
2097         migratetype = MIGRATE_MOVABLE;
2098         alloc_flags &= ~ALLOC_CMA;
2099         page = __rmqueue_smallest(zone, order, migratetype);
2100     }
2101 
2102     if (unlikely(!page) &&
2103 		__rmqueue_fallback(zone, order, migratetype, alloc_flags))
2104         goto retry;
2105 
2106     return page;
2107 }
2108 
2109 /*
2110  * Do the hard work of removing an element from the buddy allocator.
2111  * Call me with the zone->lock already held.
2112  */
2113 static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype, unsigned int alloc_flags)2114 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2115 						unsigned int alloc_flags)
2116 {
2117 	struct page *page;
2118 
2119 #ifdef CONFIG_CMA_REUSE
2120 	page = __rmqueue_with_cma_reuse(zone, order, migratetype, alloc_flags);
2121 	if (page)
2122 		return page;
2123 #endif
2124 
2125 	if (IS_ENABLED(CONFIG_CMA)) {
2126 		/*
2127 		 * Balance movable allocations between regular and CMA areas by
2128 		 * allocating from CMA when over half of the zone's free memory
2129 		 * is in the CMA area.
2130 		 */
2131 		if (alloc_flags & ALLOC_CMA &&
2132 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2133 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2134 			page = __rmqueue_cma_fallback(zone, order);
2135 			if (page)
2136 				return page;
2137 		}
2138 	}
2139 retry:
2140 	page = __rmqueue_smallest(zone, order, migratetype);
2141 	if (unlikely(!page)) {
2142 		if (alloc_flags & ALLOC_CMA)
2143 			page = __rmqueue_cma_fallback(zone, order);
2144 
2145 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2146 								alloc_flags))
2147 			goto retry;
2148 	}
2149 	return page;
2150 }
2151 
2152 /*
2153  * Obtain a specified number of elements from the buddy allocator, all under
2154  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2155  * Returns the number of new pages which were placed at *list.
2156  */
rmqueue_bulk(struct zone *zone, unsigned int order, unsigned long count, struct list_head *list, int migratetype, unsigned int alloc_flags)2157 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2158 			unsigned long count, struct list_head *list,
2159 			int migratetype, unsigned int alloc_flags)
2160 {
2161 	unsigned long flags;
2162 	int i;
2163 
2164 	spin_lock_irqsave(&zone->lock, flags);
2165 	for (i = 0; i < count; ++i) {
2166 		struct page *page = __rmqueue(zone, order, migratetype,
2167 								alloc_flags);
2168 		if (unlikely(page == NULL))
2169 			break;
2170 
2171 		/*
2172 		 * Split buddy pages returned by expand() are received here in
2173 		 * physical page order. The page is added to the tail of
2174 		 * caller's list. From the callers perspective, the linked list
2175 		 * is ordered by page number under some conditions. This is
2176 		 * useful for IO devices that can forward direction from the
2177 		 * head, thus also in the physical page order. This is useful
2178 		 * for IO devices that can merge IO requests if the physical
2179 		 * pages are ordered properly.
2180 		 */
2181 		list_add_tail(&page->pcp_list, list);
2182 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2183 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2184 					      -(1 << order));
2185 	}
2186 
2187 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2188 	spin_unlock_irqrestore(&zone->lock, flags);
2189 
2190 	return i;
2191 }
2192 
2193 #ifdef CONFIG_NUMA
2194 /*
2195  * Called from the vmstat counter updater to drain pagesets of this
2196  * currently executing processor on remote nodes after they have
2197  * expired.
2198  */
drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)2199 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2200 {
2201 	int to_drain, batch;
2202 
2203 	batch = READ_ONCE(pcp->batch);
2204 	to_drain = min(pcp->count, batch);
2205 	if (to_drain > 0) {
2206 		spin_lock(&pcp->lock);
2207 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2208 		spin_unlock(&pcp->lock);
2209 	}
2210 }
2211 #endif
2212 
2213 /*
2214  * Drain pcplists of the indicated processor and zone.
2215  */
drain_pages_zone(unsigned int cpu, struct zone *zone)2216 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2217 {
2218 	struct per_cpu_pages *pcp;
2219 
2220 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2221 	if (pcp->count) {
2222 		spin_lock(&pcp->lock);
2223 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2224 		spin_unlock(&pcp->lock);
2225 	}
2226 }
2227 
2228 /*
2229  * Drain pcplists of all zones on the indicated processor.
2230  */
drain_pages(unsigned int cpu)2231 static void drain_pages(unsigned int cpu)
2232 {
2233 	struct zone *zone;
2234 
2235 	for_each_populated_zone(zone) {
2236 		drain_pages_zone(cpu, zone);
2237 	}
2238 }
2239 
2240 /*
2241  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2242  */
drain_local_pages(struct zone *zone)2243 void drain_local_pages(struct zone *zone)
2244 {
2245 	int cpu = smp_processor_id();
2246 
2247 	if (zone)
2248 		drain_pages_zone(cpu, zone);
2249 	else
2250 		drain_pages(cpu);
2251 }
2252 
2253 /*
2254  * The implementation of drain_all_pages(), exposing an extra parameter to
2255  * drain on all cpus.
2256  *
2257  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2258  * not empty. The check for non-emptiness can however race with a free to
2259  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2260  * that need the guarantee that every CPU has drained can disable the
2261  * optimizing racy check.
2262  */
__drain_all_pages(struct zone *zone, bool force_all_cpus)2263 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2264 {
2265 	int cpu;
2266 
2267 	/*
2268 	 * Allocate in the BSS so we won't require allocation in
2269 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2270 	 */
2271 	static cpumask_t cpus_with_pcps;
2272 
2273 	/*
2274 	 * Do not drain if one is already in progress unless it's specific to
2275 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2276 	 * the drain to be complete when the call returns.
2277 	 */
2278 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2279 		if (!zone)
2280 			return;
2281 		mutex_lock(&pcpu_drain_mutex);
2282 	}
2283 
2284 	/*
2285 	 * We don't care about racing with CPU hotplug event
2286 	 * as offline notification will cause the notified
2287 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2288 	 * disables preemption as part of its processing
2289 	 */
2290 	for_each_online_cpu(cpu) {
2291 		struct per_cpu_pages *pcp;
2292 		struct zone *z;
2293 		bool has_pcps = false;
2294 
2295 		if (force_all_cpus) {
2296 			/*
2297 			 * The pcp.count check is racy, some callers need a
2298 			 * guarantee that no cpu is missed.
2299 			 */
2300 			has_pcps = true;
2301 		} else if (zone) {
2302 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2303 			if (pcp->count)
2304 				has_pcps = true;
2305 		} else {
2306 			for_each_populated_zone(z) {
2307 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2308 				if (pcp->count) {
2309 					has_pcps = true;
2310 					break;
2311 				}
2312 			}
2313 		}
2314 
2315 		if (has_pcps)
2316 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2317 		else
2318 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2319 	}
2320 
2321 	for_each_cpu(cpu, &cpus_with_pcps) {
2322 		if (zone)
2323 			drain_pages_zone(cpu, zone);
2324 		else
2325 			drain_pages(cpu);
2326 	}
2327 
2328 	mutex_unlock(&pcpu_drain_mutex);
2329 }
2330 
2331 /*
2332  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2333  *
2334  * When zone parameter is non-NULL, spill just the single zone's pages.
2335  */
drain_all_pages(struct zone *zone)2336 void drain_all_pages(struct zone *zone)
2337 {
2338 	__drain_all_pages(zone, false);
2339 }
2340 
free_unref_page_prepare(struct page *page, unsigned long pfn, unsigned int order)2341 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2342 							unsigned int order)
2343 {
2344 	int migratetype;
2345 
2346 	if (!free_pages_prepare(page, order, FPI_NONE))
2347 		return false;
2348 
2349 	migratetype = get_pfnblock_migratetype(page, pfn);
2350 	set_pcppage_migratetype(page, migratetype);
2351 	return true;
2352 }
2353 
nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)2354 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2355 {
2356 	int min_nr_free, max_nr_free;
2357 	int batch = READ_ONCE(pcp->batch);
2358 
2359 	/* Free everything if batch freeing high-order pages. */
2360 	if (unlikely(free_high))
2361 		return pcp->count;
2362 
2363 	/* Check for PCP disabled or boot pageset */
2364 	if (unlikely(high < batch))
2365 		return 1;
2366 
2367 	/* Leave at least pcp->batch pages on the list */
2368 	min_nr_free = batch;
2369 	max_nr_free = high - batch;
2370 
2371 	/*
2372 	 * Double the number of pages freed each time there is subsequent
2373 	 * freeing of pages without any allocation.
2374 	 */
2375 	batch <<= pcp->free_factor;
2376 	if (batch < max_nr_free)
2377 		pcp->free_factor++;
2378 	batch = clamp(batch, min_nr_free, max_nr_free);
2379 
2380 	return batch;
2381 }
2382 
nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, bool free_high)2383 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2384 		       bool free_high)
2385 {
2386 	int high = READ_ONCE(pcp->high);
2387 
2388 	if (unlikely(!high || free_high))
2389 		return 0;
2390 
2391 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2392 		return high;
2393 
2394 	/*
2395 	 * If reclaim is active, limit the number of pages that can be
2396 	 * stored on pcp lists
2397 	 */
2398 	return min(READ_ONCE(pcp->batch) << 2, high);
2399 }
2400 
free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, struct page *page, int migratetype, unsigned int order)2401 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2402 				   struct page *page, int migratetype,
2403 				   unsigned int order)
2404 {
2405 	int high;
2406 	int pindex;
2407 	bool free_high;
2408 
2409 	__count_vm_events(PGFREE, 1 << order);
2410 	pindex = order_to_pindex(migratetype, order);
2411 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2412 	pcp->count += 1 << order;
2413 
2414 	/*
2415 	 * As high-order pages other than THP's stored on PCP can contribute
2416 	 * to fragmentation, limit the number stored when PCP is heavily
2417 	 * freeing without allocation. The remainder after bulk freeing
2418 	 * stops will be drained from vmstat refresh context.
2419 	 */
2420 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2421 
2422 	high = nr_pcp_high(pcp, zone, free_high);
2423 	if (pcp->count >= high) {
2424 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2425 	}
2426 }
2427 
2428 /*
2429  * Free a pcp page
2430  */
free_unref_page(struct page *page, unsigned int order)2431 void free_unref_page(struct page *page, unsigned int order)
2432 {
2433 	unsigned long __maybe_unused UP_flags;
2434 	struct per_cpu_pages *pcp;
2435 	struct zone *zone;
2436 	unsigned long pfn = page_to_pfn(page);
2437 	int migratetype, pcpmigratetype;
2438 
2439 	if (!free_unref_page_prepare(page, pfn, order))
2440 		return;
2441 
2442 	/*
2443 	 * We only track unmovable, reclaimable and movable on pcp lists.
2444 	 * Place ISOLATE pages on the isolated list because they are being
2445 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2446 	 * get those areas back if necessary. Otherwise, we may have to free
2447 	 * excessively into the page allocator
2448 	 */
2449 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2450 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2451 		if (unlikely(is_migrate_isolate(migratetype))) {
2452 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2453 			return;
2454 		}
2455 		pcpmigratetype = MIGRATE_MOVABLE;
2456 	}
2457 
2458 	zone = page_zone(page);
2459 	pcp_trylock_prepare(UP_flags);
2460 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2461 	if (pcp) {
2462 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2463 		pcp_spin_unlock(pcp);
2464 	} else {
2465 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2466 	}
2467 	pcp_trylock_finish(UP_flags);
2468 }
2469 
2470 /*
2471  * Free a list of 0-order pages
2472  */
free_unref_page_list(struct list_head *list)2473 void free_unref_page_list(struct list_head *list)
2474 {
2475 	unsigned long __maybe_unused UP_flags;
2476 	struct page *page, *next;
2477 	struct per_cpu_pages *pcp = NULL;
2478 	struct zone *locked_zone = NULL;
2479 	int batch_count = 0;
2480 	int migratetype;
2481 
2482 	/* Prepare pages for freeing */
2483 	list_for_each_entry_safe(page, next, list, lru) {
2484 		unsigned long pfn = page_to_pfn(page);
2485 		if (!free_unref_page_prepare(page, pfn, 0)) {
2486 			list_del(&page->lru);
2487 			continue;
2488 		}
2489 
2490 		/*
2491 		 * Free isolated pages directly to the allocator, see
2492 		 * comment in free_unref_page.
2493 		 */
2494 		migratetype = get_pcppage_migratetype(page);
2495 		if (unlikely(is_migrate_isolate(migratetype))) {
2496 			list_del(&page->lru);
2497 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2498 			continue;
2499 		}
2500 	}
2501 
2502 	list_for_each_entry_safe(page, next, list, lru) {
2503 		struct zone *zone = page_zone(page);
2504 
2505 		list_del(&page->lru);
2506 		migratetype = get_pcppage_migratetype(page);
2507 
2508 		/*
2509 		 * Either different zone requiring a different pcp lock or
2510 		 * excessive lock hold times when freeing a large list of
2511 		 * pages.
2512 		 */
2513 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2514 			if (pcp) {
2515 				pcp_spin_unlock(pcp);
2516 				pcp_trylock_finish(UP_flags);
2517 			}
2518 
2519 			batch_count = 0;
2520 
2521 			/*
2522 			 * trylock is necessary as pages may be getting freed
2523 			 * from IRQ or SoftIRQ context after an IO completion.
2524 			 */
2525 			pcp_trylock_prepare(UP_flags);
2526 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2527 			if (unlikely(!pcp)) {
2528 				pcp_trylock_finish(UP_flags);
2529 				free_one_page(zone, page, page_to_pfn(page),
2530 					      0, migratetype, FPI_NONE);
2531 				locked_zone = NULL;
2532 				continue;
2533 			}
2534 			locked_zone = zone;
2535 		}
2536 
2537 		/*
2538 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2539 		 * to the MIGRATE_MOVABLE pcp list.
2540 		 */
2541 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2542 			migratetype = MIGRATE_MOVABLE;
2543 
2544 		trace_mm_page_free_batched(page);
2545 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2546 		batch_count++;
2547 	}
2548 
2549 	if (pcp) {
2550 		pcp_spin_unlock(pcp);
2551 		pcp_trylock_finish(UP_flags);
2552 	}
2553 }
2554 
2555 /*
2556  * split_page takes a non-compound higher-order page, and splits it into
2557  * n (1<<order) sub-pages: page[0..n]
2558  * Each sub-page must be freed individually.
2559  *
2560  * Note: this is probably too low level an operation for use in drivers.
2561  * Please consult with lkml before using this in your driver.
2562  */
split_page(struct page *page, unsigned int order)2563 void split_page(struct page *page, unsigned int order)
2564 {
2565 	int i;
2566 
2567 	VM_BUG_ON_PAGE(PageCompound(page), page);
2568 	VM_BUG_ON_PAGE(!page_count(page), page);
2569 
2570 	for (i = 1; i < (1 << order); i++)
2571 		set_page_refcounted(page + i);
2572 	split_page_owner(page, 1 << order);
2573 	split_page_memcg(page, 1 << order);
2574 }
2575 EXPORT_SYMBOL_GPL(split_page);
2576 
__isolate_free_page(struct page *page, unsigned int order)2577 int __isolate_free_page(struct page *page, unsigned int order)
2578 {
2579 	struct zone *zone = page_zone(page);
2580 	int mt = get_pageblock_migratetype(page);
2581 
2582 	if (!is_migrate_isolate(mt)) {
2583 		unsigned long watermark;
2584 		/*
2585 		 * Obey watermarks as if the page was being allocated. We can
2586 		 * emulate a high-order watermark check with a raised order-0
2587 		 * watermark, because we already know our high-order page
2588 		 * exists.
2589 		 */
2590 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2591 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2592 			return 0;
2593 
2594 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2595 	}
2596 
2597 	del_page_from_free_list(page, zone, order);
2598 
2599 	/*
2600 	 * Set the pageblock if the isolated page is at least half of a
2601 	 * pageblock
2602 	 */
2603 	if (order >= pageblock_order - 1) {
2604 		struct page *endpage = page + (1 << order) - 1;
2605 		for (; page < endpage; page += pageblock_nr_pages) {
2606 			int mt = get_pageblock_migratetype(page);
2607 			/*
2608 			 * Only change normal pageblocks (i.e., they can merge
2609 			 * with others)
2610 			 */
2611 			if (migratetype_is_mergeable(mt))
2612 				set_pageblock_migratetype(page,
2613 							  MIGRATE_MOVABLE);
2614 		}
2615 	}
2616 
2617 	return 1UL << order;
2618 }
2619 
2620 /**
2621  * __putback_isolated_page - Return a now-isolated page back where we got it
2622  * @page: Page that was isolated
2623  * @order: Order of the isolated page
2624  * @mt: The page's pageblock's migratetype
2625  *
2626  * This function is meant to return a page pulled from the free lists via
2627  * __isolate_free_page back to the free lists they were pulled from.
2628  */
__putback_isolated_page(struct page *page, unsigned int order, int mt)2629 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2630 {
2631 	struct zone *zone = page_zone(page);
2632 
2633 	/* zone lock should be held when this function is called */
2634 	lockdep_assert_held(&zone->lock);
2635 
2636 	/* Return isolated page to tail of freelist. */
2637 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2638 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2639 }
2640 
2641 /*
2642  * Update NUMA hit/miss statistics
2643  */
zone_statistics(struct zone *preferred_zone, struct zone *z, long nr_account)2644 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2645 				   long nr_account)
2646 {
2647 #ifdef CONFIG_NUMA
2648 	enum numa_stat_item local_stat = NUMA_LOCAL;
2649 
2650 	/* skip numa counters update if numa stats is disabled */
2651 	if (!static_branch_likely(&vm_numa_stat_key))
2652 		return;
2653 
2654 	if (zone_to_nid(z) != numa_node_id())
2655 		local_stat = NUMA_OTHER;
2656 
2657 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2658 		__count_numa_events(z, NUMA_HIT, nr_account);
2659 	else {
2660 		__count_numa_events(z, NUMA_MISS, nr_account);
2661 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2662 	}
2663 	__count_numa_events(z, local_stat, nr_account);
2664 #endif
2665 }
2666 
2667 static __always_inline
rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, unsigned int order, unsigned int alloc_flags, int migratetype)2668 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2669 			   unsigned int order, unsigned int alloc_flags,
2670 			   int migratetype)
2671 {
2672 	struct page *page;
2673 	unsigned long flags;
2674 
2675 	do {
2676 		page = NULL;
2677 		spin_lock_irqsave(&zone->lock, flags);
2678 		if (alloc_flags & ALLOC_HIGHATOMIC)
2679 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2680 		if (!page) {
2681 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2682 
2683 			/*
2684 			 * If the allocation fails, allow OOM handling access
2685 			 * to HIGHATOMIC reserves as failing now is worse than
2686 			 * failing a high-order atomic allocation in the
2687 			 * future.
2688 			 */
2689 			if (!page && (alloc_flags & ALLOC_OOM))
2690 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2691 
2692 			if (!page) {
2693 				spin_unlock_irqrestore(&zone->lock, flags);
2694 				return NULL;
2695 			}
2696 		}
2697 		__mod_zone_freepage_state(zone, -(1 << order),
2698 					  get_pcppage_migratetype(page));
2699 		spin_unlock_irqrestore(&zone->lock, flags);
2700 	} while (check_new_pages(page, order));
2701 
2702 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2703 	zone_statistics(preferred_zone, zone, 1);
2704 
2705 	return page;
2706 }
2707 
2708 /* Remove page from the per-cpu list, caller must protect the list */
2709 static inline
__rmqueue_pcplist(struct zone *zone, unsigned int order, int migratetype, unsigned int alloc_flags, struct per_cpu_pages *pcp, struct list_head *list)2710 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2711 			int migratetype,
2712 			unsigned int alloc_flags,
2713 			struct per_cpu_pages *pcp,
2714 			struct list_head *list)
2715 {
2716 	struct page *page;
2717 
2718 	do {
2719 		if (list_empty(list)) {
2720 			int batch = READ_ONCE(pcp->batch);
2721 			int alloced;
2722 
2723 			/*
2724 			 * Scale batch relative to order if batch implies
2725 			 * free pages can be stored on the PCP. Batch can
2726 			 * be 1 for small zones or for boot pagesets which
2727 			 * should never store free pages as the pages may
2728 			 * belong to arbitrary zones.
2729 			 */
2730 			if (batch > 1)
2731 				batch = max(batch >> order, 2);
2732 			alloced = rmqueue_bulk(zone, order,
2733 					batch, list,
2734 					migratetype, alloc_flags);
2735 
2736 			pcp->count += alloced << order;
2737 			if (unlikely(list_empty(list)))
2738 				return NULL;
2739 		}
2740 
2741 		page = list_first_entry(list, struct page, pcp_list);
2742 		list_del(&page->pcp_list);
2743 		pcp->count -= 1 << order;
2744 	} while (check_new_pages(page, order));
2745 
2746 	return page;
2747 }
2748 
2749 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone *preferred_zone, struct zone *zone, unsigned int order, int migratetype, unsigned int alloc_flags)2750 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2751 			struct zone *zone, unsigned int order,
2752 			int migratetype, unsigned int alloc_flags)
2753 {
2754 	struct per_cpu_pages *pcp;
2755 	struct list_head *list;
2756 	struct page *page;
2757 	unsigned long __maybe_unused UP_flags;
2758 
2759 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2760 	pcp_trylock_prepare(UP_flags);
2761 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2762 	if (!pcp) {
2763 		pcp_trylock_finish(UP_flags);
2764 		return NULL;
2765 	}
2766 
2767 	/*
2768 	 * On allocation, reduce the number of pages that are batch freed.
2769 	 * See nr_pcp_free() where free_factor is increased for subsequent
2770 	 * frees.
2771 	 */
2772 	pcp->free_factor >>= 1;
2773 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2774 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2775 	pcp_spin_unlock(pcp);
2776 	pcp_trylock_finish(UP_flags);
2777 	if (page) {
2778 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2779 		zone_statistics(preferred_zone, zone, 1);
2780 	}
2781 	return page;
2782 }
2783 
2784 /*
2785  * Allocate a page from the given zone.
2786  * Use pcplists for THP or "cheap" high-order allocations.
2787  */
2788 
2789 /*
2790  * Do not instrument rmqueue() with KMSAN. This function may call
2791  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2792  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2793  * may call rmqueue() again, which will result in a deadlock.
2794  */
2795 __no_sanitize_memory
2796 static inline
rmqueue(struct zone *preferred_zone, struct zone *zone, unsigned int order, gfp_t gfp_flags, unsigned int alloc_flags, int migratetype)2797 struct page *rmqueue(struct zone *preferred_zone,
2798 			struct zone *zone, unsigned int order,
2799 			gfp_t gfp_flags, unsigned int alloc_flags,
2800 			int migratetype)
2801 {
2802 	struct page *page;
2803 
2804 	/*
2805 	 * We most definitely don't want callers attempting to
2806 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2807 	 */
2808 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2809 
2810 	if (likely(pcp_allowed_order(order))) {
2811 		page = rmqueue_pcplist(preferred_zone, zone, order,
2812 				       migratetype, alloc_flags);
2813 		if (likely(page))
2814 			goto out;
2815 	}
2816 
2817 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2818 							migratetype);
2819 
2820 out:
2821 	/* Separate test+clear to avoid unnecessary atomics */
2822 	if ((alloc_flags & ALLOC_KSWAPD) &&
2823 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2824 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2825 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2826 	}
2827 
2828 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2829 	return page;
2830 }
2831 
should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)2832 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2833 {
2834 	return __should_fail_alloc_page(gfp_mask, order);
2835 }
2836 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2837 
__zone_watermark_unusable_free(struct zone *z, unsigned int order, unsigned int alloc_flags)2838 static inline long __zone_watermark_unusable_free(struct zone *z,
2839 				unsigned int order, unsigned int alloc_flags)
2840 {
2841 	long unusable_free = (1 << order) - 1;
2842 
2843 	/*
2844 	 * If the caller does not have rights to reserves below the min
2845 	 * watermark then subtract the high-atomic reserves. This will
2846 	 * over-estimate the size of the atomic reserve but it avoids a search.
2847 	 */
2848 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2849 		unusable_free += z->nr_reserved_highatomic;
2850 
2851 #ifdef CONFIG_CMA
2852 	/* If allocation can't use CMA areas don't use free CMA pages */
2853 	if (!(alloc_flags & ALLOC_CMA))
2854 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2855 #endif
2856 #ifdef CONFIG_UNACCEPTED_MEMORY
2857 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2858 #endif
2859 
2860 	return unusable_free;
2861 }
2862 
2863 /*
2864  * Return true if free base pages are above 'mark'. For high-order checks it
2865  * will return true of the order-0 watermark is reached and there is at least
2866  * one free page of a suitable size. Checking now avoids taking the zone lock
2867  * to check in the allocation paths if no pages are free.
2868  */
__zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, int highest_zoneidx, unsigned int alloc_flags, long free_pages)2869 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2870 			 int highest_zoneidx, unsigned int alloc_flags,
2871 			 long free_pages)
2872 {
2873 	long min = mark;
2874 	int o;
2875 
2876 	/* free_pages may go negative - that's OK */
2877 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2878 
2879 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2880 		/*
2881 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2882 		 * as OOM.
2883 		 */
2884 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2885 			min -= min / 2;
2886 
2887 			/*
2888 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2889 			 * access more reserves than just __GFP_HIGH. Other
2890 			 * non-blocking allocations requests such as GFP_NOWAIT
2891 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2892 			 * access to the min reserve.
2893 			 */
2894 			if (alloc_flags & ALLOC_NON_BLOCK)
2895 				min -= min / 4;
2896 		}
2897 
2898 		/*
2899 		 * OOM victims can try even harder than the normal reserve
2900 		 * users on the grounds that it's definitely going to be in
2901 		 * the exit path shortly and free memory. Any allocation it
2902 		 * makes during the free path will be small and short-lived.
2903 		 */
2904 		if (alloc_flags & ALLOC_OOM)
2905 			min -= min / 2;
2906 	}
2907 
2908 	/*
2909 	 * Check watermarks for an order-0 allocation request. If these
2910 	 * are not met, then a high-order request also cannot go ahead
2911 	 * even if a suitable page happened to be free.
2912 	 */
2913 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2914 		return false;
2915 
2916 	/* If this is an order-0 request then the watermark is fine */
2917 	if (!order)
2918 		return true;
2919 
2920 	/* For a high-order request, check at least one suitable page is free */
2921 	for (o = order; o <= MAX_ORDER; o++) {
2922 		struct free_area *area = &z->free_area[o];
2923 		int mt;
2924 
2925 		if (!area->nr_free)
2926 			continue;
2927 
2928 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2929 			if (!free_area_empty(area, mt))
2930 				return true;
2931 		}
2932 
2933 #ifdef CONFIG_CMA
2934 		if ((alloc_flags & ALLOC_CMA) &&
2935 		    !free_area_empty(area, MIGRATE_CMA)) {
2936 			return true;
2937 		}
2938 #endif
2939 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2940 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2941 			return true;
2942 		}
2943 	}
2944 	return false;
2945 }
2946 
zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, int highest_zoneidx, unsigned int alloc_flags)2947 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2948 		      int highest_zoneidx, unsigned int alloc_flags)
2949 {
2950 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2951 					zone_page_state(z, NR_FREE_PAGES));
2952 }
2953 
zone_watermark_fast(struct zone *z, unsigned int order, unsigned long mark, int highest_zoneidx, unsigned int alloc_flags, gfp_t gfp_mask)2954 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2955 				unsigned long mark, int highest_zoneidx,
2956 				unsigned int alloc_flags, gfp_t gfp_mask)
2957 {
2958 	long free_pages;
2959 
2960 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2961 
2962 	/*
2963 	 * Fast check for order-0 only. If this fails then the reserves
2964 	 * need to be calculated.
2965 	 */
2966 	if (!order) {
2967 		long usable_free;
2968 		long reserved;
2969 
2970 		usable_free = free_pages;
2971 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2972 
2973 		/* reserved may over estimate high-atomic reserves. */
2974 		usable_free -= min(usable_free, reserved);
2975 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2976 			return true;
2977 	}
2978 
2979 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2980 					free_pages))
2981 		return true;
2982 
2983 	/*
2984 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2985 	 * when checking the min watermark. The min watermark is the
2986 	 * point where boosting is ignored so that kswapd is woken up
2987 	 * when below the low watermark.
2988 	 */
2989 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2990 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2991 		mark = z->_watermark[WMARK_MIN];
2992 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2993 					alloc_flags, free_pages);
2994 	}
2995 
2996 	return false;
2997 }
2998 
zone_watermark_ok_safe(struct zone *z, unsigned int order, unsigned long mark, int highest_zoneidx)2999 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3000 			unsigned long mark, int highest_zoneidx)
3001 {
3002 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3003 
3004 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3005 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3006 
3007 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3008 								free_pages);
3009 }
3010 
3011 #ifdef CONFIG_NUMA
3012 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3013 
zone_allows_reclaim(struct zone *local_zone, struct zone *zone)3014 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3015 {
3016 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3017 				node_reclaim_distance;
3018 }
3019 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone *local_zone, struct zone *zone)3020 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3021 {
3022 	return true;
3023 }
3024 #endif	/* CONFIG_NUMA */
3025 
3026 /*
3027  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3028  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3029  * premature use of a lower zone may cause lowmem pressure problems that
3030  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3031  * probably too small. It only makes sense to spread allocations to avoid
3032  * fragmentation between the Normal and DMA32 zones.
3033  */
3034 static inline unsigned int
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)3035 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3036 {
3037 	unsigned int alloc_flags;
3038 
3039 	/*
3040 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3041 	 * to save a branch.
3042 	 */
3043 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3044 
3045 #ifdef CONFIG_ZONE_DMA32
3046 	if (!zone)
3047 		return alloc_flags;
3048 
3049 	if (zone_idx(zone) != ZONE_NORMAL)
3050 		return alloc_flags;
3051 
3052 	/*
3053 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3054 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3055 	 * on UMA that if Normal is populated then so is DMA32.
3056 	 */
3057 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3058 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3059 		return alloc_flags;
3060 
3061 	alloc_flags |= ALLOC_NOFRAGMENT;
3062 #endif /* CONFIG_ZONE_DMA32 */
3063 	return alloc_flags;
3064 }
3065 
3066 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask, unsigned int alloc_flags)3067 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3068 						  unsigned int alloc_flags)
3069 {
3070 #ifdef CONFIG_CMA
3071 	if (gfp_migratetype(gfp_mask) == get_cma_migratetype())
3072 		alloc_flags |= ALLOC_CMA;
3073 #endif
3074 	return alloc_flags;
3075 }
3076 
3077 /*
3078  * get_page_from_freelist goes through the zonelist trying to allocate
3079  * a page.
3080  */
3081 static struct page *
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, const struct alloc_context *ac)3082 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3083 						const struct alloc_context *ac)
3084 {
3085 	struct zoneref *z;
3086 	struct zone *zone;
3087 	struct pglist_data *last_pgdat = NULL;
3088 	bool last_pgdat_dirty_ok = false;
3089 	bool no_fallback;
3090 
3091 retry:
3092 	/*
3093 	 * Scan zonelist, looking for a zone with enough free.
3094 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3095 	 */
3096 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3097 	z = ac->preferred_zoneref;
3098 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3099 					ac->nodemask) {
3100 		struct page *page;
3101 		unsigned long mark;
3102 
3103 		if (cpusets_enabled() &&
3104 			(alloc_flags & ALLOC_CPUSET) &&
3105 			!__cpuset_zone_allowed(zone, gfp_mask))
3106 				continue;
3107 		/*
3108 		 * When allocating a page cache page for writing, we
3109 		 * want to get it from a node that is within its dirty
3110 		 * limit, such that no single node holds more than its
3111 		 * proportional share of globally allowed dirty pages.
3112 		 * The dirty limits take into account the node's
3113 		 * lowmem reserves and high watermark so that kswapd
3114 		 * should be able to balance it without having to
3115 		 * write pages from its LRU list.
3116 		 *
3117 		 * XXX: For now, allow allocations to potentially
3118 		 * exceed the per-node dirty limit in the slowpath
3119 		 * (spread_dirty_pages unset) before going into reclaim,
3120 		 * which is important when on a NUMA setup the allowed
3121 		 * nodes are together not big enough to reach the
3122 		 * global limit.  The proper fix for these situations
3123 		 * will require awareness of nodes in the
3124 		 * dirty-throttling and the flusher threads.
3125 		 */
3126 		if (ac->spread_dirty_pages) {
3127 			if (last_pgdat != zone->zone_pgdat) {
3128 				last_pgdat = zone->zone_pgdat;
3129 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3130 			}
3131 
3132 			if (!last_pgdat_dirty_ok)
3133 				continue;
3134 		}
3135 
3136 		if (no_fallback && nr_online_nodes > 1 &&
3137 		    zone != ac->preferred_zoneref->zone) {
3138 			int local_nid;
3139 
3140 			/*
3141 			 * If moving to a remote node, retry but allow
3142 			 * fragmenting fallbacks. Locality is more important
3143 			 * than fragmentation avoidance.
3144 			 */
3145 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3146 			if (zone_to_nid(zone) != local_nid) {
3147 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3148 				goto retry;
3149 			}
3150 		}
3151 
3152 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3153 		if (!zone_watermark_fast(zone, order, mark,
3154 				       ac->highest_zoneidx, alloc_flags,
3155 				       gfp_mask)) {
3156 			int ret;
3157 
3158 			if (has_unaccepted_memory()) {
3159 				if (try_to_accept_memory(zone, order))
3160 					goto try_this_zone;
3161 			}
3162 
3163 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3164 			/*
3165 			 * Watermark failed for this zone, but see if we can
3166 			 * grow this zone if it contains deferred pages.
3167 			 */
3168 			if (deferred_pages_enabled()) {
3169 				if (_deferred_grow_zone(zone, order))
3170 					goto try_this_zone;
3171 			}
3172 #endif
3173 			/* Checked here to keep the fast path fast */
3174 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3175 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3176 				goto try_this_zone;
3177 
3178 			if (!node_reclaim_enabled() ||
3179 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3180 				continue;
3181 
3182 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3183 			switch (ret) {
3184 			case NODE_RECLAIM_NOSCAN:
3185 				/* did not scan */
3186 				continue;
3187 			case NODE_RECLAIM_FULL:
3188 				/* scanned but unreclaimable */
3189 				continue;
3190 			default:
3191 				/* did we reclaim enough */
3192 				if (zone_watermark_ok(zone, order, mark,
3193 					ac->highest_zoneidx, alloc_flags))
3194 					goto try_this_zone;
3195 
3196 				continue;
3197 			}
3198 		}
3199 
3200 try_this_zone:
3201 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3202 				gfp_mask, alloc_flags, ac->migratetype);
3203 		if (page) {
3204 			prep_new_page(page, order, gfp_mask, alloc_flags);
3205 
3206 			/*
3207 			 * If this is a high-order atomic allocation then check
3208 			 * if the pageblock should be reserved for the future
3209 			 */
3210 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3211 				reserve_highatomic_pageblock(page, zone);
3212 
3213 			return page;
3214 		} else {
3215 			if (has_unaccepted_memory()) {
3216 				if (try_to_accept_memory(zone, order))
3217 					goto try_this_zone;
3218 			}
3219 
3220 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3221 			/* Try again if zone has deferred pages */
3222 			if (deferred_pages_enabled()) {
3223 				if (_deferred_grow_zone(zone, order))
3224 					goto try_this_zone;
3225 			}
3226 #endif
3227 		}
3228 	}
3229 
3230 	/*
3231 	 * It's possible on a UMA machine to get through all zones that are
3232 	 * fragmented. If avoiding fragmentation, reset and try again.
3233 	 */
3234 	if (no_fallback) {
3235 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3236 		goto retry;
3237 	}
3238 
3239 	return NULL;
3240 }
3241 
warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)3242 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3243 {
3244 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3245 
3246 	/*
3247 	 * This documents exceptions given to allocations in certain
3248 	 * contexts that are allowed to allocate outside current's set
3249 	 * of allowed nodes.
3250 	 */
3251 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3252 		if (tsk_is_oom_victim(current) ||
3253 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3254 			filter &= ~SHOW_MEM_FILTER_NODES;
3255 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3256 		filter &= ~SHOW_MEM_FILTER_NODES;
3257 
3258 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3259 }
3260 
warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)3261 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3262 {
3263 	struct va_format vaf;
3264 	va_list args;
3265 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3266 
3267 	if ((gfp_mask & __GFP_NOWARN) ||
3268 	     !__ratelimit(&nopage_rs) ||
3269 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3270 		return;
3271 
3272 	va_start(args, fmt);
3273 	vaf.fmt = fmt;
3274 	vaf.va = &args;
3275 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3276 			current->comm, &vaf, gfp_mask, &gfp_mask,
3277 			nodemask_pr_args(nodemask));
3278 	va_end(args);
3279 
3280 	cpuset_print_current_mems_allowed();
3281 	pr_cont("\n");
3282 	dump_stack();
3283 	warn_alloc_show_mem(gfp_mask, nodemask);
3284 }
3285 
3286 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, unsigned int alloc_flags, const struct alloc_context *ac)3287 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3288 			      unsigned int alloc_flags,
3289 			      const struct alloc_context *ac)
3290 {
3291 	struct page *page;
3292 
3293 	page = get_page_from_freelist(gfp_mask, order,
3294 			alloc_flags|ALLOC_CPUSET, ac);
3295 	/*
3296 	 * fallback to ignore cpuset restriction if our nodes
3297 	 * are depleted
3298 	 */
3299 	if (!page)
3300 		page = get_page_from_freelist(gfp_mask, order,
3301 				alloc_flags, ac);
3302 
3303 	return page;
3304 }
3305 
3306 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, const struct alloc_context *ac, unsigned long *did_some_progress)3307 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3308 	const struct alloc_context *ac, unsigned long *did_some_progress)
3309 {
3310 	struct oom_control oc = {
3311 		.zonelist = ac->zonelist,
3312 		.nodemask = ac->nodemask,
3313 		.memcg = NULL,
3314 		.gfp_mask = gfp_mask,
3315 		.order = order,
3316 	};
3317 	struct page *page;
3318 
3319 	*did_some_progress = 0;
3320 
3321 	/*
3322 	 * Acquire the oom lock.  If that fails, somebody else is
3323 	 * making progress for us.
3324 	 */
3325 	if (!mutex_trylock(&oom_lock)) {
3326 		*did_some_progress = 1;
3327 		schedule_timeout_uninterruptible(1);
3328 		return NULL;
3329 	}
3330 
3331 	/*
3332 	 * Go through the zonelist yet one more time, keep very high watermark
3333 	 * here, this is only to catch a parallel oom killing, we must fail if
3334 	 * we're still under heavy pressure. But make sure that this reclaim
3335 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3336 	 * allocation which will never fail due to oom_lock already held.
3337 	 */
3338 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3339 				      ~__GFP_DIRECT_RECLAIM, order,
3340 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3341 	if (page)
3342 		goto out;
3343 
3344 	/* Coredumps can quickly deplete all memory reserves */
3345 	if (current->flags & PF_DUMPCORE)
3346 		goto out;
3347 	/* The OOM killer will not help higher order allocs */
3348 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3349 		goto out;
3350 	/*
3351 	 * We have already exhausted all our reclaim opportunities without any
3352 	 * success so it is time to admit defeat. We will skip the OOM killer
3353 	 * because it is very likely that the caller has a more reasonable
3354 	 * fallback than shooting a random task.
3355 	 *
3356 	 * The OOM killer may not free memory on a specific node.
3357 	 */
3358 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3359 		goto out;
3360 	/* The OOM killer does not needlessly kill tasks for lowmem */
3361 	if (ac->highest_zoneidx < ZONE_NORMAL)
3362 		goto out;
3363 	if (pm_suspended_storage())
3364 		goto out;
3365 	/*
3366 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3367 	 * other request to make a forward progress.
3368 	 * We are in an unfortunate situation where out_of_memory cannot
3369 	 * do much for this context but let's try it to at least get
3370 	 * access to memory reserved if the current task is killed (see
3371 	 * out_of_memory). Once filesystems are ready to handle allocation
3372 	 * failures more gracefully we should just bail out here.
3373 	 */
3374 
3375 	/* Exhausted what can be done so it's blame time */
3376 	if (out_of_memory(&oc) ||
3377 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3378 		*did_some_progress = 1;
3379 
3380 		/*
3381 		 * Help non-failing allocations by giving them access to memory
3382 		 * reserves
3383 		 */
3384 		if (gfp_mask & __GFP_NOFAIL)
3385 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3386 					ALLOC_NO_WATERMARKS, ac);
3387 	}
3388 out:
3389 	mutex_unlock(&oom_lock);
3390 	return page;
3391 }
3392 
3393 /*
3394  * Maximum number of compaction retries with a progress before OOM
3395  * killer is consider as the only way to move forward.
3396  */
3397 #define MAX_COMPACT_RETRIES 16
3398 
3399 #ifdef CONFIG_COMPACTION
3400 /* Try memory compaction for high-order allocations before reclaim */
3401 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, unsigned int alloc_flags, const struct alloc_context *ac, enum compact_priority prio, enum compact_result *compact_result)3402 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3403 		unsigned int alloc_flags, const struct alloc_context *ac,
3404 		enum compact_priority prio, enum compact_result *compact_result)
3405 {
3406 	struct page *page = NULL;
3407 	unsigned long pflags;
3408 	unsigned int noreclaim_flag;
3409 
3410 	if (!order)
3411 		return NULL;
3412 
3413 	psi_memstall_enter(&pflags);
3414 	delayacct_compact_start();
3415 	noreclaim_flag = memalloc_noreclaim_save();
3416 
3417 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3418 								prio, &page);
3419 
3420 	memalloc_noreclaim_restore(noreclaim_flag);
3421 	psi_memstall_leave(&pflags);
3422 	delayacct_compact_end();
3423 
3424 	if (*compact_result == COMPACT_SKIPPED)
3425 		return NULL;
3426 	/*
3427 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3428 	 * count a compaction stall
3429 	 */
3430 	count_vm_event(COMPACTSTALL);
3431 
3432 	/* Prep a captured page if available */
3433 	if (page)
3434 		prep_new_page(page, order, gfp_mask, alloc_flags);
3435 
3436 	/* Try get a page from the freelist if available */
3437 	if (!page)
3438 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3439 
3440 	if (page) {
3441 		struct zone *zone = page_zone(page);
3442 
3443 		zone->compact_blockskip_flush = false;
3444 		compaction_defer_reset(zone, order, true);
3445 		count_vm_event(COMPACTSUCCESS);
3446 		return page;
3447 	}
3448 
3449 	/*
3450 	 * It's bad if compaction run occurs and fails. The most likely reason
3451 	 * is that pages exist, but not enough to satisfy watermarks.
3452 	 */
3453 	count_vm_event(COMPACTFAIL);
3454 
3455 	cond_resched();
3456 
3457 	return NULL;
3458 }
3459 
3460 static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, enum compact_result compact_result, enum compact_priority *compact_priority, int *compaction_retries)3461 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3462 		     enum compact_result compact_result,
3463 		     enum compact_priority *compact_priority,
3464 		     int *compaction_retries)
3465 {
3466 	int max_retries = MAX_COMPACT_RETRIES;
3467 	int min_priority;
3468 	bool ret = false;
3469 	int retries = *compaction_retries;
3470 	enum compact_priority priority = *compact_priority;
3471 
3472 	if (!order)
3473 		return false;
3474 
3475 	if (fatal_signal_pending(current))
3476 		return false;
3477 
3478 	/*
3479 	 * Compaction was skipped due to a lack of free order-0
3480 	 * migration targets. Continue if reclaim can help.
3481 	 */
3482 	if (compact_result == COMPACT_SKIPPED) {
3483 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3484 		goto out;
3485 	}
3486 
3487 	/*
3488 	 * Compaction managed to coalesce some page blocks, but the
3489 	 * allocation failed presumably due to a race. Retry some.
3490 	 */
3491 	if (compact_result == COMPACT_SUCCESS) {
3492 		/*
3493 		 * !costly requests are much more important than
3494 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3495 		 * facto nofail and invoke OOM killer to move on while
3496 		 * costly can fail and users are ready to cope with
3497 		 * that. 1/4 retries is rather arbitrary but we would
3498 		 * need much more detailed feedback from compaction to
3499 		 * make a better decision.
3500 		 */
3501 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3502 			max_retries /= 4;
3503 
3504 		if (++(*compaction_retries) <= max_retries) {
3505 			ret = true;
3506 			goto out;
3507 		}
3508 	}
3509 
3510 	/*
3511 	 * Compaction failed. Retry with increasing priority.
3512 	 */
3513 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3514 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3515 
3516 	if (*compact_priority > min_priority) {
3517 		(*compact_priority)--;
3518 		*compaction_retries = 0;
3519 		ret = true;
3520 	}
3521 out:
3522 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3523 	return ret;
3524 }
3525 #else
3526 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, unsigned int alloc_flags, const struct alloc_context *ac, enum compact_priority prio, enum compact_result *compact_result)3527 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3528 		unsigned int alloc_flags, const struct alloc_context *ac,
3529 		enum compact_priority prio, enum compact_result *compact_result)
3530 {
3531 	*compact_result = COMPACT_SKIPPED;
3532 	return NULL;
3533 }
3534 
3535 static inline bool
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, enum compact_result compact_result, enum compact_priority *compact_priority, int *compaction_retries)3536 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3537 		     enum compact_result compact_result,
3538 		     enum compact_priority *compact_priority,
3539 		     int *compaction_retries)
3540 {
3541 	struct zone *zone;
3542 	struct zoneref *z;
3543 
3544 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3545 		return false;
3546 
3547 	/*
3548 	 * There are setups with compaction disabled which would prefer to loop
3549 	 * inside the allocator rather than hit the oom killer prematurely.
3550 	 * Let's give them a good hope and keep retrying while the order-0
3551 	 * watermarks are OK.
3552 	 */
3553 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3554 				ac->highest_zoneidx, ac->nodemask) {
3555 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3556 					ac->highest_zoneidx, alloc_flags))
3557 			return true;
3558 	}
3559 	return false;
3560 }
3561 #endif /* CONFIG_COMPACTION */
3562 
3563 #ifdef CONFIG_LOCKDEP
3564 static struct lockdep_map __fs_reclaim_map =
3565 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3566 
__need_reclaim(gfp_t gfp_mask)3567 static bool __need_reclaim(gfp_t gfp_mask)
3568 {
3569 	/* no reclaim without waiting on it */
3570 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3571 		return false;
3572 
3573 	/* this guy won't enter reclaim */
3574 	if (current->flags & PF_MEMALLOC)
3575 		return false;
3576 
3577 	if (gfp_mask & __GFP_NOLOCKDEP)
3578 		return false;
3579 
3580 	return true;
3581 }
3582 
__fs_reclaim_acquire(unsigned long ip)3583 void __fs_reclaim_acquire(unsigned long ip)
3584 {
3585 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3586 }
3587 
__fs_reclaim_release(unsigned long ip)3588 void __fs_reclaim_release(unsigned long ip)
3589 {
3590 	lock_release(&__fs_reclaim_map, ip);
3591 }
3592 
fs_reclaim_acquire(gfp_t gfp_mask)3593 void fs_reclaim_acquire(gfp_t gfp_mask)
3594 {
3595 	gfp_mask = current_gfp_context(gfp_mask);
3596 
3597 	if (__need_reclaim(gfp_mask)) {
3598 		if (gfp_mask & __GFP_FS)
3599 			__fs_reclaim_acquire(_RET_IP_);
3600 
3601 #ifdef CONFIG_MMU_NOTIFIER
3602 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3603 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3604 #endif
3605 
3606 	}
3607 }
3608 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3609 
fs_reclaim_release(gfp_t gfp_mask)3610 void fs_reclaim_release(gfp_t gfp_mask)
3611 {
3612 	gfp_mask = current_gfp_context(gfp_mask);
3613 
3614 	if (__need_reclaim(gfp_mask)) {
3615 		if (gfp_mask & __GFP_FS)
3616 			__fs_reclaim_release(_RET_IP_);
3617 	}
3618 }
3619 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3620 #endif
3621 
3622 /*
3623  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3624  * have been rebuilt so allocation retries. Reader side does not lock and
3625  * retries the allocation if zonelist changes. Writer side is protected by the
3626  * embedded spin_lock.
3627  */
3628 static DEFINE_SEQLOCK(zonelist_update_seq);
3629 
zonelist_iter_begin(void)3630 static unsigned int zonelist_iter_begin(void)
3631 {
3632 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3633 		return read_seqbegin(&zonelist_update_seq);
3634 
3635 	return 0;
3636 }
3637 
check_retry_zonelist(unsigned int seq)3638 static unsigned int check_retry_zonelist(unsigned int seq)
3639 {
3640 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3641 		return read_seqretry(&zonelist_update_seq, seq);
3642 
3643 	return seq;
3644 }
3645 
3646 /* Perform direct synchronous page reclaim */
3647 static unsigned long
__perform_reclaim(gfp_t gfp_mask, unsigned int order, const struct alloc_context *ac)3648 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3649 					const struct alloc_context *ac)
3650 {
3651 	unsigned int noreclaim_flag;
3652 	unsigned long progress;
3653 
3654 	cond_resched();
3655 
3656 	/* We now go into synchronous reclaim */
3657 	cpuset_memory_pressure_bump();
3658 	fs_reclaim_acquire(gfp_mask);
3659 	noreclaim_flag = memalloc_noreclaim_save();
3660 
3661 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3662 								ac->nodemask);
3663 
3664 	memalloc_noreclaim_restore(noreclaim_flag);
3665 	fs_reclaim_release(gfp_mask);
3666 
3667 	cond_resched();
3668 
3669 	return progress;
3670 }
3671 
3672 /* The really slow allocator path where we enter direct reclaim */
3673 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, unsigned int alloc_flags, const struct alloc_context *ac, unsigned long *did_some_progress)3674 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3675 		unsigned int alloc_flags, const struct alloc_context *ac,
3676 		unsigned long *did_some_progress)
3677 {
3678 	struct page *page = NULL;
3679 	unsigned long pflags;
3680 	bool drained = false;
3681 
3682 	psi_memstall_enter(&pflags);
3683 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3684 	if (unlikely(!(*did_some_progress)))
3685 		goto out;
3686 
3687 retry:
3688 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3689 
3690 	/*
3691 	 * If an allocation failed after direct reclaim, it could be because
3692 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3693 	 * Shrink them and try again
3694 	 */
3695 	if (!page && !drained) {
3696 		unreserve_highatomic_pageblock(ac, false);
3697 		drain_all_pages(NULL);
3698 		drained = true;
3699 		goto retry;
3700 	}
3701 out:
3702 	psi_memstall_leave(&pflags);
3703 
3704 	return page;
3705 }
3706 
wake_all_kswapds(unsigned int order, gfp_t gfp_mask, const struct alloc_context *ac)3707 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3708 			     const struct alloc_context *ac)
3709 {
3710 	struct zoneref *z;
3711 	struct zone *zone;
3712 	pg_data_t *last_pgdat = NULL;
3713 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3714 
3715 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3716 					ac->nodemask) {
3717 		if (!managed_zone(zone))
3718 			continue;
3719 		if (last_pgdat != zone->zone_pgdat) {
3720 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3721 			last_pgdat = zone->zone_pgdat;
3722 		}
3723 	}
3724 }
3725 
3726 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)3727 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3728 {
3729 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3730 
3731 	/*
3732 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3733 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3734 	 * to save two branches.
3735 	 */
3736 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3737 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3738 
3739 	/*
3740 	 * The caller may dip into page reserves a bit more if the caller
3741 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3742 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3743 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3744 	 */
3745 	alloc_flags |= (__force int)
3746 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3747 
3748 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3749 		/*
3750 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3751 		 * if it can't schedule.
3752 		 */
3753 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3754 			alloc_flags |= ALLOC_NON_BLOCK;
3755 
3756 			if (order > 0)
3757 				alloc_flags |= ALLOC_HIGHATOMIC;
3758 		}
3759 
3760 		/*
3761 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3762 		 * GFP_ATOMIC) rather than fail, see the comment for
3763 		 * cpuset_node_allowed().
3764 		 */
3765 		if (alloc_flags & ALLOC_MIN_RESERVE)
3766 			alloc_flags &= ~ALLOC_CPUSET;
3767 	} else if (unlikely(rt_task(current)) && in_task())
3768 		alloc_flags |= ALLOC_MIN_RESERVE;
3769 
3770 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3771 
3772 	return alloc_flags;
3773 }
3774 
oom_reserves_allowed(struct task_struct *tsk)3775 static bool oom_reserves_allowed(struct task_struct *tsk)
3776 {
3777 	if (!tsk_is_oom_victim(tsk))
3778 		return false;
3779 
3780 	/*
3781 	 * !MMU doesn't have oom reaper so give access to memory reserves
3782 	 * only to the thread with TIF_MEMDIE set
3783 	 */
3784 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3785 		return false;
3786 
3787 	return true;
3788 }
3789 
3790 /*
3791  * Distinguish requests which really need access to full memory
3792  * reserves from oom victims which can live with a portion of it
3793  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)3794 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3795 {
3796 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3797 		return 0;
3798 	if (gfp_mask & __GFP_MEMALLOC)
3799 		return ALLOC_NO_WATERMARKS;
3800 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3801 		return ALLOC_NO_WATERMARKS;
3802 	if (!in_interrupt()) {
3803 		if (current->flags & PF_MEMALLOC)
3804 			return ALLOC_NO_WATERMARKS;
3805 		else if (oom_reserves_allowed(current))
3806 			return ALLOC_OOM;
3807 	}
3808 
3809 	return 0;
3810 }
3811 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3812 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3813 {
3814 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3815 }
3816 
3817 /*
3818  * Checks whether it makes sense to retry the reclaim to make a forward progress
3819  * for the given allocation request.
3820  *
3821  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3822  * without success, or when we couldn't even meet the watermark if we
3823  * reclaimed all remaining pages on the LRU lists.
3824  *
3825  * Returns true if a retry is viable or false to enter the oom path.
3826  */
3827 static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order, struct alloc_context *ac, int alloc_flags, bool did_some_progress, int *no_progress_loops)3828 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3829 		     struct alloc_context *ac, int alloc_flags,
3830 		     bool did_some_progress, int *no_progress_loops)
3831 {
3832 	struct zone *zone;
3833 	struct zoneref *z;
3834 	bool ret = false;
3835 
3836 	/*
3837 	 * Costly allocations might have made a progress but this doesn't mean
3838 	 * their order will become available due to high fragmentation so
3839 	 * always increment the no progress counter for them
3840 	 */
3841 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3842 		*no_progress_loops = 0;
3843 	else
3844 		(*no_progress_loops)++;
3845 
3846 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3847 		goto out;
3848 
3849 
3850 	/*
3851 	 * Keep reclaiming pages while there is a chance this will lead
3852 	 * somewhere.  If none of the target zones can satisfy our allocation
3853 	 * request even if all reclaimable pages are considered then we are
3854 	 * screwed and have to go OOM.
3855 	 */
3856 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3857 				ac->highest_zoneidx, ac->nodemask) {
3858 		unsigned long available;
3859 		unsigned long reclaimable;
3860 		unsigned long min_wmark = min_wmark_pages(zone);
3861 		bool wmark;
3862 
3863 		available = reclaimable = zone_reclaimable_pages(zone);
3864 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3865 
3866 		/*
3867 		 * Would the allocation succeed if we reclaimed all
3868 		 * reclaimable pages?
3869 		 */
3870 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3871 				ac->highest_zoneidx, alloc_flags, available);
3872 		trace_reclaim_retry_zone(z, order, reclaimable,
3873 				available, min_wmark, *no_progress_loops, wmark);
3874 		if (wmark) {
3875 			ret = true;
3876 			break;
3877 		}
3878 	}
3879 
3880 	/*
3881 	 * Memory allocation/reclaim might be called from a WQ context and the
3882 	 * current implementation of the WQ concurrency control doesn't
3883 	 * recognize that a particular WQ is congested if the worker thread is
3884 	 * looping without ever sleeping. Therefore we have to do a short sleep
3885 	 * here rather than calling cond_resched().
3886 	 */
3887 	if (current->flags & PF_WQ_WORKER)
3888 		schedule_timeout_uninterruptible(1);
3889 	else
3890 		cond_resched();
3891 out:
3892 	/* Before OOM, exhaust highatomic_reserve */
3893 	if (!ret)
3894 		return unreserve_highatomic_pageblock(ac, true);
3895 
3896 	return ret;
3897 }
3898 
3899 static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)3900 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3901 {
3902 	/*
3903 	 * It's possible that cpuset's mems_allowed and the nodemask from
3904 	 * mempolicy don't intersect. This should be normally dealt with by
3905 	 * policy_nodemask(), but it's possible to race with cpuset update in
3906 	 * such a way the check therein was true, and then it became false
3907 	 * before we got our cpuset_mems_cookie here.
3908 	 * This assumes that for all allocations, ac->nodemask can come only
3909 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3910 	 * when it does not intersect with the cpuset restrictions) or the
3911 	 * caller can deal with a violated nodemask.
3912 	 */
3913 	if (cpusets_enabled() && ac->nodemask &&
3914 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3915 		ac->nodemask = NULL;
3916 		return true;
3917 	}
3918 
3919 	/*
3920 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3921 	 * possible to race with parallel threads in such a way that our
3922 	 * allocation can fail while the mask is being updated. If we are about
3923 	 * to fail, check if the cpuset changed during allocation and if so,
3924 	 * retry.
3925 	 */
3926 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3927 		return true;
3928 
3929 	return false;
3930 }
3931 
3932 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, struct alloc_context *ac)3933 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3934 						struct alloc_context *ac)
3935 {
3936 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3937 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3938 	struct page *page = NULL;
3939 	unsigned int alloc_flags;
3940 	unsigned long did_some_progress;
3941 	enum compact_priority compact_priority;
3942 	enum compact_result compact_result;
3943 	int compaction_retries;
3944 	int no_progress_loops;
3945 	unsigned int cpuset_mems_cookie;
3946 	unsigned int zonelist_iter_cookie;
3947 	int reserve_flags;
3948 
3949 restart:
3950 	compaction_retries = 0;
3951 	no_progress_loops = 0;
3952 	compact_priority = DEF_COMPACT_PRIORITY;
3953 	cpuset_mems_cookie = read_mems_allowed_begin();
3954 	zonelist_iter_cookie = zonelist_iter_begin();
3955 
3956 	/*
3957 	 * The fast path uses conservative alloc_flags to succeed only until
3958 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3959 	 * alloc_flags precisely. So we do that now.
3960 	 */
3961 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3962 
3963 	/*
3964 	 * We need to recalculate the starting point for the zonelist iterator
3965 	 * because we might have used different nodemask in the fast path, or
3966 	 * there was a cpuset modification and we are retrying - otherwise we
3967 	 * could end up iterating over non-eligible zones endlessly.
3968 	 */
3969 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3970 					ac->highest_zoneidx, ac->nodemask);
3971 	if (!ac->preferred_zoneref->zone)
3972 		goto nopage;
3973 
3974 	/*
3975 	 * Check for insane configurations where the cpuset doesn't contain
3976 	 * any suitable zone to satisfy the request - e.g. non-movable
3977 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3978 	 */
3979 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3980 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3981 					ac->highest_zoneidx,
3982 					&cpuset_current_mems_allowed);
3983 		if (!z->zone)
3984 			goto nopage;
3985 	}
3986 
3987 	if (alloc_flags & ALLOC_KSWAPD)
3988 		wake_all_kswapds(order, gfp_mask, ac);
3989 
3990 	/*
3991 	 * The adjusted alloc_flags might result in immediate success, so try
3992 	 * that first
3993 	 */
3994 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3995 	if (page)
3996 		goto got_pg;
3997 
3998 	/*
3999 	 * For costly allocations, try direct compaction first, as it's likely
4000 	 * that we have enough base pages and don't need to reclaim. For non-
4001 	 * movable high-order allocations, do that as well, as compaction will
4002 	 * try prevent permanent fragmentation by migrating from blocks of the
4003 	 * same migratetype.
4004 	 * Don't try this for allocations that are allowed to ignore
4005 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4006 	 */
4007 	if (can_direct_reclaim &&
4008 			(costly_order ||
4009 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4010 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4011 		page = __alloc_pages_direct_compact(gfp_mask, order,
4012 						alloc_flags, ac,
4013 						INIT_COMPACT_PRIORITY,
4014 						&compact_result);
4015 		if (page)
4016 			goto got_pg;
4017 
4018 		/*
4019 		 * Checks for costly allocations with __GFP_NORETRY, which
4020 		 * includes some THP page fault allocations
4021 		 */
4022 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4023 			/*
4024 			 * If allocating entire pageblock(s) and compaction
4025 			 * failed because all zones are below low watermarks
4026 			 * or is prohibited because it recently failed at this
4027 			 * order, fail immediately unless the allocator has
4028 			 * requested compaction and reclaim retry.
4029 			 *
4030 			 * Reclaim is
4031 			 *  - potentially very expensive because zones are far
4032 			 *    below their low watermarks or this is part of very
4033 			 *    bursty high order allocations,
4034 			 *  - not guaranteed to help because isolate_freepages()
4035 			 *    may not iterate over freed pages as part of its
4036 			 *    linear scan, and
4037 			 *  - unlikely to make entire pageblocks free on its
4038 			 *    own.
4039 			 */
4040 			if (compact_result == COMPACT_SKIPPED ||
4041 			    compact_result == COMPACT_DEFERRED)
4042 				goto nopage;
4043 
4044 			/*
4045 			 * Looks like reclaim/compaction is worth trying, but
4046 			 * sync compaction could be very expensive, so keep
4047 			 * using async compaction.
4048 			 */
4049 			compact_priority = INIT_COMPACT_PRIORITY;
4050 		}
4051 	}
4052 
4053 retry:
4054 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4055 	if (alloc_flags & ALLOC_KSWAPD)
4056 		wake_all_kswapds(order, gfp_mask, ac);
4057 
4058 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4059 	if (reserve_flags)
4060 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4061 					  (alloc_flags & ALLOC_KSWAPD);
4062 
4063 	/*
4064 	 * Reset the nodemask and zonelist iterators if memory policies can be
4065 	 * ignored. These allocations are high priority and system rather than
4066 	 * user oriented.
4067 	 */
4068 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4069 		ac->nodemask = NULL;
4070 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4071 					ac->highest_zoneidx, ac->nodemask);
4072 	}
4073 
4074 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4075 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4076 	if (page)
4077 		goto got_pg;
4078 
4079 	/* Caller is not willing to reclaim, we can't balance anything */
4080 	if (!can_direct_reclaim)
4081 		goto nopage;
4082 
4083 	/* Avoid recursion of direct reclaim */
4084 	if (current->flags & PF_MEMALLOC)
4085 		goto nopage;
4086 
4087 	/* Try direct reclaim and then allocating */
4088 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4089 							&did_some_progress);
4090 	if (page)
4091 		goto got_pg;
4092 
4093 	/* Try direct compaction and then allocating */
4094 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4095 					compact_priority, &compact_result);
4096 	if (page)
4097 		goto got_pg;
4098 
4099 	/* Do not loop if specifically requested */
4100 	if (gfp_mask & __GFP_NORETRY)
4101 		goto nopage;
4102 
4103 	/*
4104 	 * Do not retry costly high order allocations unless they are
4105 	 * __GFP_RETRY_MAYFAIL
4106 	 */
4107 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4108 		goto nopage;
4109 
4110 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4111 				 did_some_progress > 0, &no_progress_loops))
4112 		goto retry;
4113 
4114 	/*
4115 	 * It doesn't make any sense to retry for the compaction if the order-0
4116 	 * reclaim is not able to make any progress because the current
4117 	 * implementation of the compaction depends on the sufficient amount
4118 	 * of free memory (see __compaction_suitable)
4119 	 */
4120 	if (did_some_progress > 0 &&
4121 			should_compact_retry(ac, order, alloc_flags,
4122 				compact_result, &compact_priority,
4123 				&compaction_retries))
4124 		goto retry;
4125 
4126 
4127 	/*
4128 	 * Deal with possible cpuset update races or zonelist updates to avoid
4129 	 * a unnecessary OOM kill.
4130 	 */
4131 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4132 	    check_retry_zonelist(zonelist_iter_cookie))
4133 		goto restart;
4134 
4135 	/* Reclaim has failed us, start killing things */
4136 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4137 	if (page)
4138 		goto got_pg;
4139 
4140 	/* Avoid allocations with no watermarks from looping endlessly */
4141 	if (tsk_is_oom_victim(current) &&
4142 	    (alloc_flags & ALLOC_OOM ||
4143 	     (gfp_mask & __GFP_NOMEMALLOC)))
4144 		goto nopage;
4145 
4146 	/* Retry as long as the OOM killer is making progress */
4147 	if (did_some_progress) {
4148 		no_progress_loops = 0;
4149 		goto retry;
4150 	}
4151 
4152 nopage:
4153 	/*
4154 	 * Deal with possible cpuset update races or zonelist updates to avoid
4155 	 * a unnecessary OOM kill.
4156 	 */
4157 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4158 	    check_retry_zonelist(zonelist_iter_cookie))
4159 		goto restart;
4160 
4161 	/*
4162 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4163 	 * we always retry
4164 	 */
4165 	if (gfp_mask & __GFP_NOFAIL) {
4166 		/*
4167 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4168 		 * of any new users that actually require GFP_NOWAIT
4169 		 */
4170 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4171 			goto fail;
4172 
4173 		/*
4174 		 * PF_MEMALLOC request from this context is rather bizarre
4175 		 * because we cannot reclaim anything and only can loop waiting
4176 		 * for somebody to do a work for us
4177 		 */
4178 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4179 
4180 		/*
4181 		 * non failing costly orders are a hard requirement which we
4182 		 * are not prepared for much so let's warn about these users
4183 		 * so that we can identify them and convert them to something
4184 		 * else.
4185 		 */
4186 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4187 
4188 		/*
4189 		 * Help non-failing allocations by giving some access to memory
4190 		 * reserves normally used for high priority non-blocking
4191 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4192 		 * could deplete whole memory reserves which would just make
4193 		 * the situation worse.
4194 		 */
4195 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4196 		if (page)
4197 			goto got_pg;
4198 
4199 		cond_resched();
4200 		goto retry;
4201 	}
4202 fail:
4203 	warn_alloc(gfp_mask, ac->nodemask,
4204 			"page allocation failure: order:%u", order);
4205 got_pg:
4206 	return page;
4207 }
4208 
prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, int preferred_nid, nodemask_t *nodemask, struct alloc_context *ac, gfp_t *alloc_gfp, unsigned int *alloc_flags)4209 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4210 		int preferred_nid, nodemask_t *nodemask,
4211 		struct alloc_context *ac, gfp_t *alloc_gfp,
4212 		unsigned int *alloc_flags)
4213 {
4214 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4215 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4216 	ac->nodemask = nodemask;
4217 	ac->migratetype = gfp_migratetype(gfp_mask);
4218 
4219 	if (cpusets_enabled()) {
4220 		*alloc_gfp |= __GFP_HARDWALL;
4221 		/*
4222 		 * When we are in the interrupt context, it is irrelevant
4223 		 * to the current task context. It means that any node ok.
4224 		 */
4225 		if (in_task() && !ac->nodemask)
4226 			ac->nodemask = &cpuset_current_mems_allowed;
4227 		else
4228 			*alloc_flags |= ALLOC_CPUSET;
4229 	}
4230 
4231 	might_alloc(gfp_mask);
4232 
4233 #ifdef CONFIG_HYPERHOLD_ZSWAPD
4234 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4235 		wake_all_zswapd();
4236 #endif
4237 
4238 	if (should_fail_alloc_page(gfp_mask, order))
4239 		return false;
4240 
4241 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4242 
4243 	/* Dirty zone balancing only done in the fast path */
4244 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4245 
4246 	/*
4247 	 * The preferred zone is used for statistics but crucially it is
4248 	 * also used as the starting point for the zonelist iterator. It
4249 	 * may get reset for allocations that ignore memory policies.
4250 	 */
4251 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4252 					ac->highest_zoneidx, ac->nodemask);
4253 
4254 	return true;
4255 }
4256 
4257 /*
4258  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4259  * @gfp: GFP flags for the allocation
4260  * @preferred_nid: The preferred NUMA node ID to allocate from
4261  * @nodemask: Set of nodes to allocate from, may be NULL
4262  * @nr_pages: The number of pages desired on the list or array
4263  * @page_list: Optional list to store the allocated pages
4264  * @page_array: Optional array to store the pages
4265  *
4266  * This is a batched version of the page allocator that attempts to
4267  * allocate nr_pages quickly. Pages are added to page_list if page_list
4268  * is not NULL, otherwise it is assumed that the page_array is valid.
4269  *
4270  * For lists, nr_pages is the number of pages that should be allocated.
4271  *
4272  * For arrays, only NULL elements are populated with pages and nr_pages
4273  * is the maximum number of pages that will be stored in the array.
4274  *
4275  * Returns the number of pages on the list or array.
4276  */
__alloc_pages_bulk(gfp_t gfp, int preferred_nid, nodemask_t *nodemask, int nr_pages, struct list_head *page_list, struct page **page_array)4277 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4278 			nodemask_t *nodemask, int nr_pages,
4279 			struct list_head *page_list,
4280 			struct page **page_array)
4281 {
4282 	struct page *page;
4283 	unsigned long __maybe_unused UP_flags;
4284 	struct zone *zone;
4285 	struct zoneref *z;
4286 	struct per_cpu_pages *pcp;
4287 	struct list_head *pcp_list;
4288 	struct alloc_context ac;
4289 	gfp_t alloc_gfp;
4290 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4291 	int nr_populated = 0, nr_account = 0;
4292 
4293 	/*
4294 	 * Skip populated array elements to determine if any pages need
4295 	 * to be allocated before disabling IRQs.
4296 	 */
4297 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4298 		nr_populated++;
4299 
4300 	/* No pages requested? */
4301 	if (unlikely(nr_pages <= 0))
4302 		goto out;
4303 
4304 	/* Already populated array? */
4305 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4306 		goto out;
4307 
4308 	/* Bulk allocator does not support memcg accounting. */
4309 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4310 		goto failed;
4311 
4312 	/* Use the single page allocator for one page. */
4313 	if (nr_pages - nr_populated == 1)
4314 		goto failed;
4315 
4316 #ifdef CONFIG_PAGE_OWNER
4317 	/*
4318 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4319 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4320 	 * removes much of the performance benefit of bulk allocation so
4321 	 * force the caller to allocate one page at a time as it'll have
4322 	 * similar performance to added complexity to the bulk allocator.
4323 	 */
4324 	if (static_branch_unlikely(&page_owner_inited))
4325 		goto failed;
4326 #endif
4327 
4328 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4329 	gfp &= gfp_allowed_mask;
4330 	alloc_gfp = gfp;
4331 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4332 		goto out;
4333 	gfp = alloc_gfp;
4334 
4335 	/* Find an allowed local zone that meets the low watermark. */
4336 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4337 		unsigned long mark;
4338 
4339 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4340 		    !__cpuset_zone_allowed(zone, gfp)) {
4341 			continue;
4342 		}
4343 
4344 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4345 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4346 			goto failed;
4347 		}
4348 
4349 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4350 		if (zone_watermark_fast(zone, 0,  mark,
4351 				zonelist_zone_idx(ac.preferred_zoneref),
4352 				alloc_flags, gfp)) {
4353 			break;
4354 		}
4355 	}
4356 
4357 	/*
4358 	 * If there are no allowed local zones that meets the watermarks then
4359 	 * try to allocate a single page and reclaim if necessary.
4360 	 */
4361 	if (unlikely(!zone))
4362 		goto failed;
4363 
4364 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4365 	pcp_trylock_prepare(UP_flags);
4366 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4367 	if (!pcp)
4368 		goto failed_irq;
4369 
4370 	/* Attempt the batch allocation */
4371 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4372 	while (nr_populated < nr_pages) {
4373 
4374 		/* Skip existing pages */
4375 		if (page_array && page_array[nr_populated]) {
4376 			nr_populated++;
4377 			continue;
4378 		}
4379 
4380 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4381 								pcp, pcp_list);
4382 		if (unlikely(!page)) {
4383 			/* Try and allocate at least one page */
4384 			if (!nr_account) {
4385 				pcp_spin_unlock(pcp);
4386 				goto failed_irq;
4387 			}
4388 			break;
4389 		}
4390 		nr_account++;
4391 
4392 		prep_new_page(page, 0, gfp, 0);
4393 		if (page_list)
4394 			list_add(&page->lru, page_list);
4395 		else
4396 			page_array[nr_populated] = page;
4397 		nr_populated++;
4398 	}
4399 
4400 	pcp_spin_unlock(pcp);
4401 	pcp_trylock_finish(UP_flags);
4402 
4403 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4404 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4405 
4406 out:
4407 	return nr_populated;
4408 
4409 failed_irq:
4410 	pcp_trylock_finish(UP_flags);
4411 
4412 failed:
4413 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4414 	if (page) {
4415 		if (page_list)
4416 			list_add(&page->lru, page_list);
4417 		else
4418 			page_array[nr_populated] = page;
4419 		nr_populated++;
4420 	}
4421 
4422 	goto out;
4423 }
4424 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4425 
4426 /*
4427  * This is the 'heart' of the zoned buddy allocator.
4428  */
__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, nodemask_t *nodemask)4429 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4430 							nodemask_t *nodemask)
4431 {
4432 	struct page *page;
4433 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4434 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4435 	struct alloc_context ac = { };
4436 
4437 	/*
4438 	 * There are several places where we assume that the order value is sane
4439 	 * so bail out early if the request is out of bound.
4440 	 */
4441 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4442 		return NULL;
4443 
4444 	gfp &= gfp_allowed_mask;
4445 	/*
4446 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4447 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4448 	 * from a particular context which has been marked by
4449 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4450 	 * movable zones are not used during allocation.
4451 	 */
4452 	gfp = current_gfp_context(gfp);
4453 	alloc_gfp = gfp;
4454 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4455 			&alloc_gfp, &alloc_flags))
4456 		return NULL;
4457 
4458 	/*
4459 	 * Forbid the first pass from falling back to types that fragment
4460 	 * memory until all local zones are considered.
4461 	 */
4462 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4463 
4464 	/* First allocation attempt */
4465 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4466 	if (likely(page))
4467 		goto out;
4468 
4469 	alloc_gfp = gfp;
4470 	ac.spread_dirty_pages = false;
4471 
4472 	/*
4473 	 * Restore the original nodemask if it was potentially replaced with
4474 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4475 	 */
4476 	ac.nodemask = nodemask;
4477 
4478 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4479 
4480 out:
4481 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4482 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4483 		__free_pages(page, order);
4484 		page = NULL;
4485 	}
4486 
4487 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4488 	kmsan_alloc_page(page, order, alloc_gfp);
4489 
4490 	return page;
4491 }
4492 EXPORT_SYMBOL(__alloc_pages);
4493 
__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, nodemask_t *nodemask)4494 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4495 		nodemask_t *nodemask)
4496 {
4497 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4498 			preferred_nid, nodemask);
4499 	struct folio *folio = (struct folio *)page;
4500 
4501 	if (folio && order > 1)
4502 		folio_prep_large_rmappable(folio);
4503 	return folio;
4504 }
4505 EXPORT_SYMBOL(__folio_alloc);
4506 
4507 /*
4508  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4509  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4510  * you need to access high mem.
4511  */
__get_free_pages(gfp_t gfp_mask, unsigned int order)4512 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4513 {
4514 	struct page *page;
4515 
4516 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4517 	if (!page)
4518 		return 0;
4519 	return (unsigned long) page_address(page);
4520 }
4521 EXPORT_SYMBOL(__get_free_pages);
4522 
get_zeroed_page(gfp_t gfp_mask)4523 unsigned long get_zeroed_page(gfp_t gfp_mask)
4524 {
4525 	return __get_free_page(gfp_mask | __GFP_ZERO);
4526 }
4527 EXPORT_SYMBOL(get_zeroed_page);
4528 
4529 /**
4530  * __free_pages - Free pages allocated with alloc_pages().
4531  * @page: The page pointer returned from alloc_pages().
4532  * @order: The order of the allocation.
4533  *
4534  * This function can free multi-page allocations that are not compound
4535  * pages.  It does not check that the @order passed in matches that of
4536  * the allocation, so it is easy to leak memory.  Freeing more memory
4537  * than was allocated will probably emit a warning.
4538  *
4539  * If the last reference to this page is speculative, it will be released
4540  * by put_page() which only frees the first page of a non-compound
4541  * allocation.  To prevent the remaining pages from being leaked, we free
4542  * the subsequent pages here.  If you want to use the page's reference
4543  * count to decide when to free the allocation, you should allocate a
4544  * compound page, and use put_page() instead of __free_pages().
4545  *
4546  * Context: May be called in interrupt context or while holding a normal
4547  * spinlock, but not in NMI context or while holding a raw spinlock.
4548  */
__free_pages(struct page *page, unsigned int order)4549 void __free_pages(struct page *page, unsigned int order)
4550 {
4551 	/* get PageHead before we drop reference */
4552 	int head = PageHead(page);
4553 
4554 	if (put_page_testzero(page))
4555 		free_the_page(page, order);
4556 	else if (!head)
4557 		while (order-- > 0)
4558 			free_the_page(page + (1 << order), order);
4559 }
4560 EXPORT_SYMBOL(__free_pages);
4561 
free_pages(unsigned long addr, unsigned int order)4562 void free_pages(unsigned long addr, unsigned int order)
4563 {
4564 	if (addr != 0) {
4565 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4566 		__free_pages(virt_to_page((void *)addr), order);
4567 	}
4568 }
4569 
4570 EXPORT_SYMBOL(free_pages);
4571 
4572 /*
4573  * Page Fragment:
4574  *  An arbitrary-length arbitrary-offset area of memory which resides
4575  *  within a 0 or higher order page.  Multiple fragments within that page
4576  *  are individually refcounted, in the page's reference counter.
4577  *
4578  * The page_frag functions below provide a simple allocation framework for
4579  * page fragments.  This is used by the network stack and network device
4580  * drivers to provide a backing region of memory for use as either an
4581  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4582  */
__page_frag_cache_refill(struct page_frag_cache *nc, gfp_t gfp_mask)4583 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4584 					     gfp_t gfp_mask)
4585 {
4586 	struct page *page = NULL;
4587 	gfp_t gfp = gfp_mask;
4588 
4589 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4590 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4591 		    __GFP_NOMEMALLOC;
4592 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4593 				PAGE_FRAG_CACHE_MAX_ORDER);
4594 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4595 #endif
4596 	if (unlikely(!page))
4597 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4598 
4599 	nc->va = page ? page_address(page) : NULL;
4600 
4601 	return page;
4602 }
4603 
__page_frag_cache_drain(struct page *page, unsigned int count)4604 void __page_frag_cache_drain(struct page *page, unsigned int count)
4605 {
4606 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4607 
4608 	if (page_ref_sub_and_test(page, count))
4609 		free_the_page(page, compound_order(page));
4610 }
4611 EXPORT_SYMBOL(__page_frag_cache_drain);
4612 
page_frag_alloc_align(struct page_frag_cache *nc, unsigned int fragsz, gfp_t gfp_mask, unsigned int align_mask)4613 void *page_frag_alloc_align(struct page_frag_cache *nc,
4614 		      unsigned int fragsz, gfp_t gfp_mask,
4615 		      unsigned int align_mask)
4616 {
4617 	unsigned int size = PAGE_SIZE;
4618 	struct page *page;
4619 	int offset;
4620 
4621 	if (unlikely(!nc->va)) {
4622 refill:
4623 		page = __page_frag_cache_refill(nc, gfp_mask);
4624 		if (!page)
4625 			return NULL;
4626 
4627 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4628 		/* if size can vary use size else just use PAGE_SIZE */
4629 		size = nc->size;
4630 #endif
4631 		/* Even if we own the page, we do not use atomic_set().
4632 		 * This would break get_page_unless_zero() users.
4633 		 */
4634 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4635 
4636 		/* reset page count bias and offset to start of new frag */
4637 		nc->pfmemalloc = page_is_pfmemalloc(page);
4638 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4639 		nc->offset = size;
4640 	}
4641 
4642 	offset = nc->offset - fragsz;
4643 	if (unlikely(offset < 0)) {
4644 		page = virt_to_page(nc->va);
4645 
4646 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4647 			goto refill;
4648 
4649 		if (unlikely(nc->pfmemalloc)) {
4650 			free_the_page(page, compound_order(page));
4651 			goto refill;
4652 		}
4653 
4654 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4655 		/* if size can vary use size else just use PAGE_SIZE */
4656 		size = nc->size;
4657 #endif
4658 		/* OK, page count is 0, we can safely set it */
4659 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4660 
4661 		/* reset page count bias and offset to start of new frag */
4662 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4663 		offset = size - fragsz;
4664 		if (unlikely(offset < 0)) {
4665 			/*
4666 			 * The caller is trying to allocate a fragment
4667 			 * with fragsz > PAGE_SIZE but the cache isn't big
4668 			 * enough to satisfy the request, this may
4669 			 * happen in low memory conditions.
4670 			 * We don't release the cache page because
4671 			 * it could make memory pressure worse
4672 			 * so we simply return NULL here.
4673 			 */
4674 			return NULL;
4675 		}
4676 	}
4677 
4678 	nc->pagecnt_bias--;
4679 	offset &= align_mask;
4680 	nc->offset = offset;
4681 
4682 	return nc->va + offset;
4683 }
4684 EXPORT_SYMBOL(page_frag_alloc_align);
4685 
4686 /*
4687  * Frees a page fragment allocated out of either a compound or order 0 page.
4688  */
page_frag_free(void *addr)4689 void page_frag_free(void *addr)
4690 {
4691 	struct page *page = virt_to_head_page(addr);
4692 
4693 	if (unlikely(put_page_testzero(page)))
4694 		free_the_page(page, compound_order(page));
4695 }
4696 EXPORT_SYMBOL(page_frag_free);
4697 
make_alloc_exact(unsigned long addr, unsigned int order, size_t size)4698 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4699 		size_t size)
4700 {
4701 	if (addr) {
4702 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4703 		struct page *page = virt_to_page((void *)addr);
4704 		struct page *last = page + nr;
4705 
4706 		split_page_owner(page, 1 << order);
4707 		split_page_memcg(page, 1 << order);
4708 		while (page < --last)
4709 			set_page_refcounted(last);
4710 
4711 		last = page + (1UL << order);
4712 		for (page += nr; page < last; page++)
4713 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4714 	}
4715 	return (void *)addr;
4716 }
4717 
4718 /**
4719  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4720  * @size: the number of bytes to allocate
4721  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4722  *
4723  * This function is similar to alloc_pages(), except that it allocates the
4724  * minimum number of pages to satisfy the request.  alloc_pages() can only
4725  * allocate memory in power-of-two pages.
4726  *
4727  * This function is also limited by MAX_ORDER.
4728  *
4729  * Memory allocated by this function must be released by free_pages_exact().
4730  *
4731  * Return: pointer to the allocated area or %NULL in case of error.
4732  */
alloc_pages_exact(size_t size, gfp_t gfp_mask)4733 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4734 {
4735 	unsigned int order = get_order(size);
4736 	unsigned long addr;
4737 
4738 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4739 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4740 
4741 	addr = __get_free_pages(gfp_mask, order);
4742 	return make_alloc_exact(addr, order, size);
4743 }
4744 EXPORT_SYMBOL(alloc_pages_exact);
4745 
4746 /**
4747  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4748  *			   pages on a node.
4749  * @nid: the preferred node ID where memory should be allocated
4750  * @size: the number of bytes to allocate
4751  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4752  *
4753  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4754  * back.
4755  *
4756  * Return: pointer to the allocated area or %NULL in case of error.
4757  */
alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)4758 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4759 {
4760 	unsigned int order = get_order(size);
4761 	struct page *p;
4762 
4763 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4764 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4765 
4766 	p = alloc_pages_node(nid, gfp_mask, order);
4767 	if (!p)
4768 		return NULL;
4769 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4770 }
4771 
4772 /**
4773  * free_pages_exact - release memory allocated via alloc_pages_exact()
4774  * @virt: the value returned by alloc_pages_exact.
4775  * @size: size of allocation, same value as passed to alloc_pages_exact().
4776  *
4777  * Release the memory allocated by a previous call to alloc_pages_exact.
4778  */
free_pages_exact(void *virt, size_t size)4779 void free_pages_exact(void *virt, size_t size)
4780 {
4781 	unsigned long addr = (unsigned long)virt;
4782 	unsigned long end = addr + PAGE_ALIGN(size);
4783 
4784 	while (addr < end) {
4785 		free_page(addr);
4786 		addr += PAGE_SIZE;
4787 	}
4788 }
4789 EXPORT_SYMBOL(free_pages_exact);
4790 
4791 /**
4792  * nr_free_zone_pages - count number of pages beyond high watermark
4793  * @offset: The zone index of the highest zone
4794  *
4795  * nr_free_zone_pages() counts the number of pages which are beyond the
4796  * high watermark within all zones at or below a given zone index.  For each
4797  * zone, the number of pages is calculated as:
4798  *
4799  *     nr_free_zone_pages = managed_pages - high_pages
4800  *
4801  * Return: number of pages beyond high watermark.
4802  */
nr_free_zone_pages(int offset)4803 static unsigned long nr_free_zone_pages(int offset)
4804 {
4805 	struct zoneref *z;
4806 	struct zone *zone;
4807 
4808 	/* Just pick one node, since fallback list is circular */
4809 	unsigned long sum = 0;
4810 
4811 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4812 
4813 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4814 		unsigned long size = zone_managed_pages(zone);
4815 		unsigned long high = high_wmark_pages(zone);
4816 		if (size > high)
4817 			sum += size - high;
4818 	}
4819 
4820 	return sum;
4821 }
4822 
4823 /**
4824  * nr_free_buffer_pages - count number of pages beyond high watermark
4825  *
4826  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4827  * watermark within ZONE_DMA and ZONE_NORMAL.
4828  *
4829  * Return: number of pages beyond high watermark within ZONE_DMA and
4830  * ZONE_NORMAL.
4831  */
nr_free_buffer_pages(void)4832 unsigned long nr_free_buffer_pages(void)
4833 {
4834 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4835 }
4836 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4837 
zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)4838 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4839 {
4840 	zoneref->zone = zone;
4841 	zoneref->zone_idx = zone_idx(zone);
4842 }
4843 
4844 /*
4845  * Builds allocation fallback zone lists.
4846  *
4847  * Add all populated zones of a node to the zonelist.
4848  */
build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)4849 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4850 {
4851 	struct zone *zone;
4852 	enum zone_type zone_type = MAX_NR_ZONES;
4853 	int nr_zones = 0;
4854 
4855 	do {
4856 		zone_type--;
4857 		zone = pgdat->node_zones + zone_type;
4858 		if (populated_zone(zone)) {
4859 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4860 			check_highest_zone(zone_type);
4861 		}
4862 	} while (zone_type);
4863 
4864 	return nr_zones;
4865 }
4866 
4867 #ifdef CONFIG_NUMA
4868 
__parse_numa_zonelist_order(char *s)4869 static int __parse_numa_zonelist_order(char *s)
4870 {
4871 	/*
4872 	 * We used to support different zonelists modes but they turned
4873 	 * out to be just not useful. Let's keep the warning in place
4874 	 * if somebody still use the cmd line parameter so that we do
4875 	 * not fail it silently
4876 	 */
4877 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4878 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4879 		return -EINVAL;
4880 	}
4881 	return 0;
4882 }
4883 
4884 static char numa_zonelist_order[] = "Node";
4885 #define NUMA_ZONELIST_ORDER_LEN	16
4886 /*
4887  * sysctl handler for numa_zonelist_order
4888  */
numa_zonelist_order_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos)4889 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4890 		void *buffer, size_t *length, loff_t *ppos)
4891 {
4892 	if (write)
4893 		return __parse_numa_zonelist_order(buffer);
4894 	return proc_dostring(table, write, buffer, length, ppos);
4895 }
4896 
4897 static int node_load[MAX_NUMNODES];
4898 
4899 /**
4900  * find_next_best_node - find the next node that should appear in a given node's fallback list
4901  * @node: node whose fallback list we're appending
4902  * @used_node_mask: nodemask_t of already used nodes
4903  *
4904  * We use a number of factors to determine which is the next node that should
4905  * appear on a given node's fallback list.  The node should not have appeared
4906  * already in @node's fallback list, and it should be the next closest node
4907  * according to the distance array (which contains arbitrary distance values
4908  * from each node to each node in the system), and should also prefer nodes
4909  * with no CPUs, since presumably they'll have very little allocation pressure
4910  * on them otherwise.
4911  *
4912  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4913  */
find_next_best_node(int node, nodemask_t *used_node_mask)4914 int find_next_best_node(int node, nodemask_t *used_node_mask)
4915 {
4916 	int n, val;
4917 	int min_val = INT_MAX;
4918 	int best_node = NUMA_NO_NODE;
4919 
4920 	/* Use the local node if we haven't already */
4921 	if (!node_isset(node, *used_node_mask)) {
4922 		node_set(node, *used_node_mask);
4923 		return node;
4924 	}
4925 
4926 	for_each_node_state(n, N_MEMORY) {
4927 
4928 		/* Don't want a node to appear more than once */
4929 		if (node_isset(n, *used_node_mask))
4930 			continue;
4931 
4932 		/* Use the distance array to find the distance */
4933 		val = node_distance(node, n);
4934 
4935 		/* Penalize nodes under us ("prefer the next node") */
4936 		val += (n < node);
4937 
4938 		/* Give preference to headless and unused nodes */
4939 		if (!cpumask_empty(cpumask_of_node(n)))
4940 			val += PENALTY_FOR_NODE_WITH_CPUS;
4941 
4942 		/* Slight preference for less loaded node */
4943 		val *= MAX_NUMNODES;
4944 		val += node_load[n];
4945 
4946 		if (val < min_val) {
4947 			min_val = val;
4948 			best_node = n;
4949 		}
4950 	}
4951 
4952 	if (best_node >= 0)
4953 		node_set(best_node, *used_node_mask);
4954 
4955 	return best_node;
4956 }
4957 
4958 
4959 /*
4960  * Build zonelists ordered by node and zones within node.
4961  * This results in maximum locality--normal zone overflows into local
4962  * DMA zone, if any--but risks exhausting DMA zone.
4963  */
build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, unsigned nr_nodes)4964 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4965 		unsigned nr_nodes)
4966 {
4967 	struct zoneref *zonerefs;
4968 	int i;
4969 
4970 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4971 
4972 	for (i = 0; i < nr_nodes; i++) {
4973 		int nr_zones;
4974 
4975 		pg_data_t *node = NODE_DATA(node_order[i]);
4976 
4977 		nr_zones = build_zonerefs_node(node, zonerefs);
4978 		zonerefs += nr_zones;
4979 	}
4980 	zonerefs->zone = NULL;
4981 	zonerefs->zone_idx = 0;
4982 }
4983 
4984 /*
4985  * Build gfp_thisnode zonelists
4986  */
build_thisnode_zonelists(pg_data_t *pgdat)4987 static void build_thisnode_zonelists(pg_data_t *pgdat)
4988 {
4989 	struct zoneref *zonerefs;
4990 	int nr_zones;
4991 
4992 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4993 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
4994 	zonerefs += nr_zones;
4995 	zonerefs->zone = NULL;
4996 	zonerefs->zone_idx = 0;
4997 }
4998 
4999 /*
5000  * Build zonelists ordered by zone and nodes within zones.
5001  * This results in conserving DMA zone[s] until all Normal memory is
5002  * exhausted, but results in overflowing to remote node while memory
5003  * may still exist in local DMA zone.
5004  */
5005 
build_zonelists(pg_data_t *pgdat)5006 static void build_zonelists(pg_data_t *pgdat)
5007 {
5008 	static int node_order[MAX_NUMNODES];
5009 	int node, nr_nodes = 0;
5010 	nodemask_t used_mask = NODE_MASK_NONE;
5011 	int local_node, prev_node;
5012 
5013 	/* NUMA-aware ordering of nodes */
5014 	local_node = pgdat->node_id;
5015 	prev_node = local_node;
5016 
5017 	memset(node_order, 0, sizeof(node_order));
5018 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5019 		/*
5020 		 * We don't want to pressure a particular node.
5021 		 * So adding penalty to the first node in same
5022 		 * distance group to make it round-robin.
5023 		 */
5024 		if (node_distance(local_node, node) !=
5025 		    node_distance(local_node, prev_node))
5026 			node_load[node] += 1;
5027 
5028 		node_order[nr_nodes++] = node;
5029 		prev_node = node;
5030 	}
5031 
5032 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5033 	build_thisnode_zonelists(pgdat);
5034 	pr_info("Fallback order for Node %d: ", local_node);
5035 	for (node = 0; node < nr_nodes; node++)
5036 		pr_cont("%d ", node_order[node]);
5037 	pr_cont("\n");
5038 }
5039 
5040 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5041 /*
5042  * Return node id of node used for "local" allocations.
5043  * I.e., first node id of first zone in arg node's generic zonelist.
5044  * Used for initializing percpu 'numa_mem', which is used primarily
5045  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5046  */
local_memory_node(int node)5047 int local_memory_node(int node)
5048 {
5049 	struct zoneref *z;
5050 
5051 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5052 				   gfp_zone(GFP_KERNEL),
5053 				   NULL);
5054 	return zone_to_nid(z->zone);
5055 }
5056 #endif
5057 
5058 static void setup_min_unmapped_ratio(void);
5059 static void setup_min_slab_ratio(void);
5060 #else	/* CONFIG_NUMA */
5061 
build_zonelists(pg_data_t *pgdat)5062 static void build_zonelists(pg_data_t *pgdat)
5063 {
5064 	int node, local_node;
5065 	struct zoneref *zonerefs;
5066 	int nr_zones;
5067 
5068 	local_node = pgdat->node_id;
5069 
5070 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5071 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5072 	zonerefs += nr_zones;
5073 
5074 	/*
5075 	 * Now we build the zonelist so that it contains the zones
5076 	 * of all the other nodes.
5077 	 * We don't want to pressure a particular node, so when
5078 	 * building the zones for node N, we make sure that the
5079 	 * zones coming right after the local ones are those from
5080 	 * node N+1 (modulo N)
5081 	 */
5082 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5083 		if (!node_online(node))
5084 			continue;
5085 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5086 		zonerefs += nr_zones;
5087 	}
5088 	for (node = 0; node < local_node; node++) {
5089 		if (!node_online(node))
5090 			continue;
5091 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5092 		zonerefs += nr_zones;
5093 	}
5094 
5095 	zonerefs->zone = NULL;
5096 	zonerefs->zone_idx = 0;
5097 }
5098 
5099 #endif	/* CONFIG_NUMA */
5100 
5101 /*
5102  * Boot pageset table. One per cpu which is going to be used for all
5103  * zones and all nodes. The parameters will be set in such a way
5104  * that an item put on a list will immediately be handed over to
5105  * the buddy list. This is safe since pageset manipulation is done
5106  * with interrupts disabled.
5107  *
5108  * The boot_pagesets must be kept even after bootup is complete for
5109  * unused processors and/or zones. They do play a role for bootstrapping
5110  * hotplugged processors.
5111  *
5112  * zoneinfo_show() and maybe other functions do
5113  * not check if the processor is online before following the pageset pointer.
5114  * Other parts of the kernel may not check if the zone is available.
5115  */
5116 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5117 /* These effectively disable the pcplists in the boot pageset completely */
5118 #define BOOT_PAGESET_HIGH	0
5119 #define BOOT_PAGESET_BATCH	1
5120 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5121 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5122 
__build_all_zonelists(void *data)5123 static void __build_all_zonelists(void *data)
5124 {
5125 	int nid;
5126 	int __maybe_unused cpu;
5127 	pg_data_t *self = data;
5128 	unsigned long flags;
5129 
5130 	/*
5131 	 * The zonelist_update_seq must be acquired with irqsave because the
5132 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5133 	 */
5134 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5135 	/*
5136 	 * Also disable synchronous printk() to prevent any printk() from
5137 	 * trying to hold port->lock, for
5138 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5139 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5140 	 */
5141 	printk_deferred_enter();
5142 
5143 #ifdef CONFIG_NUMA
5144 	memset(node_load, 0, sizeof(node_load));
5145 #endif
5146 
5147 	/*
5148 	 * This node is hotadded and no memory is yet present.   So just
5149 	 * building zonelists is fine - no need to touch other nodes.
5150 	 */
5151 	if (self && !node_online(self->node_id)) {
5152 		build_zonelists(self);
5153 	} else {
5154 		/*
5155 		 * All possible nodes have pgdat preallocated
5156 		 * in free_area_init
5157 		 */
5158 		for_each_node(nid) {
5159 			pg_data_t *pgdat = NODE_DATA(nid);
5160 
5161 			build_zonelists(pgdat);
5162 		}
5163 
5164 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5165 		/*
5166 		 * We now know the "local memory node" for each node--
5167 		 * i.e., the node of the first zone in the generic zonelist.
5168 		 * Set up numa_mem percpu variable for on-line cpus.  During
5169 		 * boot, only the boot cpu should be on-line;  we'll init the
5170 		 * secondary cpus' numa_mem as they come on-line.  During
5171 		 * node/memory hotplug, we'll fixup all on-line cpus.
5172 		 */
5173 		for_each_online_cpu(cpu)
5174 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5175 #endif
5176 	}
5177 
5178 	printk_deferred_exit();
5179 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5180 }
5181 
5182 static noinline void __init
build_all_zonelists_init(void)5183 build_all_zonelists_init(void)
5184 {
5185 	int cpu;
5186 
5187 	__build_all_zonelists(NULL);
5188 
5189 	/*
5190 	 * Initialize the boot_pagesets that are going to be used
5191 	 * for bootstrapping processors. The real pagesets for
5192 	 * each zone will be allocated later when the per cpu
5193 	 * allocator is available.
5194 	 *
5195 	 * boot_pagesets are used also for bootstrapping offline
5196 	 * cpus if the system is already booted because the pagesets
5197 	 * are needed to initialize allocators on a specific cpu too.
5198 	 * F.e. the percpu allocator needs the page allocator which
5199 	 * needs the percpu allocator in order to allocate its pagesets
5200 	 * (a chicken-egg dilemma).
5201 	 */
5202 	for_each_possible_cpu(cpu)
5203 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5204 
5205 	mminit_verify_zonelist();
5206 	cpuset_init_current_mems_allowed();
5207 }
5208 
5209 /*
5210  * unless system_state == SYSTEM_BOOTING.
5211  *
5212  * __ref due to call of __init annotated helper build_all_zonelists_init
5213  * [protected by SYSTEM_BOOTING].
5214  */
build_all_zonelists(pg_data_t *pgdat)5215 void __ref build_all_zonelists(pg_data_t *pgdat)
5216 {
5217 	unsigned long vm_total_pages;
5218 
5219 	if (system_state == SYSTEM_BOOTING) {
5220 		build_all_zonelists_init();
5221 	} else {
5222 		__build_all_zonelists(pgdat);
5223 		/* cpuset refresh routine should be here */
5224 	}
5225 	/* Get the number of free pages beyond high watermark in all zones. */
5226 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5227 	/*
5228 	 * Disable grouping by mobility if the number of pages in the
5229 	 * system is too low to allow the mechanism to work. It would be
5230 	 * more accurate, but expensive to check per-zone. This check is
5231 	 * made on memory-hotadd so a system can start with mobility
5232 	 * disabled and enable it later
5233 	 */
5234 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5235 		page_group_by_mobility_disabled = 1;
5236 	else
5237 		page_group_by_mobility_disabled = 0;
5238 
5239 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5240 		nr_online_nodes,
5241 		page_group_by_mobility_disabled ? "off" : "on",
5242 		vm_total_pages);
5243 #ifdef CONFIG_NUMA
5244 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5245 #endif
5246 }
5247 
zone_batchsize(struct zone *zone)5248 static int zone_batchsize(struct zone *zone)
5249 {
5250 #ifdef CONFIG_MMU
5251 	int batch;
5252 
5253 	/*
5254 	 * The number of pages to batch allocate is either ~0.1%
5255 	 * of the zone or 1MB, whichever is smaller. The batch
5256 	 * size is striking a balance between allocation latency
5257 	 * and zone lock contention.
5258 	 */
5259 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5260 	batch /= 4;		/* We effectively *= 4 below */
5261 	if (batch < 1)
5262 		batch = 1;
5263 
5264 	/*
5265 	 * Clamp the batch to a 2^n - 1 value. Having a power
5266 	 * of 2 value was found to be more likely to have
5267 	 * suboptimal cache aliasing properties in some cases.
5268 	 *
5269 	 * For example if 2 tasks are alternately allocating
5270 	 * batches of pages, one task can end up with a lot
5271 	 * of pages of one half of the possible page colors
5272 	 * and the other with pages of the other colors.
5273 	 */
5274 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5275 
5276 	return batch;
5277 
5278 #else
5279 	/* The deferral and batching of frees should be suppressed under NOMMU
5280 	 * conditions.
5281 	 *
5282 	 * The problem is that NOMMU needs to be able to allocate large chunks
5283 	 * of contiguous memory as there's no hardware page translation to
5284 	 * assemble apparent contiguous memory from discontiguous pages.
5285 	 *
5286 	 * Queueing large contiguous runs of pages for batching, however,
5287 	 * causes the pages to actually be freed in smaller chunks.  As there
5288 	 * can be a significant delay between the individual batches being
5289 	 * recycled, this leads to the once large chunks of space being
5290 	 * fragmented and becoming unavailable for high-order allocations.
5291 	 */
5292 	return 0;
5293 #endif
5294 }
5295 
5296 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone *zone, int batch, int cpu_online)5297 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5298 {
5299 #ifdef CONFIG_MMU
5300 	int high;
5301 	int nr_split_cpus;
5302 	unsigned long total_pages;
5303 
5304 	if (!percpu_pagelist_high_fraction) {
5305 		/*
5306 		 * By default, the high value of the pcp is based on the zone
5307 		 * low watermark so that if they are full then background
5308 		 * reclaim will not be started prematurely.
5309 		 */
5310 		total_pages = low_wmark_pages(zone);
5311 	} else {
5312 		/*
5313 		 * If percpu_pagelist_high_fraction is configured, the high
5314 		 * value is based on a fraction of the managed pages in the
5315 		 * zone.
5316 		 */
5317 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5318 	}
5319 
5320 	/*
5321 	 * Split the high value across all online CPUs local to the zone. Note
5322 	 * that early in boot that CPUs may not be online yet and that during
5323 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5324 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5325 	 * all online CPUs to mitigate the risk that reclaim is triggered
5326 	 * prematurely due to pages stored on pcp lists.
5327 	 */
5328 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5329 	if (!nr_split_cpus)
5330 		nr_split_cpus = num_online_cpus();
5331 	high = total_pages / nr_split_cpus;
5332 
5333 	/*
5334 	 * Ensure high is at least batch*4. The multiple is based on the
5335 	 * historical relationship between high and batch.
5336 	 */
5337 	high = max(high, batch << 2);
5338 
5339 	return high;
5340 #else
5341 	return 0;
5342 #endif
5343 }
5344 
5345 /*
5346  * pcp->high and pcp->batch values are related and generally batch is lower
5347  * than high. They are also related to pcp->count such that count is lower
5348  * than high, and as soon as it reaches high, the pcplist is flushed.
5349  *
5350  * However, guaranteeing these relations at all times would require e.g. write
5351  * barriers here but also careful usage of read barriers at the read side, and
5352  * thus be prone to error and bad for performance. Thus the update only prevents
5353  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5354  * can cope with those fields changing asynchronously, and fully trust only the
5355  * pcp->count field on the local CPU with interrupts disabled.
5356  *
5357  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5358  * outside of boot time (or some other assurance that no concurrent updaters
5359  * exist).
5360  */
pageset_update(struct per_cpu_pages *pcp, unsigned long high, unsigned long batch)5361 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5362 		unsigned long batch)
5363 {
5364 	WRITE_ONCE(pcp->batch, batch);
5365 	WRITE_ONCE(pcp->high, high);
5366 }
5367 
per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)5368 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5369 {
5370 	int pindex;
5371 
5372 	memset(pcp, 0, sizeof(*pcp));
5373 	memset(pzstats, 0, sizeof(*pzstats));
5374 
5375 	spin_lock_init(&pcp->lock);
5376 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5377 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5378 
5379 	/*
5380 	 * Set batch and high values safe for a boot pageset. A true percpu
5381 	 * pageset's initialization will update them subsequently. Here we don't
5382 	 * need to be as careful as pageset_update() as nobody can access the
5383 	 * pageset yet.
5384 	 */
5385 	pcp->high = BOOT_PAGESET_HIGH;
5386 	pcp->batch = BOOT_PAGESET_BATCH;
5387 	pcp->free_factor = 0;
5388 }
5389 
__zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, unsigned long batch)5390 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5391 		unsigned long batch)
5392 {
5393 	struct per_cpu_pages *pcp;
5394 	int cpu;
5395 
5396 	for_each_possible_cpu(cpu) {
5397 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5398 		pageset_update(pcp, high, batch);
5399 	}
5400 }
5401 
5402 /*
5403  * Calculate and set new high and batch values for all per-cpu pagesets of a
5404  * zone based on the zone's size.
5405  */
zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)5406 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5407 {
5408 	int new_high, new_batch;
5409 
5410 	new_batch = max(1, zone_batchsize(zone));
5411 	new_high = zone_highsize(zone, new_batch, cpu_online);
5412 
5413 	if (zone->pageset_high == new_high &&
5414 	    zone->pageset_batch == new_batch)
5415 		return;
5416 
5417 	zone->pageset_high = new_high;
5418 	zone->pageset_batch = new_batch;
5419 
5420 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5421 }
5422 
setup_zone_pageset(struct zone *zone)5423 void __meminit setup_zone_pageset(struct zone *zone)
5424 {
5425 	int cpu;
5426 
5427 	/* Size may be 0 on !SMP && !NUMA */
5428 	if (sizeof(struct per_cpu_zonestat) > 0)
5429 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5430 
5431 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5432 	for_each_possible_cpu(cpu) {
5433 		struct per_cpu_pages *pcp;
5434 		struct per_cpu_zonestat *pzstats;
5435 
5436 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5437 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5438 		per_cpu_pages_init(pcp, pzstats);
5439 	}
5440 
5441 	zone_set_pageset_high_and_batch(zone, 0);
5442 }
5443 
5444 /*
5445  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5446  * page high values need to be recalculated.
5447  */
zone_pcp_update(struct zone *zone, int cpu_online)5448 static void zone_pcp_update(struct zone *zone, int cpu_online)
5449 {
5450 	mutex_lock(&pcp_batch_high_lock);
5451 	zone_set_pageset_high_and_batch(zone, cpu_online);
5452 	mutex_unlock(&pcp_batch_high_lock);
5453 }
5454 
5455 /*
5456  * Allocate per cpu pagesets and initialize them.
5457  * Before this call only boot pagesets were available.
5458  */
setup_per_cpu_pageset(void)5459 void __init setup_per_cpu_pageset(void)
5460 {
5461 	struct pglist_data *pgdat;
5462 	struct zone *zone;
5463 	int __maybe_unused cpu;
5464 
5465 	for_each_populated_zone(zone)
5466 		setup_zone_pageset(zone);
5467 
5468 #ifdef CONFIG_NUMA
5469 	/*
5470 	 * Unpopulated zones continue using the boot pagesets.
5471 	 * The numa stats for these pagesets need to be reset.
5472 	 * Otherwise, they will end up skewing the stats of
5473 	 * the nodes these zones are associated with.
5474 	 */
5475 	for_each_possible_cpu(cpu) {
5476 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5477 		memset(pzstats->vm_numa_event, 0,
5478 		       sizeof(pzstats->vm_numa_event));
5479 	}
5480 #endif
5481 
5482 	for_each_online_pgdat(pgdat)
5483 		pgdat->per_cpu_nodestats =
5484 			alloc_percpu(struct per_cpu_nodestat);
5485 }
5486 
zone_pcp_init(struct zone *zone)5487 __meminit void zone_pcp_init(struct zone *zone)
5488 {
5489 	/*
5490 	 * per cpu subsystem is not up at this point. The following code
5491 	 * relies on the ability of the linker to provide the
5492 	 * offset of a (static) per cpu variable into the per cpu area.
5493 	 */
5494 	zone->per_cpu_pageset = &boot_pageset;
5495 	zone->per_cpu_zonestats = &boot_zonestats;
5496 	zone->pageset_high = BOOT_PAGESET_HIGH;
5497 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5498 
5499 	if (populated_zone(zone))
5500 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5501 			 zone->present_pages, zone_batchsize(zone));
5502 }
5503 
adjust_managed_page_count(struct page *page, long count)5504 void adjust_managed_page_count(struct page *page, long count)
5505 {
5506 	atomic_long_add(count, &page_zone(page)->managed_pages);
5507 	totalram_pages_add(count);
5508 #ifdef CONFIG_HIGHMEM
5509 	if (PageHighMem(page))
5510 		totalhigh_pages_add(count);
5511 #endif
5512 }
5513 EXPORT_SYMBOL(adjust_managed_page_count);
5514 
free_reserved_area(void *start, void *end, int poison, const char *s)5515 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5516 {
5517 	void *pos;
5518 	unsigned long pages = 0;
5519 
5520 	start = (void *)PAGE_ALIGN((unsigned long)start);
5521 	end = (void *)((unsigned long)end & PAGE_MASK);
5522 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5523 		struct page *page = virt_to_page(pos);
5524 		void *direct_map_addr;
5525 
5526 		/*
5527 		 * 'direct_map_addr' might be different from 'pos'
5528 		 * because some architectures' virt_to_page()
5529 		 * work with aliases.  Getting the direct map
5530 		 * address ensures that we get a _writeable_
5531 		 * alias for the memset().
5532 		 */
5533 		direct_map_addr = page_address(page);
5534 		/*
5535 		 * Perform a kasan-unchecked memset() since this memory
5536 		 * has not been initialized.
5537 		 */
5538 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5539 		if ((unsigned int)poison <= 0xFF)
5540 			memset(direct_map_addr, poison, PAGE_SIZE);
5541 
5542 		free_reserved_page(page);
5543 	}
5544 
5545 	if (pages && s)
5546 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5547 
5548 	return pages;
5549 }
5550 
page_alloc_cpu_dead(unsigned int cpu)5551 static int page_alloc_cpu_dead(unsigned int cpu)
5552 {
5553 	struct zone *zone;
5554 
5555 	lru_add_drain_cpu(cpu);
5556 	mlock_drain_remote(cpu);
5557 	drain_pages(cpu);
5558 
5559 	/*
5560 	 * Spill the event counters of the dead processor
5561 	 * into the current processors event counters.
5562 	 * This artificially elevates the count of the current
5563 	 * processor.
5564 	 */
5565 	vm_events_fold_cpu(cpu);
5566 
5567 	/*
5568 	 * Zero the differential counters of the dead processor
5569 	 * so that the vm statistics are consistent.
5570 	 *
5571 	 * This is only okay since the processor is dead and cannot
5572 	 * race with what we are doing.
5573 	 */
5574 	cpu_vm_stats_fold(cpu);
5575 
5576 	for_each_populated_zone(zone)
5577 		zone_pcp_update(zone, 0);
5578 
5579 	return 0;
5580 }
5581 
page_alloc_cpu_online(unsigned int cpu)5582 static int page_alloc_cpu_online(unsigned int cpu)
5583 {
5584 	struct zone *zone;
5585 
5586 	for_each_populated_zone(zone)
5587 		zone_pcp_update(zone, 1);
5588 	return 0;
5589 }
5590 
page_alloc_init_cpuhp(void)5591 void __init page_alloc_init_cpuhp(void)
5592 {
5593 	int ret;
5594 
5595 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5596 					"mm/page_alloc:pcp",
5597 					page_alloc_cpu_online,
5598 					page_alloc_cpu_dead);
5599 	WARN_ON(ret < 0);
5600 }
5601 
5602 /*
5603  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5604  *	or min_free_kbytes changes.
5605  */
calculate_totalreserve_pages(void)5606 static void calculate_totalreserve_pages(void)
5607 {
5608 	struct pglist_data *pgdat;
5609 	unsigned long reserve_pages = 0;
5610 	enum zone_type i, j;
5611 
5612 	for_each_online_pgdat(pgdat) {
5613 
5614 		pgdat->totalreserve_pages = 0;
5615 
5616 		for (i = 0; i < MAX_NR_ZONES; i++) {
5617 			struct zone *zone = pgdat->node_zones + i;
5618 			long max = 0;
5619 			unsigned long managed_pages = zone_managed_pages(zone);
5620 
5621 			/* Find valid and maximum lowmem_reserve in the zone */
5622 			for (j = i; j < MAX_NR_ZONES; j++) {
5623 				if (zone->lowmem_reserve[j] > max)
5624 					max = zone->lowmem_reserve[j];
5625 			}
5626 
5627 			/* we treat the high watermark as reserved pages. */
5628 			max += high_wmark_pages(zone);
5629 
5630 			if (max > managed_pages)
5631 				max = managed_pages;
5632 
5633 			pgdat->totalreserve_pages += max;
5634 
5635 			reserve_pages += max;
5636 		}
5637 	}
5638 	totalreserve_pages = reserve_pages;
5639 }
5640 
5641 /*
5642  * setup_per_zone_lowmem_reserve - called whenever
5643  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5644  *	has a correct pages reserved value, so an adequate number of
5645  *	pages are left in the zone after a successful __alloc_pages().
5646  */
setup_per_zone_lowmem_reserve(void)5647 static void setup_per_zone_lowmem_reserve(void)
5648 {
5649 	struct pglist_data *pgdat;
5650 	enum zone_type i, j;
5651 
5652 	for_each_online_pgdat(pgdat) {
5653 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5654 			struct zone *zone = &pgdat->node_zones[i];
5655 			int ratio = sysctl_lowmem_reserve_ratio[i];
5656 			bool clear = !ratio || !zone_managed_pages(zone);
5657 			unsigned long managed_pages = 0;
5658 
5659 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5660 				struct zone *upper_zone = &pgdat->node_zones[j];
5661 
5662 				managed_pages += zone_managed_pages(upper_zone);
5663 
5664 				if (clear)
5665 					zone->lowmem_reserve[j] = 0;
5666 				else
5667 					zone->lowmem_reserve[j] = managed_pages / ratio;
5668 			}
5669 		}
5670 	}
5671 
5672 	/* update totalreserve_pages */
5673 	calculate_totalreserve_pages();
5674 }
5675 
__setup_per_zone_wmarks(void)5676 static void __setup_per_zone_wmarks(void)
5677 {
5678 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5679 	unsigned long lowmem_pages = 0;
5680 	struct zone *zone;
5681 	unsigned long flags;
5682 
5683 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5684 	for_each_zone(zone) {
5685 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5686 			lowmem_pages += zone_managed_pages(zone);
5687 	}
5688 
5689 	for_each_zone(zone) {
5690 		u64 tmp;
5691 
5692 		spin_lock_irqsave(&zone->lock, flags);
5693 		tmp = (u64)pages_min * zone_managed_pages(zone);
5694 		do_div(tmp, lowmem_pages);
5695 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5696 			/*
5697 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5698 			 * need highmem and movable zones pages, so cap pages_min
5699 			 * to a small  value here.
5700 			 *
5701 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5702 			 * deltas control async page reclaim, and so should
5703 			 * not be capped for highmem and movable zones.
5704 			 */
5705 			unsigned long min_pages;
5706 
5707 			min_pages = zone_managed_pages(zone) / 1024;
5708 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5709 			zone->_watermark[WMARK_MIN] = min_pages;
5710 		} else {
5711 			/*
5712 			 * If it's a lowmem zone, reserve a number of pages
5713 			 * proportionate to the zone's size.
5714 			 */
5715 			zone->_watermark[WMARK_MIN] = tmp;
5716 		}
5717 
5718 		/*
5719 		 * Set the kswapd watermarks distance according to the
5720 		 * scale factor in proportion to available memory, but
5721 		 * ensure a minimum size on small systems.
5722 		 */
5723 		tmp = max_t(u64, tmp >> 2,
5724 			    mult_frac(zone_managed_pages(zone),
5725 				      watermark_scale_factor, 10000));
5726 
5727 		zone->watermark_boost = 0;
5728 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5729 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5730 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5731 
5732 		spin_unlock_irqrestore(&zone->lock, flags);
5733 	}
5734 
5735 	/* update totalreserve_pages */
5736 	calculate_totalreserve_pages();
5737 }
5738 
5739 /**
5740  * setup_per_zone_wmarks - called when min_free_kbytes changes
5741  * or when memory is hot-{added|removed}
5742  *
5743  * Ensures that the watermark[min,low,high] values for each zone are set
5744  * correctly with respect to min_free_kbytes.
5745  */
setup_per_zone_wmarks(void)5746 void setup_per_zone_wmarks(void)
5747 {
5748 	struct zone *zone;
5749 	static DEFINE_SPINLOCK(lock);
5750 
5751 	spin_lock(&lock);
5752 	__setup_per_zone_wmarks();
5753 	spin_unlock(&lock);
5754 
5755 	/*
5756 	 * The watermark size have changed so update the pcpu batch
5757 	 * and high limits or the limits may be inappropriate.
5758 	 */
5759 	for_each_zone(zone)
5760 		zone_pcp_update(zone, 0);
5761 }
5762 
5763 /*
5764  * Initialise min_free_kbytes.
5765  *
5766  * For small machines we want it small (128k min).  For large machines
5767  * we want it large (256MB max).  But it is not linear, because network
5768  * bandwidth does not increase linearly with machine size.  We use
5769  *
5770  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5771  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5772  *
5773  * which yields
5774  *
5775  * 16MB:	512k
5776  * 32MB:	724k
5777  * 64MB:	1024k
5778  * 128MB:	1448k
5779  * 256MB:	2048k
5780  * 512MB:	2896k
5781  * 1024MB:	4096k
5782  * 2048MB:	5792k
5783  * 4096MB:	8192k
5784  * 8192MB:	11584k
5785  * 16384MB:	16384k
5786  */
calculate_min_free_kbytes(void)5787 void calculate_min_free_kbytes(void)
5788 {
5789 	unsigned long lowmem_kbytes;
5790 	int new_min_free_kbytes;
5791 
5792 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5793 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5794 
5795 	if (new_min_free_kbytes > user_min_free_kbytes)
5796 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5797 	else
5798 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5799 				new_min_free_kbytes, user_min_free_kbytes);
5800 
5801 }
5802 
init_per_zone_wmark_min(void)5803 int __meminit init_per_zone_wmark_min(void)
5804 {
5805 	calculate_min_free_kbytes();
5806 	setup_per_zone_wmarks();
5807 	refresh_zone_stat_thresholds();
5808 	setup_per_zone_lowmem_reserve();
5809 
5810 #ifdef CONFIG_NUMA
5811 	setup_min_unmapped_ratio();
5812 	setup_min_slab_ratio();
5813 #endif
5814 
5815 	khugepaged_min_free_kbytes_update();
5816 
5817 	return 0;
5818 }
5819 postcore_initcall(init_per_zone_wmark_min)
5820 
5821 /*
5822  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5823  *	that we can call two helper functions whenever min_free_kbytes
5824  *	changes.
5825  */
min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos)5826 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5827 		void *buffer, size_t *length, loff_t *ppos)
5828 {
5829 	int rc;
5830 
5831 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5832 	if (rc)
5833 		return rc;
5834 
5835 	if (write) {
5836 		user_min_free_kbytes = min_free_kbytes;
5837 		setup_per_zone_wmarks();
5838 	}
5839 	return 0;
5840 }
5841 
watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos)5842 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5843 		void *buffer, size_t *length, loff_t *ppos)
5844 {
5845 	int rc;
5846 
5847 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5848 	if (rc)
5849 		return rc;
5850 
5851 	if (write)
5852 		setup_per_zone_wmarks();
5853 
5854 	return 0;
5855 }
5856 
5857 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)5858 static void setup_min_unmapped_ratio(void)
5859 {
5860 	pg_data_t *pgdat;
5861 	struct zone *zone;
5862 
5863 	for_each_online_pgdat(pgdat)
5864 		pgdat->min_unmapped_pages = 0;
5865 
5866 	for_each_zone(zone)
5867 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5868 						         sysctl_min_unmapped_ratio) / 100;
5869 }
5870 
5871 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos)5872 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5873 		void *buffer, size_t *length, loff_t *ppos)
5874 {
5875 	int rc;
5876 
5877 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5878 	if (rc)
5879 		return rc;
5880 
5881 	setup_min_unmapped_ratio();
5882 
5883 	return 0;
5884 }
5885 
setup_min_slab_ratio(void)5886 static void setup_min_slab_ratio(void)
5887 {
5888 	pg_data_t *pgdat;
5889 	struct zone *zone;
5890 
5891 	for_each_online_pgdat(pgdat)
5892 		pgdat->min_slab_pages = 0;
5893 
5894 	for_each_zone(zone)
5895 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5896 						     sysctl_min_slab_ratio) / 100;
5897 }
5898 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos)5899 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5900 		void *buffer, size_t *length, loff_t *ppos)
5901 {
5902 	int rc;
5903 
5904 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5905 	if (rc)
5906 		return rc;
5907 
5908 	setup_min_slab_ratio();
5909 
5910 	return 0;
5911 }
5912 #endif
5913 
5914 /*
5915  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5916  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5917  *	whenever sysctl_lowmem_reserve_ratio changes.
5918  *
5919  * The reserve ratio obviously has absolutely no relation with the
5920  * minimum watermarks. The lowmem reserve ratio can only make sense
5921  * if in function of the boot time zone sizes.
5922  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos)5923 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5924 		int write, void *buffer, size_t *length, loff_t *ppos)
5925 {
5926 	int i;
5927 
5928 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5929 
5930 	for (i = 0; i < MAX_NR_ZONES; i++) {
5931 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5932 			sysctl_lowmem_reserve_ratio[i] = 0;
5933 	}
5934 
5935 	setup_per_zone_lowmem_reserve();
5936 	return 0;
5937 }
5938 
5939 /*
5940  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5941  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5942  * pagelist can have before it gets flushed back to buddy allocator.
5943  */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos)5944 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5945 		int write, void *buffer, size_t *length, loff_t *ppos)
5946 {
5947 	struct zone *zone;
5948 	int old_percpu_pagelist_high_fraction;
5949 	int ret;
5950 
5951 	mutex_lock(&pcp_batch_high_lock);
5952 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5953 
5954 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5955 	if (!write || ret < 0)
5956 		goto out;
5957 
5958 	/* Sanity checking to avoid pcp imbalance */
5959 	if (percpu_pagelist_high_fraction &&
5960 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5961 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5962 		ret = -EINVAL;
5963 		goto out;
5964 	}
5965 
5966 	/* No change? */
5967 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5968 		goto out;
5969 
5970 	for_each_populated_zone(zone)
5971 		zone_set_pageset_high_and_batch(zone, 0);
5972 out:
5973 	mutex_unlock(&pcp_batch_high_lock);
5974 	return ret;
5975 }
5976 
5977 static struct ctl_table page_alloc_sysctl_table[] = {
5978 	{
5979 		.procname	= "min_free_kbytes",
5980 		.data		= &min_free_kbytes,
5981 		.maxlen		= sizeof(min_free_kbytes),
5982 		.mode		= 0644,
5983 		.proc_handler	= min_free_kbytes_sysctl_handler,
5984 		.extra1		= SYSCTL_ZERO,
5985 	},
5986 	{
5987 		.procname	= "watermark_boost_factor",
5988 		.data		= &watermark_boost_factor,
5989 		.maxlen		= sizeof(watermark_boost_factor),
5990 		.mode		= 0644,
5991 		.proc_handler	= proc_dointvec_minmax,
5992 		.extra1		= SYSCTL_ZERO,
5993 	},
5994 	{
5995 		.procname	= "watermark_scale_factor",
5996 		.data		= &watermark_scale_factor,
5997 		.maxlen		= sizeof(watermark_scale_factor),
5998 		.mode		= 0644,
5999 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6000 		.extra1		= SYSCTL_ONE,
6001 		.extra2		= SYSCTL_THREE_THOUSAND,
6002 	},
6003 	{
6004 		.procname	= "percpu_pagelist_high_fraction",
6005 		.data		= &percpu_pagelist_high_fraction,
6006 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6007 		.mode		= 0644,
6008 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6009 		.extra1		= SYSCTL_ZERO,
6010 	},
6011 	{
6012 		.procname	= "lowmem_reserve_ratio",
6013 		.data		= &sysctl_lowmem_reserve_ratio,
6014 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6015 		.mode		= 0644,
6016 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6017 	},
6018 #ifdef CONFIG_NUMA
6019 	{
6020 		.procname	= "numa_zonelist_order",
6021 		.data		= &numa_zonelist_order,
6022 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6023 		.mode		= 0644,
6024 		.proc_handler	= numa_zonelist_order_handler,
6025 	},
6026 	{
6027 		.procname	= "min_unmapped_ratio",
6028 		.data		= &sysctl_min_unmapped_ratio,
6029 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6030 		.mode		= 0644,
6031 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6032 		.extra1		= SYSCTL_ZERO,
6033 		.extra2		= SYSCTL_ONE_HUNDRED,
6034 	},
6035 	{
6036 		.procname	= "min_slab_ratio",
6037 		.data		= &sysctl_min_slab_ratio,
6038 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6039 		.mode		= 0644,
6040 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6041 		.extra1		= SYSCTL_ZERO,
6042 		.extra2		= SYSCTL_ONE_HUNDRED,
6043 	},
6044 #endif
6045 	{}
6046 };
6047 
page_alloc_sysctl_init(void)6048 void __init page_alloc_sysctl_init(void)
6049 {
6050 	register_sysctl_init("vm", page_alloc_sysctl_table);
6051 }
6052 
6053 #ifdef CONFIG_CONTIG_ALLOC
6054 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head *page_list)6055 static void alloc_contig_dump_pages(struct list_head *page_list)
6056 {
6057 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6058 
6059 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6060 		struct page *page;
6061 
6062 		dump_stack();
6063 		list_for_each_entry(page, page_list, lru)
6064 			dump_page(page, "migration failure");
6065 	}
6066 }
6067 
6068 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control *cc, unsigned long start, unsigned long end)6069 int __alloc_contig_migrate_range(struct compact_control *cc,
6070 					unsigned long start, unsigned long end)
6071 {
6072 	/* This function is based on compact_zone() from compaction.c. */
6073 	unsigned int nr_reclaimed;
6074 	unsigned long pfn = start;
6075 	unsigned int tries = 0;
6076 	int ret = 0;
6077 	struct migration_target_control mtc = {
6078 		.nid = zone_to_nid(cc->zone),
6079 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6080 	};
6081 
6082 	lru_cache_disable();
6083 
6084 	while (pfn < end || !list_empty(&cc->migratepages)) {
6085 		if (fatal_signal_pending(current)) {
6086 			ret = -EINTR;
6087 			break;
6088 		}
6089 
6090 		if (list_empty(&cc->migratepages)) {
6091 			cc->nr_migratepages = 0;
6092 			ret = isolate_migratepages_range(cc, pfn, end);
6093 			if (ret && ret != -EAGAIN)
6094 				break;
6095 			pfn = cc->migrate_pfn;
6096 			tries = 0;
6097 		} else if (++tries == 5) {
6098 			ret = -EBUSY;
6099 			break;
6100 		}
6101 
6102 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6103 							&cc->migratepages);
6104 		cc->nr_migratepages -= nr_reclaimed;
6105 
6106 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6107 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6108 
6109 		/*
6110 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6111 		 * to retry again over this error, so do the same here.
6112 		 */
6113 		if (ret == -ENOMEM)
6114 			break;
6115 	}
6116 
6117 	lru_cache_enable();
6118 	if (ret < 0) {
6119 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6120 			alloc_contig_dump_pages(&cc->migratepages);
6121 		putback_movable_pages(&cc->migratepages);
6122 		return ret;
6123 	}
6124 	return 0;
6125 }
6126 
6127 /**
6128  * alloc_contig_range() -- tries to allocate given range of pages
6129  * @start:	start PFN to allocate
6130  * @end:	one-past-the-last PFN to allocate
6131  * @migratetype:	migratetype of the underlying pageblocks (either
6132  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6133  *			in range must have the same migratetype and it must
6134  *			be either of the two.
6135  * @gfp_mask:	GFP mask to use during compaction
6136  *
6137  * The PFN range does not have to be pageblock aligned. The PFN range must
6138  * belong to a single zone.
6139  *
6140  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6141  * pageblocks in the range.  Once isolated, the pageblocks should not
6142  * be modified by others.
6143  *
6144  * Return: zero on success or negative error code.  On success all
6145  * pages which PFN is in [start, end) are allocated for the caller and
6146  * need to be freed with free_contig_range().
6147  */
alloc_contig_range(unsigned long start, unsigned long end, unsigned migratetype, gfp_t gfp_mask)6148 int alloc_contig_range(unsigned long start, unsigned long end,
6149 		       unsigned migratetype, gfp_t gfp_mask)
6150 {
6151 	unsigned long outer_start, outer_end;
6152 	int order;
6153 	int ret = 0;
6154 
6155 	struct compact_control cc = {
6156 		.nr_migratepages = 0,
6157 		.order = -1,
6158 		.zone = page_zone(pfn_to_page(start)),
6159 		.mode = MIGRATE_SYNC,
6160 		.ignore_skip_hint = true,
6161 		.no_set_skip_hint = true,
6162 		.gfp_mask = current_gfp_context(gfp_mask),
6163 		.alloc_contig = true,
6164 	};
6165 	INIT_LIST_HEAD(&cc.migratepages);
6166 
6167 	/*
6168 	 * What we do here is we mark all pageblocks in range as
6169 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6170 	 * have different sizes, and due to the way page allocator
6171 	 * work, start_isolate_page_range() has special handlings for this.
6172 	 *
6173 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6174 	 * migrate the pages from an unaligned range (ie. pages that
6175 	 * we are interested in). This will put all the pages in
6176 	 * range back to page allocator as MIGRATE_ISOLATE.
6177 	 *
6178 	 * When this is done, we take the pages in range from page
6179 	 * allocator removing them from the buddy system.  This way
6180 	 * page allocator will never consider using them.
6181 	 *
6182 	 * This lets us mark the pageblocks back as
6183 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6184 	 * aligned range but not in the unaligned, original range are
6185 	 * put back to page allocator so that buddy can use them.
6186 	 */
6187 
6188 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6189 	if (ret)
6190 		goto done;
6191 
6192 	drain_all_pages(cc.zone);
6193 
6194 	/*
6195 	 * In case of -EBUSY, we'd like to know which page causes problem.
6196 	 * So, just fall through. test_pages_isolated() has a tracepoint
6197 	 * which will report the busy page.
6198 	 *
6199 	 * It is possible that busy pages could become available before
6200 	 * the call to test_pages_isolated, and the range will actually be
6201 	 * allocated.  So, if we fall through be sure to clear ret so that
6202 	 * -EBUSY is not accidentally used or returned to caller.
6203 	 */
6204 	ret = __alloc_contig_migrate_range(&cc, start, end);
6205 	if (ret && ret != -EBUSY)
6206 		goto done;
6207 	ret = 0;
6208 
6209 	/*
6210 	 * Pages from [start, end) are within a pageblock_nr_pages
6211 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6212 	 * more, all pages in [start, end) are free in page allocator.
6213 	 * What we are going to do is to allocate all pages from
6214 	 * [start, end) (that is remove them from page allocator).
6215 	 *
6216 	 * The only problem is that pages at the beginning and at the
6217 	 * end of interesting range may be not aligned with pages that
6218 	 * page allocator holds, ie. they can be part of higher order
6219 	 * pages.  Because of this, we reserve the bigger range and
6220 	 * once this is done free the pages we are not interested in.
6221 	 *
6222 	 * We don't have to hold zone->lock here because the pages are
6223 	 * isolated thus they won't get removed from buddy.
6224 	 */
6225 
6226 	order = 0;
6227 	outer_start = start;
6228 	while (!PageBuddy(pfn_to_page(outer_start))) {
6229 		if (++order > MAX_ORDER) {
6230 			outer_start = start;
6231 			break;
6232 		}
6233 		outer_start &= ~0UL << order;
6234 	}
6235 
6236 	if (outer_start != start) {
6237 		order = buddy_order(pfn_to_page(outer_start));
6238 
6239 		/*
6240 		 * outer_start page could be small order buddy page and
6241 		 * it doesn't include start page. Adjust outer_start
6242 		 * in this case to report failed page properly
6243 		 * on tracepoint in test_pages_isolated()
6244 		 */
6245 		if (outer_start + (1UL << order) <= start)
6246 			outer_start = start;
6247 	}
6248 
6249 	/* Make sure the range is really isolated. */
6250 	if (test_pages_isolated(outer_start, end, 0)) {
6251 		ret = -EBUSY;
6252 		goto done;
6253 	}
6254 
6255 	/* Grab isolated pages from freelists. */
6256 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6257 	if (!outer_end) {
6258 		ret = -EBUSY;
6259 		goto done;
6260 	}
6261 
6262 	/* Free head and tail (if any) */
6263 	if (start != outer_start)
6264 		free_contig_range(outer_start, start - outer_start);
6265 	if (end != outer_end)
6266 		free_contig_range(end, outer_end - end);
6267 
6268 done:
6269 	undo_isolate_page_range(start, end, migratetype);
6270 	return ret;
6271 }
6272 EXPORT_SYMBOL(alloc_contig_range);
6273 
__alloc_contig_pages(unsigned long start_pfn, unsigned long nr_pages, gfp_t gfp_mask)6274 static int __alloc_contig_pages(unsigned long start_pfn,
6275 				unsigned long nr_pages, gfp_t gfp_mask)
6276 {
6277 	unsigned long end_pfn = start_pfn + nr_pages;
6278 
6279 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6280 				  gfp_mask);
6281 }
6282 
pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, unsigned long nr_pages)6283 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6284 				   unsigned long nr_pages)
6285 {
6286 	unsigned long i, end_pfn = start_pfn + nr_pages;
6287 	struct page *page;
6288 
6289 	for (i = start_pfn; i < end_pfn; i++) {
6290 		page = pfn_to_online_page(i);
6291 		if (!page)
6292 			return false;
6293 
6294 		if (page_zone(page) != z)
6295 			return false;
6296 
6297 		if (PageReserved(page))
6298 			return false;
6299 
6300 		if (PageHuge(page))
6301 			return false;
6302 	}
6303 	return true;
6304 }
6305 
zone_spans_last_pfn(const struct zone *zone, unsigned long start_pfn, unsigned long nr_pages)6306 static bool zone_spans_last_pfn(const struct zone *zone,
6307 				unsigned long start_pfn, unsigned long nr_pages)
6308 {
6309 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6310 
6311 	return zone_spans_pfn(zone, last_pfn);
6312 }
6313 
6314 /**
6315  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6316  * @nr_pages:	Number of contiguous pages to allocate
6317  * @gfp_mask:	GFP mask to limit search and used during compaction
6318  * @nid:	Target node
6319  * @nodemask:	Mask for other possible nodes
6320  *
6321  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6322  * on an applicable zonelist to find a contiguous pfn range which can then be
6323  * tried for allocation with alloc_contig_range(). This routine is intended
6324  * for allocation requests which can not be fulfilled with the buddy allocator.
6325  *
6326  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6327  * power of two, then allocated range is also guaranteed to be aligned to same
6328  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6329  *
6330  * Allocated pages can be freed with free_contig_range() or by manually calling
6331  * __free_page() on each allocated page.
6332  *
6333  * Return: pointer to contiguous pages on success, or NULL if not successful.
6334  */
alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, int nid, nodemask_t *nodemask)6335 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6336 				int nid, nodemask_t *nodemask)
6337 {
6338 	unsigned long ret, pfn, flags;
6339 	struct zonelist *zonelist;
6340 	struct zone *zone;
6341 	struct zoneref *z;
6342 
6343 	zonelist = node_zonelist(nid, gfp_mask);
6344 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6345 					gfp_zone(gfp_mask), nodemask) {
6346 		spin_lock_irqsave(&zone->lock, flags);
6347 
6348 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6349 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6350 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6351 				/*
6352 				 * We release the zone lock here because
6353 				 * alloc_contig_range() will also lock the zone
6354 				 * at some point. If there's an allocation
6355 				 * spinning on this lock, it may win the race
6356 				 * and cause alloc_contig_range() to fail...
6357 				 */
6358 				spin_unlock_irqrestore(&zone->lock, flags);
6359 				ret = __alloc_contig_pages(pfn, nr_pages,
6360 							gfp_mask);
6361 				if (!ret)
6362 					return pfn_to_page(pfn);
6363 				spin_lock_irqsave(&zone->lock, flags);
6364 			}
6365 			pfn += nr_pages;
6366 		}
6367 		spin_unlock_irqrestore(&zone->lock, flags);
6368 	}
6369 	return NULL;
6370 }
6371 #endif /* CONFIG_CONTIG_ALLOC */
6372 
free_contig_range(unsigned long pfn, unsigned long nr_pages)6373 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6374 {
6375 	unsigned long count = 0;
6376 
6377 	for (; nr_pages--; pfn++) {
6378 		struct page *page = pfn_to_page(pfn);
6379 
6380 		count += page_count(page) != 1;
6381 		__free_page(page);
6382 	}
6383 	WARN(count != 0, "%lu pages are still in use!\n", count);
6384 }
6385 EXPORT_SYMBOL(free_contig_range);
6386 
6387 /*
6388  * Effectively disable pcplists for the zone by setting the high limit to 0
6389  * and draining all cpus. A concurrent page freeing on another CPU that's about
6390  * to put the page on pcplist will either finish before the drain and the page
6391  * will be drained, or observe the new high limit and skip the pcplist.
6392  *
6393  * Must be paired with a call to zone_pcp_enable().
6394  */
zone_pcp_disable(struct zone *zone)6395 void zone_pcp_disable(struct zone *zone)
6396 {
6397 	mutex_lock(&pcp_batch_high_lock);
6398 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6399 	__drain_all_pages(zone, true);
6400 }
6401 
zone_pcp_enable(struct zone *zone)6402 void zone_pcp_enable(struct zone *zone)
6403 {
6404 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6405 	mutex_unlock(&pcp_batch_high_lock);
6406 }
6407 
zone_pcp_reset(struct zone *zone)6408 void zone_pcp_reset(struct zone *zone)
6409 {
6410 	int cpu;
6411 	struct per_cpu_zonestat *pzstats;
6412 
6413 	if (zone->per_cpu_pageset != &boot_pageset) {
6414 		for_each_online_cpu(cpu) {
6415 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6416 			drain_zonestat(zone, pzstats);
6417 		}
6418 		free_percpu(zone->per_cpu_pageset);
6419 		zone->per_cpu_pageset = &boot_pageset;
6420 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6421 			free_percpu(zone->per_cpu_zonestats);
6422 			zone->per_cpu_zonestats = &boot_zonestats;
6423 		}
6424 	}
6425 }
6426 
6427 #ifdef CONFIG_MEMORY_HOTREMOVE
6428 /*
6429  * All pages in the range must be in a single zone, must not contain holes,
6430  * must span full sections, and must be isolated before calling this function.
6431  */
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)6432 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6433 {
6434 	unsigned long pfn = start_pfn;
6435 	struct page *page;
6436 	struct zone *zone;
6437 	unsigned int order;
6438 	unsigned long flags;
6439 
6440 	offline_mem_sections(pfn, end_pfn);
6441 	zone = page_zone(pfn_to_page(pfn));
6442 	spin_lock_irqsave(&zone->lock, flags);
6443 	while (pfn < end_pfn) {
6444 		page = pfn_to_page(pfn);
6445 		/*
6446 		 * The HWPoisoned page may be not in buddy system, and
6447 		 * page_count() is not 0.
6448 		 */
6449 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6450 			pfn++;
6451 			continue;
6452 		}
6453 		/*
6454 		 * At this point all remaining PageOffline() pages have a
6455 		 * reference count of 0 and can simply be skipped.
6456 		 */
6457 		if (PageOffline(page)) {
6458 			BUG_ON(page_count(page));
6459 			BUG_ON(PageBuddy(page));
6460 			pfn++;
6461 			continue;
6462 		}
6463 
6464 		BUG_ON(page_count(page));
6465 		BUG_ON(!PageBuddy(page));
6466 		order = buddy_order(page);
6467 		del_page_from_free_list(page, zone, order);
6468 		pfn += (1 << order);
6469 	}
6470 	spin_unlock_irqrestore(&zone->lock, flags);
6471 }
6472 #endif
6473 
6474 /*
6475  * This function returns a stable result only if called under zone lock.
6476  */
is_free_buddy_page(struct page *page)6477 bool is_free_buddy_page(struct page *page)
6478 {
6479 	unsigned long pfn = page_to_pfn(page);
6480 	unsigned int order;
6481 
6482 	for (order = 0; order <= MAX_ORDER; order++) {
6483 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6484 
6485 		if (PageBuddy(page_head) &&
6486 		    buddy_order_unsafe(page_head) >= order)
6487 			break;
6488 	}
6489 
6490 	return order <= MAX_ORDER;
6491 }
6492 EXPORT_SYMBOL(is_free_buddy_page);
6493 
6494 #ifdef CONFIG_MEMORY_FAILURE
6495 /*
6496  * Break down a higher-order page in sub-pages, and keep our target out of
6497  * buddy allocator.
6498  */
break_down_buddy_pages(struct zone *zone, struct page *page, struct page *target, int low, int high, int migratetype)6499 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6500 				   struct page *target, int low, int high,
6501 				   int migratetype)
6502 {
6503 	unsigned long size = 1 << high;
6504 	struct page *current_buddy, *next_page;
6505 
6506 	while (high > low) {
6507 		high--;
6508 		size >>= 1;
6509 
6510 		if (target >= &page[size]) {
6511 			next_page = page + size;
6512 			current_buddy = page;
6513 		} else {
6514 			next_page = page;
6515 			current_buddy = page + size;
6516 		}
6517 		page = next_page;
6518 
6519 		if (set_page_guard(zone, current_buddy, high, migratetype))
6520 			continue;
6521 
6522 		if (current_buddy != target) {
6523 			add_to_free_list(current_buddy, zone, high, migratetype);
6524 			set_buddy_order(current_buddy, high);
6525 		}
6526 	}
6527 }
6528 
6529 /*
6530  * Take a page that will be marked as poisoned off the buddy allocator.
6531  */
take_page_off_buddy(struct page *page)6532 bool take_page_off_buddy(struct page *page)
6533 {
6534 	struct zone *zone = page_zone(page);
6535 	unsigned long pfn = page_to_pfn(page);
6536 	unsigned long flags;
6537 	unsigned int order;
6538 	bool ret = false;
6539 
6540 	spin_lock_irqsave(&zone->lock, flags);
6541 	for (order = 0; order <= MAX_ORDER; order++) {
6542 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6543 		int page_order = buddy_order(page_head);
6544 
6545 		if (PageBuddy(page_head) && page_order >= order) {
6546 			unsigned long pfn_head = page_to_pfn(page_head);
6547 			int migratetype = get_pfnblock_migratetype(page_head,
6548 								   pfn_head);
6549 
6550 			del_page_from_free_list(page_head, zone, page_order);
6551 			break_down_buddy_pages(zone, page_head, page, 0,
6552 						page_order, migratetype);
6553 			SetPageHWPoisonTakenOff(page);
6554 			if (!is_migrate_isolate(migratetype))
6555 				__mod_zone_freepage_state(zone, -1, migratetype);
6556 			ret = true;
6557 			break;
6558 		}
6559 		if (page_count(page_head) > 0)
6560 			break;
6561 	}
6562 	spin_unlock_irqrestore(&zone->lock, flags);
6563 	return ret;
6564 }
6565 
6566 /*
6567  * Cancel takeoff done by take_page_off_buddy().
6568  */
put_page_back_buddy(struct page *page)6569 bool put_page_back_buddy(struct page *page)
6570 {
6571 	struct zone *zone = page_zone(page);
6572 	unsigned long pfn = page_to_pfn(page);
6573 	unsigned long flags;
6574 	int migratetype = get_pfnblock_migratetype(page, pfn);
6575 	bool ret = false;
6576 
6577 	spin_lock_irqsave(&zone->lock, flags);
6578 	if (put_page_testzero(page)) {
6579 		ClearPageHWPoisonTakenOff(page);
6580 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6581 		if (TestClearPageHWPoison(page)) {
6582 			ret = true;
6583 		}
6584 	}
6585 	spin_unlock_irqrestore(&zone->lock, flags);
6586 
6587 	return ret;
6588 }
6589 #endif
6590 
6591 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6592 bool has_managed_dma(void)
6593 {
6594 	struct pglist_data *pgdat;
6595 
6596 	for_each_online_pgdat(pgdat) {
6597 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6598 
6599 		if (managed_zone(zone))
6600 			return true;
6601 	}
6602 	return false;
6603 }
6604 #endif /* CONFIG_ZONE_DMA */
6605 
6606 #ifdef CONFIG_UNACCEPTED_MEMORY
6607 
6608 /* Counts number of zones with unaccepted pages. */
6609 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6610 
6611 static bool lazy_accept = true;
6612 
accept_memory_parse(char *p)6613 static int __init accept_memory_parse(char *p)
6614 {
6615 	if (!strcmp(p, "lazy")) {
6616 		lazy_accept = true;
6617 		return 0;
6618 	} else if (!strcmp(p, "eager")) {
6619 		lazy_accept = false;
6620 		return 0;
6621 	} else {
6622 		return -EINVAL;
6623 	}
6624 }
6625 early_param("accept_memory", accept_memory_parse);
6626 
page_contains_unaccepted(struct page *page, unsigned int order)6627 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6628 {
6629 	phys_addr_t start = page_to_phys(page);
6630 	phys_addr_t end = start + (PAGE_SIZE << order);
6631 
6632 	return range_contains_unaccepted_memory(start, end);
6633 }
6634 
accept_page(struct page *page, unsigned int order)6635 static void accept_page(struct page *page, unsigned int order)
6636 {
6637 	phys_addr_t start = page_to_phys(page);
6638 
6639 	accept_memory(start, start + (PAGE_SIZE << order));
6640 }
6641 
try_to_accept_memory_one(struct zone *zone)6642 static bool try_to_accept_memory_one(struct zone *zone)
6643 {
6644 	unsigned long flags;
6645 	struct page *page;
6646 	bool last;
6647 
6648 	if (list_empty(&zone->unaccepted_pages))
6649 		return false;
6650 
6651 	spin_lock_irqsave(&zone->lock, flags);
6652 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6653 					struct page, lru);
6654 	if (!page) {
6655 		spin_unlock_irqrestore(&zone->lock, flags);
6656 		return false;
6657 	}
6658 
6659 	list_del(&page->lru);
6660 	last = list_empty(&zone->unaccepted_pages);
6661 
6662 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6663 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6664 	spin_unlock_irqrestore(&zone->lock, flags);
6665 
6666 	accept_page(page, MAX_ORDER);
6667 
6668 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6669 
6670 	if (last)
6671 		static_branch_dec(&zones_with_unaccepted_pages);
6672 
6673 	return true;
6674 }
6675 
try_to_accept_memory(struct zone *zone, unsigned int order)6676 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6677 {
6678 	long to_accept;
6679 	int ret = false;
6680 
6681 	/* How much to accept to get to high watermark? */
6682 	to_accept = high_wmark_pages(zone) -
6683 		    (zone_page_state(zone, NR_FREE_PAGES) -
6684 		    __zone_watermark_unusable_free(zone, order, 0));
6685 
6686 	/* Accept at least one page */
6687 	do {
6688 		if (!try_to_accept_memory_one(zone))
6689 			break;
6690 		ret = true;
6691 		to_accept -= MAX_ORDER_NR_PAGES;
6692 	} while (to_accept > 0);
6693 
6694 	return ret;
6695 }
6696 
has_unaccepted_memory(void)6697 static inline bool has_unaccepted_memory(void)
6698 {
6699 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6700 }
6701 
__free_unaccepted(struct page *page)6702 static bool __free_unaccepted(struct page *page)
6703 {
6704 	struct zone *zone = page_zone(page);
6705 	unsigned long flags;
6706 	bool first = false;
6707 
6708 	if (!lazy_accept)
6709 		return false;
6710 
6711 	spin_lock_irqsave(&zone->lock, flags);
6712 	first = list_empty(&zone->unaccepted_pages);
6713 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6714 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6715 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6716 	spin_unlock_irqrestore(&zone->lock, flags);
6717 
6718 	if (first)
6719 		static_branch_inc(&zones_with_unaccepted_pages);
6720 
6721 	return true;
6722 }
6723 
6724 #else
6725 
page_contains_unaccepted(struct page *page, unsigned int order)6726 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6727 {
6728 	return false;
6729 }
6730 
accept_page(struct page *page, unsigned int order)6731 static void accept_page(struct page *page, unsigned int order)
6732 {
6733 }
6734 
try_to_accept_memory(struct zone *zone, unsigned int order)6735 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6736 {
6737 	return false;
6738 }
6739 
has_unaccepted_memory(void)6740 static inline bool has_unaccepted_memory(void)
6741 {
6742 	return false;
6743 }
6744 
__free_unaccepted(struct page *page)6745 static bool __free_unaccepted(struct page *page)
6746 {
6747 	BUILD_BUG();
6748 	return false;
6749 }
6750 
6751 #endif /* CONFIG_UNACCEPTED_MEMORY */
6752